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Abstract
Nowadays there often exists the need to adapt a language to address the needs of a

specific area of application. Language extensions provide a way to add this functionality
conditionally; while preserving the core of the language intact. In this thesis we present
a methodology that supports the work with language syntax extensions in the form of
EBNF grammars. We introduce two new grammar types that can make the work with
extension grammars automated and yet customizable. We also explore several methods
that ease the maintenance of EBNF grammars. Finally, we disuss algorithms that support
the proposed methodology and present them in the context of a prototype implementation
for the Eclipse Platform.
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1 Introduction

Formal languages and their descriptions are the foundation of computer programming
languages. Their efficient specification and transformation into machine code has been
a popular research area in computer science for more than 50 years. Nowadays, with
the advent of domain-specific languages, the interest in intuitive and error-free language
syntax specification has been renewed. One of the most popular specification methods in
this area are Backus Naur Form (BNF) grammars — a concept introduced in 1959 by John
Backus and later refined by Peter Naur [3].

BNF grammars play a vital part in the language creation process. They provide an in-
tuitive way of describing the context-free grammars. Furthermore, the creation of a parser
based on a BNF grammar is usually automated and thus they play an integral role in com-
piler creation. Practically all computer languages are defined with BNF grammars or vari-
ants (such as Extended Backus Naur Form (EBNF)) and often these grammars are publicly
available. An example is the Testing and Test Control Notation Version 3 (TTCN-3) [9],
where the EBNF is a part of the standard.

Currently one of the most popular test specification languages, TTCN-3 is a worldwide
standard applicable to all kinds of computer-related testing. However, the necessity some-
times exists to adapt the language specification so that it better fulfills the needs of a par-
ticular software engineering problem — for example performance or real-time testing [9].
This is done via small grammars, called extensions or packages, which complement the
core TTCN-3 grammar by providing new rules as well as extended versions of the current
rules. Figure 1.1 illustrates this idea.

The process of extending a BNF grammar is the cause of the main problem we discuss in
this thesis: the so-called composition of grammars, that is, the creation of new combined
BNF grammars from a core grammar and one or more of its extensions. Manually creating
composite grammars for large language specifications (such as TTCN-3) can be very hard
and error-prone, but so far there exist no practical and convenient solutions (see Section
1.1). Furthermore, it is unclear what happens when several extensions are to be merged
together, especially if both redefine the same rules. The three grammars below illustrate
these issues.

The core grammar defines a simple class definition statement that is then extended with
an optional interface part and a required domain part. Both extensions redefine the same
rule (start) from the core grammar and add elements to it at the same place (modify_table
and select). The way in which the two extensions are to be merged is not clear; there
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1 Introduction

Core Grammar

Composite Grammar

Package 1 Package 2
Extends Extends

Figure 1.1: The Composition of Grammars

exist several possbilities, such as concatenating the added elements or inserting them as
alternatives. We address this ambiguity of the composition process by discussing several
composition operators to specify how two (or more) such extensions are to be handled.

1 grammar SQL_Definition;
2
3 start ::= create_table
4 create_table ::= ("CREATE") ID...

Listing 1.1: Core Grammar Example

1 grammar SQL_Extension;
2
3 import "SQL_Definition.bnf"
4
5 start ::= create_table | modify_table
6 modify_table ::= insert | update | delete
7 ...

Listing 1.2: Extension Grammar 1 Example

1 grammar SQL_Access;
2
3 import "SQL_Definition.bnf"
4
5 start ::= create_table | select
6 select ::= ("SELECT") ("∗" | ID) ("FROM") ...

Listing 1.3: Extension Grammar 2 Example

In this thesis we are going to present a methodology that makes the composition process
automated, as well as tooling that supports it. As a basis for the implementation we used
an Eclipse plug-in called BNFTools, which has been developed at the University of Göt-
tingen. It provides tools for the general work with and improvement of EBNF grammars
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1 Introduction

and is implemented for the Eclipse Platform with the help of Xtext, the Eclipse Modelling
Framework (EMF), and Xpand, which are also used for the implementation in this thesis.
For our solutions, we added several new features to this plug-in, while enhancing some
of the old ones. We also extended the grammar syntax so that it can support two newly
introduced grammar types: the delta grammars and the merge grammars.

Delta grammars offer a different notation for extension grammars. The rules in these
delta grammars can be separated in two kinds: regular rules, that is the rules not found in
the original grammar and extension rules that only consist of the changes compared to the
original rule, as well as their exact positions. Delta grammars provide an overview of the
changes made by the package and can be likened to the concept of patches in Unix, that is,
updates that only contain the changes related to the original file. Delta grammars can be
automatically created from an extension grammar. They also serve as an intermediate step
to the second newly introduced language: the merge grammar.

A merge grammar combines all the information from one or more extensions that is
needed for their merging with the core grammar. The main purpose of a merge grammar
is to concretely specify the behavior of a grammar composition. This is needed to solve
ambiguities that naturally arise when merging a core grammar with several of its exten-
sions. To that extent we introduce four so-called composition operators that specify how the
extensions interact with each other. These operators are created by default in the merge
grammars and the user can modify them globally or locally in order to change the specifi-
cation of the composition.

With the help of these two grammars, we are able to make the composition of grammars
a fully automated four-stage process. We also discuss several miscellaneous topics that
relate to the improvement and management of EBNF grammars, including rule inlining
and EBNF to ANTLR conversion.

1.1 Related Work

The main problem addressed in this thesis is the lack of tools to support the composition
of grammars. In this section we are going to present several projects also related to lan-
guage syntax extensions and discuss their similarities and differences compared to our
thesis. There have been two different approaches to the topic: one that focuses on specific
extensible languages and one that supports their creation in general.

The first ideas about programming languages that allow users to extend their syntax
come from the sixties and seventies, for example the Extensible Computer Language (ECL)
[35] (features extensible data types) and ALGOL with run-time extensions [6] (uses EBNF
to create new data structures and constructs). Recently the topic was revived with the oc-
currence of several new extensible languages; a good overview is at [37]. Some of these
languages approach syntax extensions in the same way as we do in this thesis: for exam-
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1 Introduction

ple, IMP [5; 14] is a language whose syntax can be extended by creating new grammar
rules, loosely similar to the EBNF rules. In contrast to our approach that is suitable for
extending any language defined in an EBNF grammar, each of these languages defines its
own constructs and ways to be extended, leading to a need for specific tooling for each.

More important to the thesis, however, is the second methodology, which is concerned
with the creation and support of extensible languages in general. We are going to present
four related projects: Silver [34], the Syntax Definition Formalism (SDF) [33], xPico [11],
and Meta Programming System (MPS) [16]. Silver is an example of a platform that uses
attribute grammars [21] as a means to specify languages and their extensions. Syntax ex-
tension in Silver is done with a so-called collection operator, which adds new attribute
definitions to an existing attribute. This platform has already been used for specifying and
extending several languages (for example Java in [36]), but it makes the work with simple
EBNF grammars unnecessarily complicated.

SDF [33] is another language specification framework whose main purpose is to support
modular context-free grammars; that is grammars that are specified independently, but
can extend each other and be used together. The creation of modular grammars is sup-
ported by the SDF syntax, which, while similar to EBNF, provides a number of additional
features such as disambiguation constructs. SDF allows the concatenation of several gram-
mar modules and combines mutual rules as alternatives. The disambiguation constructs,
for example priorities and restrictions, can be used to quickly select from or discard these
alternatives. Overall, SDF facilitates can be used for the work with language extensions,
but the composition options are limited and it requires manual grammar conversion when
used for existing languages.

Another similar project is [11]. It presents a tool for the management of DSLs in the
form of small core languages that can be easily extended. A framework called xPico is
introduced that supports the process of creating and extending language defined in EBNF-
like grammars. These grammars offer several new constructs, among which configurable
rules. Configurable rules are specified in the core grammar and provide the extension
points of the language. An extension grammar is then a combination of reconfigured core
rules and new EBNF rules, very similar to delta grammars in this thesis. In xPico, however,
the focus lies on the core grammars, which have to be created with the purpose of being
extensible. Furthermore, as in SDF, manual conversion to the xPico syntax is needed, which
can be troublesome due to the need to specify the extension points of the language.

Finally, the project MPS [17] from Jetbrains is a language-oriented software develop-
ment environment that supports the creation and management of language extensions. In
it, languages are defined and stored as abstract syntax trees. Languages can extend other
arbitrary languages, which allows them to use or override nodes from the original lan-
guage. Overall, the framework is flexible and the concepts are similar to the ideas in this
thesis; the main difference is that instead of EBNF, MPS utilizes abstract syntax trees.

These were four projects that were very close to the topic of this thesis. Each of them
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1 Introduction

provides a different possibility for language syntax extensions and while each of them
has their strengths, none are convenient for working with simple EBNF grammars and
grammar extensions.

1.2 Contributions

The main focus of this thesis is on the presentation of a methodology for the automated
composition of grammars and their extensions. We present the theory behind our ap-
proach, as well as some algorithms to support the concrete implementation. We also intro-
duce two new Domain-Specific Language (DSL)s, the delta and merge grammars, that can
also be used outside the scope of the thesis. Besides the composition of grammars, we also
discuss several further topics: finding inconsistencies in extensions when the core gram-
mar is updated, converting a grammar from the EBNF syntax to the ANTLR notation, and
validation and quickfix support for inlining EBNF rules. Our results in each topic were
implemented as a plug-in for the Eclipse Platform.

1.3 Thesis Structure

The rest of the thesis is structured as follows: in Chapter 2 we present the foundations
of the thesis: BNF grammars, the Eclipse Platform, and the plugins used for the imple-
mentation (including BNFTools). Afterwards, Chapter 3 focuses on the theoretical basis,
with a detailed description of the problems and their solutions. It presents the composi-
tion of a language and its extensions as a four part process and includes the introduction
of delta and merge grammars. Following that, Chapter 4 describes the algorithms behind
the implementation as a part of BNFTools, as well as a brief guide to working with the
plug-in. Afterwards, Chapter 5 presents replacement rules as a further topic, and Chapter
6 concludes the thesis.
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2 Foundations

This chapters deals with the background needed to understand the thesis. We start with a
description of BNF grammars and their extensions — their area of application, the reason
people use them and the way they relate to our thesis. Afterwards, we describe the basis
of our implementation — the Eclipse Platform and the plug-ins and tools that we used:
Xtext, BNFTools, ANother Tool for Language Recognition (ANTLR), EMF, and Xpand.

2.1 (E)BNF Grammars and (E)BNF Extensions

BNF grammars are a half-a-century old, but still a widely used computer science concept.
A BNF grammar is used to specify the syntax of a language and is thus the first step in
the creation of a language. Afterwards, the derivation of a lexer and a parser from the
grammar is needed, but this can often be done automatically with tools such as ANTLR
[2]. There are plenty of examples of freely available BNF grammars for popular computer
languages: the Structured Query Language (SQL) [18], Java [12], or C [30] to name a few.

Before we present the BNF form used in this thesis, we provide the formal definition of
context-free grammars. A grammar can be viewed as a quadruple, consisting of a set of
terminals T, a set of nonterminals N, a starting symbol S from N, and a set of production
rules P. The terminals are the alphabet symbols and they only appear on the right side of
rules. The nonterminals are grammar symbols that can appear on either side of the rules.
Both sets have to be disjoint. The production rules are rules of the form: A → B, where A
is a single nonterminal, and B is a set of terminals and/or nonterminals. [1], p.42.

The notation that BNF grammars introduce is more convenient and consists merely of
a set of rules, one of which is designated as the start rule. It introduces one special sym-
bol to denote alternatives inside a rule: "‘|"’. There exist many variations and extensions
of BNF grammars and thus there is no single unified notation for them. Two prominent
versions are Augmented Backus Naur Form (ABNF) from the Internet Engineering Task
Force (IETF) [13] and EBNF from the International Organization for Standardization (ISO)
[15]. The first is a standard used in Internet specifications, while the second is more uni-
versally popular and is thus the notation we use in the thesis. Both forms define similar
constructs; the differences lie mainly in the notations. Below we only present the EBNF
special symbols and their meaning:

• Strings, that is, character sequences in quotation marks, denote terminals
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2 Foundations

• Round parentheses denote a grouping; that is, the following two are equivalent:

1 RuleA ::= RuleB ( RuleC_1 RuleC_2) RuleD
2
3 RuleA ::= RuleB RuleC RuleD
4 RuleC ::= RuleC_1 RuleC_2

Listing 2.1: Expression EBNF

• Square brackets denote an optional element or a group of optional elements

• Curly brackets denote a repeatable group of elements, that is a multiplcity of 0..n. If
there is a plus sign after then second bracket, the elements need to occur at least once
(multiplicity of 1..n)

• The exclamation mark is the negation symbol: all elements except the one before the
sign are accepted

In the following, we present an example of an EBNF grammar with the above syntax.
Expression is the start rule whose right side consists of three nonterminals. An Integer is
a digit other than zero, followed by any number of digits; an Operator is a plus sign. The
digits and the operator symbols are the terminals.

1 Expression ::= Integer Operator Integer
2 Integer ::= "1".."9" {"0".."9"}
3 Operator ::= "+"

Listing 2.2: Expression EBNF

The main focus of this thesis, however, lies not on language specification but on language
extensions in the form of EBNF grammars that extend other EBNF grammars. We will
refer to the language extensions as grammar extensions or packages and to the original
grammars as core grammars. Extending languages is a concept that can be compared to
that of DSLs [20]: both are most often meant to be used in a specific field, but instead of
creating new languages, grammar extensions enhance existing languages with additional
functionality.

Packages are EBNF grammars that import and redefine rules from another EBNF gram-
mar, while also introducing new ones. We will mainly be concerned with extension rules
— that is, redefining rules that only add elements to the original rule without deleting any-
thing from it. We will refer to the other kind of redefining rules as replacement rules and
will discuss them at the end of the thesis, in Chapter 6.

Listing 2.2 presents an example of an extension grammar to the core grammar in List-
ing 2.1. Here, the extension grammar provides both some refinement (an expression can
contain any number of terms and their respective operators), as well as additional func-
tionality (the minus sign can also be chosen as an operator). While the composition of
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2 Foundations

these grammars is trivial (replace the original rules with the redefined ones), this is rarely
the case for real grammars.

1 import "Expression.bnf"
2
3 Expression ::= Integer {Operator Integer}
4 Operator ::= "+" | "−"

Listing 2.3: Expression Extension.bnf

An example of a language whose syntax is defined and extended with EBNF grammars
is TTCN-3 from ETSI: the main syntax is defined in its own grammar at [9] and there ex-
ist several official extensions to it [7; 8]. Other languages that have been extended in the
same manner are SQL [19] and C [31]. These examples serve to illustrate that grammar
extensions are frequently employed for languages that have a wide spectrum of applica-
tion. Extending the core syntax of such languages would introduce unnecessary features
that only certain users require. But, with the help of grammar extensions, they can still
be efficiently utilized everywhere they are needed, thus eliminating the need for several
different languages that possibly do similar things.

As shown in Section 1.1, there is a lack of tools that support the work with language
syntax extensions in EBNF notation. The main problem is that before the packages can be
used in practice, they need to be attached to the core grammar, a process that we call the
composition (or merging) of grammars.

2.2 Platform and Plug-ins Used

The implementation of our prototype tool was done exclusively for the Eclipse Platform by
extending the plug-in BNFTools. In this section, we are thus going to provide some back-
ground information needed to understand our implementation. We start by describing the
Eclipse Platform [28] — a popular software development environment with support for
several programming languages, most notably Java. Following that, there are four subsec-
tions on the most important plug-ins for Eclipse that we used: the first focuses on Xtext, a
tool for the creation and management of DSLs and EMF, a framework for the work with
structured models. The second subsection describes BNFTools — the plug-in we extended
for the implementation, while the third is about ANTLR — an LL(*) parser generator. The
last subsection presents Xpand — a language for transforming models to text.

2.2.1 The Eclipse Platform

The grammar composition tool built for this thesis is based on the Eclipse Platform. This
platform is a part of Eclipse: "an open source community whose projects are focused
on building an extensible development platform, runtimes and application frameworks
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for building, deploying and managing software across the entire software lifecycle" [27].
Nowadays, there exist numerous projects that are part of Eclipse and we use several of
them for our tooling.

The Eclipse Platform is the foundation for the Eclipse Project and represents a framework
for basic software development with limited features but a lot of support for extensions,
which have led to its popularity. There exist a large number of plug-ins, or bundles, that
supply the platform with various additional functionality. Such plug-ins are developed
and published both by Eclipse itself and by third parties. Our prototype implementation
is focused on extending the BNFTools plug-in, described in Subsection 2.2.3.

The architecture of the Eclipse Platform reflects the importance that extensibility plays
in it. We show an overview of the platform in Figure 2.1. The Eclipse Platform is in the
middle and encompasses several different components — Platform Runtime, Workspace,
Workbench, Help, and Team and Debug. These components are the core of Eclipse and
everything else builds on them. The shapes outside the actual platform are its extensions,
with the most important ones being the Java Development Tools (JDT) and the Plug-in
Development Environment (PDE). In the following, we give a brief explanation of the
parts most relevant for our tool.

• Platform Runtime. The Eclipse Platform Runtime was built with the idea of plug-
in support. The most noteworthy feature is that plug-ins are loaded on-demand,
which allows the user to install any number of them without decreasing the overall
performance of the platform (lazy loading).

• Workbench. The Workbench provides an environment for the workspace resources,
for example files. Perhaps the most important concept in it are the perspectives. A
perspective provides a specific layout of the workbench, often suited for the work in
a particular area of software development. For example, two of the default perspec-
tives are the Java Perspective and the Team Synchronizer Perspective.

• Plug-in Development Environment (PDE). This is the environment that provides
support for the development of plug-ins for the Eclipse Platform.

• Plug-ins. As shown in the figure, plug-ins can exist independently, or rely on others
to work.
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Figure 2.1: Eclipse Architecture Overview

2.2.2 Xtext and the Eclipse Modelling Framework (EMF)

Xtext [29] is an Eclipse project that was critical to our tool implementation. Xtext is a frame-
work that specifically targets the creation of DSLs.In Xtext, a DSL is defined in an EBNF
grammar, from which Xtext can derive a variety of constructs: a lexer and a parser (with
the help of ANTLR), an Ecore model, a linker, a complete syntax-driven Integrated Devel-
opment Environment (IDE) integrated into Eclipse, and others. The generated IDE itself
can include a variety of features such as code completion and syntax coloring. Because
Xtext is only important as a technical background to the implementation, we are not going
to present it further. The reader may find more details in the official documentation [4].

Eclipse Modelling Framework (EMF) is an Eclipse project that was used in direct con-
junction with Xtext. It provides a framework for the work with and code generation from
structured models and possesses its own metamodel, called Ecore. Ecore greatly aided us
in the implementation by providing an easy method for traversing the parse tree of EBNF
grammars. More information can be found in [23] and [32].

2.2.3 BNFTools

BNFTools is an Eclipse plug-in that provides an IDE for the work with EBNF grammars. It
is developed at the University of Göttingen and thus we were able to extend it for the im-
plementation of our thesis. The original plug-in is based on Xtext by specifying the EBNF
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2 Foundations

syntax in an Xtext grammar, which Xtext used for the creation of the IDE. The function-
ality of BNFTools encompasses creating, validating, and refactoring EBNF grammars, and
it provides several tools for that, such as syntax coloring, railroad diagrams, quick fixes,
name refactorings, and so on. To implement the solutions we present in the thesis, we
introduce a number of additional features to the plug-in.

2.2.4 ANTLR

ANTLR [2] is a tool for the generation of lexers and parsers from EBNF-like grammars and
Java-like constructs for semantic actions. While not part of the Eclipse Project, ANTLR
has been fully integrated into the Eclipse Platform by means of a third-party plug-in. The
syntax of an ANTLR grammar (one that uses only the basic features of the language) is
very similar to an EBNF syntax, so here we are only going to outline the differences. The
functionality of ANTLR, however, extends far beyond its EBNF constructs. For example
the user may insert Java code inside the grammar, or they may specify the construction of
a syntax tree. Details can be found in [10] or [22].

The differences between the ANTLR and the EBNF notation presented before are several.
Optional and repeated sequences are represented via the cardinality operators ? and *.
Terminal rules have to start with a capital letter, while nonterminal rules have to start with
a small letter. Strings are specified with single apostrophes, instead of doubles. The start
of the right side of a rule is denoted by a colon and its end by a semicolon.

2.2.5 Xpand

Xpand is a language that supports model-to-text transformations [25; 27]. Its main con-
struct is the DEFINE-block that represents a single template for one class of the input
model. In every such template, there can be various other statements, including ones call-
ing other templates and ones that print output into a file. We are now going to present the
main constructs of the language with the help of the example in Listing 2.3. There are two
syntactical peculiarities of Xpand: statements of the language have to be written inside the
so called guillemets; keywords are written in capital letters.
1 «IMPORT ebnf»
2
3 «DEFINE Main FOR EtsiBnf»
4 «EXPAND Main FOREACH Rule»
5 «ENDDEFINE»
6
7 «DEFINE Main FOR Rule»
8 «FILE name.rule»
9 Class «FILE name» {

10 //TODO: Autogenerated Class
11 }
12 «ENDFILE»
13 «ENDDEFINE»

Listing 2.4: Xpand Example Grammar
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IMPORT Provides a way to refer to a given model without always having to specify the
full classpath. In the example above, it has a similar meaning to "import ebnf.*" in
Java.

DEFINE This is a template, which consists of a name, possible parameters, and the meta-
model class for the template. Afterwards, there can be several statements until it is
closed with an ENDDEFINE statement. Templates are invoked by their name and
support polymorphism in the model class they are defined for: in the above exam-
ple there are two DEFINE blocks with the same name that differ in their respective
classes.

EXPAND This statement expands a DEFINE block for the given element(s), inserts its in-
put on that spot, if any, and then proceeds. There are two possible operators: FOR
for single elements and FOREACH for lists. It is also possible to specify aliases for
the elements (keyword AS) or use iterators (keyword ITERATOR). In the example,
the template for an EBNF grammar expands the template for each of the grammar’s
rules.

FILE This statement is used for creating and writing into files. By default a new file is
created each time FILE is called, possibly erasing old versions. The statement allows
any expression to be used as a name, with "/" used to specify subdirectories. The file
mode is closed via ENDFILE. Everything except Xpand statements is printed exactly
as written, including whitespaces and newlines.

The configuration for model generations or model transformations is specified in the
Modeling Workflow Engine (MWE) syntax. MWE itself is meant to support the execution
of Eclipse components as a so-called workflow [24]. A workflow is generated automatically
for every new Xpand project and can be adapted for the specific needs of a project.
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3 Extensible EBNF Grammars

This chapter presents our approach to handling language extensions. We start off with
a detailed description of the main problem and our solution. We then present two new
grammar types and explore the customization options when composing grammars.

3.1 Composition of Grammars

The main problem we address is the lack of methodology and tools that support the com-
position of EBNF grammars. We present an approach that allows automation, while also
presenting several means to exactly specify the composition to avoid ambiguities. We di-
vide the whole process in four distinct steps. Each of these stages presents the core gram-
mar and its packages in a different way and together they give the user a better overview
and environment for the management of language extensions. The following diagram
presents the four stages of the composition process:

Package 1 Delta 1

Delta 2Package 2

Merge Complete grammar

Core grammar

Stage 1 Stage 2 Stage 3 Stage 4

Figure 3.1: The Composition of Grammars

The first stage is trivial. It consists of just a core grammar and one or more of its exten-
sions. All the grammars should be in EBNF form. There is one construct added to the EBNF
syntax that provides the ability to import other EBNF grammars. An imported grammar
can be concretely specified as either a core grammar, a package, or an updated core gram-
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mar. Grammar extensions import the core grammar and define or overwrite EBNF rules
from the core grammar.

The second stage deals with the conversion of the packages into delta grammars. This
grammar type, detailed in Subsection 3.1.1, has been created with the goal of having a
clear notation for language extensions. Thus, a delta grammar allows the user to instantly
see the changes the package makes to the core grammar, that is what rules were added,
which ones were extended, and what the extensions are. Writing extensions in this form,
however, (or their manual conversion to it) would be tedious because of the need to specify
the exact extension positions. Hence, an important part of the implementation dealt with
the automatic conversion of a package to a delta grammar.

The third step involves the creation of a merge grammar from a core grammar and its
extensions (in delta form). The merge grammar presents the extensions to be merged in
an easy to read file. We use these grammars as a way to deal with the problem that the
composition of several packages and a single core grammar is often ambiguous. For that,
we present several composition operators that allow users to concretely define the behavior
of the composition.

The last stage consists of the single EBNF grammar that contains both the core grammar
rules (extended or not) and the package rules.

The remainder of this Section deals with the detailed concepts that we introduced for this
composition process: delta grammars, merge grammars, and the composition operators.
In the following there are three small EBNF grammars that we are going to use as examples
throughout the chapter. The core grammar defines a simple class definition statement that
is then extended with an optional interface part and a required visibility part.
1 grammar ClassDefinition;
2
3 Programm ::= Header "{" {Statement}+ "}"
4 Header ::= "class"
5 Statement ::= ...

Listing 3.1: Core Grammar Example

1 grammar Interface;
2
3 import "ClassDefinition.bnf"
4 Header ::= ["interface"] "class"

Listing 3.2: Package 1 Example

1 grammar Visibility;
2
3 import "ClassDefinition.bnf"
4 Header ::= Visibility "class"
5 Visibility ::= "public" | "private" | "protected"

Listing 3.3: Package 2 Example
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3.1.1 Delta Grammars

A delta grammar is an EBNF-like grammar that specifies a language extension. The idea is
to introduce a grammar type that is only an intermediary state as the usual EBNF syntax
does not provide a precise way to specify changes to a grammar. For example, it does not
differentiate between core rules, new rules, or changed rules. It also does not show where
exactly a rule has changed. A delta grammar is precise in these aspects.

The overall syntax of delta grammars is very similar to that of EBNF grammars and is in
fact an extension of the regular EBNF syntax. In the following, we present two examples
of delta grammars, converted from the EBNF grammars in Listings 3.2 and 3.3 above.

1 /delta;
2
3 import "ClassDefinition.bnf" /core
4
5 Header(0) <− Visibility
6 Visibility ::= "public" | "private" | "protected"

Listing 3.4: Delta Example Grammars

1 /delta;
2
3 import "ClassDefinition.bnf" /core
4 Header(0) <− ["interface"]

Listing 3.5: Delta Example Grammars

In order to specify delta grammars as simply as possible, we add two new elements to
the BNF syntax. The first is the grammar type that can be set at the start of a grammar as
either "/delta" or "/bnf". If none is used, "/bnf" is assumed and thus denoting a regular
EBNF notation. The second new element are the extension rules that can be used as an
alternative to the regular EBNF rules.

The "/delta" keyword extension rules are allowed in the grammar. Regular EBNF rules
remain a valid part of a delta grammar, however they are only used for package rules
that do not extend a core rule, that is, rules that are completely defined in the package.
Extension rules are, as the name suggests, rules that extend rules from the core grammar.
The extension rules are the core of a delta grammar as they compactly present the position
at which the original rule is meant to be extended as well as the complete extension. The
structure of an extension rule is as follows:

1 ExtensionRule ::= ID "(" INT ")" "<−" {Atom}+ ["?"]

Listing 3.6: Extension Rule Syntax

ID is the name of the rule (referring to a rule name in the core grammar) and has the same
syntax as in EBNF, but one big semantical difference: the names of extension rules
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need no longer be unique. This is a consequence of the fact that a package rule can
extend the original rule in several positions.

INT is an integer that gives the exact index position of the extension in the original rule.
The counter excludes the left side of the rules. It starts at zero and each element
counts as one — literals, rule references, special symbols.

"<-" is the literal we used for separating the left from the right side in an extension rule. It
also provides a distinct way of differentiating extension rules from EBNF rules ("::=").

(Atom)* are the tokens and special symbols that form the extension itself. Unlike EBNF
rules, an extension rule puts no constraints on the syntax of its right side. Tokens and
special symbols can occur in any order. For example, "‘)"’ is a valid right side of an
extension rule.

Delta grammars present a more intuitive environment for the management of language
extensions, however, they are not suitable for the actual creation of the package. On the one
hand, computing extension indices against the core grammar is a cumbersome task and on
the other hand, the same rule indices can become invalid if the core grammar changes.

The most important purpose of delta grammars is the part they play in the creation of
a composite grammar. It is possible to automatically convert packages to delta form and
then to proceed with the creation of a merge grammar from the core and delta grammars.
Delta grammars can also be used for maintaining language extensions. We provide one
such example in Section 3.2.

3.1.2 Merge Grammars

Merge grammars are the second new grammar type that we introduce in our thesis. These
grammars are used as a precise description of the composition of a core grammar and
its packages. They present all the information about the composition in one place and
allow the user to understand how the different extension grammars interact with each
other. They allow the specification of the composition process via the so called composition
operators (used to avoid ambiguities and explained in the next subsection). The following
listing presents a merge grammar created from the core and delta grammars above:
1 /merge;
2
3 import "ClassDefinition.bnf" /core label: Core
4 import "Visibility_delta.bnf" /package label: Package1
5 import "Interface_delta.bnf" /package label: Package2
6
7 global combinator: /and
8
9

10 // rule combinator: Header /and
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11 // Header ::= "class"
12
13 hook combinator: Header (0) /and
14 ( "Package1" ) // Header(0) <− Visibility
15 ( "Package2" ) // Header(0) <− ["interface"]

Listing 3.7: Merge Example Grammar

Merge grammars specify a grammar type at the beginning (as do delta grammars) with
the keyword "/merge". We also introduce a new optional component to the import clauses,
called label. We use this label as a concise way to refer to packages inside the merge gram-
mar. The most important new element is a new type of rules, called merge rules. Those
are the only kind of rules allowed in a merge grammar. The following listing presents the
syntax of merge rules and their three subtypes in EBNF notation:
1 MergeRule ::= GlobalCombinator | RuleCombinator | HookCombinator
2
3 GlobalCombinator ::= "global" "combinator:" LOGIC [";"]
4
5 RuleCombinator ::= "rule" "combinator:" ID LOGIC {"(" STRING ")"} [";"]
6
7 HookCombinator ::= "hook" "combinator:" ID "(" INT ")" LOGIC {"(" STRING ")"}+ [";"]

Listing 3.8: Merge Rule Syntax

The syntax of a merge rule itself is simply a subdivision into the three kinds of merge
rules: global, rule, and hook combinators. All merge rules share two elements: logic,
which is used to store the composition operator of the rule (see the following Subsection)
and the literal combinator. Because of the differences between the three types of merge
rules, we will present and explain them separately, starting with the most simple one.

A GlobalCombinator is a merge rule that can be used only once in a grammar. It is
defined by the literal global and its purpose is to define a single composition operator for
the whole grammar. This is the weakest kind of combinator and it is overwritten by more
concrete operators. It is useful for specifying a uniform composition operator that can then
be overwritten at specific positions.

The second type of merge rules are the RuleCombinators. They are defined by the literal
rule and are very similar to global merge rules in that their purpose is to specify a composi-
tion operator. As the name suggests, a RuleCombinator only works for the corresponding
rule, given by the ID element, and it overrides the global combinator. Rule combinators
present a way to precisely tune the composition of the grammars at the rule level, i.e., it
allows users to have different operators for the composition without having to take care of
every extension.

The third merge rule kind is the HookCombinator. A hook combinator exists for every
rule extension in the given delta grammars. These rules provide not only a way for the user
to very precisely set the composition operators, but they also play a vital role in the actual
composition by combining the information given by the delta grammars in a suitable way.

23



3 Extensible EBNF Grammars

This is done as follows: a single hook operator exists for every rule extension. The first
part of the syntax (after the defining literal hook) is similar to the syntax of the extension
rules in delta grammars - the ID is the rule name and the INT is the integer denoting
the extension position. What follows is a set of strings that represent grammar labels, with
each label corresponding to an imported delta grammar that has an extension to the current
rule at the current position. The logic part of a hook combinator is optional and if used, it
overrides previous operators.

Merge grammars are thus a succession of combinators. There exists a single global com-
binator, followed by a rule combinator for every redefined rule from the core grammar.
Every rule combinator is itself followed by hook combinators for each of the extension
positions of the rule. Like that, a merge grammar is both hard to read and possesses a
large amount of information. Therefore, the global and rule combinators are always op-
tional. We also require from the implementation that a merge grammar is commented in
the following way: every RuleCombinator is followed by the corresponding rule from the
core grammar and every HookCombinator is accompanied by all the extension rules that
it represents. In the latter, for the user’s convenience, the commented extension rule can
be inserted right after the label of the package it comes from (that is, those comments are
inside the merge rule itself).

A merge grammar created in this way eases the understanding of the composition that is
going to take place. Most notably, it becomes very easy to notice where two or more exten-
sion grammars interact with each other. If there are such cases, merge grammars can then
be used to specify the way this interaction takes place by editing the composition operators
in the merge rules. Once this has been done, the creation of a complete composite grammar
can easily be done automatically, as shown in the following chapter. In the following, we
show an example grammar created from the merge grammar above:

1
2 grammar Class_definition;
3
4 Programm ::= Header "{" { Statement } + "}"
5 Header ::= Visibility [ "interface" ] "class"
6 Statement ::= ...
7
8 Visibility ::= "public" | "private" | "protected"

Listing 3.9: Composite Example Grammar

3.1.3 Composition Operators

The composition operators provide the user with an opportunity to precisely define the
composition process by specifying the way how multiple extensions at the same rule in-
dex are inserted in the rule. Different users may have different expectations or aims when
combining several packages and the composition operators provide a way to express them.
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We implemented four different composition operators: the and, reverse and, or, and in-
terleave operators. We present each of the four operators by defining its keyword and its
function, and by showing how the operator works in an example. In the example, shown
in Listing 3.10, ClassDefinition is the core grammar and Visibility and Interface are two ex-
tensions to it that both redefine the rule Header:

1 ClassDefinition: Header ::= "class"
2 Visibility: Header ::= Visibility "class"
3 Interface: Header ::= ["interface"] "class"

Listing 3.10: A Core Rule and Its Two Extensions

• The default operator is the AND operator (keyword: "/and"). Intuitively, it means
that if two rules extend a rule at the same position, those extensions have to be used
together in a concatenated form. That is, the and operator simply inserts the exten-
sions into the rule at the proper place. The order in which the extensions are inserted
is taken from the import statements at the start of the merge grammar: first come
extensions from the first imported package, then from the second, and so on. Here is
the full rule from the example above when the and operator is used:

1 Header ::= Visibility [ "interface" ] "class"

Listing 3.11: The "And" Operator

• The second operator is reverse and (keyword: "/andr"). It works exactly like the and
operator but reverses the order in which the extensions are inserted. It provides the
user with a quick way to change the composition order without having to rearrange
the import clauses manually. It is also helpful if a different order is needed for dif-
ferent parts of the grammar. Here is the same example as above but with reverse
and:

1 Header ::= [ "interface" ] Visibility "class"

Listing 3.12: The "And Reverse" Operator

• The or operator (keyword: "/or") inserts the "|" sign between two (or more) rule ex-
tensions with the same index. In the following we present an example of the same
rule as above but with the or operator used. A reverse or operator is not imple-
mented, as it is semantically equivalent to or:

1 Header ::= (Visibility | [ "interface" ]) "class"
2 (Header ::= ([ "interface" ] | Visibility) "class")

Listing 3.13: The "Or" Operator
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• The fourth and final operator is the interleave operator (keyword: "/interleave").
It combines the possibilities of all the other operators into one and inserts them as
alternatives into the rule. It allows the appearance of the variable rule parts in any
order and possible subsets. Following is the same example for interleave:

1 Header ::= ( Visibility | [ "interface" ] | ( Visibility [ "interface" ] ) | ( [ "interface" ] Visibility )) "class"

Listing 3.14: The "Interleave" Operator

The first of the two operators (and and reverse and) always work as intended, but the
second two introduce some peculiarities we had to take care of and as a result, the output
when using them may differ from what the user intuitively expects. The reason for this is
that the usage of the operators, in the way we just explained it, does not always produce
syntactically correct EBNF rules. In the following we present an example of two rules
that, while similar to the ones above, produces erroneous syntax when used with the or
operator:

1 ClassDefinition: Header ::= "class"
2 Visibility: Header ::= Visibility "class"
3 Interface: Header ::= "interface" | "class"
4
5 //Result after using the "OR" operator:
6 Header ::= (Visibility | "interface" | ) "class"

Listing 3.15: A Problem when Using the "Or" Operator

This presents one of the cases where an or or an interleave operator does not produce
correct output. The problems consists of there being a special symbol at the end of one of
the extensions: either a "|", as in the example, or a bracket. In order to alleviate that we
ignore the two operators at any extension index that ends or begins with such a special
symbol and use the and operator instead.

3.2 Validating and Transforming Extensible EBNF Grammars

In the following we are going to discuss three topics that, while still related to EBNF gram-
mars, focus on their improvement in general. In Validation after a Core Grammar Update we
are going to present a method that discovers inconsistencies caused by a core grammar up-
date and afterwards we will discuss a method for grammar refactoring called Rule Inlining.
Finally, we will present how to convert EBNF grammars to the ANTLR notation.

3.2.1 Validation after a Core Grammar Update

New versions of a core grammar may cause various inconsistencies in its extensions. For
example, core rules may have been changed, renamed, or deleted. As a result, the package
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grammar may have to be changed as well. Thus, it is useful to algorithmically detect these
possible inconsistencies and present the results to the language engineer. We make no
attempt to automatically fix the package. While in some cases this may be possible, often
the solutions are nontrivial and ambiguous.

We recognize two types of inconsistencies, defined by the type of core grammar change
that caused them: change in an extended rule or a deletion of an extended rule. Below we
present an example for each:

• Change in an extended rule. A rule extended in the package has been changed in
the new core grammar.

1 import "ClassDefinition1.bnf" /core //core grammar
2 import "ClassDefinition1_1.bnf" /update //updated core grammar
3
4 Inconsistency:
5 Delta: Header(1) <− ID //index may point to a different position

Listing 3.16: Example of an Inconsistency because of a Change in a Rule

• Missing rule. A core rule that has been referenced or extended in the package is
missing from the updated grammar, either because of a deletion or renaming. If the
rule with the name "Header" is redefined in a package, the meaning is changed, that
is, it becomes a (possibly) undefined new rule.

1 "ClassDefinition.bnf": Header ::= "class"
2 "ClassDefinition1_2.bnf": HeaderA ::= "class"

Listing 3.17: Inconsistency after Renaming a Rule

3.2.2 Rule Inlining

As the number of rules in a grammar grows larger, its maintenance becomes increasingly
harder. Often there are rules that are referenced only once, which presents the possibility
for their inlining. Inlining a rule consists of taking the rule’s right side and inserting it in
the place of its only reference. Afterwards, the rule may be deleted.

Reducing the number of rules, however, is a two-sided coin. It makes a grammar more
compact, reduces the depth of the created parse trees , and in some cases may make a
grammar easier to read and maintain. Sometimes, however, the effect may be just the op-
posite: several huge rules are created that are very hard to depict and understand due
to the large amount of tokens and alternatives they possess. For that reason, rule inlin-
ing should only be utilized with care and at the right time, for example, right before the
grammar is finalized and a lexer is constructed.
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3.2.3 EBNF to ANTLR Conversion

An EBNF is just a specification and does not allow language recognition by itself. A lexer
and a parser are needed that recognize the language described by the grammar if a com-
puter should detect language membership of a sentence. These tasks are often easier done
by tools instead of manual implementations and for that reason we also provide a model
to text conversion of EBNF grammars to the notation of one such tool: ANTLR. ANTLR
provides an environment that supports all EBNF constructs, among others, and thus this
conversion is lossless and purely syntactical. The conversion is thus very straightforward
and will be described in detail in the following chapter.
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In this chapter we describe how users can interact with the plug-in and present the al-
gorithms behind the implementation of the features introduced to BNFTools. We describe
concrete methods for the automated creation of delta, merge, and composite grammars; for
the discovery of inconsistencies in extensions after a core grammar update; for inline rule
refactoring; and for the conversion of EBNF grammars to the ANTLR syntax. Understand-
ing this requires some basic knowledge about Eclipse, Xtext, ANTLR, and Xpand, which
was provided in Chapter 2. For any further details, the Eclipse Application Programming
Interface (API) [26] is a very good source explaining most of the classes and methods that
come into play here.

4.1 Using BNFTools

All of the methods, excluding the EBNF to ANTLR conversion and the rule inlining, were
implemented as pop-up menu features in Eclipse. These actions are available for any EBNF
file (extension ".bnf"), but most methods require a certain grammar subtype, such as merge
or delta grammars. The following figure (Figure 1) depicts an Eclipse environment with
BNFTools installed. It shows a selected EBNF file and its context menu, including the
features we introduced.

We are first going to present how to complete the four-stage composition process, as
described in the previous chapter, starting from a core grammar and its extensions all in
EBNF form. The first step is to convert each of the extensions to the delta notation via the
Generate delta EBNF from extension grammar feature. The corresponding method needs
to resolve the core grammar, which can be done either implicitly (if there is only one im-
ported grammar) or by explicit specification in the corresponding import statement. Once
all the extensions have been converted to the delta notation, the user may proceed with
the creation of a merge grammar via the Generate merge grammar from a core grammar
feature. Once a user issues this action on the core grammar, they will be prompted to
select the delta grammars they wish to merge it with, and afterwards the new grammar
is created. Finally, the user can complete the composition process by selecting the next
pop-up menu feature, Create a composite grammar from a merge grammar, on the merge
grammar. This feature requires no input and ouputs the core grammar, extended with the
selected packages, the interaction between which (if any) was specified by the operators of
the merge grammar.
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Figure 4.1: Eclipse with BNFTools

Another new feature handles the discovery of extension rules that are no longer valid
after a core grammar update. This was again done with a pop-up action, called Validate
delta grammar against updated core grammar, which has to be issued on a delta grammar.
In this grammar the old and the new versions of the core grammar have to be specified as
import statements with the keywords "/core" and "/update". The output is a plain text file
in which all the inconsistencies caused by the transition to the new version are shown.

Rule Inlining was implemented as a heavy validation feature, that is a syntactical valida-
tion that is turned off by default. In order to use it, the user has to select Validate from the
context menu of any EBNF grammar. The rules that can be inlined will then be highlighted
and the automated inlining can then be called from the quickfix options.
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4.2 Conversion to Delta Grammars

The first stage of merging grammars is converting the packages to delta grammars. We
iterate over the imports of the selected grammar: if only one exists, we assume it is the
core grammar. Otherwise we look for an import with the "/core" keyword. Afterwards,
we obtain the parse tree of the selected grammar. Then, for every rule in the extension
grammar we iterate over all the rules of the core grammar until we find one with the same
name. If such a rule is found, we split it into one or more extension rules. Else, we simply
we print it as is.

The splitRule method creates extension rules given two regular rules with the same name.
It follows two main guidelines: there has to be an extension rule for every index at which
the core rule is extended and there can be a maximum of one extension rule per index. The
following steps are performed by the method:

1. Get a list cLeaves of all tokens of the core rule in the order they occur in the grammar.
Initialize a corresponding counter c with zero.

2. Get a list pLeaves of all tokens of the extension rule in the order they occur in the
grammar and initialize its counter p with zero.

3. Create an integer variable offset that keeps track of the number of tokens that have
been added to the rule.

4. Create three boolean variables: inExtension checks if the last iteration included an
extension token, leftSide is true if we are still to pass the left side of the core rule, and
leftSide2 is the same for the extension rule’s left side.

5. Create two empty strings: temp to hold the extensions’ left side and temp2 for the
right one.

6. Iterate while p is less than the size of pLeaves:

a) If leftSide is true, add the serialised core token to temp and increment c. If the
token is "::=" set leftSide to false. Continue.

b) If leftSide2 is true, increment p. If the token is "::=" set leftSide2 to false. Continue.

c) If c equals the size of cLeaves, add the serialized extension token to temp2 and
increment p. Continue.

d) If either current token is a hidden one, increment the corresponding counter and
continue.

e) If inExtension is set to true and the tokens are different, add the current token to
temp2 and increment p. If the tokens are the same, set inExtension to false, create
an extension line in the output file, and increment both counters. Continue.
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f) If inExtension is false and the current tokens are equal, increment both counters
and continue.

g) Initialise temp2 with the empty string. Add the current extension token to it and
set inExtension to true. Continue.

This algorithm only works if there are no tokens from the original rule that have been
deleted or replaced (excluding hidden ones such as new lines). Its output is a "bnf" file
with a name specified by the user that contains the package in delta form, unless an error
occurred.

4.3 Creation of Merge Grammars

Merge grammars, the second stage in the grammar composition process, require several
grammars as input, but their creation is relatively easy. At the start we ask the user to select
the grammars they would like to merge with the core grammar. This part of the feature is
error-tolerant: any of the selected resources that are invalid are ignored and a warning is
produced. Valid selections need to be in delta form and import the core grammar.

We save all the grammars that abide to the above constraints in a global array, called
deltas and create a label for each in another global array called deltaLabels. At the same time,
we create the imports in the merge grammar — one for each package, including its label.
Afterwards, we invoke the handleExtensions method for each rule in the core grammar,
described below:

1. Create a linked list of abstract nodes called rules to contain all the rules that extend
the current core rule.

2. Iterate over all rules in all the resources in the global array deltas. If any of the rules
has the same name as the current rule, add it to rules.

3. If the list is empty, return. Else, create two new lines, both as comments: the first con-
taining a RuleCombinator with the name of the current rule and the and operator,
the second a copy of the rule itself. Then, iterate until there are no more elements in
rules:

a) Initialize two nodes old and current that are going to contain the extension rules
from the previous, respectively current, iteration.

b) Assign the result of the selectFirstExtension method (described below) to current.
This method returns the extension rule with the lowest extension index.

c) Create an integer index containing the index value of current’s grammar in delta-
Labels.
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d) If this is the first iteration, set old to current.

e) If old and current have different extension indices, or if this is the first iteration,
create a new HookCombinator with the given rule name and the extension in-
dex of current. Add the label of current’s grammar from deltaLabels on a new line,
followed by a comment containing the delta rule from that grammar with the
same rule name and extension index.

f) Else, if old and current have the same extension point, only create a new label
with current’s grammar and the comment with the delta rule.

g) In both cases, create a new comment, containing the extension rule.

h) Set old to current and continue.

The method selectFirstExtensions is a simple and straightforward method that expects a
list of extension rules as an argument and selects the one with the lowest extension index
from them. This element is then saved in a separate variable, deleted from the list, and the
variable is returned.

4.4 Generation of a Composite EBNF Grammar

The generation of a composite EBNF grammar involves the transformation of a merge
grammar into a complete EBNF grammar that contains the core grammar and its packages.
This method proceeds as follows: first the imports in the merge grammar are resolved and
saved in global variables. We do not need any user input here as merge grammars use
the grammarType property of import statements to specify their role in the grammar. The
main method of the feature has two cycles: one that calls findExtensions for every rule in
the core grammar and one that copies all regular (that is, non-extending) rules from all the
extension grammars into the target file.

The method findExtensions in the first cycle takes a core rule as argument and adds it
to the output file either as is or extended. It iterates over all the elements in the merge
grammar and searches for the three types of merge rules. If a GlobalCombinator is found,
a global variable is set to it. If a RuleCombinator with the same name as the current core
rule is found, its value is saved in the local variable called ruleC, used to pass it to other
methods. Finally, every HookCombinator for the current rule that is discovered is added
to a list. If, after going through the whole merge grammar, this list is empty, the rule is
printed as is, i.e., there exist no extensions. Else, the method handleExtensions is called with
arguments the current rule, the list of extensions and the ruleC variable (can be null). The
result of the method is printed in the output file.

The method handleExtensions expects an EBNF rule, a list of its extensions as Hook-
Combinators, and a string that either represents one of the composition operators or null.
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The method returns a string representing the rule extended in the way specified by the
strongest operator. The way it works is as follows:

1. Initialize two integer variables with zero: newOffset for the current hook position and
oldOffset for the position from the previous iteration.

2. Initialize a new string fullRule with the left side of the current rule. This string will
be extended to contain the whole extended rule.

3. Repeat until there are more than zero extensions:

a) Get the extension with the lowest extension index and delete it from the list (via
selectFirstExtension — same as in the previous subsection).

b) Save its extension position in newOffset.

c) Call splitRule with the current rule, newOffset, and oldOffset as arguments to get
the part of the core rule between the old extension index and the current one.
Append the result to fullRule.

d) Call resolveReferences with the current HookCombinator and ruleC as arguments
to get the extension portion of the rule at the current hook position. Append the
result to fullRule.

e) set oldOffset to newOffset.

4. Append the part of the core rule between the last extension index and the end of the
rule by calling splitRule with the current rule, newOffset, and a max value integer as
arguments.

The splitRule method returns a string containing the portion of the rule between two in-
deces: startOffset and endOffset. The method initializes a string temp and works by iterating
over a list containing all the leaves of the rule. In each iteration there are four possible
cases: if startOffset equals endOffset, return temp — we have copied all the necessary parts;
else, if still on the left side of the rule — ignore the token and continue; else, if less than
startOffset number of tokens have passed — continue; else add the current token to temp
and increment startOffset.

The method resolveReferences takes a HookCombinator and a possibly empty string as
arguments and returns a string containing the extensions described by the HookCombina-
tor merged according to the most powerful composition operator. We are going to describe
this method below, but first we are going to briefly introduce another related method: re-
solveSingleReference. This method takes as arguments a string representing a grammar label
and a HookCombinator and returns the string describing the extension uniquely identi-
fied by the label and the HookCombinator. The way this is done is simple: the label is
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resolved to the delta grammar it refers to by using the class variables we set at the start;
the HookCombinator provides the name and extension point to search for in the grammar.
This result is used in resolveReferences as described below:

1. Get the list with labels from the HookCombinator and save it the variable labels.

2. If the size of labels is one, there is only one extension at that index — resolve it (by
calling resolveSingleReferences) and return the result.

3. Initialize a new string variable combinator to contain the combinator for this extension
position. Set combinator to the operator described in the current HookCombinator.
If no such operator exists and ruleC is non-null, set combinator to it. Else, if global is
non-null, set combinator to it. Finally, if no operator is found, use and by default.

4. Continue depending on the combinator value:

• "/and" Simply concatenate all the extensions in the order their labels occur by
successively calling resolveSingleReference for each of them and appending the
outputs to a string.

• "/andr" The same as "and" but in the reverse order.

• "/or" The same as "and" but we put each extension in parenthesis, with the "or"
operator between every two. We also check every extension if it starts or ends
with an invalid special symbol and if yes, we abandon the string created so far
and create a new one in the same way we did for "and".

• "/interleave" The target output consists of the three alternatives above, grouped
in parenthesis. We start with the "‘or"’ one and if no problems are found, pro-
ceed with the "and" and "andr" ones.

5. Return the string from the previous step or an error if the operator was not recog-
nized.

4.5 Other Features

Excluding Validation after a Core Grammar update, the implementation of these features was
done differently from the features presented before and involves many technical details
that we will describe briefly. For Rule Validation we extended the validation and quick-
fix capabilities of the Xtext-provided BNFTools IDE, while for BNF to ANTLR Conversion
we created an entirely new Xpand project that provided us with the environment for the
implementation.
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4.5.1 Validation after a Core Grammar Update

The only miscellaneous feature related to extension grammars is also the one that was im-
plemented in the same way as the previous features. We start by validating the three nec-
essary grammars: the selected extension should be in delta form; the core and the updated
core grammar in EBNF. After resolving and validating the two core grammars, we save
them in global variables. The main method is a simple iteration over all the rules in the
delta grammar. The method CheckForConsistency is called for every delta rule and searches
for changes in core grammar rules that are redefined by the package. It is presented below.

1. Initialize two variables — coreRule and updatedRule to contain the extended core rule
and its updated version respectively.

2. Iterate over all the nodes in the updated grammar. Search for a node of type Rule
with the same name as the current extension rule. If found, save it in updatedRule.

3. If updatedRule equals null, output an error statement in the file and return.

4. Else, repeat step 2 for the core grammar and coreRule.

5. If coreRule is still null, print an error statement about invalid core grammar and re-
turn.

6. Get the lists containing the leaf nodes of both core rules. Iterate over them and re-
move any leaf that represents a hidden token.

7. If the sizes of the new lists are not equal, print an error that there is a change in the
updated version of the extended core rule.

8. Else, compare the serializations of both rules token for token. If any mismatch, print
the same output as in the previous step and return.

4.5.2 Rule Inlining

Finding and inlining rules that are referenced only once is a straightforward algorithm and
depends largely on the technical background of the implementation. The idea is simple:
for every rule in the grammar, search through all the leaves of the grammar for Rule Ref-
erences with the same name as the rule. If exactly one is found, the rule can be inlined,
else it cannot. The inlining itself consists of deleting the only token referencing the rule and
inserting the serialization of the right side of the rule in its place. Afterwards, the rule is
deleted and the inlining is complete. In our implementation the search for rules that can be
inlined was implemented as a validation for Eclipse, while the inlining itself as a quickfix.
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4.5.3 EBNF to ANTLR Conversion

The conversion to ANTLR notation is a simple model to text conversion. We traverse the
Ecore-based parse tree that Xtext generates from the EBNF syntax in a depth-first manner.
Most of the transformations are straightforward and easy to implement: cardinality oper-
ators replace the different kinds of parenthesis, single apostrophes replace the doubles, the
colon replaces the operator for the start of the right side. A semicolon has to be printed
after every rule.

The only non-straightforward change is the renaming of the rules and rule references:
all terminal rules have to start with a small letter, and all the nonterminal rules with a
capital letter. This was implemented by making a second walk of the tree. In the first
pass we check the number of rule references in each rule: if none are found, the rule is
stored in a global array of nonterminal rules, else it is ignored. In the second pass the
actual grammar is printed. In addition to the modifications presented above, every rule
and every rule reference is checked if it is contained in the array. If it is, then the rule name
is printed in all capital letters, else in all small letters. The output grammar would likely
still need to be modified before it is ready to be used in ANTLR, for example in order to
solve left-recursion, but these changes are left to the user.
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In this chapter we are going to summarize the methodology and the results presented in
the thesis. We are also going to take a look at the limitations of our approach and dis-
cuss ways to go around them by discussing both miscellaneous features that can be used
for the maintenance of EBNF grammars in general and ideas for the improvement of the
composition process in particular.

5.1 Summary

EBNF grammars have played a vital part in the creation of programming languages for a
long time and are likely to preserve their importance in the future. In this thesis we have
developed an approach to use EBNF grammars as a way of extending language syntax
specifications, as well as a corresponding implementation. Unlike similar projects, we have
only considered the initial stage of language creation: the syntax specification, but provide
support for parser creation and beyond via ANTLR.

We have presented the composition of grammars as a four-stage process that allows any
number of extensions to be merged at once. To that extent we have introduced two new
domain-specific languages: the delta and the merge grammars. Delta grammars provide
a concise way of describing EBNF extension grammars by differentiating between rules
that redefine core grammar rules and rules native to the extension. Merge grammars sup-
port the merging of several extensions together: they highlight the possible interaction of
the extensions with each other and provide a way to avoid ambiguities with the help of
composition operators. We have specified four composition operators that regulate how
extension rules from different grammars are connected together in the case they redefine
the same core rule at the same rule position. We also present cases in which two of the op-
erators lead to erroneous syntax, which was handled by using a default operator instead.

Besides the composition of grammars, we have also discussed several miscellaneous
topics related to EBNF grammars. As a further support for language extensions we have
developed a method that finds extension grammar inconsistencies caused by a core gram-
mar update. We have also proposed a method for inlining rules of an EBNF grammars,
which may ease the maintenance and increase the performance when working with large
grammars at the cost of reduced readability. Finally, we have provided a way to convert
EBNF grammars to the ANTLR notation, from which a lexer and a parser may be derived.
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In addition to the theoretical basis, we have also presented several algorithms that can
be used to implement the discussed approach. We have focused on facilitating the com-
position process by providing methods for the automated creation of delta, merge, and
composite grammars. We have also shown algorithms that support grammar validation,
rule inlining, and EBNF to ANTLR conversion. All of these algorithms have been imple-
mented as an extension to the BNFTools plug-in for the Eclipse Platform.

5.2 Outlook

There are several ways in which EBNF grammars and their extensions can be further im-
proved. On the one hand, there are many ways in which the maintenance of EBNF gram-
mars in general can be made easier, such as methods for detecting left recursion, detecting
shift-reduce and reduce-reduce conflicts, automated left-factorings, and so on. Such so-
lutions would aid greatly in preparing the grammar for the work with parser-generators,
such as ANTLR.

On the other hand, there are also several ways in which our approach to the compo-
sition of grammars can be improved, for example, by providing several ways to handle
errors caused by the "or" and "interleave" operators. Furthermore, in the case of the "and"
operator it may be useful to be able to specify a concrete order of the extensions, instead of
just choosing between "as declared" or "reverse".

There is, however, one idea that naturally builds up on the composition process pre-
sented in this thesis. So far we have only considered extension grammars subject to one
constraint: extension rules have to preserve all elements of the original rule and may only
add new elements to it. We are going to explore four possible ways to handle rules that
also replace or delete elements of a core rule. We are going to refer to such extension rules
as replacement rules. We are going to use the following two rules as examples. In the core
rule there is a literal "public" that is replaced in the extension grammar by a reference to
the rule Modifier.

1 Core: Header ::= "public" "class" ID
2
3 Extension: Header ::= {Modifier}+ "class" ID

Listing 5.1: A Core Rule and a replacement Rule

The main problem we face when dealing with replacement rules is handling the deleted
elements, especially when merging several extension grammars. Several possibilities exist
- delete them, add the whole original rule as an alternative to the new rule, make the
deleted elements optional or treat the deleted part as an extension. Each of these has its
strengths and weaknesses which we will present below:

• Deletion — we use the replacement rule as is, consequently deleting elements from
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the core rule. This is the most obvious and straightforward approach and it guaran-
tees that the complete grammar will have the syntax meant by the extension. There
are two problems however: no compatibility with the original syntax and no way to
use multiple extension grammars together.

1 Header ::= {Modifier}+ "class" ID

Listing 5.2: Deleting the Replaced Tokens

• Alternative — the newly created rule consists of two (or more) alternatives — the
core rule and the replacement rule(s). This guarantees backwards compatibility with
the core grammar and is easy to extend to multiple grammars, but at the cost of an
increased number of rules.

1 Header ::= HeaderA | HeaderB
2 HeaderA ::= "public" "class" ID
3 HeaderB ::= {Modifier}+ "class" ID

Listing 5.3: Preserving the Rule as an Alternative

• Optional Element — we add optional brackets to the replaced elements and then
insert any extensions/replacements in the way we presented in this thesis (using
composition operators and so on in the case of multiple extensions). This approach
improves the performance, but needs further specification — for example, the re-
placed elements may be inserted before or after the new ones.

1 Header ::= {Modifier}+ ["public"] "class" ID

Listing 5.4: Preserving the Rule as an Alternative

• Treat as Extension — we can use the approach of this thesis and simply treat the
deleted parts as extension to the core rule. This would be easy to implement and
is still customizable, but it may create unexpected syntax because of the presence of
elements that are supposed to be missing.

The four variants could be realized in a similar manner with distinct merge operators
that guide the composition process for replacement rules.
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