
Automation of Refactoring and Refactoring Suggestions

for TTCN-3 Test Suites
The TRex TTCN-3 Refactoring and Metrics Tool

Helmut Neukirchen and Benjamin Zeiss
Software Engineering for Distributed Systems Group,

Institute for Informatics, University of Göttingen,
Lotzestr. 16–18, 37083 Göttingen, Germany

{neukirchen|zeiss}@cs.uni-goettingen.de

Abstract Refactoring is not only useful for
source code of implementations, but as well for
test specifications. The open source TRex tool
automates the application of refactorings and
the detection of refactoring opportunities for test
suites that are specified using the standardised
Testing and Test Control Notation (TTCN-3).
Depending on the refactoring, the behaviour pre-
serving transformations may include syntax tree
transformations and direct modification of the
source code; for suggesting refactorings, metrics
are calculated and code smell patterns are de-
tected.

Introduction. The Testing and Test Control
Notation (TTCN-3) [1] is a mature standard
from the telecommunication and data commu-
nication domain that is widely used in indus-
try and standardisation to specify and execute
test suites. Just like any other software artifact,
tests suffer from quality problems [2]. To remove
such quality problems from TTCN-3 test suites,
we use refactoring [3]. For suggesting refactor-
ings, we use a combination of metrics and code
smell detection.

In the following, we first present our approach
for the quality assessment and improvement of
TTCN-3 test suites. Subsequently, the TTCN-3
Refactoring and Metrics Tool TRex and its
implementation are described. Finally, future
work is discussed in the outlook.

Refactoring, Metrics, and Code Smell De-
tection for TTCN-3 Test Suites. Refactor-
ing of test suites has so far only been studied
in the context of JUnit [2]. Thus, we have de-
veloped a refactoring catalogue for TTCN-3 [4,
5] which includes 23 refactorings using language
specific concepts of TTCN-3. Furthermore, we
found 28 refactorings from Fowler’s Java refac-
toring catalogue [3] to be applicable to TTCN-3.

For being able to automatically identify loca-
tions in source code where a refactoring is worth-
while, we investigated corresponding TTCN-3
metrics and TTCN-3 code smells. For example,
a Number of References metric is used to iden-
tify definitions that are never referenced and can
thus be removed or that are referenced only once
and can thus be inlined using a corresponding
refactoring. Even though we experienced that
metrics are able to detect various issues, they
are not sophisticated enough to detect more ad-
vanced problems. Therefore, we investigated
pattern-analysis of source code and as a result,
we have developed a catalogue of TTCN-3 code
smells [6]. So far 38 TTCN-3 code smells have
been identified.

TRex Implementation. To automate refac-
toring for TTCN-3 test specifications, we have
implemented the open source TTCN-3 Refac-
toring and Metrics tool TRex [4]. The ini-
tial version has been developed in collaboration
with Motorola Labs, UK [7]. TRex implements
state-of-the-art editing capabilities, assessment
and improvement techniques for TTCN-3 test
suites based on the calculation of metrics, au-
tomated smell detection, and refactoring. TRex
is based on the Eclipse Platform [8] and thus
makes use of the infrastructure offered, e.g. the
Language Toolkit (LTK) or the Eclipse Test
& Performance Tools Platform (TPTP) static
analysis framework. The analysis infrastruc-
ture including lexer, parser, symbol table, pretty
printer, etc. for TTCN-3 have been implemented
using ANother Tool for Language Recognition
(ANTLR) [9].

The automated refactorings we currently pro-
vide concentrate mostly on the improvement
of test data descriptions (TTCN-3 templates).
The refactoring implementations can be applied
in two different ways: either the test developer
invokes the refactoring from the code location



(2) Quality Assessment (3) Automated Refactorings

(1) Static Analysis

Eclipse Platform
User

Interface
Text Editor TPTP

Language

Toolkit
...

TTCN-3

Source Code

ANTLR

Lexing,

Parsing

Refactoring 

Processor

Refactored

TTCN-3

Source Code

Transformed 

Subtree of the

Syntax Tree

Pretty Printer

Change 

Weaver

Syntax Tree /

Symbol Table

Metrics / Code Smell Detection

Rule-Based Refactoring Suggestions

Figure 1: The TRex Toolchain

which should be subject to the refactoring or
the refactoring is invoked directly by a quick-fix
which is provided by the analysis results of the
automated quality assessment.

For the assessment, a considerable number of
size metrics (such as counting the number of
references to a definition) and structural met-
rics (using control-flow graphs and call graphs)
are calculated. Furthermore, a total number
of 11 TTCN-3 code smell detection rules have
been implemented that partially allow the use
of quick-fixes to invoke automated refactorings.

The overall toolchain of TRex is depicted in
Fig. 1. Based on the syntax tree and symbol
table, the automated refactorings can either be
applied directly or invoked through the refac-
toring suggestions obtained by means of met-
rics and code smell detection. The refactorings
are applied directly to the source code using a
programmatic text editor and may as well in-
volve syntax tree transformations. The corre-
sponding text representation from transformed
subtrees is reobtained by a pretty printer com-
ponent and weaved back into the surrounding
TTCN-3 source code.

The implementations of metric calculation,
code smell detection, and refactoring are tested
using Plug-in Development Environment (PDE)
JUnit tests, e.g. by comparing source code snip-
pets before and after the refactoring.

Outlook. A remaining issue open for research
is the validation of test refactorings: Unlike Java
refactorings, for example, there are no unit tests
available for tests and simply running a test
suite against an implementation is not enough
if the test behaviour consists of more than one
path. We are thus investigating bisimulation
to validate that the observable behaviour of a
refactored test suite has not changed. In addi-
tion, we are extending TRex by implementing

further TTCN-3 refactorings and more sophis-
ticated code smell detection techniques.

References

[1] ETSI: ETSI Standard (ES) 201 873 V3.2.1:
The Testing and Test Control Notation ver-
sion 3; Parts 1-8. European Telecommuni-
cations Standards Institute (ETSI), Sophia-
Antipolis, France (2007)

[2] van Deursen, A., Moonen, L., van den
Bergh, A., Kok, G.: Refactoring Test Code.
In: XP2001. (2001)

[3] Fowler, M.: Refactoring – Improving the
Design of Existing Code. Addison-Wesley,
Boston (1999)

[4] TRex Team: TRex Website. http://www.
trex.informatik.uni-goettingen.de
(2007)

[5] Zeiss, B.: A Refactoring Tool for TTCN-
3. Master’s thesis, Institute for Informatics,
University of Göttingen, Germany, ZFI-BM-
2006-05 (2006)

[6] Bisanz, M.: Pattern-based Smell Detec-
tion in TTCN-3 Test Suites. Master’s
thesis, Institute for Informatics, University
of Göttingen, Germany, ZFI-BM-2006-44
(2006)

[7] Baker, P., Evans, D., Grabowski, J.,
Neukirchen, H., Zeiss, B.: TRex – The
Refactoring and Metrics Tool for TTCN-3
Test Specifications. In: TAIC PART 2006,
IEEE Computer Society (2006) 90–94

[8] Eclipse Foundation: Eclipse. http://www.
eclipse.org (2007)

[9] Parr, T.: ANTLR parser generator v2.
http://www.antlr2.org (2007)


