
ISSN 1612-6793
Nr. ZAI-MSC-2017-23

Master’s Thesis
submitted in partial fulfilment of the

requirements for the course “Applied Computer Science”

Comparison And Adaptation Of Cloud Application
Topologies Using Models At Runtime

Johannes Martin Erbel

Institute of Computer Science

Bachelor’s and Master’s Theses
of the Center for Computational Sciences

at the Georg-August-Universität Göttingen

26. September 2017

Georg-August-Universität Göttingen
Institute of Computer Science

Goldschmidtstraße 7
37077 Göttingen
Germany

T +49 (551) 39-172000
t +49 (551) 39-14403
B office@informatik.uni-goettingen.de
m www.informatik.uni-goettingen.de

First Supervisor: Prof. Dr. Jens Grabowski
Second Supervisor: Prof. Dr. Dieter Hogrefe

mailto:office@informatik.uni-goettingen.de
www.informatik.uni-goettingen.de

I hereby declare that I have written this thesis independently without any help from others and
without the use of documents or aids other than those stated. I have mentioned all used sources
and cited them correctly according to established academic citation rules.

Göttingen, 26. September 2017

Abstract
Cloud computing, a service to dynamically rent computing resources on demand, establishes the common
standard for computing being a utility. Due to high demands for such a service, several provider created
and offer their own cloud infrastructure. This, however, has lead to a problem affecting the portability of
cloud applications, as each provider requires the usage of different tools and frameworks. Consequently, a
provider lock-in is created making it costly to change the service provider once an application is build. To
bypass this problem, standards are developed which design interfaces and frameworks generalizing the access
to cloud services. One of these standards is the Open Cloud Computing Interface (OCCI), which defines a
Representational State Transfer (REST) Application Programming Interface (API), enabling the possibility
to create, change, and release cloud resources over simple REST calls. To do so, OCCI defines a metamodel
allowing to describe complete cloud application, whereby the single model elements represent cloud resources
containing the information required for the REST calls. Nevertheless, OCCI does not define how to provision
complete cloud application topologies or how to adapt applications already running. Therefore, we propose
a models at runtime approach providing this capability. We examine multiple distinct steps required to
transform the running cloud application into the desired one. Hereby, we propose a generic comparison
process that utilizes different strategies in order to calculate a possible match of cloud resources from the
models. Based on this match, we mark how the different resources have to be treated serving as input for
the different steps of the adaptation process. These steps comprise different management tasks handling the
deprovisioning, updating, and provisioning of single resources, which we compound in order to create an
adaptation process. Overall, our evaluation of the this model-based approach shows its general feasibility to
adapt running cloud application topologies using the OCCI standard.

Contents

1 Introduction 1
1.1 Goals and Scope . 2
1.2 Outline . 2

2 Basics 5
2.1 Cloud Computing . 5

2.1.1 Cloud Computing Definition . 6
2.1.2 Cloud Computing Architecture . 9
2.1.3 Provider Lock-In . 9

2.2 Open Cloud Computing Interface . 10
2.2.1 Core Model . 11
2.2.2 Infrastructure Extension . 12
2.2.3 Platform Extension . 14
2.2.4 RESTful API . 15

2.3 Model Driven Engineering . 16
2.3.1 Models . 16
2.3.2 Metamodels . 17
2.3.3 Model Transformations . 19
2.3.4 Models at Runtime . 20

3 Analysis 23
3.1 Comparison . 24
3.2 Adaptation Steps . 24

3.2.1 Extraction . 25
3.2.2 Deprovisioning . 25
3.2.3 Update . 25
3.2.4 Provisioning . 25

ix

x CONTENTS

4 Design 27
4.1 Comparator . 28

4.1.1 Simple Comparator . 29
4.1.2 Complex Comparator . 29
4.1.3 Mixed Comparator . 31

4.2 Adaptation Steps . 32
4.2.1 Extraction . 32
4.2.2 Deprovisioning . 33
4.2.3 Updating . 34
4.2.4 Provisioning . 34

5 Implementation 39
5.1 Tooling . 39
5.2 Comparison . 40

5.2.1 Complex Comparator . 42
5.2.2 Mixed Comparator . 45

5.3 Adaptation Process . 46
5.3.1 Extraction . 48
5.3.2 Deprovisioning . 48
5.3.3 Update . 49
5.3.4 Provisioning . 50

6 Evaluation 55
6.1 Case Descriptions . 55

6.1.1 Basic Cases . 56
6.1.2 Complex Cases . 57

6.2 Comparator . 58
6.2.1 Results of the Simple Comparator . 58
6.2.2 Results of the Complex Comparator . 59
6.2.3 Results of the Mixed Comparator . 61

6.3 Adaptation Process . 63
6.4 Discussion . 67

6.4.1 Threats to Validity . 69
6.4.2 Excursion: OCCI PaaS Extension . 69

7 Related Work 71

8 Conclusion 75
8.1 Future Work . 76

Bibliography 79

CONTENTS xi

List of Abbreviations 85

List of Figures 89

List of Tables 91

List of Listings 93

Chapter 1

Introduction

High demand for computing as utility brought up a flourishing economy for cloud computing
services, due to the elastic nature of virtualized resources. Hereby, the demand led to the creation
of multiple companies providing such a service, whereby the way of accessing it differs from
provider to provider. This diversity, however, resulted in the provider lock-in problem, i.e. the
binding of a customer to a provider once a cloud application has been build. Meanwhile, many
different approaches and standards evolved in order to solve this problem. One of them is the
Open Cloud Computing Interface (OCCI) [1], a standard developed by the Open Grid Forum (OGF).
OCCI defines a universal interface to access and manage cloud resources over Representational
State Transfer (REST) calls, a programming paradigm for web services [2]. For the derivation of
the information required for the REST calls, OCCI defines a model which is capable of not only
describing single cloud resources, but also depict complete cloud topologies.

In this thesis, we propose a models at runtime approach utilizing these models in order to
automatically adapt a running cloud application topology. This allows not only to react to
changing requirements and environments as soon as possible, but also to bypass a manual
adaptation of the topology, which typically is a time-consuming and error prone process. To
implement such an approach, the runtime model needs to be compared against the model
depicting the desired state of the cloud application topology. This allows to evaluate which
resources have to be changed, created or deleted.

The results of this comparison are utilized in several adaptation steps handling the dele-
tion, creation, and update of single elements by performing the required REST calls. Summed
up, the complete adaptation process is separated in the extraction of the runtime model, the
comparison and required steps to be performed, which are described and evaluated in this thesis.
In the following, the goals and scope of this thesis are enumerated.

1

2 CHAPTER 1. INTRODUCTION

1.1 Goals and Scope

The goals and scope of this paper can be summarized as follows:

• investigate comparison strategies to compare two OCCI models,
• examine required treatment of the cloud resources, based on this comparison,
• define adaptive steps to transform the cloud application into the desired state,
• evaluate the complete adaptation process and the limits of the comparison strategies.

1.2 Outline

Chapter 2 covers fundamental knowledge about cloud computing, the OCCI standard, and the
principles of Model Driven Engineering (MDE). Chapter 3 elicits requirements for the complete
adaptation process highlighting different comparison strategies and required adaptation steps.
Chapter 4 provides an overview of the complete adaptation process and a detailed design of the
single adaptation steps and comparison strategies. Chapter 5 covers details about the implementa-
tion of the proposed approach, including the used tools and selected implementation challenges.
Chapter 6 evaluates the comparison strategies and the complete adaptation process, using the
implemented prototype. Chapter 7 discusses related work delimiting similar approaches to the
proposed one. Finally, in Chapter 8, an overall conclusion is given, summing up the results of this
thesis, followed by an outlook on future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Basics

To understand the necessity and the process behind the adaptation and comparison techniques,
this chapter provides fundamental knowledge about cloud computing and the MDE development
paradigm. At first, in Section 2.1, a common definition of cloud computing is given in addition to an
explanation of the service itself. Section 2.2 introduces the OCCI standard we utilize for the cloud
management calls. Finally, Section 2.3 examines the MDE development paradigm highlighting its
assumptions and techniques.

2.1 Cloud Computing

Cloud computing is a service which allows to dynamically rent computing resources on demand,
establishing a way for computing to be a utility [3]. Due to this utilization of computing resources,
cloud computing wipes out the necessity of companies to posses own physical hardware and
human effort to maintain it. To offer such a service, a cloud provider pools a large amount
of physical hardware together [4], which can be split via virtualization to make it available to
the consumer [5]. This large amount of on-demand available resources eliminates the need of
consumers to plan the required resources, as the amount of virtualized resources can be scaled
at all time to quickly react to changing requirements [6]. Summed up, the elasticity of cloud
resources allows a perfect utilization of computing resources, because the amount of resources
can be adapted to the actual need, as depicted in Figure 2.1. This figure shows the problems
of static resource provisioning, called Over- and Underprovisioning and how it is solved using
dynamic provisioning of cloud resources. The Overprovisioning (Figure 2.1 a) comes with the
drawback of paying unused resources on low demand periods, as the capacity is fit to the peak
of the expected demand. If the capacity is set to a lower amount of peak demand times, as it
is in the Underprovisioning case (Figure 2.1 b), not enough resources are available to handle all
incoming requests, leading to a dissatisfaction of users and therefore to a decreasing demand

5

6 CHAPTER 2. BASICS

overall (Figure 2.1 c). However, when using Cloud Provisioning (Figure 2.1 d), the capacity can be
dynamically adjusted to the demand. This especially addresses an economical benefit, as only the
required resources have to be rented. Consequently, cloud computing employs a pay-as-you-go
pricing model, lowering the service operation cost for consumers [5].

To provide a common definition of cloud computing, Section 2.1.1, describes the defini-
tion developed by the National Institute of Standards and Technology (NIST) [4]. Furthermore,
an abstract view of the architecture of cloud infrastructures is given in Section 2.1.2. Finally,
Section 2.1.3 addresses the provider lock-in problem, one of the major drawbacks of cloud
computing which we address in this thesis.

R
es

ou
rc

es

1 2 3
time (days)

Capacity

demand

R
es

ou
rc

es

time (days)
1 2 3

Capacity

demand

time (days)
1 2 3

Capacity

demand

R
es

ou
rc

es

(d) Cloud Provisioning

(b) Underprovisioning(a) Overprovisioning
R
es

ou
rc

es

1 2 3
time (days)

Capacity

demand

(c) Underprovisioning 2

Figure 2.1: Dynamic versus static resource provisioning (adapted from Armbrust et al. [3]).

2.1.1 Cloud Computing Definition

Compared to the description of cloud computing provided above, the NIST standard provides a
more detailed and formalized version: “Cloud computing is a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with minimal management
effort or service provider interaction” [4]. To deepen this definition, NIST describes five essential
characteristics required by a cloud system, three service models, which describe the services a cloud
provider can offer, and four deployment models, which define the scope of consumers having access
to the cloud. In the following, these essential characteristics, service models, and deployment
models are described.

2.1. CLOUD COMPUTING 7

Essential Characteristics

The NIST standard for cloud computing defines five essential characteristics of a cloud system:

On-demand self-service allows consumers to conveniently provision cloud resources, like computa-
tion time or storage, without the need for any human interaction. Furthermore, due to permanent
availability, it grants the capability to rent the resources on demand.

Broad network access requires a cloud service to offer standardized mechanisms which allow hetero-
geneous client systems to access the cloud resources over a network. It should be noted that these
standardized mechanisms differ from provider to provider.

Resource pooling composes the cloud system of a large pool of physical resources, which get shared
by multiple consumers. These resources get virtualized and dynamically assigned and reassigned
to the different consumers depending on their demand. Hereby, no information of the exact
physical location of the resources are given. A consumer can only influence the location of the
resources on a high abstraction level to configure for example, the country, state or data center in
which the resources should be provisioned.

Rapid elasticity allows consumers to provision and release resources at any point in time, which
creates the illusion of infinite available resources. Therefore, a rapid in- and out-scaling of rented
resources is required.

Measured service requires a cloud to provide a monitoring service. This service makes the cloud’s
behavior transparent to both the consumer and provider. Moreover, by leveraging metering
capabilities, the cloud system is able to optimize itself by adjusting its resource utilization. Hereby,
the degree of optimization depends on the kind of resource measured (e.g., storage, processing,
active user accounts).

Service Models

Overall, the NIST standard [4] defines three different service models a cloud provider can offer:

Software as a Service (SaaS) offers a pre-build software application, running on top of a cloud
infrastructure. In case of SaaS, the consumer represents a user, as he has no control over the
underlying infrastructure or the software configuration. Only a limited amount of user specific
settings can be configured. One example for a SaaS is Google’s GSuite [7], which comprises multiple
kinds of office and email software.

Platform as a Service (PaaS) allows a consumer to deploy a self chosen software application onto a
cloud infrastructure, whereby the application needs to meet the requirements of the cloud regarding
supported tools. Compared to SaaS, the consumer needs to handle the hosting environment and
software configurations of the chosen application. Nevertheless, the consumer has still no control

8 CHAPTER 2. BASICS

over the underlying infrastructure. Two examples for PaaS are the Google App Engine (GAE) [8]
and Amazon Web Services (AWS) Elastic Beanstalk [9], which allow consumers to deploy modern
web and mobile applications.

In addition to deploying self chosen software, Infrastructure as a Service (IaaS) allows the manage-
ment of complete infrastructure, as it grants direct access to any kind of provisioned resource,
covering processing, storage or network resources. Therefore, the consumer is able to deploy
and run any kind of software on the provisioned resources, including for example Operating
Systems (OSs). Nevertheless, the underlying infrastructure of the pooled physical resources is still
inaccessible to the consumer. One example for IaaS is Amazon’s Elastic Compute Cloud (EC2) [10].

Summed up, IaaS builds the most flexible service but also requires the largest amount of manage-
ment effort. Compared to IaaS, PaaS comes with the benefit that only the deployed application
needs to be maintained and configured, without paying attention to the underlying infrastructure.
Finally, SaaS provides an easy and convenient way to make use of cloud resources, as complete
software systems are rented including their maintenance. Overall, consumers can individually
choose the different service models to fit their needs.

Deployment Models

NIST [4] names four kinds of deployment models, defining the scope of consumers having access
to the cloud and the kind of organizations providing it:

Private clouds are cloud infrastructures exclusively managed to be used by single organizations
having multiple consumers. Hereby, the infrastructure can either be managed by the organization
itself or by a third party, and therefore can be on or off premises. For example, a cloud infrastructure
provided by a research group, with only its employees having access to it.

Community clouds are provided exclusively for organizations sharing a specific concern. This
infrastructure is managed by a subset of the community members or a third party. Thus, it can be
on or off premises of one of the involved organizations.

Public clouds are cloud infrastructures available to the general public, which is managed by any
kind of organization existing on their premises. Examples for public cloud providers are Amazon
and Google.

Hybrid clouds combine at least two of the above listed deployment models, whereby the combined
cloud infrastructures are unique entities. Hereby, these are connected over technologies that enable
data and application portability. This combination of multiple cloud infrastructures allows for a
larger pool of cloud resources and for a possible load balancing between the connected clouds.

2.1. CLOUD COMPUTING 9

2.1.2 Cloud Computing Architecture

In addition to the NIST standard [4], this section provides an overview of the architectural structure
of a cloud infrastructure. The architecture is composed of four modular layers [5], as depicted
in Figure 2.2: a hardware-, infrastructure-, platform- and an application layer. Furthermore, this
figure shows the layers a consumer has access to depending on the cloud service models. The
hardware layer represents the physical resources of the cloud system. These are typically managed
in large data centers configuring the servers, routers and switches that together build the cloud
infrastructure. On top of the hardware layer is the infrastructure layer, which is also known as
virtualization layer. This layer partitions the physical resources of the cloud making them available
to the consumer. For example, this layer instantiates Virtual Machines (VMs) requested by the
consumer. Hereby, different virtualization technologies are used, such as Xen [11], KVM [12],
and VMWare [13]. The platform layer defines frameworks and Application Programming Interfaces
(APIs), allowing for cloud applications to be deployed on. In the application layer the running
cloud applications are contained utilizing the automatic-scaling capabilities of the underlying
infrastructure. According to Zhang et al. [5], these layers are loosely coupled, which allows them
to evolve separately with a minimum amount of management and maintenance overhead.

Infrastructure

as a service (IaaS)

Pla�orm as a

Service (PaaS)

So�ware as a

Service (SaaS)

End User/

Service Consumer

Data Centers

Amazon EC2

Google AppEngine,

Amazon Beanstalk

Google GSuite

Examples:Resources managed at each layer

Hardware

Infrastructure

Pla�orms

Applica�on

CPU, Memory, Disk, Bandwidth

Computa�on (VM), Storage (block)

So�ware Framework (Java/Python/.Net)

Storage (DB/File)

Business Applica�ons,

Web Services, Mul�media

Figure 2.2: Cloud computing architecture (adapted from Zhang et al. [5]).

2.1.3 Provider Lock-In

Even though cloud computing establishes a convenient way to use computing resources as utility,
several obstacles exist without a proper solution yet. One of these problems is the provider lock-in,
which describes a vendor lock-in that binds a cloud consumer to a provider once a cloud application
is build or established [14]. This lock-in results from the different APIs and frameworks used by
cloud providers, as it is complex and costly to adapt an already build cloud application to meet the
requirement of another cloud system. For example, one crucial point is the kind of virtualization
technology used in the infrastructure layer, as it is not granted that a cloud application behaves

10 CHAPTER 2. BASICS

in the same manner under the use of different virtualization techniques [14]. Meanwhile, many
different cloud computing standards have been developed to tackle this issue, which are mainly
accepted among open source cloud middlewares such as OpenNebula [15] and OpenStack [16]. One
of these standards is OCCI, which is described in the following section.

2.2 Open Cloud Computing Interface

In the scope of this thesis we utilize the Open Cloud Computing Interface (OCCI) [17], a standard
by the OGF [18], to build abstract representations of cloud applications, which we compare, deploy
and adapt. In general, the standard defines an API and boundary protocol, which allows for
a simple management of cloud resources over REST calls. Hereby, the OCCI interface can be
implemented by the provider in addition to any proprietary API, as depicted in Figure 2.3. This
figure depicts OCCI’s place in the cloud infrastructure from a provider’s point of view. Here, it
is highlighted that a consumer can access the cloud resources over simple REST calls, which use
the Hypertext Transfer Protocol (HTTP). Moreover, it shows that the OCCI interface is connected
to the provider’s internal resource management framework, allowing for a uniform access of
cloud resources [1]. Originally, OCCI was developed for the purpose of managing IaaS resources.
Meanwhile, it is further enhanced to support the management of PaaS resources and Service Level
Agreements (SLAs) [19]. OCCI’s specification consists of multiple documents describing the core of
the standard and multiple extensions to enhance the core’s functionality. In the following these
documents are described in order to examine the capabilities of the OCCI interface. Section 2.2.1
covers the definition of OCCI’s Core Model. Section 2.2.2 deals with the IaaS extension of the Core
Model, whereas Section 2.2.3 investigates the PaaS extension. Finally, Section 2.2.4 describes how
to interact with OCCI using the REST API.

Figure 2.3: The OCCI API in a provider’s architecture [1].

2.2. OPEN CLOUD COMPUTING INTERFACE 11

2.2.1 Core Model

The Core Model of OCCI defines a model used to abstract real-world cloud resources and, therefore,
builds the main component of the standard [1]. Hereby, the model’s elements represent single
resources that are managed over REST calls. Figure 2.4 provides an overview of the OCCI Core
Model. Overall, the OCCI Core Model is composed of two parts, the core base types and the
classification and identification mechanisms [1]. In the following, these two parts are investigated
in detail.

depends

Attr ibute
name: String
type: Enum {Object, List, Hash}
mutable: Boolean
required: Boolean
pattern: Object [0..1]
default: {Object, List, Hash} [0..1]
description: String [0..1]

Link
target: URI
target.kind: Kind [0..1]

Resource
summary: String

Entity
id: URI
title: String

Action MixinKind

Category
scheme: URI
term: String
title: String [0..1]

* applies

1 *attr ibutes

*

*

0..1

*

1 source *links

1 kind

*entit ies

*mixins

* entit ies

1* actions0..1 *actions

parent

Core base types

Classifica�on and
iden�fica�on

Figure 2.4: OCCI’s Core Model (adapted from OCCI’s Core specification [1]).

The core base types comprise the elements Entity, Resource, and Link. The abstracted real world
resources, for example VMs storages or networks, are represented by instantiations of the Resource
element. To describe a connection between two Resources, the source Resource contains a Link
element, providing information about the target. Both, Resource and Link, inherit from the abstract
Entity element, which defines title and id to identify those. Each Entity, i.e., each Resource and each
Link, is bound to one Kind and can be related to any amount of Mixins classifying them.

The classification and identification mechanisms are build upon the elements Category, Attribute,
Kind, Action and Mixin. The abstract Category element represents the basis of the identification
mechanisms. It defines a scheme and term attribute, which uniquely identify Category instantia-
tions and their location, e.g., http://example.com/category/scheme#term. Category instances may
define any amount of Attributes representing client readable attributes. It should be noted, that
each Attribute is uniquely bound to one specific Category instance, as depicted by the composition
relationship.

12 CHAPTER 2. BASICS

The key feature of the classification system is the Kind element, which specifies related Entity
sub-types. These define Attribute structures an Entity fills with values allowing for a detailed
abstraction of the real world resource. Moreover, Kinds may define Actions that can be performed
on related Entities. Each Kind is able to inherit from another Kind, whereby each Kind has to be
related to one of the three core Kinds, which are equally named to the core base types Entity,
Resource and Link. The inheritance hierarchy to the core Kinds ensures general functionality
and information among each Entity and allows the Core Model to be extensible towards more
domain-specific usage.

Another element used in OCCI’s classification system is the Mixin element, allowing to add
additional capabilities to related Entities at runtime. Mixins complement Kinds, regarding the
classification mechanisms, as they define further specifications for Entities. In some cases Mixins
can only be applied to Entities being of a specific Kind. Therefore, each Mixin element defines a
list of Kinds on which it can be applied. Moreover, each Mixin stores a list of Mixins required in
order to work properly. Mixins add the capability for service provider to define Templates, which
can be assigned to an Entity at creation-time. Templates are Mixins containing default values for
their Attributes. These are used for example to define the available VM sizes or images, specifying
its OS, data files, and applications.

The Action element identifies operations that can be invoked on Entities. Hereby, an Action element
only serves as an identifier and does not describe the implementation of the operation itself.
Actions are only able to define Attributes, serving as input parameters required by the operation.
Each Action is either bound to a Kind or Mixin, as it is considered as a capability of those. Typical
examples of Actions are operations to start, stop or terminate VMs or storage resize operations. In
the following, the IaaS extension of the OCCI Core Model is discussed.

2.2.2 Infrastructure Extension

The infrastructure extension [20] enhances the OCCI Core Model by adding specialized Entity
types required to abstract and manage typical IaaS resources, such as VMs, networks, and storages.
Figure 2.5 provides an overview of the infrastructure extension, depicting three new Resource
types and two new Link types. Each type inherits from either Resource or Link and is assigned to
an equivalent named Kind. Here, the Attributes defined by the Kind are depicted within the Entity
type. Moreover, with the infrastructure extension, OCCI introduces two new Templates, which we,
together with the new types, investigate in the following.

The IaaS Resource types are Compute, Storage and Network. Compute represents an abstraction of
a generic processing resource, for example a VM or container [20]. Hereby, multiple Attributes of a
compute resource must be filled, giving information about the machine’s number of cores, memory
and processor architecture. The Network type is used to create networking entities supporting
the Data link layer (L2), e.g., virtual switches. Networks are typically extended by a Mixin, called

2.2. OPEN CLOUD COMPUTING INTERFACE 13

IPNetwork, enabling Network layer (L3) and Transport layer (L4) capabilities such as Transmission
Control Protocol (TCP) and Internet Protocol (IP). IPNetwork defines Attributes to specify the address
range, gateway and allocation type of a Network. The Storage type is used to describe data storage
devices, whereby its size is defined over the size Attribute. It should be noted, that all of these
Resource types posses a state Attribute and basic functionalities, in terms of Actions, such as
starting and stopping an instance.

The Link types specified in the infrastructure extension, NetworkInterface and StorageLink, allow
to connect Compute instances to Storages or Networks. A connection between a Compute and a
Network instance is described by the NetworkInterface type, representing a L2 client device. Just as
the Network type, NetworkInterface can be enhanced to support the L3 and L4 layer, by attaching a
Mixin called IPNetworkInterface. The NetworkInterface instance allows to add information about
the device interface, such as an ethernet interface, and Media Access Control (MAC). To allow
a communication on the L3 and L4 layer, the Attributes of the IPNetworkInterface specify the
device’s network address and gateway. The connection between a Compute and Storage instance
is described over a StorageLink. Here, the device id and optionally the mount point of the Storage
are defined. Finally, just like the Resource types, each Link type possesses an Attribute describing
the state of the instance.

Figure 2.5: OCCI’s infrastructure extension [20].

In addition to the Entity types, the infrastructure extension defines two major Templates, the OS
Template and Resource Template, that can be utilized by the provider. The OS Template allows
to specify pre-configured images that can be attached to Compute instance. Similar to the OS
Template, the Resource Template defines a pre-set Resource configuration, which for example let
the provider define sizes for VMs. If a new OS- or Resource Template is assigned to a Resource
at runtime, the OCCI implementation is supposed to immediately remove the old Template and
associate the new one. This kind of adaptation affects the Resource in a provider-specific way and
has to return an error if the functionality is not supported. Furthermore, the extension defines
Mixins, used to add Secure Shell (SSH) keys to a Compute instance or execute programs on it, once
it is started. In the following, the platform extension of the OCCI Core Model is discussed.

14 CHAPTER 2. BASICS

2.2.3 Platform Extension

The platform extension [21] defines types to describe and support the management of PaaS
resources. Overall, two Resource types and one Link type are specified, which are depicted in
Figure 2.6. Furthermore, the platform extension describes two Templates used to create ready to
use configurations for Applications. In the following, the types and Templates specified by the
OCCI platform extension are described.

Figure 2.6: OCCI’s platform extension [21].

The Application type represents the consumer-defined part of the service. Each Application specifies
Attributes giving information about the application’s context and the Domain Name System (DNS)
entry, both in form of an Uniform Resource Locator (URL). An Application instance is composed of
Components providing it with business functionality. This composition of an Application from
several Components forms an acyclic graph. Components define micro services that are responsible
for the application’s execution or hosting. To connect a hosting Component to an Application,
the Link sub-type ComponentLink is used. Moreover, ComponentLink is used to connect two
Components.

The platform extension defines two kinds of Templates. The Application Template and the platform
Resource Template. Application Templates allow provider to pre-define underlying frameworks
for applications, whereas platform Resource Templates specify preset resource configurations
for Applications. Furthermore, the OCCI platform extension defines two Mixins that should be
supported by an OCCI platform extension, Database and DatabaseLink. These handle the creation
and connection of databases, whereby Database is applied to a Component instance and DatabaseLink
to a ComponentLink, having a Database as target. The following section describes how the cloud
resources and their connection described within the Resources and Links can be managed and
accessed over the OCCI implementation.

2.2. OPEN CLOUD COMPUTING INTERFACE 15

2.2.4 RESTful API

As OCCI represents an API to manage cloud resources based on REST, this section does not only
investigate how to interact with an implementation of the OCCI interface, but also gives a short
introduction to REST itself. REST is a common web architecture style originally designed by Roy T.
Fielding [2]. It defines multiple architectural constraints to optimize network communication, such
as caching [22]. In general, a REST interface provides a uniform access to manage hypermedia
resources over Uniform Resource Identifiers (URIs). In case of OCCI, these hypermedia resources
are Entities. To access and manage these resources, REST uses HTTP, a generic and stateless
application-level protocol for distributed hypermedia systems [23]. REST is a stateless architecture
style, as each request from the client must carry all necessary information to understand the request.
Overall, four major methods are defined to perform management tasks: GET, PUT, DELETE, and
POST. The GET request defines an operation to retrieve all information of the element hidden
behind the URI [23]. POST is used to create a resource in the target system as specified in the request.
PUT is used to update or create a resource at the specified in the URI, whereas DELETE is used to
delete it. These methods are also known as Create, Read, Update, Delete (CRUD) operations. In the
following, the behavior of these CRUD operations on the different OCCI elements is discussed.
An overview is given in Table 2.1.

Path GET POST POST(Action) PUT DELETE

Entity sub-type
(/compute/1).

Retrieve the
Entity.

Partial
update of
the Entity.

Perform an
action on the

Entity.

Create /
Update the

Entity.

Delete the
Entity.

Entity
collection

(/compute/).

Retrieve the
Entity

collection.

Create a new
Entity in this

collection.

Perform
actions on
the Entity
collection.

Not defined.

Remove all
Entities from

the
collection.

Mixin-defined
Entity

collection
(/my_stuff/).

Retrieve a
collection of
Entity of the

given
sub-type.

Add an
Entity to this

collection.

Perform
actions on
the Entity
collection.

Update the
Entity

collection.

Remove all
Entities from

the
collection.

Query
interface (/-/)

Retrieve
Category
instances.

Add a
user-defined

Mixin.
Not defined. Not defined.

Remove a
user-defined

Mixin.

Table 2.1: CRUD operation behavior (adapted from OCCI’s HTTP specification [24]).

This table summarizes how the CRUD operations behave for specific URI paths. When a concrete
Entity sub-type instance is stated in the URI, in this case /1, the specific instance is affected. When
the path of the URI ends with a Kind, the operation chosen affects each Entity sub-type instance

16 CHAPTER 2. BASICS

implementing this Kind. In this case /compute/ or /my_stuff/. If the URI path is set to /-/, the
query interface is accessed, which is used to retrieve and manage Category instances. This interface
helps the client to determine the capabilities of the API implementing OCCI, for example to retrieve
the information about possible VM images stored in OS Templates. The syntax of the management
requests are defined within the rendering documents of OCCI’s specification suite. Here, OCCI
defines a text rendering [25] and a rendering based on the JavaScript Object Notation (JSON) [26]. As
OCCI already defines a model to abstracts cloud applications, the following section investigates
the MDE development paradigm, suitable of making use of such constructs.

2.3 Model Driven Engineering

Model Driven Engineering (MDE) is a development paradigm utilizing the multiple benefits of
abstracting systems via models. Hereby, MDE does not only use these models as a descriptive
sketch of the system, but further utilizes them as primary artifacts for the development process [27].
Compared to the object-oriented programming paradigm, where “everything is an object” [28],
MDE assumes that “everything is a model” [28]. Hereby, MDE focuses on a precise modeling and
model transformations, together building its core concepts [29]. A commonly known MDE approach
is the Model-driven architecture (MDA) [30], published in November 2000 by the Object Management
Group (OMG), which is build around other OMG standards like the Meta Object Facility (MOF),
XML Metadata Interchange (XMI) and Unified Modeling Language (UML). As the OMG provides
a large portion of standards used for MDE, some concepts are already biased towards the ones
OMG specifies [29]. To provide a sufficient introduction into the MDE development paradigm,
the following section investigates its core concepts. Section 2.3.1 covers the definition of the term
model. Section 2.3.2 describes the metamodel term and explains its relation to models. Section 2.3.3,
covers the core operation used in MDE approaches, the model transformation. Finally, the concept
of models at runtime is presented in Section 2.3.4.

2.3.1 Models

Due to the high abstraction and applicability of models in multiple scientific areas, multiple
definitions of this term have emerged. In case of MDE, these definitions are partially shaped by
the definition specified by the OMG. A generic definition by Kühne defines models as follows:
“A model is an abstraction of a (real or language based) system allowing predictions or inferences to be
made” [31]. Here, the focus is the abstractive nature of models allowing for a simple and easy
analysis of a system. To reach this goal, Stachowiak defines three general features a model
requires [32]. The mapping-, reduction-, and pragmatic feature. The mapping feature describes that a
model has to be based on a system, which Stachowiak refers to as original. The reduction feature
requires a model to only describe a well-chosen selection of the system’s properties, reducing the
amount of information necessary to interpret the model to a minimum. These two features are
responsible for models being a “projection” of a system, as some information is lost during the

2.3. MODEL DRIVEN ENGINEERING 17

abstraction process. The pragmatic feature refers to the usability of the model, considering the
individual or algorithm interpreting it. This feature is especially important as “an interpretation
of a model gives a model meaning” [27]. Finally, it must be mentioned that a model either has a
descriptive purpose, describing an already existing system, or a prescriptive purpose, to describe a
system to be build [27, 31]. Summed up, a model is an abstract representation of relevant parts
of a complex system tailored towards a specific group of persons in order to allow for an easy
interpretation. To completely understand how models are created the term metamodel has to be
investigated as “a model is an instance of a metamodel” [33].

2.3.2 Metamodels

In general, the term meta is a prefix used when an operation is applied twice [31]. In case of
the term metamodel, it describes “a model of models” [30], which can also be interpreted as
“a language of models” [29]. Overall, the concept of metamodels also appears under different
names. [29]. For example, in the Extensible Markup Language (XML) [34], a text format to encode
data structures, a XML Schema (XSD) is used to define its structure. Here, the XSD, even though it
is referenced as schema, can be considered a metamodel. In case of OCCI, the OCCI Core Model
plus its extensions serve as metamodel, as they describe how to model cloud applications. For
example, the Compute type defines the structure and attributes of possible VMs. Using this
metamodel element, a Compute instance can be created, representing a real world computing
resource.

To allow the creation of such metamodels, as the OCCI Core Model, another language or
model is required. These are known as meta-metamodels. Two of the more commonly known
meta-meta modeling languages are the MOF [35], by the OMG, and Ecore of the Eclipse Modeling
Framework (EMF). In Figure 2.7, an overview of the different meta-layers is given, in which we
contextualize the OCCI Core Model.

This figure shows an example four-layer model stack, which is a typical size for a meta-
model hierarchy. Hereby, we must emphasize that this size can vary, especially due to the usage
of extensions enlarging the metamodel [35]. At the top level of this hierarchy (M3) resides the
meta-metamodel. Here, only a subset of its elements is shown, defining the generic element Class.
This element can be used to create a variety of metamodels (M2.5), such as the OCCI Core Model.
Each element of the OCCI Core Model is an instance of the Class element from the meta-meta
model. As the infrastructure extension (M2) extends the OCCI Core Model, it also represents a
metamodel. Here, the Compute type is instantiated, whereby compute, defining the Attributes
occi.compute.cores and occi.compute.memory. Therefore, the OCCI Core Model itself can be
seen as a metamodel, from which not only user models, but also extensions can be created. To
completely specify the IaaS extension as part of the metamodel, an element Compute must be be
provided, having compute as Kind. This allows to create a Compute instance in the OCCI User

18 CHAPTER 2. BASICS

Model (M1). In this case a Compute instance VM0, having two cores and 4096 MB memory, is
modeled. At the lowest level (M0), the actual cloud resource VM0 from the real world is located,
which is represented by the abstract Compute instance VM0 (M1). It should be noted, that the
OCCI Core Model allows to define additional Kinds within the user model, which serve as a
meta-model within the model. For example, when the Kinds of the IaaS extension are defined
within the user model, a VM can be represented over a Resource being of Kind compute.

Class

Attribute Kind

«instanceOf»

VM0 : Compute

«instanceOf»«instanceOf»

Resource

«instanceOf»

«instanceOf»

kind

M3: Meta-Metamodel
(MOF, Ecore)

M2.5: Metamodel
(OCCI Core Model)

occi.compute.cores = 2

M1: Model
(OCCI User Model)

M0: Runtime
(Cloud)

M2: Metamodel
(IaaS Extension)

«instanceOf»

kind

«instanceOf»

«instanceOf»

+occi.compute.cores
compute : Kind

+occi.compute.memory

Virtual Machine (VM0)

occi.compute.memory = 4096

Compute

Figure 2.7: The OCCI Core Model in a four-layer metamodel hierarchy.

2.3. MODEL DRIVEN ENGINEERING 19

2.3.3 Model Transformations

Another fundamental concept of MDE is the model transformation, a methodology used to
“develop, maintain, and evolve software” [36] based on models. Kleppe et al. define model
transformations as follows: “A transformation is the automatic generation of a target model from a source
model, according to a transformation definition. A transformation definition is a set of transformation rules
that together describe how a model in the source language can be transformed into a model in the target
language. A transformation rule is a description of how one or more constructs in the source language can
be transformed into one or more constructs in the target language” [37]. Figure 2.8 illustrates the typical
structure of a model transformation, which we adapted to highlight the different parts of a model
transformation as defined above.

Metamodel B

Source
Model

Metamodel A

Transformation
Definition

source language

target language

language used

language usedTarget
Model

Transformation Rules

Element:

Element:

language used Transformation
Language

Transformation

Figure 2.8: Typical model transformation procedure (adapted from the MDA Guide [30]).

This figure shows two models, whereby both are based on a specific metamodel. In this case the
source model is an instance of metamodel A, consisting of squares, whereas the target model is
an instance of metamodel B, consisting of circles. Based on these metamodels a transformation
definition is specified using a transformation language, such as the Epsilon Transformation Language
(ETL) [38]. This transformation definition holds transformation rules, which in this case describe the
transformation of squares into circles. It must be noted, that the transformation definition itself can
be considered as models [30]. A complete taxonomy of model transformation is given by Mens
and Van Gorp [36], which extend the definition of model transformation given above to cover the
use of multiple source and target models.

20 CHAPTER 2. BASICS

2.3.4 Models at Runtime

Models can not only be used to depict, but also to manage running systems. In general, this
methodology utilizes a system’s runtime information to create a feedback loop with a causally
connected model representing it [39]. Based on this up-to-date information, multiple objectives,
such as adaptation and self-healing, can be reached. Furthermore, it allows to manipulate the
system on the model layer, and therefore on a higher abstraction level. An overall understanding
of models at runtime is given by participants of a workshop study by Bencomo et al., who
define it as an “abstraction of a running system that is being manipulated at runtime for a
specific purpose” [40]. In the scope of this thesis, the running system is represented by a
cloud system, implementing an OCCI conform API, whereby the model representation is a
model instantiating the OCCI Core Model. To grasp the large amount of benefits coping with
this methodology, this section investigates common objectives and techniques of models at runtime.

According to Szvetits and Zdun [39], models at runtime is used to reach multiple kinds
of objectives. Hereby, they examined that it is mainly used to create adaptive system allowing
systems to change according to shifting environment. Moreover, as for any MDE approach,
one objective is to create a system that operates on a high abstraction level, which is closer
to the problem space. Furthermore, platform independence is a common goal, as this high
abstraction level grants a generalized view on the system, and therefore does not consider specific
platforms. Additional objectives comprise monitoring, error handling, checking the consistency
and conformance and ensuring policies.

In addition to model transformation, Szvetits and Zdun [39] examined multiple techniques that
are typically used in models at runtime approaches. First of all, Autonomic control loops, originally
designed by Kephart and Chess [41], is a technique for self managing systems. The autonomic
control loop itself is a technique to measure system parameters, which get analyzed in order
to plan corrective actions and executes them. This control loop is commonly used to handle
adaptation scenarios and is formerly known as Monitor-Analyze-Plan-Execute (MAPE)-loop [39].
This loop is depicted in Figure 2.9.

Monitor

Analyze

Running system

Execute

Plan

Figure 2.9: Visualization of the MAPE control loop [39].

2.3. MODEL DRIVEN ENGINEERING 21

The loop starts with the monitoring and measuring of chosen parameters. For example, parameters
reflecting the workload of the system. To extract these parameters, different introspection techniques
are used, such as checking event-logs or using a predefined API. Thereafter, these parameters are
analyzed in order to identify corrective actions. Based on these, a plan is generated, describing
imperative steps to bring the running system into the desired state. Then, this plan is executed,
adapting the running system to fit into the new circumstances. Another technique commonly
used in models at runtime approaches is model conformance, a technique to check whether data and
processes are conform and consistent to each other. For example, the extracted runtime information
is checked against the causally connected model representation of the system. Hereby, potential
inconsistencies can be investigated and addressed, enabling self-healing capabilities. Furthermore,
model comparison is a common technique used to identify the differences between two models,
which can be used to examine the operations needed to transform one model into another one.
Typically, one of these models represent a system state to transition to. This transition is performed
by a model transformation. In the following section, we use the described basics in order to
analyze the requirements for a comparison and adaptation approach which is able to adapt cloud
applications over an OCCI API.

Chapter 3

Analysis

Even though cloud computing represents a milestone for dynamically providing computing
resources as a utility, the provider lock-in still represents a major problem. To overcome this
problem a comparison and adaptation process is required using a standardized API, such as
OCCI, as it provides universal access to cloud resources. The different kind of resources OCCI can
manage are described over the OCCI Core Model, a metamodel which allows to build complete
cloud application topologies within a model.

Based on the model’s elements, REST calls can be derived which create, update, and delete
cloud entities such as networks, storages or compute instances. Furthermore, operations can be
executed over these REST calls, such as starting or stopping a VM. In addition to these basic
functionalities, the OCCI specification also defines optional features. Therefore, only a small
subset of the possible functionality described in the OCCI standard is required for the API to be
standard conform. Hence, a generic adaptation process is required utilizing basic functionalities
of OCCI. Especially, because each provider’s resource management framework has different
constraints, OCCI implementations may miss optional functionalities.

In addition to the problem that each OCCI implementation has a different level of detail,
OCCI only describes how to adapt single Entites. Hereby, no functionality is described within
the OCCI standard that allows for complete cloud applications to be provisioned. Therefore, in
order to adapt a cloud application, a process is required that not only provisions, but also transfers
a cloud application from one state into another one. To reach this goal, we propose a complete
model-driven cloud comparison and adaptation process filling this gap. In the following, we
elicit the requirements for these processes and ask questions to be evaluated. Section 3.1 analyzes
possible comparison strategies to match two OCCI models with each other in order to examine
differences between the desired and the actual state of a cloud application. Section 3.2 investigates
required adaptive steps to transform the cloud application into the desired state.

23

24 CHAPTER 3. ANALYSIS

3.1 Comparison

To investigate the REST calls required to adapt running cloud applications, a comparison process
is needed to map the different Entities of the cloud application onto the ones in the model to be
deployed. Thus, we need to check whether an Entity is only present in the runtime and needs to
be deleted, whether it is only present in the new model and needs to be created or whether it is
present in both models and might require an update. Summed up, the major difficulty is to map
the Entities in the runtime to the Entities in the target model resulting in the following question:

• Q0: How to recognize whether two elements from different models match?

Overall, model elements can be compared on an attribute level, a structure level, or a combination
of both. When comparing models based on attributes and for an adaptation purpose, we are only al-
lowed to consider unchangeable attributes, as changed attributes may indicate an updated element.
In our case, the only immutable attributes are the Kind and the id of each Entity instance. Here
problems arise when the id of a Resource can not manually be assigned during the provisioning
process. Thus, the model id may differ from the id assigned by the cloud. Structural comparisons,
however, have problems when models possess multiple identical substructures, as its elements
can not exactly be matched. Moreover, it can not be recognized whether a matched element is
adapted in terms of its attributes. Even though several model comparison frameworks already
exist, such as EMF Compare [42], non of them is tailored towards cloud application topologies or
allows to customize its strategy to utilize specific aspects from the attribute- or structural level. In
the following the requirements for the adaptation process are investigated.

3.2 Adaptation Steps

The OCCI API offers four requests for its elements: GET, POST, PUT and DELETE. These operations
can be mapped onto the different adaptation steps required to transfer a cloud application from one
state to another. An extraction process (GET), which generates an OCCI model out of the running
cloud application. A deprovisioning process (DELETE), to delete single Entities in the cloud, as the
target model may be composed of fewer elements. An update process (PUT), that adjusts single
Entities to fit its representation in the target model, for example a storage in need of more capacity.
Finally, a process is required that allows for multiple Entity elements to be provisioned (POST), for
example when another VM is required to handle additional workload. In addition to the analysis
of the single adaptation step, the following question has to be answered:

• Q1: Is there a suitable order for the several adaptation steps?

In the following, these different processes are analyzed in more detail. Section 3.2.1 covers the
extraction process, Section 3.2.2 the deprovisioning process, Section 3.2.4 the provisioning process,
and Section 3.2.3 the update process.

3.2. ADAPTATION STEPS 25

3.2.1 Extraction

In order to derive adaptive steps, the adaptation process requires the system’s runtime information
of the system. Therefore, an extraction process is needed to gather the knowledge about the
current cloud application’s state. Hereby, this information must be in form of an OCCI model
which can be compared to the OCCI model depicting the target state of the cloud application. This
results in the following question:

• Q2: How to extract information from the running system in form of an OCCI model?

3.2.2 Deprovisioning

To handle elements in the runtime model that are absent in the target model, a deprovisioning
process is necessary. Hereby, the process must handle all existing dependencies of the Entity to be
deprovisined, before it gets deleted itself. This problem can be phrased as follows:

• Q3: Are there requirements for the deletion of OCCI elements?

3.2.3 Update

To change the characteristics of single Entities, an update process is required to identify whether
a complete PUT request is needed in order to bring the Entity in the desired state or if a set of
executed Actions are sufficient. Therefore, the following question arises:

• Q4: How to identify required adjustment calls?

3.2.4 Provisioning

To provision complete cloud applications, we need a process that automatically creates cloud
resources and connects them as specified. Hereby, it is not sufficient to provision the Entities in any
order, as each possess individual dependencies that need to be resolved. For example, when a VM
is connected to a network, both the network and the VM have to be created before they can be
linked. This leads to the following questions:

• Q5: How to resolve the dependencies between the different cloud resources?
• Q6: How to address already running resources within these dependencies?

Chapter 4

Design

In this chapter, the designs for the comparison and adaptation process are described. Overall, our
system is composed of two modular processes, as depicted in Figure 4.1. The first process is the
comparison which creates a match between the elements of the runtime- and target model. Here,
the runtime model or source model is the extracted cloud application, whereas the target model
represents the state of the cloud application to be reached. As multiple metamodels for OCCI exist,
both the target and the source OCCI model have to be an instantiation of the same metamodel.
Based on the matchings gathered throughout the comparison, the required adaptation steps for
each single Entity are derived. Hereby, we indicate whether a resource has to be provisioned,
deprovisioned, or updated, followed by an execution of the corresponding REST requests to the
cloud. Through the extraction and utilization of runtime information, we derive the required
adaptation steps. In future work, this information can also be utilized to establish a feed-back
control loop between the cloud and our system, which also allows for self-healing capabilities.
Hereby, the runtime model can be compared to the one expected running, followed by an execution
of the adaptation process, when differences occur. To fulfill the analyzed requirements, a more
detailed view into the modular parts of the adaptation process is required. Therefore, Section 4.1
covers the comparison- and Section 4.2 the adaptation process with special regards to the single
adaptation steps.

Adapta�on
Steps

OCCI Model
Target

OCCI
Metamodel

Instance of

Model Extrac�on

Comparison Run�me

Cloud

Comparison

REST calls

Adapta�on

Provisioning (POST)

Update (PUT)

Deprovisioning (DELETE)

(GET)

results

OCCI Model
Run�me

Figure 4.1: Overview of the complete adaptation process.

27

28 CHAPTER 4. DESIGN

4.1 Comparator

During the comparison of two OCCI models, we check whether two Entities from the different
models match. As Resources aggregate Links, we define a common structure that is based on a
Resource matching, as depicted in Figure 4.2.

At first, the Resources of the models are matched. To create this match, multiple strate-
gies can be used, which are discussed in the following sections. For the scope of this thesis,
we define three Resource matching strategies: the Simple comparator, working on the attribute
level, the Complex comparator, considering only the models structure, and the Mixed comparator,
a combination of both. In case of the depicted models, a possible Resource match maps the
Compute node of the source model to the one of the target model. The Storage and Network are
not matched, as they are only contained within one of the two models. Based on this match, the
Links of the matched Resources are compared to investigate whether the Resource possesses
new or missing connections. Hereby, we check whether Links of the same Kind, source, and target
exists. In the example case, the different Links of the models are not matched to each other, as they
connect different resource types, and therefore possess different Kinds.

Match

Resources
Match

Links

Mark

En��es

Compute

Network

Compute

Storage---

Compute

Network

Compute

Storage---

--- Comp->Stor

Comp->Net ---

New Elements

Compute->Storage

Storage

Missing Elements

Compute->Network

Network

Old Elements

Updated Elements

Compute

Compute Network Compute Storage

Source Model Target Model

Source Target Source Target

Matching
Table

Figure 4.2: Overall structure of the comparison process.

Thereafter, the resulting matching table is used to investigate which adaptation step has to be
performed on which Entity. For this purpose, we mark each of them as Old-, New-, Missing-, or
Updated Element. This allows to characterize what kind of REST request has to be performed on
each Entity. Furthermore, these marked elements serve as input for the different adaptation steps.
Each Entity not having a corresponding match is either marked as New or Missing, depending
on whether they are from the source or target model. In this case, Storage is marked as New,
whereas Network is marked as Missing. To check whether an Entity is an Old- or Updated Element,
the matched Entities are compared based on their Attributes in order to find differences. In the
example, the Compute node is completely equivalent, and therefore marked as Old. Summed up,
the comparison indicates the creation of a Storage, linked to Compute, as well as a deletion of the
Network and its connections.

4.1. COMPARATOR 29

As the Link match and the extraction of steps from the matches are mainly based on the Resource
match, the following sections describe three different model comparison strategies to calculate
a Resource matching. Section 4.1.1 describes a process that compares two OCCI models based
on the attribute level. Section 4.1.2 investigates a more complex approach, which checks whether
two elements are the same based on the structure of the models. Finally, Section 4.1.3 presents a
combination of both approaches.

4.1.1 Simple Comparator

The Simple comparator matches Resources based on their attributes. As theoretically each Attribute
of a Resource can be used for a comparison, the problem exists that updated Resources cannot
be identified. Therefore, we compare Resources based on their Kinds and ids, which are the
only immutable Attributes. Besides some drawbacks, this allows for a discrete identification of
equivalent Resources. Summed up, each Resource in the source model is matched to the Resource
in the target model having the same id. The following section investigates a comparison strategy
based on the structure level.

4.1.2 Complex Comparator

To compare two models based on their structure, we adapted the Similarity Flooding algorithm, a
graph matching algorithm by Melnik et al. [43]. This algorithm is designed to iteratively calculate
how well two nodes out of two different graphs match using the model’s structure. Overall, the
algorithm is separated into three major parts, as depicted in Figure 4.3. The creation of a Pairwise
connectivity graph (PCG), its transformation into an Induced propagation graph (IPG), followed by a
calculation of fixpoint values, indicating how well two elements match. Hereby, the PCG proposes
possible map pairs, whereas the IPG adds additional edges and weights for the fixpoint calculation.
These weights serve as propagation coefficients, indicating how well a map pair propagates to its
neighbors and vice versa.

a1,b1a1,b1

a1,ba1,b

a1,b2a1,b2

a2,b2a2,b2 a2,b1a2,b1

a,ba,b

l1 l1 0.5
1.0

1.0 0.5
l2

l2

1.01.0

1.0
1.0b1 b2

b

Model B

l2

l1 l2

Induced propagation graphPairwise connectivity graph

a,b1.0

a1,b10.39

a2,b10.91

a1,b20.69

Fixpoint values
for mapping

between andA B

0.33 a2,b2

0.33 a1,ba1,b
a1

l1

a2

Model A

l1

a

l2

Figure 4.3: Example describing the Similarity Flooding algorithm [43].

30 CHAPTER 4. DESIGN

To utilize this algorithm, we consider the OCCI models to be graphs, whereby each Resource is
a node and each Link is an edge connecting two nodes. The algorithm assumes each edge in the
graph to be a triple (s, p, o), whereby s stands for the source of the edge, o for the target and p for
its label. As the label indicates the type of connection that connects two nodes, we set p as the Kind
of the Link. From this perspective, a PCG can be derived, whereby we only create Resource map
pairs with equal Kinds. A map pair is created when two nodes in the different graphs possess
an edge with an equivalent label. Also, a map pair for the target nodes of the edge is created.
Formally, a PCG for a model A and B is generated in the following manner:

((x, y), p, (x′, y′)) ∈ PCG(A,B) ⇐⇒ (x, p, x′) ∈ A ∧ (y, p, y′) ∈ B (4.1)

To give an example, in Figure 4.3 model A possesses an edge (a, l1, a1) and model B an edge
(b, l1, b1), which creates the map pairs ((a, b), l1, (a1, b1)). Therefore, every pair in the PCG is an
element from A × B. These map pairs are created out of the intuition that if (a, b) are similar,
(a1, b1) may represent the same element, due to the evidence of their shared connection l1.

This PCG is transformed into an IPG, whereby for each edge another one is added in the
opposite direction. Moreover, a weight w is assigned to each edge, which ranges from 0 to 1,
indicating the propagation coefficient of the edge. Assuming that each edge label possesses the
same contribution to the level of similarity, the weight can be computed by dividing 1.0 by the
amount of outgoing edges of the same label from a map pair. For example the map pair (a, b)

possesses two outgoing edges of label l1 resulting in an equal distribution of the weight between
w((a, b), (a1, b1)) = 0.5 and w((a, b), (a2, b1)) = 0.5. To fit the propagation coefficient onto OCCI
models, we calculate the weight of an edge by dividing 1.0 by the amount of outgoing edges of the
same Kind.

Based on the IPG, fixpoint values are iteratively calculated for each mapping σi(x, y),
with x ∈ A and y ∈ B for the ith iteration. The values for σ0 can be set based on previous
comparison algorithms, for example a string matching of node labels. In case of the example
provided above, no initial mapping is assumed, i.e., each σ0 is set to 1.0. During each iteration, the
σ value for each map pair is incremented by the σ values of the edges incoming from neighbor
pairs multiplied by the edge’s weight w in the following manner:

σi+1 = σi(x, y)

+
∑

(au,p,x)∈A,(bu,p,y)∈B

σi(au, bu) ∗ w((au, bu), (x, y))

+
∑

(x,p,av)∈A,(y,p,bv)∈B

σi(av, bv) ∗ w((av, bv), (x, y)) (4.2)

4.1. COMPARATOR 31

Based on this equation, the value for the first iteration of map pair (a1, b1) is σ1(a1, b1) = σ0(a1, b1)+

σ0(a, b)∗0, 5 = 1, 5, whereas the value of (a, b) is σ1(a, b) = σ0(a, b)+σ(a1, b1)∗1.0+σ0(a2, b1)∗1.0 =

3.0. After each iteration σi is normalized by σi

max(σi) , resulting in the fixpoint values σ1(a1, b1) =
1.5
3.0 = 0.5 and σ1(a, b) = 3.0

3.0 = 1.0. The algorithm stops, when either a maximum amount of
iterations have been performed or the difference between the last iteration ∆(σn, σn−1) is less
than ε for i > 0. Based on the calculated fixpoint values, many possible mappings can be derived,
depending on the filter technique used. When a filter only considers the highest values, the
algorithm matches a to b, a2 to b1 and a1 to b2. In the work of Melnik et al. [43], further fixpoint
value calculation variants and filter are presented.

4.1.3 Mixed Comparator

To utilize multiple comparison strategies, we propose the principle of a mixed comparator. Here,
we use the results of the Simple comparator and perform the Similarity Flooding algorithm on
Resources, which could not be matched over their id. To extract the most suitable matching from
the possible map pairs, we add a tailored fixpoint value filter that compares Entities of similar
values based on their attributes. Furthermore, we add a post-processing to bypass the problem of
Resources without any Links, further discussed in Section 6.2. Figure 4.4 depicts the process of the
Mixed Comparator, which is explained in the following.

Simple

Create/Adapt
PCG

Complex

Match

Post
processing

Resource
Match

A�ribute
Filter

Figure 4.4: Mixed comparison process.

The process starts with a comparison of the models using the Simple comparator, i.e., elements that
possess the same id in both models. This allows to utilize the benefits of the Simple Comparator, as
we assume Resources of the same id are equivalent. Using this information, we create and adapt
the PCG. Here, we remove every map pair consisting of one of the already mapped Resources,
except the correct match. As we remove wrong map pair candidates, we reach not only a better
performance of the Similarity Flooding algorithm but also a higher accuracy. Based on the adapted
PCG, we perform the rest of the Similarity Flooding algorithm, i.e., we create an IPG and calculate
the fixpoint values. To check for the most suited map pair, we filter for the highest fixpoint values
among one Kind. Hereby, we inspect whether map pairs of similar high values exist that address
the same source or target Resource. In this case, multiple suitable matches for a specific Resource
are recognized, on which we perform an attribute comparison. This allows to investigate which
map pair suites most not only on the structure-, but also on the attribute level. Finally, the resulting

32 CHAPTER 4. DESIGN

Resource match is post-processed. Here, each non matched Resource is compared on the attribute
level again, for example to check whether two Resources possess the same name. This allows
to overcome the obstacle of the Complex comparator not being able to detect Resources without
Links. In the following, the adaptation steps utilizing the results of the comparison process are
discussed.

4.2 Adaptation Steps

To provide a clean adaptation process, this section discusses the order of the analyzed adaptation
steps, as depicted in Figure 4.5. Here, we omit the extraction process for clarity, as it is only
required for the comparison process (see Figure 4.1). First, every Entity marked as Missing is
deleted to reduce the amount of rented resources to a minimum. We do not parallelize this process,
as a user may be limited to the amount of resource he can provision, which may cause problems.
For example, if the user is limited to two VMs, one must first be deleted before another one can
be created. Then, every Entity marked as Updated gets adjusted, which brings the Entities in the
required state for the rest of the cloud application to be provisioned. For example, when a former
inactive VM is active in the target model, it needs to be started in order to allow for additional
operations to be performed on it. Finally, the Entities marked as New are provisioned finalizing the
adaptation process. In the following sections, we examine the design of each single adaptation
step. Section 4.2.1 explains the extraction process (GET), Section 4.2.2 the deprovisioning process
(DELETE), Section 4.2.3 the adjustment process (PUT), and Section 4.2.4 the provisioning process
(POST).

Deprovisioning

start

Updated

Elements
New

Elements
Missing

Elements

(DELETE)

Update Provisioning

(POST)
(PUT)

Figure 4.5: Adaptation step order and their comparison result utilization.

4.2.1 Extraction

The idea in the extraction process is that GET requests are send to the OCCI API of the cloud,
as depicted in Figure 4.6. This allows to gather all information about the provisioned Category
and Entity instances running at the moment. Based on that, the elements can be divided into the
different Entity- and Category sub-types: Resource, Link, Mixin, Kind, and Action. This allows us to
rebuild and serialize the cloud application into a model of any OCCI metamodel.

4.2. ADAPTATION STEPS 33

E
x
t
r
a
c
t
o
r

OCCI

Model

Cloud

GET Categories

GET En��es

Mixin
Kind
Ac�on

Resource

Link

Figure 4.6: Extraction process creating an OCCI runtime model.

4.2.2 Deprovisioning

The deprovisioning process, depicted in Figure 4.7, is used to systematically delete resources
already running on the cloud. In our case the Entities marked as Missing. Hereby, we separate the
Missing Elements into Links and Resources. If necessary, these can be further adjusted by dividing
them into different categories over their Kinds. After the separation, the Links are deleted, followed
by the deletion of the Resources. This order allows to completely decouple a Resource before it is
deleted, as each Link having the Resource either as target or as source is already marked as Missing.
Even though a DELETE request should handle the complete decomposition of an element, this
decoupling is required, because some OCCI implementations miss this capability. For example, in
case of the popular cloud middleware OpenStack a network can only be deleted if it is not linked
to any other resource. Here, an OCCI implementation should handle the DELETE request in that
way that every connection to the network plus the network is deleted, which is not always granted.
To provide a more robust process, we stick to the proposed deletion process.

Separate

Elements
Deprovision

Links

Deprovision

Resources

Missing

Elements

Missing

Links

Missing

Resources

Figure 4.7: Deprovisioning process delete sequence.

34 CHAPTER 4. DESIGN

4.2.3 Updating

To update an existing Entity, OCCI anticipates to use either a POST request for a partial, or a PUT
request for an entire update (see Table 2.1). As POST(Action) requests can also be performed to
change the state of specific Attributes, they can also be used to adapt single Entities. For example,
Actions that resize the amount of storage of a Storage element, or Actions that start a VM, changing
its state Attribute from inactive to active [1]. Therefore, we first separate the Updated Elements
into steps that can be handled by the different kind of REST requests, as depicted in Figure 4.8.
To allow for such a separation, a process is required that investigates how the change of specific
Attributes have to be treated. In case of an update over Actions, it is not sufficient to only retrieve
the possible Actions that can be performed by an Entity. It must also be known which Attribute
the Action affects and how. To handle this issue, we define a list of OCCI specified Actions and
their behavior. As OCCI does not exactly define the differences between the partial updates of
POST requests and the full updates over PUT requests, the request to use depends on the OCCI
implementation. It should be noted, that due to the automation of these requests and the complete
information availability of each Entity, a full update over a POST request is always possible.

Updated
Elements

Perform
PUT

Elicit REST
Request

Perform
POST

Perform
Ac�on

Ac�on

POST

PUT

List of
Ac�ons

Request?

Figure 4.8: Update process adapting single Entities.

4.2.4 Provisioning

The provisioning of new Entities is the most crucial part of the adaptation process, as the
dependencies between these Entities must be resolved. Furthermore, the already deployed Entities
must be considered. To resolve the dependencies between the Entities within an OCCI model, we
adapted an approach by Breitenbücher et al. [44], who created provisioning plans out of Topology and
Orchestration Specification for Cloud Applications (TOSCA) models. We adapted this process to not
only perform on OCCI models, but also provide a suitable provisioning plan interpreter which
executes the required REST request in the described order. In a former paper [45] we already
discussed this process only considering initial deployments without the utilization of runtime
information. An overview of the original provisioning plan generation is depicted in Figure 4.9.
At first, the OCCI model is transformed into a Provisioning Order Graph (POG), which describes

4.2. ADAPTATION STEPS 35

the dependencies of the OCCI model’s elements as a directed graph. For this transformation,
Breitenbücher et al. [44] define two types of dependency patterns that can occur, the depends-on-
and use pattern. In our approach, we map these dependency types onto the different Kinds
of Links, as they characterize the connection type of two Resources, and therefore their type
of dependency. The depends-on pattern is a dependency in which the source Resource of the
Link has to be created before the target Resource. This dependency occurs, for example, when a
Component runs on a Compute node. The use pattern describes a dependency in which the source
Resource as well as the target Resource need to be instantiated before the Link can be created. For
example, when a Compute node is connected to a Network both Resources have to be provisioned
before they can be linked.

Based on the analyzed dependencies within the POG, a second transformation is performed
generating a provisioning plan. A provisioning plan is a workflow model that indicates the order
in which the different Entities are created. To allow for the creation of a sufficient workflow model,
its metamodel must at least consist of the following five elements: the initial element to start a
control flow, the final element to stop it, a fork node that splits up tasks in order to allow for a
parallel execution, a join node to join these tasks, and actions to perform basic functionalities,
which are in this case POST requests. The details of the model-to-model transformation (M2M) are
explained in Section 5.3.

…

…

OCCI
Model

M2M

Provisioning Order
Graph

M2M

Provisioning Plan

ini�al

fork join

ac�on
control flow

final

use pa�ern

uses

depends
on

depends
pa�ern

Figure 4.9: Overview of the provisioning plan generation (adapted from Breitenbücher et al. [44]).

To utilize the runtime information gathered through the extraction and comparison process, the
generation of the provisioning plan is adjusted as depicted in Figure 4.10. Here, we utilize the
results of the comparison process, as the Updated- and Old Elements give information about
already deployed Entities. Therefore, the vertexes representing these Entities can be removed from
the POG with all edges connected to it, because they do not need to be provisioned. Moreover, it
indicates that the dependencies of the originally dependent vertexes are resolved. This process can
be seen as a XOR operation, removing each element from the Updated- and Old Elements from
the POG. Based on this adjusted PCG, the provisioning plan is generated as usual. Due to the
deletion of vertexes of already running Entities from the POG, no actions are created within the
provisioning plan.

36 CHAPTER 4. DESIGN

OCCI Model

OCCI
Metamodel

Instance of

Provisioning
Order Graph

Graph
Metamodel

Instance of

Provisioning
Plan

Workflow
Metamodel

Instance of

M2M M2M
XOR

Updated/Old
Elements

Figure 4.10: Utilization of runtime information to adapt the POG.

In addition to the provisioning plan, an interpreter is required to execute it. Therefore, we propose
the mechanism depicted in Figure 4.11, which processes the plan node by node. The input defines
the node of the provisioning plan it starts with. Then, it is checked what kind of element the
node is. If it is the initial node, pre-processing steps are performed, whereas a final node results
in post-processing steps and a closing of the workflow. If the node is a join, action or initial, the
depicted operations are performed, followed by an incrementation of the current node to the
following one starting the process from the beginning. Hereby, the operation of an action element
performs the POST request to provision the Entity. At a join node the process waits until each
incoming edge reached the node, before the procedure is continued with the next node. Otherwise,
if the node is a fork, one thread is created for each outgoing edge starting the same procedure. This
time however, the starting node is set to the node following the fork.

Wait for
control flows

Pre-process

Next Node

Start
Threads

Provision
En�ty

ini�al

final

ac�on

Element?

fork

join

Post-process

Figure 4.11: Process interpreting the provisioning plan.

In the following chapter, the challenges of the implementation of the proposed design for the
comparison and adaptation process are discussed.

38 CHAPTER 4. DESIGN

Chapter 5

Implementation

In this chapter, the realization of the proposed design is described with regards to implementation
challenges. Furthermore, we utilize this implementation as a prototype to evaluate the feasibility
of the comparison- and adaptation process. Section 5.1 covers an enumeration and description of
the used tools, metamodels, and the cloud infrastructure. Section 5.2 discusses the implementation
of the comparison processes. Finally, Section 5.3 investigates the coupling between the comparison
results and the adaptation steps and furthermore goes into detail about the adaptation steps itself.

5.1 Tooling
To understand the different implementation decisions chosen during the development of a
prototype, this section provides an overview of the different tools used. Especially, the used cloud
system is discussed, delimiting the level of detail of the OCCI API implementation. Furthermore,
as there are a lot of Model Driven Engineering (MDE) tools, this section covers the utilized
languages and metamodels to implement the prototype. A quick summary of the utilized
standards, metamodels, and tools is provided in Table 5.1. The reference to the UML standard is
given as we instantiate our generated provisioning plan as activity diagram.

The adaptation prototype is developed using an OpenStack [16] cloud which additionally
implements the OpenStack OCCI Interface (OOI) [46], an OCCI API for OpenStack. OOI is
capable to interpret the basic REST requests, defined within the OCCI specification including
the infrastructure extension. Thus, it supports the creation of VMs, storages, networks and their
connections. However, among other drawbacks OOI lacks the capability to interpret PUT requests
in its current version. Other implementation challenges that come with OOI are discussed in the
representative sections. Furthermore, it is not capable of interpreting REST requests addressing
elements of the OCCI platform extension. Unfortunately, no OCCI API exists that provide this
capability at the moment, wherefore we can not provide an evaluation utilizing PaaS applications.
Nevertheless, this evaluation is part of future work and an excursion about expected results is
given in Section 6.4.2.

39

40 CHAPTER 5. IMPLEMENTATION

To efficiently work with models, we use Epsilon [38], a suite of languages and tools for MDE
techniques. These languages are tailored to operate on EMF [47] models, such as Merle et al.’s [48]
Ecore OCCI metamodel we make use of. Overall, for the model transformations, we use ETL, al-
lowing for a convenient specification of transformation rules. Furthermore, we use the Epsilon Flock
language for model migrations. In the following, implementation details about the comparison
process utilizing these languages are given.

Specifications Version Description
OCCI 1.2 Standard for cloud resource management [1].

UML 2.5 Software modeling standard [49].

Metamodels
OCCI Ecore metamodel Version from 2015 OCCI 1.2 Ecore metamodel [48].

UML2 Ecore metamodel 5.2.0 UML 2.5 Ecore metamodel [50].

Tools
OpenStack Newton Open source cloud middleware [16].

OOI 1.2.0 OpenStack OCCI API for Version 1.2 [46].

Epsilon 1.4.0 Family of languages for MDE techniques [38].

Table 5.1: Version table of utilized standards, metamodels and tools.

5.2 Comparison

Since we proposed multiple comparison strategies to generate Resource matchings, these are
investigated in the following sections. In this section we focus on the implementation of the
generalized parts: the data structure of matches, the Link matching- and marking process. To store
matches and thus matching tables, we implement a class Match storing two objects. One object
represents the elements from the source and the other from the target model. This allows to clearly
identify the origin of the different Entities and whether a match for them exists. The matching table
from the Resource matching serves as input for the Link matching procedure, which is depicted in
Listing 5.1. Here, we iterate over each matched Resource (Line 2) and check whether the match is
a direct match (Line 3), meaning that neither the source nor the target of the match equals null. If
that is the case, we compare the Links of the matched Resources in order to create corresponding
Link matches (Line 4). Hereby, all Links of equivalent Kind, source, and target are returned as a
direct match. It should be noted that during this process the target of the Link is compared in such
a manner that the already created Resource match is considered. Furthermore, new or missing
Links of the target Resource are added as match to the matching table. If the match has either an
empty source or target Resource (Line 7, 12), each Link of the non-matched Resource is added as
Entity that could not be matched either. Hereby, either the first or second row of the match equals
null (Line 8-10, 13-15).

5.2. COMPARISON 41

1 protected void createLinkMatch() {

2 List<Match> linkMatches = new ArrayList<Match>();

3 for(Match match: this.matches){

4 if(match.getSrc() != null && match.getTar() != null){

5 linkMatches.addAll(matchLinksOfObject(match.getSrc(), match.getTar()));

6 }

7 else if(match.getSrc() == null){

8 for(EObject link: extractLinks(match.getTar())){

9 linkMatches.add(new Match(null, link));

10 }

11 }

12 else if(match.getTar() == null){

13 for(EObject link: extractLinks(match.getSrc())){

14 linkMatches.add(new Match(link, null));

15 }

16 }

17 }

18 this.matches.addAll(linkMatches);

19 }

Listing 5.1: Link matching procedure (Java).

In the marking process we iterate over the complete matching table which now is filled with all
Resources and Links. Hereby, each match with an empty target is marked as Missing, as it is
not present in the target model, and therefore needs to be deleted. Each match with an empty
source is marked as New, as it is not present in the source model. Thus, no corresponding resource
exists in the running cloud application. To identify whether a direct match needs to be marked as
an Old- or Updated Element, we perform a comparison of the matched Entities based on their
Attributes, as depicted in Listing 5.2. Here, we iterate over the Attributes of the Entities to be
compared (Line 2-3) and check whether equivalent Attributes (Line 4) possess equivalent values
(Line 6). If a difference is found, the Entity is marked as Updated (Line 7) initiating the adjustment
of it. Otherwise, the target Entity is marked as Old (Line 12). For this process, we exclude a set of
Attributes over a blacklist (Line 5). This is required, because some Attributes can not be set by the
OCCI API as defined within the model. For example, the id of Entities in OpenStack which results
in the marking of each Entity as Updated Element.

As the Simple comparator presents a trivial design, it does not consist of any implemen-
tation challenges. Here, we simply perform an exact string matching based on the occi.core.id
Attribute of each Entity in the target and source model, whereby we consider the entries of the
idSwapTable introduced later in Section 5.3. The Complex comparator, however, is composed of two
different model transformations, which we discuss in Section 5.2.1. Furthermore, we investigate
the implementation details of the Mixed comparator, which manipulates the PCG based on the
knowledge gathered through previously performed comparison strategies.

42 CHAPTER 5. IMPLEMENTATION

1 protected boolean checkIfAdapted(EObject src, EObject tar) {

2 for(AttributeState srcAttr: extractAttr(src)){

3 for(AttributeState tarAttr: extractAttr(tar)){

4 if(srcAttr.getName().equals(tarAttr.getName())

5 && inBlacklist(srcAttr.getName()) == false){

6 if(srcAttr.getValue().equals(tarAttr.getValue()) == false){

7 return true;

8 }

9 }

10 }

11 }

12 return false;

13 }

Listing 5.2: Marking process determining Old- and Updated Elements (Java).

5.2.1 Complex Comparator

To transform the OCCI model into a graph required for the Similarity Flooding algorithm, we create
a directed graph metamodel, which is capable to instantiate PCGs, as well as IPGs. This metamodel,
depicted in Figure 5.1, consists of a Graph, comprising Vertexes and Edges. Hereby, a Vertex
represents a possible Resource map pair by storing their corresponding id in a PCG-Resource.
Additionally, each Vertex stores the Kind of the map pair and its fixpoint value, which is required
for IPGs. As we require the current fixpoint value σi of a Vertex throughout a complete iteration,
we added a second attribute, nextFixpointValue, to store the fixpoint value σi+1 calculated during
the iteration. As an Edge is responsible to describe the connection between two Vertexes, each
Edge has attributes to store information about a target-, as well as a source Vertex. Additionally,
these Edges can store the Kind and of the Link and a value for its weight, information required for
the instantiation of IPGs.

Resource

id: String [1]

Edge

kind: String [0..1]
weight: Double [0..1]

Vertex

fixpointValue: Double [1]
nextFixpointValue: Double[1]
kind: String [1]

Graph

target
1

source
1

12

1

*

1

*

Figure 5.1: PCG and IPG metamodel.

5.2. COMPARISON 43

We implemented the transformation of the OCCI to a PCG model as an ETL transformation,
depicted in Listing 5.3. At first, we create a Graph element (Line 2) and iterate over the Resources
and Links of the source and target OCCI models (Line 3-6). When a Link with the same Kind is
found (Line 7-8), a Vertex is created for the corresponding Resources (Line 9). Then, it is checked
whether a Vertex for the target of the Link already exists (Line 10). If not, it is added to the graph
together with a corresponding Edge (Line 11, 13-14). This Edge links the new created source Vertex
to the Vertex representing the target map pair.

1 pre {

2 var graph = new PCG!Graph();

3 for(srcRes in srcOCCI!Resource){

4 for(srcLink in srcRes.links){

5 for(tarRes in tarOCCI!Resource){

6 for(tarLink in tarRes.links){

7 if(tarLink.kind.term == srcLink.kind.term

8 and tarLink.kind.scheme == srcLink.kind.scheme){

9 createVertex(srcRes, tarRes);

10 if(not(vertexExists(srcLink.target.id, tarLink.target.id))){

11 createVertex(srcLink.target, tarLink.target);

12 }

13 createEdge(srcLink.kind, getVertex(srcRes.id, tarRes.id),

14 getVertex(srcLink.target.id, tarLink.target.id));

15 }

16 ...

17 }

Listing 5.3: OCCI to PCG transformation (ETL).

Due to the IPG being of the same metamodel as the PCG, the PCG to IPG transformation is a
transformation in which only a minimal amount of information is added. Therefore, we utilized
the Epsilon Flock language to perform a model migration, adding new Edges, fixpoint values, and
weights. At first, for every Edge in the PCG another Edge is created pointing in the other direction.
In a post block we calculate the weight for each Edge (Line 3) by dividing 1 through the amount of
outgoing Edges of a specific Kind (Line 4), as shown in Listing 5.4.

1 post {

2 for(vert in IPG!Vertex){

3 for(edge in vert.getOutgoingEdges()){

4 edge.weight = 1.0d/vert.getOutgoingEdges().getEdgesOfKind(edge.kind).size();

5 }

6 }

7 }

Listing 5.4: PCG to IPG migration (Flock).

44 CHAPTER 5. IMPLEMENTATION

The IPG serves as input for the Similarity Flooding fixpoint calculation. In Listing 5.5, the algorithm
for the fixpoint calculation and normalization is shown. The algorithm is performed until a
maximum number of iterations, maxIterations, is reached or until no difference larger than
eps is computed (Line 4). During each iteration of the algorithm, we calculate the fixpoint values
of each Vertex, according to Equation 4.2. Hereby, we manipulate the nextFixpointValue of each
Vertex (Line 6-7), as its current fixpoint value is required for the computation of other Vertexes’
fixpoint values. Thereafter, the list normValues (Line 2), storing the highest pre-normalization
value for each Kind, is updated (Line 8). Thus, updateNormValues checks whether a higher
value for the corresponding Kind is calculated. Moreover, the update procedure creates an entry
when a new Kind is detected. After the pre-normalization values for each Vertex are calculated, the
fixpoint values are normalized (Line 10). During this process, the fixpointValue of the Vertex is set
equivalent to the nextFixpointValue. Furthermore, this normalization process determines whether
another iteration of the algorithm is necessary. Thus, the stop boolean is either set to true, for
another iteration, or false to stop the algorithm.

1 private void performSimilarityFlooding(Graph graph, int maxIterations, double eps) {

2 List<String[]> normValues = new ArrayList<String[]>();

3 boolean stop = false;

4 for(int i = 0; (i< maxIterations) && (stop == false); i++){

5 for(Vertex vertex: graph.getVertices()){

6 double nextFixVal = calculateFixpointValue(vertex, graph);

7 vertex.setNextFixpointValue(nextFixVal);

8 updateNormValues(vertex, normValues);

9 }

10 stop = normalizeValues(graph, normValues, eps);

11 normValues.clear();

12 }

13 }

Listing 5.5: Fixpoint value calculation (Java).

Finally, we extract the calculated fixpoint values into a map in order to investigate the most suitable
matches. The keys of the map are the ids of the Resources from the source model, whereby its
values are the map pairs for the corresponding source Resources. Based on this map, we iteratively
investigate the most suitable map pair, which represents the filtering process. After one map pair
is chosen, the map is updated by removing the source Resource key from the map. Additionally,
all values taking the target Resource of the map pair into consideration are deleted. This prevents
the possibility of matching already assigned Resources. To provide a detailed evaluation of
the capabilities of the attribute- and structure level comparison, the Complex comparator only
implements a filter, successively matching the Vertex with the highest fixpoint value. An enhanced
filter is implemented in the Mixed comparator, which utilizes the attribute level.

5.2. COMPARISON 45

5.2.2 Mixed Comparator

The Mixed comparator starts with the calculation of a Resource match based on the id comparison
of the Simple comparator. Then, the OCCI models are transformed into a PCG. Utilizing the match
results from the previous comparison, the PCG is adapted as shown in Listing 5.6. At first, we
iterate over the direct Resource matches of the passed matching table (Line 4). Then we iterate over
each map pair of the PCG (Line 8) in order to eliminate wrong candidates, considering one id of
the already matched Resources (Line 13-16). As the code for the PCG is automatically generated,
we always store the Resource from the source model in position (0), whereas the Resource from
the target model resides on position (1). The boolean missing is used to identify whether a Vertex
exists that describes the match (Line 8-12). If such a Vertex is missing, the corresponding Vertex
is created at the end of the adjustment process. This is required for cases in which a Resource
without Links is matched in the pre-comparison, as no map pair for them is created in the initial
OCCI to PCG transformation. Based on this adapted PCG, the IPG is generated as usual, followed
by a computation of the fixpoint values.

1 private void adjustElementsInGraph(Graph pcgGraph, EList<Match> matches) {

2 List<Vertex> toRemove = new BasicEList<Vertex>();

3 List<Vertex> toAdd = new BasicEList<Vertex>();

4 for(Match match: extractDirectResourceMatch(matches)){

5 Resource srcRes = (Resource) match.getSrc();

6 Resource tarRes = (Resource) match.getTar();

7 boolean missing = true;

8 for(Vertex vertex: pcgGraph.getVertices()){

9 if(vertex.getResources().get(0).getId().equals(srcRes.getId())

10 && vertex.getResources().get(1).getId().equals(tarRes.getId())){

11 missing = false;

12 }

13 else if(vertex.getResources().get(0).getId().equals(srcRes.getId())

14 || vertex.getResources().get(1).getId().equals(tarRes.getId())){

15 toRemove.add(vertex);

16 }

17 }

18 if(missing == true){

19 toAdd.add(createMissingVertex(srcRes, matches));

20 }

21 ...

22 }

Listing 5.6: PCG adjustment (Java).

After the computation of the fixpoint values, we search the resulting map for the map pair with the
highest fixpoint value to create a mapping. Once a map pair is chosen, it is checked whether map
pairs with similar high fixpoint values exist that consider either the source or target Resource. At

46 CHAPTER 5. IMPLEMENTATION

this point we perform an evaluation based on the attribute level to choose the most suitable match.
Hereby, we perform the algorithm shown in Listing 5.7 two times. Once with a list of Vertexes
considering the same source Resource and once with each Vertex Having the target Resource of
the calculated map pair from the first step. Thus, we consider not only the best match for the source
being the target, but also how well the target fits to other sources. It should be noted, that this
algorithm is only executed if multiple possible map pairs are detected, resulting in a list size larger
than two. To evaluate the most fitting vertex from a list of Vertexes we initialize two variables,
bestFit and maxVertex, indicating the best fitting Vertex and its position (Line 2). Then, we
iterate over each Vertex (Line 3) and compare it to the best fitting Vertex (Line 4). The comparison
is performed based on the Attributes, whereby we simply count the number of equivalences in
order to evaluate the most suitable Resource match. This calculation can be further improved
by weighting the different Attributes or the amount of Links. If the Vertex on position i is the
maxVertex (Line 5), we update the position of best fitting map pair by updating bestFit to i
(Line 6). Finally, the most suiting Vertex is returned indicating the most suitable Resource match
(Line 9). In the following, the implementation details of the adaptation process are discussed.

1 private static Vertex mostFittingVertex(List<Vertex> vertexes, EList<EObject> srcM,

EList<EObject> tarM) {

2 int bestFit = 0; Vertex maxVer;

3 for(int i=1; i < vertexes.size(); i++){

4 maxVer = compVertexes(vertexes.get(bestFit), vertexes.get(i), srcM, tarM);

5 if(vertexes.get(i).equals(maxVer)){

6 bestFit = i;

7 }

8 }

9 return vertexes.get(bestFit);

10 }

Listing 5.7: Attribute filter for Entities having similar fixpoint values (Java).

5.3 Adaptation Process

The adaptation process is composed of the multiple modular adaptation steps described in the
design phase. As the adaptation steps are directly related to the cloud, several implementation
challenges have to be overcome, addressing constraints of the used OCCI implementation. This
covers especially the behavior of establishing a connection to the OCCI API and the interpretation
of responses. Hereby, some decisions regarding the OCCI implementation are examined, providing
specific constraints to the implementation of the adaptation process. Furthermore, this section
provides implementation details about the single adaptation steps.

5.3. ADAPTATION PROCESS 47

To communicate with the cloud, a session token is required to identify the user and the tenant he
or she wants to access. Therefore, we request a session token at the beginning of the adaptation
process, which is used by the single adaptation step. As OpenStack does not provide the capability
to manually choose an Entity’s id, we implement an idSwapTable to map the ids of the cloud onto
the ones defined in the model, as shown in Figure 5.2. Thus, we can identify which id in the model
is which in the cloud and runtime model. To allow the usage of the adaptation process on multiple
cloud applications, we store the idSwapTable for each specific project and user. Hereby, we also
store the last model that got provisioned using our approach, which allows to check whether the
cloud application is in the expected state.

OCCI Model Run�me

Cloud

idSwapTable

VM0 VM0+

NW0

VM1

VM0

VM1 VM1+

NW0 NW0+

NW0+

VM0+

VM1+

represents

Figure 5.2: Principle of the idSwapTable associating ids from the OCCI model to the runtime.

Another generic principle is the generation of REST calls based on the information contained
within the Entity to be managed. As OOI implements the text rendering specification [25] of OCCI,
we serialize the information to fit onto this structure. This general process is shown in Listing 5.8
using the POST request as example. The text rendering passes the information about the Entity
over request headers. One header addresses related Categories, whereas the other describes
the Attributes of the element. At first, we extract the request’s URI from the Kind of the Entity
(Line 3). Thereafter, a connection to the cloud is established indicating a specific REST request
to be performed(Line 4). Then we gather information about Category instances linked to the
Entity and put them into the Category header (Line 5). This, for example, addresses the Kind of the
Entity and its Mixins. Finally, we add the information about the Entity itself in the Attribute header,
whereby we extract the Attribute of the Entity to be managed (Line 6). It should be noted, that these
extractions represent trivial processes, as the Kind, Mixins, and Attributes are extracted in a similar
manner. When the connection is successful, multiple actions are executed, depending on the kind
of REST operation performed (Line 8-11). For example, after a POST request, the Entities’ new id is
extracted from the output and stored together with its original id in the idSwapTable. In case of an
unsuccessful connection attempt we re-send the request up to five times to mitigate connection
problems. In the following, the implementation of the different adaptation steps are investigated
in more detail. Section 5.3.1 covers the extraction-, Section 5.3.2 the deprovisioning-, Section 5.3.3
the update-, and Section 5.3.4 the provisioning process.

48 CHAPTER 5. IMPLEMENTATION

1 private String executePostOperation(EObject element) {

2 Entity entity = (Entity) element;

3 String adaptedAddress = getEntityKindURI(entity);

4 HttpURLConnection conn = establishConnection(adaptedAddress, "POST", true,

5 "text/occi", this.connection.getToken());

6 conn.setRequestProperty("Category", generateCategoryHeader(entity));

7 conn.setRequestProperty("X-OCCI-Attribute", generateAttributeHeader(entity));

8 ...

9 if(connectionSuccessful(conn)){

10 ...

11 return output;

12 }

13 ...

14 }

Listing 5.8: Generation of a REST request from OCCI elements (Java).

5.3.1 Extraction

The extraction process represents a pre adaptation step process, as it is only required for the
comparison between the desired and actual state of the cloud application. Therefore, we also
investigate its connection to the comparison process and the idSwapTable. We use an extraction
module generating an OCCI model that was implemented in another students research project.
However, we shortly explain this process and how we utilized it. For the extraction of the runtime
OCCI model, the jOCCI-API [51], a java library for OCCI queries, is used. Based on the received
model information, it is serialized to fit to the OCCI Ecore metamodel of Merle et al. [48]. After the
extraction, we synchronize the idSwapTable with the extracted runtime model, to only consider ids
actually assigned by the cloud. This is required, as changes to the cloud can be made outside of the
proposed adaptation process. Moreover, the OCCI model side of the idSwapTable is updated using
the comparison results, whereby the ids of matched Entities are exchanged in the idSwapTable.
This allows the other processes to work with ids contained in the model, which are simply swapped
out with the corresponding id in the idSwapTable once the request is performed. In the following,
the deprovisioning process is examined that handles the deletion of elements marked as Missing
Elements.

5.3.2 Deprovisioning

As the deprovisioning process simply separates the Missing Elements into Resources and Links
and performs DELETE requests on them, it represents a trivial implementation. Therefore, we
focus on the details of REST requests deleting an Entity. Compared to the other requests, the
DELETE request, does not require any information about the Category instances and Attribute
instances of the Entity. It only requires the correct URI of the element. As each Entity to be deleted

5.3. ADAPTATION PROCESS 49

originates from the runtime model, we extract the address and id of it directly from the source
model. On a successful deletion request, the corresponding idSwapTable entry is deleted. In the
following, the update process is investigated, which together with the provisioning process makes
use of the updated idSwapTable.

5.3.3 Update

Every Entity marked as Updated is handled by the updating process, as shown in Listing 5.9. There-
fore, we iterate over updatedElements (Line 2) and extract for each Resource its counterpart
(Line 3). Based on the counterpart, we gather information about the exact difference between the
Attributes of the Entities (Line 5). Here, we create a list storing not only the differing Attributes, but
also their values. In addition to this list, an Action list is required to check whether the update of
the Entity can be performed by Actions only. The Action list specifies which Action affects which
Attributes. Thus, the Action list must not only store the name and Attribute of each Action, but
also the source and target state of the Attribute’s value. I.e., to start an inactive VM, a list must
contain occi.compute.state, whereby the value inactive to active can be changed over the Action
start. If the Entity can be adjusted over Actions (Line 6), the corresponding Action requests are
send (Line 7). Otherwise, a PUT request is performed, as the request contains all information
about the element to be changed, and therefore all parts to be updated (Line 10). As OOI does
not implement the possibility to perform PUT request, this operation presents a stub. For the
execution of an Action, the term of the Action to be performed is added to the address of a POST
request. Furthermore, instead of the Entity’s attributes filling the Category- and Attribute header,
the information is extracted out of the Action. Compared to the deprovisioning process, the id of
the Entity must be extracted out of the idSwapTable, as we perform the update on the element of
the target model. Hereby, we address the correct Entity, as we updated the idSwapTable using the
comparison results. In the following, the provisioning process is discussed in detail.

1 public void update(EList<EObject> updatedElements, EList<Match> match) {

2 for(EObject element: updatedElements){

3 EObject counterpart = getCounterpart(element, match);

4 EList<AttributeState[]> differences = new BasicEList<AttributeState[]>();

5 differences = investigateDifferences(element, counterpart);

6 if(canBeHandledByActions(differences)){

7 performActions(element, differences);

8 }

9 else{

10 performPut(element); //stub

11 }

12 }

13 }

Listing 5.9: Generation of a suite of REST requests updating an Entity (Java).

50 CHAPTER 5. IMPLEMENTATION

5.3.4 Provisioning
The provisioning process was already developed and implemented during a former students
research project [45]. It is composed of two ETL model transformations, the OCCI to POG and
POG to provisioning plan transformation. To instantiate POGs we created a directed graph
metamodel. This graph is composed of vertexes only storing ids of corresponding Entities and
edges connecting them. The provisioning plan is an activity diagram, which instantiates the
UML Ecore metamodel [50]. To perform the OCCI to POG transformation a configuration of
the dependency types for each Link type is required. Every infrastructure extension is mapped
to the use pattern, as in each case both source- and target Resource need to be provisioned
beforehand. The transformation itself generates a vertex for each Resource and each Link, as
shown in Table 5.2. Thus, vertexes represent not only Resources, but also Links to be provisioned.
After the vertexes are created, a post processing connects them as shown in Listing 5.10. Here, two
edges are generated for each Link (Line 5-6, 9-10). Depending on the Kind of the Link, they either
connect the vertexes using the depends-on- or use pattern, as shown in Figure 5.3. The equivalent
method addresses the origin of a transformed element, i.e., in this case it addresses the vertex
generated from a Link. The depends-on pattern creates an edge that connects the target Resource
of the Link to the Link itself and an edge from the Link to its source Resource (Line 5-6). The use
pattern creates an edge that connects the Links target to the Link and an edge connecting the source
of the Link to the Link (Line 9-10). Due to a missing OCCI platform implementation, currently no
mapping of the dependency pattern to the platform Link types is provided.

OCCI POG
Resource Vertex
Link Vertex
Link Kind Use/Depends-on pattern

Table 5.2: OCCI to POG mapping.

Use pat tern

Depends-on pattern

Source
ResourceLinkTarget

Resource

Source
ResourceLinkTarget

Resource

Figure 5.3: Dependency pattern.

1 operation createEdges() {

2 for(link in OCCI!Link){

3 var linkBaseKind = new String;

4 if(dependsOnDependencies.exists(kind | kind.compareTo(link.kind.baseKind()))){

5 Edge(link.target.equivalent(), link.equivalent(), graph);

6 Edge(link.equivalent(), link.source.equivalent(), graph);

7 }

8 if(useDependencies.exists(kind | kind.compareTo(link.kind.baseKind()))){

9 Edge(link.target.equivalent(), link.equivalent(), graph);

10 Edge(link.source.equivalent(), link.equivalent(), graph);

11 }

12 }

13 }

Listing 5.10: Linking process of the OCCI to POG transformation (ETL).

5.3. ADAPTATION PROCESS 51

The second transformation generates a provisioning plan out of the POG. Hereby, we define a
transformation rule that transforms each vertex into an action, as they represent the Entities to be
provisioned. These actions possess input pins in which we store the id of the corresponding Entity.
The order of the actions is determined over the incoming edges of each vertex, as they represent
the Entity’s requirements and therefore characterize when the action can take place. The generation
of the corresponding workflow is done in three steps. At first, we determine the initial part of
the workflow. Here, each vertex without incoming edges is directly linked to a fork connected to
the initial node, as they posses no requirements, and therefore can be parallelized. Then, we link
the remaining actions to the rest of the control flow, as depicted in Listing 5.11. At first, we check
whether all actions are linked to the control flow (Line 3). If that is not the case, we iterate over each
vertex without any unresolved requirements and attach them to the control flow (Line 3-19). These
provisionableVertexes are detected by determining whether all required vertexes have their
corresponding actions linked to the control flow. Based on the amount of required vertexes (Line 5),
the action of the current vertex is attached to the control flow in a specific manner. If the vertex has
multiple dependencies (Line 6-13), a join is created joining all required actions (Line 8). Moreover,
we connect the current action to this join binding it as following action to the rest of the control flow
(Line 9-13). Thus, all required actions are performed before the action of the current vertex takes
place. If the vertex has only one requirement, the control flow of the required action is directly
connected to the action represented by the current vertex (Line 16). The third step creates a join
leading to the final node in which all actions without outgoing control flows are joined.

1 operation linkRemainingActions(){

2 while(notProvisioned.isEmpty() == false){

3 for(vertex in provisionableVertexes()){

4 var reqVertexes = vertex.requiredVertexes();

5 if(reqVertexes.size() > 1) {

6 var join = new UML!JoinNode;

7 activity.ownedNode.add(join);

8 reqVertexes.joinIn(join);

9 var cFlow = new UML!ControlFlow;

10 cFlow.source = join;

11 cFlow.target = vertex.equivalent();

12 cFlow.activity = activity;

13 join.outgoing.add(cFlow);

14 }

15 else{

16 cFlow(reqVertexes.first().equivalent(), vertex.equivalent(), activity);

17 }

18 notProvisioned.remove(vertex);

19 }

20 }

21 }

Listing 5.11: Provisioning plan control flow generation (ETL).

52 CHAPTER 5. IMPLEMENTATION

As the design of the interpretation process of the resulting provisioning plan is already discussed in
the design chapter (see Figure 4.11), we focus on the implementation details of action nodes. When
an action is reached, a POST request is performed. Hereby, we extract the id contained within
the action to search for the corresponding Entity in the OCCI model. Based on the information
contained within this Entity, we fill the Category- and Attribute header of the request, whereby we
adjust contained Attribute values according to the information contained within the idSwapTable.
This is required, as the ids within the values of the Attributes of an Entity contain only the model ids
and do not consider the actual ids assigned by the cloud. On a successful request, the id assigned
by the cloud is extracted from the server’s response and stored together with its original id in the
idSwapTable. It must be noticed, that the utilization of this process using OOI requires a specific
pre- and post processing step, performed on the initial and final node. Here, we provision and
release a stub network to which all Compute resources are initially connected. This stub network is
required, as otherwise OOI connects each VM to the public network by default. In the following
chapter, the implemented comparison- and adaptation process is evaluated using a suite of sample
cases.

54 CHAPTER 5. IMPLEMENTATION

Chapter 6

Evaluation

To investigate the feasibility of our approach, this section evaluates and discusses the comparison-
and adaptation process based on a set of sample cases. These cases are separated into basic- and
complex cases. For the evaluation of the comparison process we provide a ground truth for both case
suites describing the expected results. Based on these we compare the expected against the actual
outcome in order to investigate the individual drawbacks of the comparison strategies. Section 6.1
introduces these cases in detail. Section 6.2evaluates the different comparison strategies and checks
whether they are able to overcome the obstacles of the complex cases. Section 6.3 evaluates the
complete adaptation process. Here, we examine the feasibility of the process by investigating
an example adaptation, whereby we highlight the interaction between the comparison process
and the single adaptation steps. Finally, Section 6.4 discusses the proposed approach based on
the evaluation results and answers the questions asked in Chapter 3. Additionally, as no OCCI
implementation for OpenStack exists that considers the platform extension, Section 6.4 gives a
short excursus on the expected behavior of our approach when applied on PaaS cloud applications.

6.1 Case Descriptions

In our case suite, we differentiate between two kinds, the basic- and complex cases. The basic cases,
described in Section 6.1.1, are used in order to evaluate basic functionalities, such as recognizing
whether an Entity needs to be created, deleted, or updated. The complex cases are specifically
designed to build a burden for the different comparison strategies, in order to evaluate their
limitations. These cases are described in Section 6.1.2. As visualizations of complete OCCI
application topologies are too large for a depiction of our example cases, we compress the OCCI
models in a graph based manner. Hereby, circles represent Resources, whereas edges represent
Links. The different labels of the elements represent the Kind of the Resource. Thus, a node labeled
VM is a Compute node, NW a Network node, and Stor a Storage node. The subscripts of the
node labels represent the id of the Resource. As the standard provides only one Kind of Link that
connects two different Resources, the annotation of Kinds for Links are omitted. To also consider
the attribute layer, we highlight specific Attributes on the bottom of the node.

55

56 CHAPTER 6. EVALUATION

6.1.1 Basic Cases

The basic cases, depicted in Table 6.1, describe a suite of simple cloud application topologies.
Hereby, each case represents an addition of a specific set of Resources to the Basis case, e.g.,
the case +VM adds a further VM. For each comparison strategy, these cases are compared one
with another. Thus, we created a test suite comprising not only new-, but also missing Entities.
Moreover, with these cases we can check whether the comparison strategies are able to handle
multiple new or missing Entities. A detailed evaluation of the marking process is not provided, as
the process simply investigates the differences of already matched Resources. To provide an idea
of how an actual OCCI model looks like refer to Figure 6.1 in which we depict the Basis case. This
depiction shows the Basis case within an OCCI model editor. The information about the different
Mixins and the Kind of each Entity are stored directly within each element and are therefore not
visible in the given figure.

Basis +VM +VM/NW/Stor

NW0 Stor0

+VM/NW

VM0 NW0 Stor0VM0

VM1 NW1

NW0 Stor0VM0

VM1 Stor1

NW0 Stor0VM0

VM1

+VM/Stor

Stor1 NW1

NW0 Stor0VM0

VM1

Table 6.1: Basic cases.

Attribute State occi.core.title

Attribute State occi.compute.state
Attribute State occi.compute.hostname

Attribute State occi.compute.memory
Attribute State occi.core.title

Attribute State occi.compute.cores

Attribute State occi.core.id

Attribute State occi.core.id

Attribute State occi.storage.state
Attribute State occi.storage.size

Attribute State occi.core.title
Attribute State occi.core.id

Attribute State occi.network.state

Attribute State occi.network.address

Attribute State occi.storagelink.deviceid

Attribute State occi.core.target
Attribute State occi.core.source
Attribute State occi.core.id

Link 3208c9c6-5f14-4a5e-806e-b6859e77f73b_f23a7ee4-623f-440c-814e-8f33bc2d4bff

Link 3208c9c6-5f14-4a5e-806e-b6859e77f73b_93ad20f5-da5b-4efd-ab24-01b7207f7fdf_192.168.0.4

Resource 93ad20f5-da5b-4efd-ab24-01b7207f7fdf

Resource 3208c9c6-5f14-4a5e-806e-b6859e77f73b

Resource f23a7ee4-623f-440c-814e-8f33bc2d4bff

Figure 6.1: OCCI model showing the Basis case.

6.1. CASE DESCRIPTIONS 57

To check whether the comparison strategies are able to correctly compare two models, Table 6.2
depicts the expected outcome of the Resource matching phase in matching tables. This figure
shows, that if a case is compared to itself, it should result in only direct mappings between all of
its elements. But when a new or missing element within the models is detected, the left or right
side of the specific row should be empty, visualizing whether a match is found for the element or
not. To highlight the differences between the comparisons, the direct matches are only initially
shown for the comparison between the same model.

VM0 VM0

NW0 NW0

Stor0Stor0

--- VM1
--- NW1

--- VM1

VM1 VM1VM1 --- --- NW1

Stor1 ---

Source

Target

Basis

+VM

+VM
/NW

+VM
/Stor

+VM/NW
/Stor

+VM/NW
/Stor

--- Stor1

--- NW1

--- VM1

--- Stor1

--- VM1

--- Stor1 --- Stor1

--- NW1

VM1 ---

NW1 ---
NW1 ---

NW1 NW1

VM1 VM1

--- Stor1

NW1 ---
--- Stor1

VM1 ---

NW1 ---

Stor1 ---

VM1 ---

Stor1 --- Stor1 ---

--- NW1

NW1 NW1

VM1 VM1
--- NW1

NW1 ---

Stor1 ---
Stor1 --- NW1 ---

VM1

NW1

Stor1

VM1

NW1

Stor1

Basis +VM +VM
/NW

+VM
/Stor

Table 6.2: Expected Resource matching of the basic cases.

6.1.2 Complex Cases

Overall, we consider five complex cases, which are depicted with their expected match in Table 6.3.
The first complex case, Different Ids, tests completely different ids for each Entity in both models,
the major limitation of the Simple comparator. As the Similarity Flooding comparison strategy
creates a matching of Resources based on their Links, we examine the Independent Resources
case. Here, the source model contains a VM without any Link, which is connected to a NW in the
target model. The third complex case is used to check how the different comparison strategies
handle the occurrence of Symmetric Graphs, the major limitation for a structure based comparison.
It should be noted, that the basic cases +VM/Stor depict an equivalent case. However, this time
extra information on the attribute level is provided. Moreover, we investigate if the comparison
strategies are able to recognize the reattachment of a Stor to another VM. The last complex case
allows to evaluate the outcome between an interlinked source model, which is split into two
subgraphs.

58 CHAPTER 6. EVALUATION

Symmetric

Graphs

Source Target

Independent

Resources

Split into

Subgraphs

Different Ids

Storage

Rea�achment

VM0 NW0 Stor0VM1 VM2 NW1 Stor1VM3

VM0 NW0 Stor0VM1 VM0 NW0 Stor0VM1

VM0 NW0 VM1

VM0 NW0 Stor0VM1 Stor0 VM0 NW0 VM1

VM0 NW0 Stor0VM1

VM2 VM3 NW0 Stor0VM1

VM2 NW1 Stor1VM3

Expected Match

VM0 VM2

Stor0 Stor1

VM0 VM0

Stor0 Stor0

VM0 VM2

--- Stor1

VM0 VM0

Stor0 Stor0

VM0 VM0

Stor0 Stor0

VM1 VM1

VM1 VM3

NW0 NW1

NW0 NW0

VM1 VM1

NW0 NW1

VM1 VM3

NW0 NW0

VM1 VM1

NW0 NW0--- NW1

VM2 VM2

--- VM4

--- VM3

VM0 NW1 VM4

VM2

inac�ve inac�ve

Table 6.3: Suite of complex cases and expected matches.

6.2 Comparator

In this section the different comparison strategies are evaluated. Hereby, we check if they are able
to correctly match the Resources of the basic and complex cases. The investigation of the Link
match and the state of matched Entities is shortly discussed in the following. After the description
of the comparison outcome, the results are concluded in a short discussion. Section 6.2.1 covers
the results of the Simple comparator, Section 6.2.2 the results of the Complex comparator and
Section 6.2.3 the results of the Mixed comparator. Based on the evaluated Resource matching,
the Link match always results in a correct behavior, as each source Resource is treated in such
a manner that it represents the matched target Resource. Also, the marking procedure is not
evaluated, as it simply serializes the matching table. Here, each one sided matching is marked
either as New or Missing, and every direct matching is compared based on their Attributes to mark
them as Old or Updated. Therefore, the resulting match always leads to an adaptation of the source
into the target model, independent of how well the comparison is.

6.2.1 Results of the Simple Comparator

The Simple comparator represents a deterministic comparison strategy that matches the Resources
of the source and target model based on their unique id. The Simple comparator’s Resource
matching is identical to the expected results depicted in Figure 6.2. Therefore, it is capable to
match every Resource correctly, as long as the ids of the source model Resources are equivalent
to the ids of the corresponding Resources in the target model.

6.2. COMPARATOR 59

For the Simple comparator, the main obstacle is represented by the Different Ids case, as
depicted in Table 6.5. Here, all ids from the source and target model are different and therefore no
Resource can be matched, although the Resources are expected to be the same. It follows, that
each Resource in the source model is marked as Missing Element and each Resource from the
target model as New Element. Therefore, this Resource match indicates a complete deprovisioning
and re-provisioning of the cloud application. For the rest of the complex cases, the Simple
comparator matches every Resource with the same id, leading to the expected Resource match, as
long as the ids are set correctly. Thus, the cases Independent Resources, Storage Reattachment
and Split into Subgraphs are correctly matched, whereas the cases Different Ids and Symmetric
Graphs result in a match indicating a recreation of the cloud application.

Different Ids Independent
Resources

Symmetric
Graphs

Storage
Rea�achment

Split into
Subgraphs

VM0 ---

NW0

Stor0

VM1

VM2

NW1

Stor1

VM3

VM0 VM0

Stor0 Stor0

NW0 NW0

VM1 VM1

VM0

--- Stor1

NW0

VM1

VM2

NW1

VM3

VM0 VM0

Stor0 Stor0

NW0 NW0

VM1 VM1

VM0 VM0

Stor0 Stor0

VM1 VM1

NW0 NW0

--- NW1

VM2 VM2

--- VM4

--- VM3

Table 6.4: Simple comparator results for the complex cases.

Summed up, the Simple comparator represents the perfect comparison strategy, when the ids of
the Resources in the target and source model match as supposed and nothing is changed manually
in the cloud application due to missing entries in the idSwapTable. As this is a common issue, it
represents a viable comparison strategy under the right conditions. Moreover, it can be used as
preprocessing for further comparison approaches, as it is the case in the Mixed comparator.

6.2.2 Results of the Complex Comparator

The Complex comparator considers the structure of Resources in the OCCI topology models
to create a Resource match. Hereby, the basic cases can only be partially solved, as symmetric
structures result in non-deterministic solutions. An overview of cases that can be solved are
depicted in Table 6.6, also addressing requirements to solve the rest of the basic cases. As soon as
Stor1 is within the source or target model the comparator is not able to correctly classify, whether
VM0 in the target model is VM0 or VM1 in the source model. For the +VM/NW/Stor cases, the map
pair (VM0, VM1) is favored, because it is not only connected to the (NW0, NW0) but also to (NW0,
NW1), resulting in another term in the fixpoint value calculation. However, when this case is
compared to itself, the comparator is able to calculate a correct match, as VM1 is connected to an
additional network. Overall, the basic cases uncover one flaw of the Similarity Flooding algorithm,
which are symmetric structures, as they lead to similar fixpoint values. In such cases, either the
user has to decide how the Resource has to be matched or an attribute filtering process is required.

60 CHAPTER 6. EVALUATION

Compared to the Simple comparator, the structure based approach is able to correctly match
the Different Ids case. For the Similarity Flooding algorithm however, one of the limiting cases
is represented by the Independent Resources case. Here, VM0 does not possess any Links and
therefore can not be matched to any of the target model’s Resources. Therefore, VM0 is detected as
a new as well as a missing Resource. Moreover, the Symmteric Graphs case pushes the Complex
comparator to its limits, as similar problems to the ones discovered within the basic cases +VM/Stor
and +VM/NW/Stor occur. When comparing the Storage Reattachment case, the algorithm assumes
that VM1 is VM0, as both are linked to a Storage and the rest of the models are identical.

Different Ids Independent
Resources

Symmetric
Graphs

Storage
Rea�achment

Split into
Subgraphs

VM0

NW0

Stor0

VM1

VM2

NW1

Stor1

VM3

VM0

Stor0 Stor0

NW0 NW0

VM1 VM1

VM0

--- Stor1

NW0

VM1 VM2

NW1

VM3 VM0

VM0

Stor0 Stor0

NW0 NW0

VM1

VM1

VM0

VM1

NW0

Stor0

VM2

NW1

VM4

VM0

VM1

NW0

Stor0

VM0

VM2 VM3

Table 6.5: Complex comparator results for the complex cases.

For the Split into Subgraphs case the Similarity Flooding algorithm calculates the values as shown
in Figure 6.2. The corresponding matching results of these fixpoint values is shown in Table 6.5.
Here, the Complex comparator correctly chooses the match for NW0, VM1, and Stor0, due to the
high fixpoint values resulting from their unique part within the structure. The next highest fixpoint
value is the one for VM0,2 being VM3, as their structure fits to the lower subgraph, even though
they are connected to a new NW in the target model. Due to the occurrence of equivalent fixpoint
values, either may be chosen for the match. In the case depicted in Figure 6.2, VM2 is chosen.
Finally, VM0 is matched to one of the Compute nodes VM0,2,4, as they posses equivalent fixpoint
values. However, these fixpoint values are so low, that they even could be discarded as possible
matchings. Finally, the left over target VMs are not matched.

NW0, NW1

VM1, VM{0,2,4}

NW0, NW0 VM{0,2}, VM{0,2,4}

VM{0,2}, VM{1,3} 0.14

<0.001

<0.001

1.0

<0.001 Stor0, Stor0 1.0

VM1, VM3 0.14

VM1, VM1 1.0

Compute Resources

Network Resources

Storage Resources

Figure 6.2: Fixpoint values and match for the Split Into Subgraphs case.

6.2. COMPARATOR 61

Assumed that the OCCI models exactly represent the state of the cloud application, the Complex
comparator represents a strategy that is able to correctly match each Resource. Unfortunately,
that is not the case as the software installed on the different VMs may differ. Still, the Complex
comparator represents a viable comparison strategy to match models based on their structure.
Nevertheless, it is individually insufficient to compare OCCI models only considering the OCCI
IaaS extension, as the amount of different Kinds is low, which leads to non unique model structures.
This drawback results in a large amount of equivalent fixpoint values for map pairs considering
for example VMs. Therefore, a good filter mechanism is required to identify the correct one, which
we evaluate as part of the Mixed comparator in the following section. It must be noted that the
algorithm is able to correctly specify the structural requirements of resources. For example, it
detects that a VM requires a storage, as in the Split into Subgraphs case. Summed up, the Complex
comparator is a viable comparison strategy, especially when more extensions are utilized as they
allow for more distinguishable structures.

6.2.3 Results of the Mixed Comparator

The Mixed comparator utilizes both benefits of the Simple- and Complex comparator in addition
to an attribute level filter applied on the fixpoint values. Thus, Resources are first compared based
on their id, followed by a comparison of left Resources based on the topologies structure. Hereby,
Resources of equivalent structure are compared on their attribute level. Due to the usage of the
Simple comparator as first comparison strategy, the Mixed comparator is able to handle every basic
case. To provide a sufficient evaluation of the Similarity Flooding using the Mixed comparator’s
attribute filter, we tested each basic case whereby every Resource from the target and source model
possesses different ids. The results, depicted in Table 6.6, show that the Mixed comparator is able
to correctly match each +VM/Stor case, due to the implementation of the attribute filter.

Source

Target

Basis

+VM

+VM
/NW
+VM
/Stor

+VM/NW
/Stor

+VM/NW
/StorBasis +VM

+VM
/NW

+VM
/Stor

One VM
Matched

Similarity
Flooding
A�ribute

Filter

Table 6.6: Mixed comparator results for the basic cases with required features and information.

62 CHAPTER 6. EVALUATION

However, the filter is not enough to correctly match the +VM/NW/Stor cases. That is because the
fixpoint values between the storage and VM nodes differ too much, due to the influence of the
high fixpoint value from (NW0, NW1) on VM1. This problem can be bypassed, when at least one
VM is matched by the Simple comparator, as it recognizes and excludes wrong map pairs in the
PCG, leading to a correct matching. For example, in the basis to +VM/NW/Stor case, if the network
is matched, the case would be exactly as the +VM/Stor case and can therefore be matched over
the attribute filter. If the storage or VM is matched, the map pair (Stor0, Stor1) is removed and
therefore VM0, as well as NW0, can be correctly matched. Overall, the basic cases uncover that a
complete autonomous comparison is not always possible and may require human intervention,
especially on small non-unique models.

For the complex cases, the Mixed comparator is able to correctly match the Resources in
each case, as shown in Table 6.3. The Different Ids case, due to the Similarity Flooding step and the
Independent Resources case, due to the utilization of the id matching of the Simple comparator.
The Symmetric Graphs case is handled because of the attribute filter. If the id of VM0 would differ
in the target model, the Resources can still be matched if they posses the same name, due to the
post processing attribute comparison of non-matched Resources. The Storage Reattachment and
Split into Subgraphs case results in a correct Resource matching, as the ids of the source model
match to the ones of the target model. In case of different ids, depicted in Figure 6.3, the minimum
information of one matched VM is required to calculate a correct Resource match, using the
Similarity Flooding algorithm. Here, the information gained from the Simple comparison step, the
match of VM0 to the other VM0, results in a deletion of every wrong case in the PCG and therefore
in a correct matching, as only one match per node is still available. The same behavior occurs
when only the id of VM1 can be matched, as the amount of possible solutions for the Similarity
Flooding algorithm shrink. For the Split into Subgraphs case, two flaws of the Similarity Flooding
algorithm are uncovered. One flaw is the matching of Networks and the equivalent fixpoint values
of the VM map pairs. Because the case can be solved with the help of the Simple comparator, we
shortly discuss this case with the target model having different ids, as it is the drawback of the
Simple comparator. The attribute filter helps to identify the most suitable VM matching. This
comes with the drawback of correctly recognizing VMs being updated in the target model as
they differ on the attribute layer. In this case, a more unique structure of the VMs or a manual
adjustment of the matching is required.

VM0

VM0

VM0

VM2

VM1

VM0

VM1

VM2

NW0

NW1

Stor0

Stor1

VM0 NW0 Stor0VM1Source:

Stor1 VM0 NW1 VM2

Target:

Similarity Flooding
PCG

Id Match

VM0

NW0

Stor0

VM1

Source Target

VM0

NW1

VM2

Stor1

OCCI Models Resource Match

Figure 6.3: Adjusted Storage Reattachment case in which only one id of the VM nodes match.

6.3. ADAPTATION PROCESS 63

The Mixed comparator delivers the best results of the proposed comparison strategies, as the
information about the ids of the Entities, which uniquely identifies them, grants extra information
for the Complex comparison process analyzing its structure. This extra information about already
matched Resources affects the amount of possible map pairs in the PCG used in the Similarity
Flooding algorithm. Even the information about one correctly identified Resource greatly supports
the Similarity Flooding process, as an anchor point is found. Thus, the fixpoint values of these
nodes are increased rolling up the complete structure of the model. The attribute filter grants a
huge advantage over a complete structure based filter, as it allows to filter out map pairs that are
less suitable than others. Nevertheless, to make a perfect use out of this filter, its threshold must
be evaluated for the different OCCI Resource types. Finally, the post-processing performed on
non-matched Resources serves as a last gateway to perform a reasonable matching. Overall, the
Mixed comparator represents a suitable approach to match OCCI topology models, as it utilizes all
information available in the models. Nevertheless, due to the high abstraction level of the OCCI
infrastructure extension, cases exist in which the source and target model can not be perfectly
matched, as only an excerpt of the cloud application is considered. Therefore, a manual inspection
of the Resource matching phase is recommended, as wrong matchings may result in fatal changes.
The following section investigates the complete adaptation process, focusing on the adaptation
steps making use of the comparison.

6.3 Adaptation Process
To discuss the complete adaptation process and show how actual REST requests are performed, we
examine the procedure of the different adaptation steps, based on a minimal example. The target
model used as input is depicted as an object diagram in Figure 6.4. This figure gives a detailed
overview of the information contained within each Entity, which we extract for corresponding
REST calls. The target model is composed of an Ubuntu 16.04 Server VM of size m1.medium, as
stated in the Mixin Templates. This VM is connected to a network nw0 and a storage stor0, whereby
the network and its interface are attached to the Ipnetwork mixins. A simplified version is depicted
in Figure 6.5, which additionally shows the runtime model and the comparison results.

ipnetwork:Mixin

scheme =
http://schemas.ogf.org/occi/infrastructure/network#
term = ipnetwork

nw0:Network

occi.core.tit le = nw0
occi.core.id = 93ad20f5
occi.network.state = active
occi.network.address = 192.168.0.0/24

ipnetworkinterface:Mixin

scheme =
http://schemas.ogf.org/occi/infrastructure/networkinterface#
term = ipnetworkinterface

vm1->nw0:Network inter face

occi.core.id = 3208c9c6_93ad20f5
occi.networkinterface.address = 192.168.0.15
occi.networkinterface.gateway=192.168.34.1
occi.core.target=http://192.168.34.1:8787/occi1.1/storage/93ad20f5
occi.core.source=http://192.168.34.1:8787/occi1.1/compute/3208c9c6

stor0:Storage

occi.core.title = stor0
occi.core.id = f23a7ee4
occi.storage.state = online
occi.storage.size = 100

vm1->stor0:StorageLink

occi.core.id = 3208c9c6_f23a7ee4
occi.storagelink.deviceid=/dev/vdb
occi.core.target=http://192.168.34.1:8787/occi1.1/storage/f23a7ee4
occi.core.source=http://192.168.34.1:8787/occi1.1/compute/3208c9c6

f lavor1:Mixin

t i t le = Flavor: m1.medium
scheme = http://schemas.openstack.org/template/resource#
term = 36637a26

image1:Mixin

tit le = Ubuntu 16.04 Server
scheme = http://schemas.openstack.org/template/os#
term = 5437eae8

vm1:Compute

occi.core.tit le = vm1
occi.core.id = 3208c9c6
occi.compute.state = active
occi.compute.memory = 4096
occi.compute.cores = 2

Figure 6.4: Object diagram describing the target model.

64 CHAPTER 6. EVALUATION

Here, the running cloud application is composed of two VMs, which are connected to a network.
This application got extracted into a runtime model consisting of two Compute nodes, VM0 and
VM1, which both are connected to a Network, NW0. The extraction step itself is not discussed in
detail, as it simply creates an OCCI model using an already existing interface. This runtime model
is compared to the target model possessing an additional Storage node, which is connected to the
now active VM1. This example is chosen, because its comparison results comprise not only Missing-
and New-, but also Old- and Updated Elements. After the extraction of the runtime model and its

NW0 VM1VM0

inac�ve

NW0 VM1

ac�ve

Stor0

Missing Elements

VM0, VM0->NW0

VM0 ---

NW0

Stor0

VM1

VM1->Stor0---

Source Target

NW0

VM1

VM0->NW0 ---

VM1->NW0 VM1->NW0

Run�me/Cloud Model Target Model

ProvisionDeprovision UpdateExtrac�on Comparison

Updated Elements

VM1

New Elements

Stor0, VM1->Stor0

Old Elements

NW0, VM1->NW0

Figure 6.5: Minimal adaptation example.

comparison to the target model, the deprovisioning of the Missing Elements takes place, which
sorts them for Links and Resources. Therefore, at first the Link, VM0->NW0 is deleted, detaching
VM0 from the network, followed by a DELETE request of VM0 itself. It should be noted that, when
a Resource is marked as missing, each Link of it is also marked as missing, e.g, each Resource is
completely detached before it is deleted. This detachment process is especially important, because
networks sometimes can only be deleted once nothing is connected to them. The information
required to delete these elements is hereby read out of the runtime model. The DELETE request to
deprovision VM0 simply requires the information about its URI, and therefore about its Kind and
id. This results in the request depicted in Listing 6.1. Hereby, TOKEN represents the session token
requested, which is generated at the beginning of the adaptation process. After the deletion, the id
of the VM0 is removed from the idSwapTable.

1 DELETE http://192.168.34.1:8787/occi1.2/compute/VM0

2 -H ’X-Auth-token: ’ TOKEN

Listing 6.1: Example DELETE request.

6.3. ADAPTATION PROCESS 65

Thereafter, the Updated Elements are handled, changing the state of VM0 to active. In the proposed
example, we intentionally chose an element adaptation that can be performed by Actions, as OOI
does not provide any implementation for PUT or POST update requests. To bring the state Attribute
from inactive to active, the start Action is executed, which is shown in Listing 6.2. Here, the runtime
id of the VM, 3208c9c6+, is extracted using the matching table and idSwapTable.

1 POST http://192.168.34.1:8787/occi1.2/compute/3208c9c6+?action=start

2 -H ’Content-Type: text/occi’

3 -H ’X-Auth-Token: ’ TOKEN

4 -H ’Category: start; scheme="http://schemas.ogf.org/occi/infrastructure/compute/

action#"; class="action"’

Listing 6.2: Example POST(Action) request.

During the provisioning process, the POG is created out of the target model from which we remove
the Old Elements and Updated Elements, as shown in Figure 6.6. Additionally, this figure depicts
the provisioning plan for the original POG. Thus, we highlight the difference the actions taken
when the target model would be deployed without considering the runtime model. As this process
is already discussed in [45], a shortened version is given in the following. As each Resource
provisioning is independent from each other, they represent vertexes without incoming edges. Due
to the mapping of each Link type of the infrastructure to the use dependency, the Link vertexes
depend on the creation of the Resources it connects. Therefore, a workflow is created which starts
with the parallel provisioning of each Resource followed by the provisioning of Links connecting
them. As we adapt the POG by deleting the Old- and Updated Elements, we remove VM0, VM0-
>NW0, and NW0. Thus, the POG is transformed into a workflow that only contains of actions that
provision Stor0 and VM0->Stor0. Concluding, the POG and workflow plan only consist of the
New Elements to be created. Furthermore, the adaptation removes the dependencies for the Link
VM0->Stor0, as it is already resolved in the cloud application.

VM0 VM0->NW0 NW0

VM0->Stor0 Stor0

VM0 VM0->NW0 NW0

VM0->Stor0 Stor0

POG

Original

Adapted

provision VM0

provision NW0

provision Stor0

provision
VM0->NW0

provision
VM0->Stor0

Workflow

provision Stor0
provision

VM0->Stor0

Figure 6.6: Adjusted POG and activity diagram for the provisioning process.

66 CHAPTER 6. EVALUATION

As the complete information of a Resource is required for a POST request, we extract the Category
and Attribute header directly out of the corresponding Entities from the target model. This results
in the request of Listing 6.3, depicting the creation of Stor0. This request dynamically assigns an id
to the provisioned Entity, which we extract from the server’s response. In the following, we refer to
this id as f23a7ee4+, which is stored together with its original id f23a7ee4 in the idSwapTable.

1 POST http://192.168.34.1:8787/occi1.2/storage/

2 -H ’Content-Type: text/occi’

3 -H ’X-Auth-Token: ’ TOKEN

4 -H ’Category: storage; scheme="http://schemas.ogf.org/occi/infrastructure\#"; class="

kind"’

5 -H ’X-OCCI-Attribute: occi.core.title="stor0", occi.core.id="f23a7ee4", occi.storage.

state="online", occi.storage.size="100"’

Listing 6.3: Example Resource POST request.

Thereafter, the StorageLink connecting VM0 to Stor0 is provisioned, resulting in the request shown
in Listing 6.4. Here, the id of the Link’s target Resource, stor0, is already stored within the
idSwapTable as f23a7ee4+. Furthermore, the id of the source Resource, vm1, is stored as
3208c9c6+. Again, the cloud assigns a dynamic id for this Resource, which we store together
with its counterpart in the idSwapTable. After this request, the provisioning workflow reaches the
final node, closing the workflow.

1 POST http://192.168.34.1:8787/occi1.2/storagelink/

2 -H ’Content-Type: text/occi’

3 -H ’X-Auth-Token: ’ TOKEN

4 -H ’Category: storagelink; scheme="http://schemas.ogf.org/occi/infrastructure\#";

class="kind"’

5 -H ’X-OCCI-Attribute: occi.core.id="3208c9c6+_f23a7ee4+", occi.core.source="3208c9c6

+", occi.core.target="f23a7ee4+", occi.storagelink.deviceid="/dev/vdb"’

Listing 6.4: Example Link POST request.

The proposed adaptation process is capable of changing the state of a cloud application using a
runtime representation of it. Hereby, we adapted the proposed provisioning process, presented
in [45], to utilize runtime information. The required adaptive steps itself are derived from the
results of the comparison step. As these steps are loosely coupled, any arbitrary comparison
strategy can be used, whereby the Mixed comparator is recommended as discussed in Section 6.2.
Also, the single steps are loosely coupled, representing an approach easy to maintain. Nevertheless,
when further OCCI extensions are utilized this design may result in problems. For example, the
dependencies resulting from updating elements may affect the provisioning process and vice
versa. In the following, an overall discussion of the proposed approach is given including a short
excursion about expected influences regarding OCCI’s platform extension [21].

6.4. DISCUSSION 67

6.4 Discussion

To show the feasibility of the proposed approach we separately evaluated the comparison-
and adaptation process. For the comparison process we evaluated each strategy based on two
example suites. One suite was focused on the evaluation of basic functionality, whereas the
second suite tried to investigate the limitation of the different strategies. Hereby, we showed
that the Simple comparator is able to provide deterministic matching results as long the ids
of the different cloud resources are set correctly. The complete opposite is represented by the
results of the Complex comparator, which is not able to deterministically match symmetric
structures, but therefore is independent from the attribute level. Finally, the Mixed comparator,
using the benefits of both approaches, yielded in the best results, as not only a deterministic
match based on ids is performed, but also a structural comparison followed by an iterative
identification of the most suitable matches using an attribute filter. However, cases exist that
require specific Resource matches from the first comparison phase to be correctly solved. Thus, on
large and complex adaptations a manual inspection of the calculated comparison may be necessary.

The adaptation process was evaluated based on an example cloud application topology,
which adapts a previously defined runtime state. Hereby, we created a case in which the
comparison indicates an execution of all adaptation steps. Thus, we were able to evaluate each step
of the complete adaptation process covering the comparison-, the deprovisioning-, the update-,
and the provisioning step. Hereby, we highlighted specific requirements such as the resolution of
provisioning dependencies and the constraints regarding the deprovisioning of resources. Overall,
we were able to show the feasibility of our proposed approach using one minimal example. To
conclude the evaluation, the following answers the questions stated in Chapter 3 of this thesis:

• Q0: How to recognize whether two elements from different models match?

To answer this question we proposed three different comparison strategies. Hereby, we showed
that a reasonable matching can be calculated based on the information contained within the
elements attributes and structure. Nevertheless, we examined multiple limitations when only one
of these levels is considered. However, when these levels are combined these limitations can be
bypassed, as shown by the results of the Mixed comparator.

• Q1: Is there a suitable order for the several adaptation steps?

The derivation of required adaptive steps requires a model representation of the running cloud
application. Thus, the extraction process represents the first step. As cloud tenants may be limited
to an amount of cloud resources that can be assigned simultaneously, we next deprovision cloud
resources not needed anymore. Thereafter, we adapt each element requiring for an update to bring
it into the desired state. This is required for the provisioning process, as the target model depicts a
working state of the cloud application and thus inconsistencies in the runtime have to be avoided.

68 CHAPTER 6. EVALUATION

• Q2: How to extract information from the running system in form of an OCCI model?

We extracted the running cloud application into an OCCI model by using the jOCCI-API [51],
which is able to perform OCCI queries. Nevertheless, a serialization of the information gathered
by this API is required to fit the extracted model onto the metamodel of Merle et al. [48] we use.

• Q3: Are there requirements for the deletion of OCCI elements?

The utilization of the OpenStack cloud infrastructure showed that some OCCI elements have to be
decoupled from the rest of the infrastructure before they can be deleted. Thus, we created a process
which systematically decouples a Resource by removing all attached Links to it, followed by a
deletion of the Resource itself. To address requirements not yet found or introduced with further
extensions, we designed the process in such a manner that it can be individually customized for
each Kind.

• Q4: How to identify required adjustment calls?

To identify which requests are required to update an Entity it must be evaluated whether an
adjustment over Actions or a complete update over a PUT call is required. Therefore, information
about which Actions change which Attributes into which states is required. At this point in time, a
manual creation of an Action list storing this information is necessary. Because we evaluated the
proposed approach using OOI as OCCI API, the behavior of PUT requests could not be evaluated
due to a missing implementation.

• Q5: How to resolve the dependencies between the different cloud resources?

Finally, to solve the dependencies of the single elements within the cloud topology we adapted
an approach by Breitenbücher et al. [44]. Using this approach, we created a provisioning plan
describing the order of the REST calls to be performed. Even though this process was already
discussed in a former research project [45], we presented it in this thesis to evaluate its adjustment
to fit into an adaptation process.

• Q6: How to address already running resources within these dependencies?

To address already running resources within the generation of a provisioning plan, we adjusted the
POG by removing Entities already running. Thus, the dependencies considering already running
resources are resolved from which the provisioning plan can be generated as usual. Hereby, we
identified the already running resources over the Old- and Updated Elements resulting from the
comparison process. In the following, Section 6.4.1 discusses validity threats for the proposed
process, whereas Section 6.4.2 provides a short excursion of expected influence from OCCI’s
platform extension [21] on our approach.

6.4. DISCUSSION 69

6.4.1 Threats to Validity

In this section circumstances that threaten the validity of the proposed approach are discussed.
One of the biggest impacts is the utilization of additional OCCI extensions, which may
result in different requirements for the resolution of Resource dependencies and thus for a
more specialized configuration of our approach. However, these could not be considered
due to the lack of compatible OCCI implementations. Nevertheless, a short excursus cover-
ing the utilization of the platform extension [21] is given in Section 6.4.2. Additionally, major
changes in OCCI’s basic structure may influence parts of the comparison- and adaptation processes.

Even though we presented a large variety of different cases for the evaluation of the pro-
posed approach, we did not test how the comparison- as well as the adaptation process behave for
larger infrastructure topologies. Nevertheless, these were sufficient to investigate the advantages
and drawbacks of the different comparison strategies and show the feasibility of our approach.
Additionally, an evaluation of the proposed adaptation process on multi-cloud environments is
missing which may result in requirements not discovered yet.

6.4.2 Excursion: OCCI PaaS Extension

The platform extension comes with the capability to manage Applications running on the different
Compute nodes. For this, the platform extension defines the Application type, which gets attached
to Compute elements. This additional information for a Compute node especially supports the
Similarity Flooding comparison process, as the cloud application’s structure and therefore the
Resources get more distinguishable. Hereby, the degree of uncertainty of matching two Compute
nodes is reduced, due to an Application being composed of multiple Components. Summed up,
the platform extension would provide a huge advantage for the comparison process, as OCCI
models get more detailed.

To correctly represent the running cloud application topology as OCCI model, the extrac-
tion process needs to be adapted as information about the software state’s running on the
individual machines is required. The rest of the adaptation steps mainly require an OCCI API,
providing the platform extension. As the interface is responsible for the management of single
elements, the form of the REST requests itself does not differ, e.g, the creation of a Storage
represents the same procedure as provisioning an Application. When adjusting the proposed
approach to support the platform extension, the update and provisioning process require for a
further evaluation, as the creation of the POG is in addition composed of depends-on patterns.
Especially, the interconnection between several software parts deployed on different VMs
represent a circumstance to be investigated. In the following, an introduction into related work is
given in which we delimit our approach to similar ones.

Chapter 7

Related Work

In addition to OCCI, other cloud standards exists having a model based nature that tackle the
provider lock-in. One of these standards is the Topology and Orchestration Specification for
Cloud Applications (TOSCA) [52], which we shortly introduce in this chapter. Furthermore, we
delimit similar approaches to the proposed one in order to further highlight its necessity. Also, we
describe the different processes we adapted in this thesis to compare their and our objective.

TOSCA [52], developed by Organization for the Advancement of Structured Information Stan-
dards (OASIS) [53], is another cloud standard aiming to solve the provider lock-in. Its main
goal is to increase the portability of cloud applications to allow for convenient and provider
independent switching of the cloud infrastructure. Just like OCCI, TOSCA defines a metamodel
for the creation of cloud resources. Hereby, it provides two kinds of model structures, one based
on XML [54], whereby the metamodel is in the form of an XSD, and one based on YAML Ain’t
Markup Language (YAML) [55], which lacks a formal metamodel [56]. The major difference between
those two standards lies within their goals. TOSCA aims for reusability and persistence of cloud
application models without defining its actual deployment, whereas OCCI provides the definition
of a standardized API [56]. In Section 8.1, an outlook into future work is given where we combine
our adaptation process with a former approach [56] that provides a mapping of TOSCA and OCCI
elements.

In the approach of Breitenbücher et al. [44] we adapted originally describes the generation of a
provisioning plan from TOSCA models. Nevertheless, this approach does not consider resources
already running on the cloud, and therefore is not capable to perform an adaptation. Additionally,
it does not define a standardized way of the actual provisioning, as TOSCA does not specify an API.

Kolovos et al. [57] present multiple types of model comparisons- and matching approaches.
One of them is EMF Compare [42], which adds the capability to compare models to the EMF
framework. Even though it is a powerful, customizable, and extensible tool that creates a matching

71

72 CHAPTER 7. RELATED WORK

between elements of the source and target model, its comparison mainly operates on the attribute
level, as it evaluates the similarity of elements based on their features. Therefore, we stick to the
Similarity Flooding algorithm to evaluate how well a pure structure based comparison strategy
behaves. Moreover, as we consider each attribute to be object of change, our attribute comparison
is restricted to one attribute, the id.

A similar adaptation approach is proposed by Holmes [58], who extracts a runtime model and
compares it against a model to be deployed. To create and extract these models, he created
a generalized metamodel tailored towards the OpenStack API and thus is not conform to
any existing cloud standard. Furthermore, compared to our approach only a short concept is
given, addressing the resolution of dependencies between the required adaptation calls. For
the derivation of the adaptive steps, he compared the cloud application topologies using EMF
Compare. Hereby, he configured the comparison in such a manner that only the elements contents
are considered ignoring their identifiers. Unfortunately, no evaluation of the proposed adaptation-
or comparison process is given making a comparison to our results impossible.

Another models at runtime process capable of adapting cloud applications is proposed
by Ferry et al. [59]. To enable an adaptation, they define a Domain-Specific Language (DSL) for
cloud application models, called CloudML, and a runtime environment to execute calculated
adaptation plans. Here, they use a three layer architecture for self-adaptive systems by Kramer
and Magee [60]. In terms of this architectural style, our approach can be classified as the short-term
layer, being responsible for the management and deployment of the application. Compared to our
approach, they use a self-created metamodel instead of accepted cloud standards and therefore do
not tackle the provider lock-in.

One further big project using the OCCI standard is OCCIware [61], a framework capable
of modeling, designing, and deploying every kind of computing resources as a service, utilizing
the OCCI Core Model. Hereby, it allows to manage any kind of resource by combining multiple
OCCI back-ends, which are hidden behind its generic front-end. Furthermore, OCCIware provides
the capability to deploy, reconfigure, and monitor cloud applications. However, it is not able
to adapt complete cloud applications. In the following, a final conclusion about the proposed
approach is given.

74 CHAPTER 7. RELATED WORK

Chapter 8

Conclusion

We presented a model based approach capable of adapting cloud applications, using the OCCI
standard. To perform this adaptation, we designed two modular processes, the comparison
between the runtime and target model and the execution of required adaptation steps. For the
comparison process, we investigated three approaches to create possible Resource matchings.
Based on these, we identified Link matches and marked Entities as Old-, Updated-, New-, or
Missing Element. Hereby, we evaluated the capabilities of comparison strategies operating on
the attribute-, structure-, and mixed-level. This evaluation showed that each of these strategies
result in reasonable matchings if applied correctly. However, as the Mixed comparator presents
the most flexible and to the problem space tailored strategy, it results in the most accurate matches.
Furthermore, we showed that even when the matches are not well-chosen, the state described in
the target model is always reached. However, the results should always be checked manually in
order to prevent wrong adaptations.

Based on this comparison we created an adaptation process, which we decoupled into
three adaptation steps responsible to manage DELETE, PUT, and POST requests. Depending on
the mark of each Entity, we assigned them to one of these steps. For each of these management
tasks, we investigated different requirements. To deprovision a Resource, we decoupled it from
the rest of the application. To update an Entity, we checked whether it can be handled over Actions.
For the provisioning process, we identified dependencies of the single Entities from which we
generated a provisioning plan. Overall, we presented a modular approach that is capable of
adapting a cloud application, only requiring the desired state of the cloud application as input.
Thus, we neglect not only the need for any human intervention, but also bypass the provider
lock-in problem by extracting standardized REST calls directly from the model. As the proposed
prototype merely represents a portion of possible capabilities, we present future work in the
following section, discussing new and enhanced functionalities.

75

76 CHAPTER 8. CONCLUSION

8.1 Future Work

Even though we presented a short excursus into the PaaS extension of OCCI where we described
the influence of additional element types on the comparison process, a more formal evaluation is
necessary. Moreover, further comparison strategies can be evaluated against each other. Especially,
to investigate further pre-comparison steps that can be utilized in the Mixed comparator. Hereby,
it is worth evaluating how the Similarity Flooding algorithm performs when only the highest
fixpoin values are extracted as a map pair, followed by another iteration of the algorithm with
an adapted PCG. Moreover, the attribute filter used for the fixpoint values can be enhanced by
adding weights to specific attributes or by recognizing how well an updated Attribute fits to the
structure of the Resource. For example, a Resource having multiple Links can be favored for an
upscale process.

To enhance the functionality of the adaptation process, multiple functionalities can be
added. For the update process, state machines can be extracted from the runtime model that
list Actions and how they affect specific Attributes. Thus, the need for a manual configuration
is neglected. Using these state machines, the shortest path between two Attribute states can be
calculated leading to the minimal amount of Actions needed to reach a certain state. Furthermore,
it can be evaluated whether a set of Actions is more suitable than one PUT request to adapt single
Entities. Another functionality that can be added is an engine enabling self managing capabilities
for cloud applications, in which a complete MAPE loop is utilized in order to choose the correct
target model for different environmental requirements. E.g, a monitoring step can be created
that chooses a suitable OCCI model for the analyzed parameters, which then serves as input
for the proposed adaptation process. Moreover, as already mentioned, the proposed process
is able to enable self healing mechanisms for the deployed cloud application, as the desired
state can be stored and compared to the current runtime state of the cloud application. If any
differences occur, the proposed adaptation process is simply executed. Therefore, a process is
required that periodically extracts the runtime model of the cloud application and checks for
occurring differences using the comparison process. When differences are detected, i.e. not only
Old Elements exist, the adaptation process is started, adapting the corrupted state of the cloud
application. However, this process requires a further blacklist indicating attributes to be ignored.
Thus, it can be configured that the process only cures resource failure states.

Finally, as we described the benefits of TOSCA and the similarities of it to OCCI, it would be
interesting to investigate how the comparison strategies perform on TOSCA topology models, as
these are designed for a permanent storage of cloud topologies. Furthermore, as we presented
a transformation of TOSCA to OCCI models [56], we are going to evaluate how well these
transformed models can be used for the proposed adaptation process.

78 CHAPTER 8. CONCLUSION

Bibliography

[1] Open Grid Forum, “Open Cloud Computing Interface - Core,” 2016, Available online: https:
//www.ogf.org/documents/GFD.221.pdf, last retrieved: 20.09.2017.

[2] R. T. Fielding, “Architectural Styles and the Design of Network-based Software Architectures,”
Ph.D. dissertation, University of California, Irvine, 2000.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica et al., “Above the Clouds: A Berkeley View of Cloud Computing,”
Electrical Engineering and Computer Sciences, University of California at Berkeley, 2009.

[4] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National Institute of
Standards and Technology, vol. 53, no. 6, p. 50, 2009.

[5] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-the-art and research chal-
lenges,” Journal of internet services and applications, vol. 1, no. 1, pp. 7–18, 2010.

[6] W. Vogels, “A Head in the Clouds—The Power of Infrastructure as a Service,” in First workshop
on Cloud Computing and in Applications (CCA’08)(October 2008), vol. 5, 2008.

[7] Google, “GSuite,” Available online: https://gsuite.google.com/index.html, last retrieved:
20.09.2017.

[8] Google, “Google App Engine,” Available online: https://cloud.google.com/appengine/, last
retrieved: 20.09.2017.

[9] Amazon, “Amazon Web Services Elastic Beanstalk,” Available online: https://aws.amazon.
com/elasticbeanstalk/, last retrieved: 20.09.2017.

[10] Amazon, “Amazon Web Services Elastic Compute Cloud,” Available online: https://aws.
amazon.com/ec2/, last retrieved: 20.09.2017.

[11] Linux Foundation, “Xen,” Available online: https://www.xenproject.org/, last retrieved:
20.09.2017.

[12] Open Virtualization Alliance, “Kernel-based Virtual Machine (kvm),” Available online: https:
//www.linux-kvm.org/page/Main_Page, last retrieved: 20.09.2017.

[13] VMware Inc., “VMWare,” Available online: http://www.vmware.com/, last retrieved:
20.09.2017.

[14] A. Salam, Z. Gilani, and S. U. Haq, Deploying and Managing a Cloud Infrastructure. John Wiley
& Sons, 2015.

[15] R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente, “IaaS Cloud Architecture: From

79

https://www.ogf.org/documents/GFD.221.pdf
https://www.ogf.org/documents/GFD.221.pdf
https://gsuite.google.com/index.html
https://cloud.google.com/appengine/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.xenproject.org/
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
http://www.vmware.com/

80 BIBLIOGRAPHY

Virtualized Datacenters to Federated Cloud Infrastructures,” Computer, vol. 45, pp. 65–72,
2012.

[16] OpenStack, “Newton,” 2016, Available online: https://releases.openstack.org/newton/, last
retrieved: 20.09.2017.

[17] Open Grid Forum, “Open Cloud Computing Interface,” 2010, Available online: http://
occi-wg.org/, last retrieved: 20.09.2017.

[18] Open Grid Forum, “An Open Global Forum for Advanced Distributed Computing,” 2006,
Available online: https://www.ogf.org/ogf/doku.php, last retrieved: 20.09.2017.

[19] Open Grid Forum, “Open Cloud Computing Interface - Service Level Agreements,” 2016,
Available online: https://www.ogf.org/documents/GFD.228.pdf, last retrieved: 20.09.2017.

[20] Open Grid Forum, “Open Cloud Computing Interface - Infrastructure,” 2016, Available online:
https://www.ogf.org/documents/GFD.224.pdf, last retrieved: 20.09.2017.

[21] Open Grid Forum, “Open Cloud Computing Interface - Platform,” 2016, Available online:
https://www.ogf.org/documents/GFD.227.pdf, last retrieved: 20.09.2017.

[22] R. T. Fielding and R. N. Taylor, “Principled design of the modern Web architecture,” ACM
Transactions on Internet Technology (TOIT), vol. 2, no. 2, pp. 115–150, 2002.

[23] Internet Engineering Task Force, “Hypertext Transfer Protocol Versuib 2–HTTP/2,” 2015, RFC
7540, Available online: https://www.rfc-editor.org/rfc/pdfrfc/rfc7540.txt.pdf, last retrieved:
20.09.2017.

[24] Open Grid Forum, “Open Cloud Computing Interface - Text Rendering,” 2016, Available
online: https://www.ogf.org/documents/GFD.224.pdf, last retrieved: 20.09.2017.

[25] Open Grid Forum, “Open Cloud Computing Interface - HTTP Protocol,” 2016, Available
online: https://www.ogf.org/documents/GFD.223.pdf, last retrieved: 20.09.2017.

[26] Open Grid Forum, “Open Cloud Computing Interface - JSON Rendering,” 2016, Available
online: https://www.ogf.org/documents/GFD.226.pdf, last retrieved: 20.09.2017.

[27] E. Seidewitz, “What Models Mean,” IEEE software, vol. 20, no. 5, pp. 26–32, 2003.
[28] J. Bézivin, “In Search of a Basic Principle for Model Driven Engineering,” Novatica Journal,

Special Issue, vol. 5, no. 2, pp. 21–24, 2004.
[29] J.-M. Favre, “Towards a Basic Theory to Model Model Driven Engineering,” in 3rd workshop in

software model engineering, wisme, 2004, pp. 262–271.
[30] Object Management Group, “MDA Guide Version 1.0.1,” 2003, Available on-

line: http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_
Guide_v1.0.1.pdf, last retrieved: 20.09.2017.

[31] T. Kühne, “Matters of (meta-) modeling,” Software & Systems Modeling, vol. 5, no. 4, pp.
369–385, 2006.

[32] H. Stachowiak, Allgemeine Modelltheorie. Springer-Verlag, 1973.
[33] Object Management Group, “Unified Modeling Language Infrastructure Specification,” 2011,

Available online: http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF, last retrieved:
20.09.2017.

https://releases.openstack.org/newton/
http://occi-wg.org/
http://occi-wg.org/
https://www.ogf.org/ogf/doku.php
https://www.ogf.org/documents/GFD.228.pdf
https://www.ogf.org/documents/GFD.224.pdf
https://www.ogf.org/documents/GFD.227.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc7540.txt.pdf
https://www.ogf.org/documents/GFD.224.pdf
https://www.ogf.org/documents/GFD.223.pdf
https://www.ogf.org/documents/GFD.226.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF

BIBLIOGRAPHY 81

[34] World Wide Web Consortium, “Extensible Markup Language,” 2006, Available online: https:
//www.w3.org/TR/2008/REC-xml-20081126/, last retrieved: 20.09.2017.

[35] Object Management Group, “OMG Meta Object Facility (MOF) Core Specification,” 2016,
Available online: http://www.omg.org/spec/MOF/2.5.1/PDF/, last retrieved: 20.09.2017.

[36] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,” Electronic Notes in Theoreti-
cal Computer Science, vol. 152, pp. 125–142, 2006.

[37] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Professional, 2003.

[38] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. Polack, “The Design of a Concep-
tual Framework and Technical Infrastructure for Model Management Language Engineering,”
in Engineering of Complex Computer Systems, 2009 14th IEEE International Conference on. IEEE,
2009, pp. 162–171.

[39] M. Szvetits and U. Zdun, “Systematic literature review of the objectives, techniques, kinds,
and architectures of models at runtime,” Software & Systems Modeling, vol. 15, no. 1, pp. 31–69,
2016.

[40] N. Bencomo, G. Blair, S. Götz, B. Morin, and B. Rumpe, “Report on the 7th International
Workshop on Models@run.time,” ACM SIGSOFT Software Engineering Notes, vol. 38, no. 1, pp.
27–30, 2013.

[41] J. O. Kephart and D. M. Chess, “The Vision of Autonomic Computing,” Computer, vol. 36,
no. 1, pp. 41–50, 2003.

[42] Eclipse, “EMF Compare,” 2011, Available online: http://www.eclipse.org/emf/compare/,
last retrieved: 20.09.2017.

[43] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity Flooding: A Versatile Graph Matching
Algorithm and its Application to Schema Matching,” in Data Engineering, 2002. Proceedings.
18th International Conference on. IEEE, 2002, pp. 117–128.

[44] U. Breitenbücher, T. Binz, K. Képes, O. Kopp, F. Leymann, and J. Wettinger, “Combining
Declarative and Imperative Cloud Application Provisioning based on TOSCA,” in Cloud
Engineering (IC2E), 2014 IEEE International Conference on. IEEE, 2014, pp. 87–96.

[45] J. Erbel, “Declarative Cloud Resource Provisioning Using OCCI Models,” in Informatik 2017,
47. Jahrestagung der Gesellschaft für Informatik, 2017.

[46] OpenStack OCCI Interface, “OpenStack OCCI Interface,” 2015, Available online: http://ooi.
readthedocs.io/en/stable/, last retrieved: 20.09.2017.

[47] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse Modeling Framework.
Pearson Education, 2008.

[48] P. Merle, O. Barais, J. Parpaillon, N. Plouzeau, and S. Tata, “A Precise Metamodel for Open
Cloud Computing Interface,” in Cloud Computing (CLOUD), 2015 IEEE 8th International Confer-
ence on. IEEE, 2015, pp. 852–859.

[49] Object Management Group, “Unified Modeling Language,” 2015, Available online: http:
//www.omg.org/spec/UML/2.5/PDF, last retrieved: 20.09.2017.

https://www.w3.org/TR/2008/REC-xml-20081126/
https://www.w3.org/TR/2008/REC-xml-20081126/
http://www.omg.org/spec/MOF/2.5.1/PDF/
http://www.eclipse.org/emf/compare/
http://ooi.readthedocs.io/en/stable/
http://ooi.readthedocs.io/en/stable/
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF

82 BIBLIOGRAPHY

[50] Eclipse, “UML2, an EMF-based implementation of the Unified Modeling Language (UML)
2.x,” Available online: https://wiki.eclipse.org/MDT/UML2, last retrieved: 20.09.2017.

[51] M. Kimle, B. Parák, and Z. Šustr, “jOCCI–General-Purpose OCCI Client Library in Java,” in
International Symposium on Grids and Clouds (ISGC), vol. 15, no. 20, 2015.

[52] Organization for the Advancement of Structured Information Standards, “Topology and
Orchestration Specification for Cloud Applications,” 2013, Available online: https://www.
oasis-open.org/committees/tc_home.php?wg_abbrev=tosca, last retrieved: 20.09.2017.

[53] Organization for the Advancement of Structured Information Standards, “Advancing open
standards for the information society,” 1993, Available online: https://www.oasis-open.org/,
last retrieved: 20.09.2017.

[54] Organization for the Advancement of Structured Information Standards, “Topology and
Orchestration Specification for Cloud Applications (TOSCA) 1.0,” 2013, Available online:
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, last retrieved:
20.09.2017.

[55] Organization for the Advancement of Structured Information Standards, “TOSCA Simple
Profile in YAML Version 1.0,” 2013, Available online: http://docs.oasis-open.org/tosca/
TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html, last retrieved:
20.09.2017.

[56] F. Glaser, J. Erbel, and J. Grabowski, “Model driven cloud orchestration by combining tosca
and occi,” in Proceedings of the 7th International Conference on Cloud Computing and Services
Science - Volume 1: (CLOSER 2017), INSTICC. SciTePress, 2017, pp. 672–678.

[57] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige, “Different Models for Model
Matching: An analysis of approaches to support model differencing,” in Comparison and
Versioning of Software Models, 2009. CVSM’09. ICSE Workshop on. IEEE, 2009, pp. 1–6.

[58] T. Holmes, “Facilitating Migration of Cloud Infrastructure Services: A Model-Based Ap-
proach,” in CloudMDE@MoDELS, 2015, pp. 7–12.

[59] N. Ferry, G. Brataas, A. Rossini, F. Chauvel, and A. Solberg, “Towards bridging the gap
between scalability and elasticity,” in Proceedings of the 4th International Conference on Cloud
Computing and Services Science - Volume 1: (CLOSER 2014), INSTICC. SciTePress, 2014, pp.
746–751.

[60] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural Challenge,” in 2007 Future
of Software Engineering. IEEE Computer Society, 2007, pp. 259–268.

[61] OCCIware, “A formal framework for the management of any digital resource in the
cloud,” 2015, Available online: http://www.occiware.org/bin/view/Main/, last retrieved:
20.09.2017.

https://wiki.eclipse.org/MDT/UML2
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.html
http://www.occiware.org/bin/view/Main/

84 BIBLIOGRAPHY

List of Abbreviations

API Application Programming Interface . 9
AWS Amazon Web Services . 8
CRUD Create, Read, Update, Delete . 15
DNS Domain Name System . 14
DSL Domain-Specific Language . 72
EC2 Elastic Compute Cloud. .8
EMF Eclipse Modeling Framework . 17
ETL Epsilon Transformation Language . 19
GAE Google App Engine . 8
HTTP Hypertext Transfer Protocol . 10
IPG Induced propagation graph . 29
IP Internet Protocol . 13
IaaS Infrastructure as a Service . 8
JSON JavaScript Object Notation . 16
L2 Data link layer . 12
L3 Network layer . 13
L4 Transport layer . 13
M2M model-to-model transformation . 35
MAC Media Access Control . 13
MAPE Monitor-Analyze-Plan-Execute . 20
MDA Model-driven architecture . 16
MDE Model Driven Engineering . 2
MOF Meta Object Facility . 16
NIST National Institute of Standards and Technology . 6
OASIS Organization for the Advancement of Structured Information Standards 71
OCCI Open Cloud Computing Interface . 1
OGF Open Grid Forum . 1
OMG Object Management Group . 16
OOI OpenStack OCCI Interface . 39
OS Operating System . 8

85

86 LIST OF ABBREVIATIONS

PCG Pairwise connectivity graph . 29
POG Provisioning Order Graph . 35
PaaS Platform as a Service . 7
REST Representational State Transfer . 1
SLA Service Level Agreement . 10
SSH Secure Shell . 13
SaaS Software as a Service . 7
TCP Transmission Control Protocol . 13
TOSCA Topology and Orchestration Specification for Cloud Applications 34
UML Unified Modeling Language . 16
URI Uniform Resource Identifier .15
URL Uniform Resource Locator . 14
VM Virtual Machine . 9
XMI XML Metadata Interchange . 16
XML Extensible Markup Language . 17
XSD XML Schema. .17
YAML YAML Ain’t Markup Language . 71

88 LIST OF ABBREVIATIONS

List of Figures

2.1 Dynamic versus static resource provisioning (adapted from Armbrust et al. [3]). . . 6
2.2 Cloud computing architecture (adapted from Zhang et al. [5]). 9
2.3 The OCCI API in a provider’s architecture [1]. 10
2.4 OCCI’s Core Model (adapted from OCCI’s Core specification [1]). 11
2.5 OCCI’s infrastructure extension [20]. 13
2.6 OCCI’s platform extension [21]. 14
2.7 The OCCI Core Model in a four-layer metamodel hierarchy. 18
2.8 Typical model transformation procedure (adapted from the MDA Guide [30]). . . . 19
2.9 Visualization of the MAPE control loop [39]. 20
4.1 Overview of the complete adaptation process. 27
4.2 Overall structure of the comparison process. 28
4.3 Example describing the Similarity Flooding algorithm [43]. 29
4.4 Mixed comparison process. 31
4.5 Adaptation step order and their comparison result utilization. 32
4.6 Extraction process creating an OCCI runtime model. 33
4.7 Deprovisioning process delete sequence. 33
4.8 Update process adapting single Entities. 34
4.9 Overview of the provisioning plan generation (adapted from Breitenbücher et al. [44]). 35
4.10 Utilization of runtime information to adapt the POG. 36
4.11 Process interpreting the provisioning plan. 36
5.1 PCG and IPG metamodel. 42
5.2 Principle of the idSwapTable associating ids from the OCCI model to the runtime. 47
5.3 Dependency pattern. 50
6.1 OCCI model showing the Basis case. 56
6.2 Fixpoint values and match for the Split Into Subgraphs case. 60
6.3 Adjusted Storage Reattachment case in which only one id of the VM nodes match. 62
6.4 Object diagram describing the target model. 63
6.5 Minimal adaptation example. 64
6.6 Adjusted POG and activity diagram for the provisioning process. 65

89

List of Tables

2.1 CRUD operation behavior (adapted from OCCI’s HTTP specification [24]). 15
5.1 Version table of utilized standards, metamodels and tools. 40
5.2 OCCI to POG mapping. 50
6.1 Basic cases. 56
6.2 Expected Resource matching of the basic cases. 57
6.3 Suite of complex cases and expected matches. 58
6.4 Simple comparator results for the complex cases. 59
6.5 Complex comparator results for the complex cases. 60
6.6 Mixed comparator results for the basic cases with required features and information. 61

91

List of Listings

5.1 Link matching procedure (Java). 41
5.2 Marking process determining Old- and Updated Elements (Java). 42
5.3 OCCI to PCG transformation (ETL). 43
5.4 PCG to IPG migration (Flock). 43
5.5 Fixpoint value calculation (Java). 44
5.6 PCG adjustment (Java). 45
5.7 Attribute filter for Entities having similar fixpoint values (Java). 46
5.8 Generation of a REST request from OCCI elements (Java). 48
5.9 Generation of a suite of REST requests updating an Entity (Java). 49
5.10 Linking process of the OCCI to POG transformation (ETL). 50
5.11 Provisioning plan control flow generation (ETL). 51
6.1 Example DELETE request. 64
6.2 Example POST(Action) request. 65
6.3 Example Resource POST request. 66
6.4 Example Link POST request. 66

93

	Abstract
	Contents
	Introduction
	Goals and Scope
	Outline

	Basics
	Cloud Computing
	Cloud Computing Definition
	Cloud Computing Architecture
	Provider Lock-In

	Open Cloud Computing Interface
	Core Model
	Infrastructure Extension
	Platform Extension
	RESTful API

	Model Driven Engineering
	Models
	Metamodels
	Model Transformations
	Models at Runtime

	Analysis
	Comparison
	Adaptation Steps
	Extraction
	Deprovisioning
	Update
	Provisioning

	Design
	Comparator
	Simple Comparator
	Complex Comparator
	Mixed Comparator

	Adaptation Steps
	Extraction
	Deprovisioning
	Updating
	Provisioning

	Implementation
	Tooling
	Comparison
	Complex Comparator
	Mixed Comparator

	Adaptation Process
	Extraction
	Deprovisioning
	Update
	Provisioning

	Evaluation
	Case Descriptions
	Basic Cases
	Complex Cases

	Comparator
	Results of the Simple Comparator
	Results of the Complex Comparator
	Results of the Mixed Comparator

	Adaptation Process
	Discussion
	Threats to Validity
	Excursion: OCCI PaaS Extension

	Related Work
	Conclusion
	Future Work

	Bibliography
	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings

