
Towards an Integrated Test Methodology for Advanced DistributedSystemsJens Grabowskia and Thomas WalterbaInstitute for Telematics (ITM), Medical University of L�ubeck, Ratzeburger Allee 160, D-23538 L�ubeck, Germany,phone (+49 451) 500 3723, fax (+49 451) 500 3722, http://www.itm.mu-luebeck.debComputer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology Z�urich, Gloria-strasse 35, CH-8092 Z�urich, Switzerland, phone (+41 1) 632 7007, fax (+41 1) 632 1035, http://www.tik.ee.ethz.chAdvanced distributed systems like real-time and multimedia systems, behave correctly if functional andnon-functional requirements are implemented in accordance with the respective speci�cations. Functionalrequirements describe the correct input/output behaviour of a system only, whereas non-functional re-quirements cover aspects like real-time, performance or robustness. Unfortunately, there exist no testingmethodology applicable to advanced distributed systems to assess the compliance with functional andnon-functional requirements. In this paper a classi�cation of types of testing is presented. the state ofthe art of testing distributed systems is summarized and the steps towards an integrated testing systemsmethodology are described.Keywords: distributed systems, interoperability, testing, formal description techniques, real-time dis-tributed systems.1. Introduction\Product testing is still seen as the only reliable way to assure that outsourced products meet the requiredspeci�cation and are suitable for inclusion in the live network". This statement, that can be found ina publication of the National Physical Laboratory (NPL) [14], is speci�cally true for communicationand distributed systems where components from di�erent vendors have to interwork in order to carryout successfully a common task. Testing is a feasible approach to increase the probability that di�erentcommunication products are compliant to their respective speci�cations and, thus, are able to interwork.Over the past decade, testing of OSI compliant distributed systems has been de�ned and standardizedby ISO (International Organization for Standardization) and ITU-T (International TelecommunicationUnion) in a document known as conformance testing methodology and framework (CTMF) [9]. CTMFde�nes a black-box testing approach of functional properties. An implementation under test (IUT) ischecked for compliance with communication functions de�ned in the relevant protocol speci�cation. Testcases are derived from the speci�cation and are executed against the IUT. Robustness, failure handling,performance and other non-functional requirements are tested only to a limited extent; if at all. AlthoughCTMF has been de�ned in the OSI context, it has also been applied outside OSI [2,19].The progress made in computer technology and communication systems has stimulated a numberof new applications of distributed systems that pose new requirements on a testing framework. For thecorrect operation of, for instance, real-time distributed systems (e.g., process control systems or computeraided manufacturing systems) or multimedia systems (e.g., video-conferencing systems, teleteaching orInternet telephony), compliance of the systems to both functional and non-functional properties is equallyimportant.In this paper we are looking into the requirements of new advanced distributed systems with respectto testing. We start out by introducing a classi�cation of types of testing (Section 2). Subsequently, wetake a look into the state of the art in testing and identify the shortcomings of CTMF with respect to



2
z

x

y

T
es

tin
g 

ob
je

ct
iv

es

Testing architectures
Tes

tin
g a

pp
ro

ac
he

s

Figure 1. Classi�cation of di�erent types of testingthe requirements of the systems mentioned above (Section 3). In Section 4, we propose extensions toCTMF which will lift CTMF to a testing methodology for advanced distributed systems. We concludeby summarizing our �ndings and discussing further research work.2. Types of TestingTesting is understood as the process of evaluating a system or system components by manual or automatedmeans to verify that it satis�es speci�ed requirements or to identify di�erences between expected andactual results [7]. Essentially, testing is understood as the task of executing a programme in order to �nderrors. A test is successful if test execution discovers an error [13,20]. Testing as understood in CTMF,has a di�erent focus: \Conformance testing is testing the extent to which an implementation undertest satis�es the observable behaviour as permitted by the relevant speci�cations" [9]. Test execution issuccessful if observed behaviour complies with foreseen or expected behaviour. Thus, tests are designedfor checking speci�ed behaviour to validate that speci�ed capabilities are supported by an implementation,and not to �nd errors. The following classi�action of types of testing (Figure 1)1 is applicable to softwareas well as conformance testing.2.1. Testing objectivesA distributed system maintains an ongoing interaction with its environment while performing communi-cation tasks. It receives inputs from and sends outputs to the environment. We refer to this input/outputbehaviour as functional behaviour. In contrast, non-functional behaviour covers all aspects beyond pureinput/output behaviour, e.g., real-time requirements, performance properties and robustness of an im-plementation with respect to invalid behaviour of the environment. In [3], a more detailed classi�cationof functional and non-functional properties is introduced which covers aspects like di�erent response timeproperties (i.e., non-functional properties), functional testing of features and capabilities of an imple-mentation, as well as reliability testing (i.e., a non-functional property), regression testing (i.e., testingfunctional and non-functional properties of a new software or hardware release) and con�guration andcapacity planning. The latter aspects are beyond our classi�cation.Conformance testing is testing the functional behaviour of distributed systems [9]. Conformance testingestablishes a link between speci�ed and implemented properties. This is done by running test cases whichhave been derived from the system speci�cation, against the IUT. If observed behaviour of the IUT andforeseen behaviour as de�ned by a test case comply then the IUT is a conforming implementation.With applications of distributed systems in process-control, business and administration (e.g., electroniccommerce, work
ow management and video-conferencing), home (home banking and entertainment) andteaching (teleteaching and teletutoring), testing of non-functional properties becomes as important astesting of functional properties. For example, in a process control system, computations must be done instrict time frames; otherwise, the controlled process may behave incorrectly which may have catastrophicimpacts (e.g., in an air 
ight control systems), or for a videoconferencing application, a guaranteedquality-of-service of the communication network is essential for the good perception of video and audio.Unfortunately, testing of non-functional properties of distributed systems is less developed than testingof functional properties. Only very recently, researchers have developed approaches for performance and1Organisational aspects of the testing process [3] are not addressed in this paper. An extended classi�cation scheme maycover these issues by a fourth parameter.



3real-time testing [21,23,24].2.2. Testing approachesThe second parameter of our classi�cation concerns the testing approach, i.e., the necessary assumptionson the control and observability of an IUT. In principle, we can distinguish approaches that only requirea minimal control over the implementation at identi�ed interfaces, and approaches that require a maxi-mum of control, e.g., that state variables can be accessed (grey-box testing) or communication betweencomponents of a distributed system can be monitored.In conformance testing, the IUT is accessible only indirectly, having a communications network betweentest system and system under test. The internals of the implementation are hidden and only a limitedaccess to the IUT is required (see Section 3 for more details).2.3. Testing architecturesTraditionally, conformance testing is understood as black-box testing of functional properties of a protocolimplementation which might be embedded in a system. The focus is on a centralized system where theIUT can be controlled and observed through precisely identi�ed interfaces below and above the IUT.If the IUT is embedded in a larger system, then control and observation of the IUT is only possibleindirectly through several protocol layers.As already pointed out, advanced distributed systems impose new requirements on testing approacheswhich manifests itself in the types of systems that are to be tested. A multi-point videoconference system,for example, involves several active sites that have to be tested simultaneously. Thus, the IUT as wellas the test system must be distributed over real systems. Similarly, it should be possible to assess thata distributed maintains certain guaranteed quality-of-service contracts for the lifetime of a connection.This involves that several test components are distributed over real systems which control and observeseveral distributed systems which are in charge of the provision of service guarantees.3. State of the art and open issuesIn this section we summarize the existing methodologies and identify open issues.3.1. OSI Conformance Testing Methodology and FrameworkThe most complete testing methodology for OSI protocol implementations is the ISO standard 9646 OSIConformance Testing Methodology and Framework (CTMF) [9]. CTMF consists of seven di�erent partswhich standardize the entire test procedure of OSI protocol entities to assess their conformance withthe corresponding protocol standards. CTMF regulates the speci�cation, execution and evaluation ofconformance tests. For making conformance tests comparable and test results reproducible, CTMF alsostandardizes the tools for test speci�cation.The tools are abstract test architectures and the Tree and Tabular Combined Notation (TTCN) [10]which is a notation for the description of abstract test cases. Abstract means that both test architecturesand test cases are described independently of concrete implementations.23.1.1. CTMF test architecturesThe principles of CTMF test architectures are based on the OSI Basic Reference Model [8]. The IUT ismeant to be a protocol entity which may be embedded in between adjacent layers. In the following, weoften use the term system under test (SUT) to denote the IUT together with all components necessaryto interface the IUT by a test component (TC).The IUT is controlled and observed from a higher layer TC, called upper tester (UT), and from alower layer TC, called lower tester (LT). Control and observation should take place at points of controland observation (PCOs). PCOs are in�nite FIFO queues at which an asynchronous message exchangecan take place. PCOs should be standardized interfaces and therefore in most cases refer to OSI serviceaccess points (SAPs).The existence of accessible PCOs cannot always be guaranteed. Therefore, control and observation atthe lower layer interface has to be performed via the service of the lower layer from a remote side, i.e., the2For the usage in a real test environment, tools exist, e.g., TTCN compilers, which bridge the gap between abstractdescriptions and concrete implementations.



4
PCO

ASPs

P
C

O

A
S

P
s

IUT

TCP

Service Provider

UT

LT
PDUs

Figure 2. CTMF local test methodLT plays the role of a peer entity of the IUT. If an adequate PCO for the UT cannot be guaranteed, CTMFallows to describe the function of the UT indirectly, i.e., to abstract from the concrete UT behaviour.CTMF standardizes four basic test architectures called local, distributed, coordinated and remote testmethod. They di�er in the possibilities to control and observe the IUT and the distribution of TCs andSUT. As an example, the local test method is sketched in Figure 2.In the local test method, UT and LT reside on the same hardware and synchronize by using a testcoordination procedure (TCP). UT, LT and IUT exchange abstract service primitives (ASPs) at the twoPCOs. Logically, LT and IUT exchange protocol data units (PDUs) which are packed in the ASPs of theunderlying service provider.CTMF generalizes the test methods by introducing the multi-party testing context. In the multi-partycontext several TCs (UTs and LTs) are allowed, which may synchronize by exchanging coordinationmessages (CMs) at coordination points (CPs). A CP has the same semantics as a PCO, i.e., its modelis an in�nite FIFO queue used for the asynchronous exchange of messages. In the multi-party context,a main test component (MTS) exists, which creates all LTs and which is responsible for determining thetest verdict when test execution terminates.3.1.2. Tree and Tabular Combined NotationThe tool for specifying the behaviour of test cases for CTMF test architectures is the Tree and TabularCombined Notation (TTCN) [10]. In TTCN, a test case speci�es which outputs from an IUT can beobserved and which inputs can be sent to an IUT. Inputs and outputs are either ASPs or PDUs.3Depending on the chosen test architecture, several concurrently running distributed TCs (representingLTs or UTs) may participate in the execution of a test case.In TTCN, the behaviour description of a test component is given in form of a table (Figure 3 and4) describing the behaviour of a TC in form of a behaviour tree. The behaviour description consists ofstatements and verdict assignments. A verdict assignment is a statement of either PASS, FAIL or IN-CONCLUSIVE, which describes the conformance of an IUT with respect to the sequence of events whichhas been performed. TTCN statements are test events (SEND, IMPLICIT SEND, RECEIVE, OTHER-WISE, TIMEOUT and DONE), constructs (CREATE, ATTACH, ACTIVATE, RETURN, GOTO andREPEAT) and pseudo events (quali�ers, timer operations and assignments).The tree structure is given by grouping the statements into statement sequences and sets of alternatives.A sequence of statements is represented by putting the statements on separate lines with increasingindentation. Lines 1 - 6 in Figure 3 is a statement sequence. Statements on the same level of indentationand with the same predecessor are alternatives. In Figure 4, the statements on lines 4 and 6 are a set ofalternatives: they are on the same level of indentation and have the statement on line 3 as their common3In a concrete test case implementation only ASPs are exchanged, i.e., all PDUs are encoded in ASPs. However, TTCNalso allows to specify the PDU exchange directly and, therefore, to abstract from a concrete test case implementation.



5Test Case Dynamic BehaviourNr Label Behaviour Description CRef V Comments1 CP ? CM connected RECEIVE2 (NumOfSends := 0) Assignment3 REPEAT SendData ConstructUNTIL [NumOfSends > MAX]4 START Timer Timer Operation5 ?TIMEOUT timer TIMEOUT6 L ! N-DATA request data SENDFigure 3. TTCN Behaviour Description - Sequence of Statements.Test Case Dynamic BehaviourNr Label Behaviour Description CRef V Comments1 [TRUE] Quali�er2 L1 (NumOfSends := NumOfSends + 1)3 +SendData ATTACH4 [NOT NumOfSends > MAX] Alternative 15 -> L1 GOTO6 [NumOfSends > MAX] Alternative 2Figure 4. TTCN Behaviour Description - Set of Alternatives.predecessor.3.2. Interoperability testingClosely related to conformance testing is interoperability testing [1,5]. The goal of interoperability testingis to assess that an implementation is able to interwork with other implementations in order to provide aspeci�c service to all service users. Interoperability testing is often mixed up with CTMF. This is due tothe fact that interoperability testing refers to layered architectures and denotes the same type of testingas CTMF, i.e., functional black-box testing. Furthermore, TTCN and the CTMF test architectures orvariation thereof are often used for interoperability testing, too. Nevertheless there are some di�erences.Interoperability testing extends CTMF in two directions: (1) There are PCOs above the IUT only.4 (2)Some of the proposed interoperability testing approaches require additional monitor points for monitoringcommunication [4]. Currently, there exists no notion of such monitor points in CTMF, i.e., in these casesCTMF can not be used. Summaries of some interoperability testing approaches and projects can befound in [17] and [24].3.3. Functional testing beyond OSIIn the last couple of years, several new software architectures for distributed systems have been developed.Examples are the Common Object Request Broker Architecture (CORBA) [15], the OSF DistributedComputing Environment (DCE) [18], the ISO/ITU-T Reference Model for Open Distributed Processing(RM-ODP) [11], or the Telecommunication Information Networking Architecture (TINA) [22].Testing is also used to assess the compliance of applications based on these new architectures with therelevant CORBA, DCE, RM-ODP or TINA speci�cations. Complete test methodologies comparable toCTMF do not exist for the new architectures. For some approaches, at least the reference points forcontrolling, observing and monitoring an IUT have been de�ned, e.g., see [16] for CORBA.CTMF itself is only partly suitable to cope with the new types of applications. A new integrated testmethodology has to extend CTMF in several directions:54For OSI conformance testing, an LT on the remote site of the IUT has always to be present, whereas it is possible toabstract from the UT. In interoperability testing, we have only UTs.5Due to space limitations we cannot discuss all details and therefore just summarize the new requirements for an integrated



6 � Distribution of the IUT should be allowed. In CTMF, an IUT is one black-box running on acentralized system.� Dynamic test con�gurations have to be supported. During test execution the creation and stoppingof test components and communication links should be allowed.� The scope of the new test methodology should be beyond black-box testing towards grey-box testing.For some new applications, monitor points and tester processes which monitor the communicationbetween IUT components are needed. CTMF only supports active communication between TCsand SUT.� New communication mechanisms have to be introduced. CTMF uses asynchronous point-to-pointcommunication via FIFO bu�ers. The new applications require further communication mechanismslike broadcast, multicast or synchronous communication.� New test components have to be introduced. For some applications, components are required whichset-up the test environment but do not directly contribute to the test run. For functional tests,examples of such components are emulators or simulators. But the introduction of such new testcomponents is also needed for testing non-functional requirements, e.g., load generators are neededto put the SUT into speci�c load situations.3.4. Beyond functional testingRecently, standardization bodies have started to de�ne the parameters used in performance evaluation.For ATM networks, the parameters to be tested have been de�ned in [12] and include such as throughput,frame latency, throughput fairness, frame loss ratio, maximum frame burst size and call establishmentlatency. Some of these parameters are tested with and without background load and, due to statisticalvariations, the test of some parameters require several test runs.In addition to the extensions of CTMF mentioned in the previous section, an integrated test methodol-ogy which includes mechanism for testing of non-functional properties, has to cope with test componentsfor producing background load and evaluation of several test runs. An immediate consequence is thatissues like reproducibility and comparability of test runs and results have to be investigated.4. Integrated test methodology and frameworkFor testing advanced communication systems, a new integrated test methodology has to be developed.Following the CTMF approach, such a methodology consists of a generic test architecture and a testlanguage. The test architecture describes static aspects of a test case in terms of a test system con�gu-ration. The test language adds dynamic aspects in terms of behaviour descriptions which are assignedto TCs. In the proposed methodology, behaviour descriptions cover the functional and non-functionalbehaviour of a system. Some initial steps de�ning a generic test architecture [24] and studying real-timeand performance extensions of TTCN [21,23] have already been performed and will be discussed in thissection.4.1. Generic test architecture modelIn this section, we present a generic test architecture [24] that extends CTMF along the testing architec-tures dimension and, along the testing approaches dimension to a limited extent. For the latter, we addsome elements for grey-box testing. The basic idea of our approach is to provide a tool-box of elements,which can be combined generically into a test architecture which is suitable for a speci�c application orsystem. A test architecture comprises possibly several instances of di�erent types of components. Thesetypes are:� An Implementation under test (IUT) represents the implementation or parts of the distributedsystem to be tested. In principle, an IUT may be distributed over physically separated real systems.� An Interface Component (IC) is a component which is needed for interfacing IUTs, e.g., an under-lying service or a system in which an IUT is embedded.test methodology.



7� A Test Component (TC) describes a component which contributes to the test verdict by coordinatingother TCs or controlling and observing IUTs. A test con�guration identi�es all TCs necessary for theexecution of a speci�c test case. A TC exists from the start of a test case or is created dynamicallyby other TCs. In each test architecture, there should be one special Main Test Component (MTC)which starts, ends and coordinates the test run.� A Controlled Component (CC) is a component which does not contribute to the test verdict butprovides SUT speci�c data to TCs or the SUT, e.g., a load generator, an emulator or a simulator.� A Communication Point (CoP) represents a point at which communication takes place and at whichcommunication can be observed, controlled or monitored. CoPs denote communication pointsbetween all types of components, including communication between IUT components. For thelatter case CoPs may be placed somewhere in the IUT, thus CoPs may be used for controlling andobserving state information internal to the IUT or to monitor communication between IUTs.� A Communication Link (CL) is a means for describing possible communication 
ows between TCs,IUTs, ICs and CCs and the kind of communication which may take place. For CLs we distinguishbetween active and passive CLs. An active CL can be characterized by its kind (synchronous orasynchronous) and its direction (unidirectional or bidirectional). A passive CL allows to monitorcommunication, i.e., to listen at a CoP. For the dynamic creation of TCs it is assumed that CLs arealso created dynamically and that the CoPs linked to the CLs are all known before test execution,i.e., CoPs cannot to be created dynamically.� The term System Under Test (SUT) denotes a combination of ICs and IUTs.An example for the use of the proposed model is shown in Figure 5. The di�erent hard- and softwarecomponents of the architecture are shown as boxes and ellipses. The communication 
ow, the kind ofcommunication and the creation of TCs is indicated by di�erent types of arrows.Figure 5 describes an architecture proposed for interoperability testing in [24]. There are two IUTsto be tested. One is called toBeTested1 and the other is embedded in the SUT toBeTested2. TheIUTs communicate by using an underlying network which in our case is emulated by the CC NetworkEmulator. The IUT toBeTested1 needs the IC Lower Layers for having the interface CoP2 with CCNetwork Emulator. The communication at CoP2 is monitored by TC Monitor. This is described by thepassive CL between CoP2 and Monitor. If necessary the CC Network Emulator can be controlled by theTC Control.The MTC is called UpperTesterFunction. It communicates asynchronously via CoP5 with the peer TCUpperTester. As indicated by the dotted arrow the TCs Monitor and Control are created by the MTC.It is assumed that they are running on the same computer and perform a synchronous communicationwith the MTC.As can be seen from the example (Figure 5) and the previous discussion, our generic test provides ameans to test really distributed systems. toBeTested1 and toBeTested2 are running on separate systems.Even the test system is physically distributed. Some elements of the speci�c test architecture in Figure5 have direct access to parts of the IUT through the interface component LowerLayers. In summary,the proposed generic test architecture complements CTMF along the testing architectures dimension andadds elements to enhance CTMF partly with regard to grey-box testing.4.2. Behaviour descriptions for testing non-functional propertiesAn essential part of the proposed integrated test methodology is concerned with extending TTCN into areal-time test speci�cation language.4.2.1. Real-time dynamic test case behaviourReal-time testing checks that the functional behaviour of an SUT and its real-time behaviour complieswith the system speci�cation. In contrast to performance testing (see Section 4.2.2 below), which mea-sures soft real-time requirements to be ful�lled statistically, real-time testing deals with hard real-timerequirements.In a proposal for an extension of TTCN [23], language constructs are added that support the annotationof TTCN statements with time labels. The language extension is called real-time TTCN (RT-TTCN).



8

CoP4

UppterTesterFunction UpperTester

CoP1

CoP2

CoP6

CoP7

toBeTested2

CoP5

CoP3

Control

TC

SUT

TC
toBeTested1

LowerLayers

IUT

IC

CC
Network Emulator

Monitor
TC

MTC

TC

Main Test Component

Test Component

CC

SUT

CoP

Controlled Component

System Under Test

Communication Point

Creation

Passive Communication Link (CL)

Bidirectional Synchronous CL

Bidirectional Asynchronous CL

Unidirectional Asynchronous CL

IUT Implementation Under Test

MTC

Figure 5. Test architecture for interoperability testing
Test Case Dynamic BehaviourNr Label Time Time Behaviour Description C V CommentsOptions1 L1 2, 4 M A ? DATA und Time labelMandatory EET2 (NoDur := 3) Time assignment3 2, NoDur A ! DATA ack4 (LET := 50) LET update (ms)5 A ? Data ind6 L1 + WFN, M, N B ? Alarm Mandatory EETL1 + LET not pre-emptiveFigure 6. Annotation of TTCN behaviour lines with time labelsAn example of an RT-TTCN behaviour description is shown in Figure 6. The annotations of time labelsis done in the Time column. Relative to the execution of the previous statement, the time labels de�nea time interval within which the TTCN statements must be executed. A formal semantics of RT-TTCNhas been de�ned using timed transition systems [6]. In [23] it has been shown that real-time TTCN canbe applied to multimedia systems for testing quality-of-service guarantees.



94.2.2. Performance testingPerformance testing aims at measuring the level of (performance) quality of an implementation underwell-known conditions. The level of quality can be expressed in form of a metric using latency, throughputor end-to-end delay as parameters.Well-known conditions are necessary because performance testing normally has to be carried out innormal and overload situations of the implementation. Test runs should be reproducible and thereforethe TCs have to control and monitor all relevant components of the SUT including background loadgenerators.For the speci�cation of background load, tra�c models are used. They describe tra�c patterns forcontinuous streams and data packets with varying inter-arrival times and varying packet length. Markovmodulated Poisson processes are an often used model for the description of tra�c patterns.A performance test con�guration consists of distributed foreground TCs, background TCs and anMTC for the coordination of test execution. Foreground TCs implement communication with the IUT.Background TCs generate and send continuous data streams to the IUT in order to force the IUT inoverload situations. Background and foreground TCs map to CCs and TCs of the proposed generic testarchitecture.While executing a test case, a measurement is started which de�nes the time period during whichthe performance of the system is being observed. A measurement is performed by monitoring the TCsthat are sensitive to the test events to be analyzed. Constraints describe the format of the test eventsbelonging to a measurement, so that a monitor can collect time stamps whenever an event matches thede�ned constraint.Real-time and performance testing clearly extend CTMF along the tested properties dimension indi-cated in Figure 1.5. Conclusions and OutlookThe discussion presented in this paper is based on our experience of using CTMF and TTCN in severalprojects organized by ETSI (European Telecommunications Standards Institute) and former EWOS (Eu-ropeanWorkshop for Open Systems) and from discussions with testing experts. It turned out that, exceptfor the basic principles de�ned in CTMF, the use of CTMF concepts and TTCN is rather demand-driven.Therefore, our classi�cation of testing and the developed testing methodology are of main importance.The proposed classi�cation of testing is de�ned over three parameters. CTMF and TTCN cover onlya small fraction of the possible combinations of parameter values. Due to the demands of the upcomingnew applications and architectures of distributed systems, a new integrated test methodology is needed.The generic test architectures extends the CTMF approach by (1) allowing IUT and TCs to be dis-tributed over several real systems; (2) supporting dynamic test con�gurations where test componentsand communication links can be created dynamically during a test run; (3) adding controllable test com-ponents used as passive components, e.g., for monitoring tra�c or as load generators; and (4) allowingfor a 
exible communication infrastructure which is adaptable to the needs of a speci�c test case, e.g.,establishing a multicast communication using several communication links which are connected to a singlecommunication point.In order to support all facilities of the generic test architecture, a suitable test speci�cation languagehas to be de�ned. Our proposal is to base it on TTCN. We identi�ed the additional concepts needed totest the functional requirements of new advanced distributed systems and discussed the existing proposalsfor a real-time and performance extension of TTCN.Parts of the discussed extensions to CTMF and TTCN are considered by ETSI for integration in afuture version of TTCN. This e�ort is done by an expert team which has been established within ETSIand one author is member of this expert team. Furthermore, the test architecture will be implementedin the context of a research project funded by the Swiss National Science Foundation.AcknowledgementsWe thank Stefan Heymer, Beat Koch and Michael Schmitt who read earlier drafts of this paper andprovided valuable feedback.



10REFERENCES1. H. Bertine, W. Elsner, P. Verma, K. Tewami. Overview of Protocol Testing Programs, Methodologies,and Standards. AT&T Technical Journal, January 1990.2. J. Bi, J. Wu. Application of a TTCN based conformance test environment on the Internet emailprotocol. In M. Kim, S. Kang, K. Hong, editors, Testing of Communicating Systems, volume 10,Chapman & Hall, September 1997.3. R. W. Buchanan. The Art of Testing Network Systems. Wiley Computer Publishing, 1996.4. W. Buehler (ed.). Introduction to ATM Forum Test Speci�cations, Version 1.0. ATM Forum TechnicalCommittee, Testing Subworking Group, af-test-0022.000, 1994.5. J. Gadre, C. Rohrer, C. Summers, S. Symington. A COS Study of OSI Interoperability. ComputerStandards & Interfaces, volume 9, 1989.6. T. Henzinger, Z. Manna, A. Pnueli. Timed Transition Systems. Real-Time: Theory in Practice.Lecture Notes in Computer Science 600, 1991.7. ANSI/IEEE. Glossary of Software Engineering Terminology. ANSI/IEEE Std 729-1983, ANSI/IEEEStd 729-1983, 1983.8. ISO. Information Processing Systems - Open Systems - Basic Reference Model. ISO IS 7498, 1984.9. ISO. Information Technology - OSI - Conformance Testing Methodology and Framework - Part 1:General Concepts. ISO IS 9646-1, 1994.10. ISO. Information Technology - OSI - Conformance Testing Methodology and Framework - Part 3:The Tree and Tabular Combined Notation (TTCN). ISO IS 9646-3, 1997.11. ISO. Infomation Technology - OSI - Reference Model for Open Distributed Processing, Part 2: De-scriptive Model. ISO IS 10746-2, 1991.12. R. Jain, G. Babic, A. Durresi. ATM Forum Performance Testing Speci�cation - Baseline Text. ATMForum Document Number: BTD-TEST-TM-PERF.00.05 (96-0810R8), February 1998.13. G. J. Myers. The Art of Software Testing. John Wiley, 1979.14. National Physical Laboratory. Counting on IT. Issue 7, Summer 1998.15. A. Pope. The CORBA Reference Guide - Understanding the Common Object Request Broker Archi-tecture. Addison Wesley, 1998.16. S. Rao, C. BeHanna, M. Sun, F. Forys. CORBA Service Test Environment. NEC Systems LaboratoryInc., 1997.17. D. Rayner. Future directions for protocol testing, learning the lessons from the past. In M. Kim, S.Kang, K. Hong, editors, Testing of Communicating Systems, volume 10, Chapman & Hall, September1997.18. A. Schill. DCE { The OSF Distributed Computing Environment (in German). Springer Verlag, 1997.19. I. Schieferdecker, A. Rennoch. Formal Based Testing of ATM Signalling. In U. Herzog, H. Hermanns,editors, Formal Beschreibungstechniken f�ur Verteilte Systeme, Band 29, Nummer 9, Arbeitsberichtedes Instituts f�ur Mathematische Maschinen und Datenverarbeitung, Erlangen, Mai 1996.20. I. Sommerville. Software engineering. Addison Wesley, 1989.21. I. Schieferdecker, S. Stepien, A. Rennoch. PerfTTCN, a TTCN Language Extension for PerformanceTesting. In M. Kim, S. Kang, K. Hong, editors, Testing of Communicating Systems, volume 10,Chapman & Hall, September 1997.22. TINA Consortium. http://www.tinac.com23. T. Walter, J. Grabowski. Real-time TTCN for Testing Real-time and Multimedia Systems. In M.Kim, S. Kang, K. Hong, editors, Testing of Communicating Systems, volume 10, Chapman & Hall,September 1997.24. T. Walter, I. Schieferdecker, J. Grabowski. Test Architectures for Distributed Systems - State of theArt and Beyond (Invited Paper). In A. Petrenko, N. Yevtushenko, editor, Testing of CommunicatingSystems, volume 11, Chapman & Hall, September 1998.


