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Abstract

Despite a lot of effort in recent research, testing of software systems is still performed man-
ually most of the time without taking the advantages of Model Driven Development. Such
advantages include improved exploitation of models from early design phases for later
development phases, easier adaptation when changes become necessary, or less effort for
ports to other target platforms. A solution for this problem is proposed by a methodology
called Model Driven Testing. In this thesis, an approach is presented which realizes the
ideas of this methodology and the possibilities of automatic test case generation from mod-
els that are defined using the UML Testing Profile (UTP) are investigated. To reduce the
complexity of UTP, a format for an intermediate model called SWETest is proposed, along
with the corresponding model to model transformation rules from a constrained UTP vari-
ant where test behaviors are specified in interactions. From this intermediate model, code
generation for TTCN-3 as target language is defined and implemented. Further model
to model transformation definitions allow the generation of deterministic behaviors from
ambiguous interactions.

Keywords: Model Driven Testing, Unified Modeling Language, UML Testing Profile, Model
to Model Transformations, Test Case Generation, TTCN-3
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1 Introduction

Modern software systems are getting more complex every day. To reduce this complexity,
the use of models was introduced into the development of software. Model driven devel-
opment promises a better quality of the end product, easier maintenance, reusability on
different platforms, and automatic generation of the system structure or even of the entire
system. Today, the most common technology used for modeling is the Unified Modeling
Language (UML) [38].

While it is common practice to build a model of the system at least for documentation
purposes, tests for the system are in most cases still developed without any support of
models. Since up to fifty percent of the resources during software development are spent
on testing [30] and as test suites are also programs, models should be considered in the
construction of tests, as well. Currently, there is a lot of research on bringing models into
the test development, but there is no universally accepted method yet.

This thesis is mainly based on the ideas and methods proposed by Baker et al. [17] and
Zander et al.[45] The goal is to use the UML Testing Profile (UTP) — an extension of UML for
testing — to model tests and map the models to executable test cases. UTP mainly consists
of stereotypes which can be applied to ordinary UML elements. A stereotyped element gets
a special meaning in the context of the used profile. For example, a UML class can become
a UTP test component. In this thesis, a method to automatically generate test cases from
UTP models is presented. The method is implemented with openArchitectureWare [12], a
model transformation toolset for the Eclipse platform [5].

UTP, being a UML profile, contains several constraints which are however mainly ap-
plied to its stereotypes. This means that all UML concepts and metaclasses can be used in
a UTP model. Therefore, a UTP model can be potentially very complex and hard to pro-
cess automatically. In this thesis, constraints for UTP models were created that restrict the
structure of a model. This way, it is possible to analyze the models programmatically and
the needed data can be extracted easier.

The constraints on UTP are the first step in simplifying and formalizing the test model.
In the second step, a UTP model is transformed into a model that is structured in a precise
way. This means that all the elements are placed in exactly defined containers and relate to
each other in an exactly specified way. To achieve this, a new metamodel named SWETest
is presented that contains only the relevant test elements. It conforms to the EMF [42]
implementation of EMOF [34] called Ecore. The naming and the structure of the SWETest
elements are inspired by the UML metaclasses and UTP stereotypes. SWETest can therefore
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be viewed as a greatly simplified, strict, and more structured version of UTP. The main
advantage of SWETest is that once a UTP model is transformed into an SWETest model, it
can be used in a much easier way to generate test cases for several different languages. As
an example, the testing language TTCN-3 [16] has been chosen to be the target language for
the generation of test cases. Additionally, an SWETest model can be used for further model
to model transformations. An example is also provided in this thesis. In this example, the
statements in test cases involving distributed test components are sorted topologically so
that deterministic test case behavior can be produced. Summarized, the contribution of
this thesis is as follows:

¢ By constraining UTP, a reasonable subset of it has been chosen which is easier to
process programmatically.

¢ An intermediate Ecore metamodel called SWETest has been developed into which
UTP models can be transformed. It is structured strictly and can be used as the foun-
dation for the generation of code for arbitrary programming languages or testing
languages.

¢ Additional model to model transformations have been defined to generate determin-
istic test cases from ambiguous interactions.

* A mapping from the intermediate SWETest metamodel to TTCN-3 has been defined
and implemented.

The thesis is structured as described in the following. In Chapter 2, the used concepts
and tools are briefly described. General concepts of software testing are presented. Besides
the modeling technologies UML and UTD, the existing methodologies for model driven de-
velopment are discussed. Next, an algorithm for topological sorting is described which is
used to produce several deterministic test cases from a non-deterministic test case. The two
tool collections Eclipse Modeling Framework (EMF) and openArchitectureWare (0AW), as
well as the testing language TTCN-3 are presented in the subsequent sections. Finally, the
work in this thesis is compared to some related methods of test case creation using models.

The description of the test case generation method created in this thesis can be found
in Chapter 3. First, the constrained version of UTP, called SWEUTP, and the Ecore meta-
model that is used for validating transformed models, are presented. After that, the model
to model transformations as well as the model to text transformation are defined and ex-
plained.

An overview of how the constraining and the transformations have been implemented is
given in Chapter 4. The used tools are referred to and their interaction is explained. Some
exemplary code fractions are presented for each transformation.

In Chapter 5, a complete example of a test case scenario including its transformation
and test case generation is presented. The example involves the academic communication
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protocol called Inres. Test cases for a hypothetical implementation of Inres are created
as UTP models, transformed into an SWETest model, and then transformed into TTCN-3
code. Finally, Chapter 6 concludes with a short summary of the work and an outlook.







2 Foundations

The theoretical basics to the work of this thesis are given in this chapter. First, the general
software testing techniques are mentioned. Then, the relevant UML concepts and dia-
grams are described, as well as UTP. The modeling paradigms Model Driven Engineering
(MDE) and Model Driven Architecture (MDA) for building systems using models, as well
as Model Based Testing (MBT) and Model Driven Testing (MDT) which are used for cre-
ating tests using models, are explained next. In this thesis, the transformations and the
code generations are performed with the help of several plug-ins of the Eclipse platform.
The two most important ones, the Eclipse Modeling Framework (EMF) and openArchi-
tectureWare, are presented in this chapter. Also, the target testing language called Testing
and Test Control Notation Version 3 (TTCN-3), for which the test cases are generated, is
described briefly. Finally, some publications and tools are presented that contain concepts
similar to the method developed in this thesis.

2.1 Software Testing

Myers [30] describes software testing as “the process of executing a program with the intent
of finding errors”. It is assumed that any program of a reasonable size cannot be perfect,
which means that it contains errors. Therefore, the goal of good software testing is to
find and correct as many errors as possible. However, even for a simple program, it can
be computationally impossible to find all errors. This means that a successful testing of
software depends on the experience of the tester and the choice of the right testing strategy.

One important software testing kind is black-box testing. This strategy concentrates on
the input and output data of the tested program at its interface level. The tester tries to
execute the program with as many different input data sets as possible and observes the
output. The inner structure of the program is hidden and does not influence the choice of
the input data.

Another testing strategy kind is white-box testing. Using this method, the tester ex-
amines the code of the tested program in order to derive test cases from it. The goal is
to execute the program with the right arguments, so that as much behavior is covered as
possible. Strategies for covering behavior include statement coverage, condition coverage,
branch coverage, and path coverage.

Communication protocols can be tested with the method called conformance testing. It
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checks if a protocol has the correct behavior as defined in its specification. Holzmann [26]
differentiates between two kinds of conformance testing for protocols. For the functional
conformance testing, it is sufficient that the specification of the tested protocol is defined
informally, for instance, as a written document. The input and the output data values are
derived from the specification. The main idea is to execute the protocol with as many
input values as possible and check if the output values correspond to those derived from
the specification.

The second kind of conformance testing described by Holzmann is the structural confor-
mance testing. The emphasis of this method is on the control structure of the protocol. The
implementation of the tested protocol and its specification must be representable as finite
state machines containing states and transitions. During the test, the implementation is put
into all possible states and input signals that cause the change of the state are sent to it. By
verifying that the state was changed in the implementation exactly as in the specification,
it is proven that the implementation is capable to reproduce the behavior defined in the
specification.

2.2 Unified Modeling Language

Unified Modeling Language (UML) [38] is standardized by the Object Management Group
(OMG) [11]. UML defines modeling concepts and diagram types enabling system devel-
opers to create models in order to design, analyze, and implement their systems. Addi-
tionally, the goal of UML is to make the models exchangeable between different tools and
developers. To achieve this, UML is formally defined by a metamodel and there is an XML-
based format, the XML Metadata Interchange (XMI) [36] format, that is used to ensure the
interoperability between tools.

UML Metamodel

The OMG specified a four-layer architecture for metamodeling [37]. The UML metamodel
and model levels are layers in this architecture and are called M2- and M1-level, respec-
tively. Instances of model elements belong to a lower level, the M0O-level. Those instances
are run-time objects that are executed on a concrete system. The top level, M3-level, de-
fines the structure of the UML metamodel, so it can be called meta-metamodel. It is called
Meta-Object Facility (MOF) and it reuses parts of the UML syntax and semantics. Basically,
the part for defining class diagrams is reused, since the UML metamodel itself consists of
classes and relations between them. However, the MOF is a stand-alone metamodeling
concept, which can be used for defining not only UML, but also other models or meta-
models. Examples and detailed information can be found in the OMG specification of
MOF [34].
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package Example[ [25 UML Metamodel])

{ordered}

<<metaclass>> .| <<metaclass>>,
+class +ownedOperation i
Class Operation
0..1 *
LY 7N
N\ /
<<in§}@ce0f>> A
<<|n;tanceOf>>

AN
/

MyClass /

+myOperation (]

Figure 2.1: An example for the use of the metamodeling principle in UML

The MOF specification defines a metamodel as “a model used to model modeling itself”.
This means that a metamodel describes the rules for constructing correct models. The UML
metamodel (M2-level) describes the allowed structure for UML models, which are defined
by users.

A simple example for using a metamodel is presented in Figure 2.1. The two metaclasses
Class and Operation belong to the UML metamodel. They define the according elements
which can be used by a UML modeler to build system models. The composition arrow
between the metaclasses means that operations can be parts of a class, namely an arbitrary
number of operations can belong to zero or one class. The names of the association ends (in
this case class and ownedOperation) specify navigation paths which, for example, can be
used in Object Constraint Language (OCL) expressions. The additional keyword ordered
means that the operations of a class are ordered alphabetically. The two model elements
MyClass and myOperation are instances of the metaclasses. They are structured as specified
by the metaclasses.

In Figure 2.1, UML keywords are shown". Keywords are used to distinguish different
UML elements from each other, which use the same graphical representation. A keyword
is placed above or next to the name of an element and is enclosed in guillemets. In this
example, the keyword metaclass is used to indicate that the elements are not simple Class
elements, but metaclasses defined in the metamodel. The full list of UML keywords can be
found in the UML Superstructure Specification [38].

1

linstanceOf’ is not a standardized keyword. However, it is used in the UML specification in similar exam-
ples, so this notation is also used here
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package Examples| @] Class Diagram]J

Myinterface () <<dataType>>
+operationFrominterface() MyType
? -stringField : String
|
1
MySuperClass
-anAttribute : MyType AssociatedClass
+operationFrominterface(), 0.
+operationFromClass()

T

MySubClass

Figure 2.2: Elements of a UML class diagram

UML Modeling Concepts

One of the main terms in UML is model. It consists of elements, which together form a view
of a system. The elements can be, for example, classes, data types, attributes, or states. To
have a better overview of the model, some or all elements can be put together to diagrams
that show different views of the underlying model. One diagram does not necessarily
show all aspects of a modeled system. UML rather offers different diagrams for display-
ing different aspects of a system. There are, for example, diagrams that show the struc-
ture of the system or its components and other diagrams that display behavioral features.
The UML diagrams that are relevant for this thesis are described briefly in the subsequent
sections. The relevant sections of the underlying metamodels for the elements in class di-
agrams, sequence diagrams, activity diagrams, and composite structure diagrams can be
found in Appendix A.

Class Diagrams

A class diagram shows the static structure of a system. It displays single parts of a system
as well as relationships between those parts. Some elements that can be contained in a
class diagram are shown in Figure 2.2. A general term for classes, interfaces, data types,
etc., is classifier.

* A class specifies a set of objects that have the same structure and behavior. Classes
can have relations to each other. Two examples are shown in Figure 2.2: Inheritance




2 Foundations

relation depicted as an arrow with an empty arrowhead and directed association
relation illustrated as an arrow with an open arrowhead. The multiplicity statement
‘0..*” means that an object of type MySuperClass can be associated with zero or more
objects of type AssociatedClass.

* An interface represents a set of abstract public features. A class can realize an inter-
face, which means that the class must provide implementations for all operations of
the interface. In UML, an interface realization is depicted as a dashed arrow. Note
how the operation from MyInterface is also contained in the class MySuperClass.
The operation in the class can be implemented in a behavior (see subsequent sec-
tions).

* A DataType element is used to create user-defined types. Data types can have at-
tributes of any other type, which means that nested data types of any depth can be
modeled. The data types can be used in class definitions like any other type.

* Signals are used to send data between objects in diagrams which model the behavior
of a system.

Sequence Diagrams

Sequence diagrams are used to display the behavior of a system. The focus is on the data
exchange between systems or system components (Figure 2.3). Sequence diagrams show
some or all of the elements of an interaction, which is contained in the model. An interac-
tion is a container for elements that can be shown in a sequence diagram.

The main notation elements of a sequence diagram are lifelines. A lifeline always rep-
resents one participant in the information exchange modeled by the diagram. Such a par-
ticipant can be, for example, a class object, a port, or a part (see also ‘Composite Structure
Diagrams’ below). In the case of a multivalued part, the semantics is that one value of the
part will be chosen arbitrarily at runtime.

The lifelines in the sequence diagram can exchange data either as messages or by calling
operations on each other. A message can refer to a signal, which must be defined in the
model. The signal is transmitted with the message to the receiver lifeline and can trigger
a reaction. If the signal definition contains attributes, then the message may contain ar-
guments which represent values for the attributes. Those values can be processed by the
receiver. Signal messages are sent in an asynchronous way, which means that the sender
continues its execution after sending the message. The other kind of messages, operation
call messages, can be processed synchronously. In this case, the sender will wait for a re-
ply message from the receiver before it proceeds with its execution. Call messages refer
to operations which must be contained in the receiver object. A lifeline can also call an
operation on itself (message 3 in Figure 2.3).
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interaction Sequence Diagram| @ Sequence Diagram]J

object1 : MyClass1

1: message1

object2 : MyClass2

2: operation1()

loo
[x <5]

3: operation1()

ref

Anotherinteraction

Figure 2.3: Elements of a UML sequence diagram

So called combined fragments are used to model different execution flows, for example:
* loop to construct loops which will execute as often as the given condition is true.

¢ alt containing several blocks with optional conditions to make alternative execu-
tions possible, similar to if-statements in general-purpose programming languages.

* opt (optional), which is similar to alt, but contains only one execution block.

¢ par (parallel) to model execution threads that should be processed simultaneously.

* neg (negative) for traces that are invalid.

A sequence diagram can contain references to interactions from other sequence diagrams
("AnotherInteraction” in Figure 2.3). The element is called InteractionUse. The referenced
interaction will be processed in the place of the reference. After that, the execution in the

calling interaction moves on.

10
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(activity Activity Diagram| E] Activity Diagram ]J

?

myAction

|

x : Integer

[x < 5] L [x >= 5]
\l/ ]/ aValue

secondAction thirdAction

l ]

Figure 2.4: A simple activity diagram

A sequence diagram can model not only one execution sequence (‘trace’), but rather a
number of sequences. Sending and receiving a message generates events. The order of the
events in an interaction defines a number of traces determined by the following two rules:

* A receive event happens always after the send event of the same message.

* An event happens after all events that are above it on the same lifeline.

Activity Diagrams

Like sequence diagrams, activity diagrams display specifications of behaviors. The main
focus of this diagram type is on modeling sequences of actions. The container that holds
the actions and other supporting elements in the model is called activity.

Actions and other elements that can be displayed in an activity diagram are modeled
as nodes in a graph which are connected by edges modeled as arrows. Edges define the
execution order of the actions and the occurrence order of other nodes in the activity. In
Figure 2.4, a simple activity with three actions is shown. Actions can refer to behaviors
(as CallBehaviorActions) or to operations (as CallOperationActions) which are defined
elsewhere in the model. Action nodes can have input and output parameters, modeled as
object nodes, which precede or follow the action in the graph. In Figure 2.4, the object node
‘X" is an output parameter of the action ‘myAction’. The value of such a node can then be

11
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(interaction Interaction Overview Diagram[ @] Interaction Overview Diagram]) h

!

Interaction1

L

Anotherinteraction

&

ref

ref

Figure 2.5: A simple interaction overview diagram

connected to another action as an input parameter or, as in this case, be used in a decision
node to determine which path in the activity graph is followed at runtime. Decision nodes
and merge nodes are modeled as diamond symbols and are used to model control flows.
The outgoing edges of decision nodes can have guard expressions which define conditions
for the next edge to follow in the graph.

Another way to model a parameter of an action is a pin. There are input pins and output
pins that are displayed as little squares attached to the action in the place where an edge is
incoming or outgoing. In Figure 2.4, a third kind of pins is displayed, a value pin named
‘aValue’. This pin represents an input to the action, which is not provided by object flow
of the activity, but rather by evaluating a value specification that is included in the pin.

The two node types InitialNode and ActivityFinalNode are used to indicate the start
and finish of an activity. Such nodes are displayed as a black circle and a black and white
circle, respectively.

Interaction Overview Diagrams

An interaction overview diagram shows the interplay of interactions. This diagram type
is an extension of the activity diagram. In addition to the elements of the activity diagram,
InteractionUse nodes can be used. Those nodes represent references to interactions in
the model. In Figure 2.5, one interaction is called before the other one. More complex
examples could contain, e.g., decision and merge nodes as shown in Figure 2.4.

12
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class MyClass1[ & MyClass1 ]J

part1 : Type port1 port2[~ part2 : Type

Figure 2.6: A simple composite structure diagram

Composite Structure Diagrams

The structure of a classifier can be illustrated in a composite structure diagram. The classi-
fier consists of elements called parts, which are interconnected by connectors (Figure 2.6).
Parts define the runtime configuration of the classifier they belong to. A part is an object
or a set of objects, which have a type and are instantiated with the creation of the classi-
fier. Connected parts can exchange data through the connectors. Additionally, the parts
can have ports that serve as interfaces to the respective connectors and encapsulate the
behavior of the parts.

Object Constraint Language (OCL)

Some specific system restrictions cannot be described in UML. The objects of the modeled
system are often described insufficiently by the model alone and need to have additional
constraints that must always hold. For this reason OCL was developed by the OMG [35].
Statements in this constraint and query language can help making a model more restrictive
and more formal. OCL statements are free of side effects, which means that they never
change the underlying UML model. OCL defines several types of constraints and queries,
which are described in the following list.

e Initial values can be assigned to attributes and association ends of a classifier (init).

e Similarly, a value can be derived from other values queried in the model. For exam-
ple, two integers can be multiplied and assigned to an attribute (derive).

* A body can be defined for an operation (body).

* Besides the attributes and operations contained in the model, new ones can be de-
fined with OCL (def). However, those must be derived from existing ones.

13
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* An operation can get preconditions and postconditions. These kinds of constraints
prescribe with a boolean expression what must hold before and after an operation
call, respectively (pre and post).

* An invariant is a boolean expression that must always evaluate to true (inv).

An OCL expression consists of the specification of the assigned UML element (the con-
text), the type of the constraint and the actual constraint or query. The type must be one of
the abbreviations described above. The following definition describes the general structure
of an OCL expression.

1 context <element name>
2 <type>: <evaluated expression>

Optionally, the constraint can have a name that must follow the type (see examples be-
low). The actual evaluated expression can be either a boolean expression (i.e., a constraint)
or a query which returns one or more elements from the model. Both in constraints and
queries, the dot operator *.” can be used to navigate through the model, e.g., via associa-
tions, or to get to the contained attributes and operations. The arrow operator ‘->" must
be used if a predefined OCL operation is called. Some of the OCL operations used in this

thesis are the following:

¢ select returns all elements of a collection for which a given boolean expression is
true;

* exists returns a boolean value that indicates if a certain element is present in a col-
lection;

e forAll checks if a condition is true for each of the elements in a collection;
® any returns one element from a collection for which a condition is true;
e notEmpty verifies that a collection contains elements.

An OCL constraint can either be assigned to a user-defined element in a model (M1-
level) or to a metaclass in the UML metamodel (M2-level). The following two examples
illustrate the differences between these two sorts of constraints.

1 context Person
2 inv positiveAge: self.age > 0O

In this example, it is assumed that a user-defined class named Person exists in the UML
model and contains the attribute age. The invariant named positiveAge is assigned to
that class. It states that the age attribute must always be greater than zero.

14
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1 context Class
2 inv classId: Class.alllnstances().ownedAttribute
3 ->exists(attr|attr.name=’id’)

Here, the Class element from the UML metamodel is targeted. This means that the con-
straint is assigned to all the classes in the UML model, no matter what their name is. The
invariant will only evaluate to true if all the classes in the model contain an attribute named
id. The operation allInstances is defined in the OCL and returns all the instances of a
specified type.

UML Profiles

For some modeling purposes or usage in a specific domain, UML by itself is not precise
or flexible enough. For this reason, UML offers extension mechanisms for the definition of
domain-specific languages. Changing the UML metamodel or even building a new meta-
model on MOF is a heavy-weight extension mechanism which allows a modeler to define
new metamodels with a different syntax and semantics. This method does not set any lim-
its to the modelers to design their own modeling languages. However, it is possible that
such languages cannot be processed by standard UML tools. In contrast to that, defining
a UML profile is considered a light-weight extension mechanism. Profiles are specialized
separate packages that do not change the UML syntax, but rather define extensions and
restrictions to the standard UML language. The restrictions must not be contradictory to
the UML syntax or to the existing restrictions.

A profile includes stereotypes for extending and constraints for restricting the UML meta-
model. Constraints are expressed in OCL. Stereotypes are defined in the UML metamodel
layer (M2) and can be viewed as labels that can be defined as applicable to an arbitrary
UML element (but not to another stereotype). If a stereotype is applied to an element, the
structure of the element remains the same, but the element gets a special meaning. A sim-
ple example is shown in Figure 2.7. On the left, a stereotype with the name JavaClass is de-
fined inside a profile. As indicated by a filled arrow, the stereotype extends the Classifier
meta-element from the UML metamodel. This means that the defined stereotype can be ap-
plied to all model elements of type Classifier and its descendants (including for example
Class). On the right, a class is defined in the UML model layer (M1) and the stereotype
JavaClass is applied to it. The syntax is identical to UML keywords, so stereotypes cannot
have the same name as a keyword.

Stereotypes can have attributes which become tagged values in the stereotyped elements.
Those values can be used for storing additional information about the modeled element.
Additionally, profiles may contain model elements (as opposed to metamodel elements)
like interfaces or enumerations.

15
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package Example [ [£] Profile U package Example [ [£] Model U
<<metaclass>>
Classifier
1
<<profile>> <<JavaClass>>
UML Profile for Java MyClass

<<stereotype>>
JavaClass

Figure 2.7: Definition and usage of a stereotype

2.3 UML Testing Profile

The UML Testing Profile (UTP) [33] extends UML with elements that are useful for testing
purposes. It can be used to model artifacts of test systems like test components and test
cases. UTP is divided into four groups of concepts which are described in the following
subsections.

Test Architecture Concepts

In this concept group, structural elements are defined that are necessary to design tests.
These elements communicate with each other and with the tested system, the System Un-
der Test (SUT). In Figure 2.8, the definitions of the elements in the profile are shown in a
class diagram. Additionally, the corresponding extensions and the extended metaclasses
from the UML metamodel are depicted.

The test component is defined as a stereotype for a StructuredClassifier, which is an
abstract metaclass and an ancestor of the Class metaclass?. Test components participate in
test behaviors by communicating with each other and with the SUT. These interactions de-
fine the test cases. The SUT stereotype can only be applied to a property of a classifier. This
can be, for example, a class attribute or a part in a composite structure diagram. This prop-
erty is a reference to the SUT, which can be imported from another project or defined as
one or more classifiers in the same project. The SUT can consist of one or several elements
that can communicate with each other and with the test components.

2In this thesis, only classes are being extended by the TestComponent and TestContext stereotypes. It is also
possible to use other structured classifiers like collaborations.
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package UTP[[Z Test Architecture U

<<metaclass>>

o <<metaclass>>"
StructuredClassifier

Property

UML Metamodel
UML Testing

Profile <<stereotype>> <<stereotype>>
TestComponent TestContext <<stereotype>>
+zone : Timezone [0..1] +arbiter : Arbiter SuUT
+scheduler : Scheduler
T@ Scheduler O

+startTestCase()
+finishTestCase( t : TestComponent )
+createTestComponent( t : TestComponent

+getVerdict() : Verdict
+setVerdict( v : Verdict )

Figure 2.8: UTP test architecture elements in a class diagram

The test context serves as a container for other test elements. It is modeled as a struc-
tured classifier with the stereotype TestContext. It contains one or more test cases which
are represented as operations with the stereotype TestCase (see below). The composite
structure of the test context classifier, which is called the test configuration, shows the static
structure of the communication between the test components and the SUT. In addition
to the mentioned stereotypes, there are two interfaces that are defined in the test architec-
ture: Scheduler and Arbiter. Realizations of these interfaces must be included in the test
context as properties®, exactly one of each. The scheduler creates, controls, and destructs
test components. It starts and stops test cases and it contains the information about which
component belongs to which test case. At the end of the test, the scheduler informs the
arbiter to set the final verdict. The task of the arbiter is to provide the statement at the end
of a test, if the test has been successful or not, if for some reason the result cannot be stated,
or if some other error has occurred.

In Figure 2.9, an example of a test architecture model is shown. Note that the type of
the SUT is not stereotyped as it is a classifier that could be imported from another package
or project. The SUT and the test component are used as parts in the composite structure
(test configuration) of the test context (Figure 2.10). The test configuration defines that the
test component can stimulate the SUT by sending messages or calling operations through
the port myPort2. Answers sent by the SUT are forwarded to myPort1, so that the test
component is able read them.

3In Figure 2.8 arbiter and scheduler are tag definitions of the TestContext stereotype. However, the UTP
specification [33] also states that they must be properties of the stereotyped classifier, i.e., not tagged values.
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package Example] Test Architecture ]J

MySUT_Type <<TestContext>> <<TestComponent>>|§|
MyContext MyComponent
1 1
_ MyArbiter MyScheduler o
Arbiter Scheduler

Figure 2.9: UTP test architecture example

package Example] [i§j| Test Configuration]J

<<TestContext>>
MyContext
<<TestComponent>> myPort1 myPort2 <<SUT>> G
: MyComponent : MySUT_Type

Figure 2.10: UTP test configuration example
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Test Behavior Concepts

This part of UTP contains stereotypes and enumerations which are used to specify the be-
havior of tests. Test cases are modeled as public operations of the test context and marked
with the stereotype TestCase. The operations refer to behaviors which can be for example
UML interactions, activities, or state machines.

TestObjective is a stereotype for the metaclass Dependency. It is used to refer from a
test case or a test context to an object that specifies the objective of the test (possibly just
a hand-written text). Test cases realize test objectives by specifying the concrete behavior
that is described in the objective. Since test cases are included in the test context, the SUT
and the test components from the test configuration can be accessed directly. Test cases de-
scribe the interplay (i.e., data exchange) of those test elements. A test case returns a verdict
value, which can be pass, fail, inconclusive, or error. These values are defined in the
enumeration Verdict. If a test case returns the verdict pass, it means that the test has been
executed as expected. The value fail means the opposite (for example, an unexpected
message might have been received). An inconclusive is returned if it cannot be decided
whether the test passed or failed. The value error is returned if problems occur within the
test system itself.

Test case specifications normally define the expected behavior. In contrast to that, defaults
are typically used to specify unexpected or erroneous situations and reactions to those
situations. UTP contains the Default stereotype, which can be applied to behaviors. The
default behaviors can be reused in different test cases. To make a default active, it must
be referred to inside a test case specification. In an interaction, for example, a comment
containing the name of the default can be attached to a lifeline.

UTP defines a number of stereotypes for actions. The FinishAction stops the execution
of the test component that called the action. The ValidationAction implicitly sets a ver-
dict for a test component, i.e., this action forwards a verdict to an arbiter. The LogAction
indicates that some data about the test case should be logged. Other stereotypes on actions
are described below in the “Time Concepts’ subsection.

Test Data Concepts

UTP defines data concepts that are specific for testing and are not contained in the standard
UML specification:

* The LiteralAny wildcard value which can be used to indicate an arbitrary value. It
is defined as a stereotype for the LiteralSpecification metaclass.

* The LiteralAnyOrNull value to indicate an arbitrary value or no value at all.

* A data pool contains sets of values called data partitions, which can be used for stimu-
lating the SUT repeatedly or to define equivalence classes of values. A data pool can
also contain individual values.
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package Examples| Time Concepts])
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<<primitive>> <<primitive>>
Time Duration

<<primitive>>
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Figure 2.11: UTP time concepts

* Data selectors are operations in a data pool or a data partition. As the name suggests,
they are used to select some data values out of a set of values.

Time Concepts

Timing events are important in the testing of distributed systems, because the connections
between the system components are often unreliable and lost messages must be detected.
For this reason, UTP contains extensions to the UML time concepts. Timers can be used to
control the test case execution or to recognize lost messages with the help of timeouts. A
timezone is a means to synchronize different test components with the same time.

Timer is a predefined interface which offers a typical timer attribute and operations (Fig-
ure 2.11). The primitive type Time is used to define a point in time. Duration can be used
to specify a period of time. A timer is started with a predefined expiration time. When the
timer expires, a timeout message is automatically sent to the owning class and a timeout
event is generated. For this purpose, the TimeOut stereotype is used which can be applied
to a TimeEvent metaclass®.

For simpler use and control or timers and timeouts, some supportive actions are defined
in the UTP with obvious functionalities:

e StartTimerAction,

4The UTP specification describes the application of TimeOut to the metaclass TimeTrigger, which however
does not exist in the current UML specification
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¢ StopTimerAction,

e ReadTimerAction,

¢ TimerRunningAction,
¢ TimeOutAction.

TimeZone is a primitive type which is used for synchronization of test components.
Components having the same time zone value are considered to have the same time,
and are thus synchronized with each other. Time zone values can only be compared for
equality and are not ordered. The values can be set and manipulated by the two actions
GetTimeZoneAction and SetTimeZoneAction.

2.4 MDE and MDA

In this section, two approaches to software development using models are described. The
first one, which is called Model Driven Engineering (MDE), is also often referred to as
Model Driven Software Development (MDSD). It is a general idea of creating models to
implement a system or parts of a system instead of writing code. The second approach,
Model Driven Architecture (MDA), can be viewed as a realization of MDE. MDA consists
of concrete specifications and process descriptions that should be used for software devel-
opment.

Model Driven Engineering (MDE)

The main concepts of MDE are models, metamodels, and transformations. According to
Bezivin [19], the basic principle of MDE is that “Everything is a model”, which is an ex-
tension of the principle “Everything is an object” from object orientation. He suggests two
terms to describe the relations in MDE: representation and conformance. A real world system
is represented by a model, whereas a model conforms to a metamodel. The software life
cycle is viewed as a chain of model transformations. This means that there are models
with varying abstraction levels that can be transformed into each other. In this context,
even source code is viewed as a model and its syntax description as a metamodel.

Favre [22] defines MDE as “an open and integrative approach that embraces many other
Technological Spaces in a uniform way”. A Technological Space can be for example Mod-
elware in which UML is used, Dataware with SQL, or Documentware with XML. In each of
those spaces there exist the notions of a model (UML model, data in a database, an XML
document) and of a metamodel (UML metamodel, a database schema, an XML schema).
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Figure 2.12: Model to model transformation process [23]

Model Driven Architecture (MDA)

MDA is a set of specifications by the OMG which together form “an approach to using
models in software development”[32]. It is a framework that defines how models in one
language can be transformed to models or source code in another language. The main idea
of MDA is to separate platform-independent and platform-specific system specifications
which are represented as models. The main advantages of MDA are:

* Models make the system easier to understand, because the system developer can get
a better overview of the system. Hence, it is easier to develop bigger projects.

* For the same reason, the already developed system is easier to maintain.

* Parts of the system can be generated automatically. For example, interfaces to other
systems or system parts can be generated, which makes the integration in a bigger
system easier.

MDA defines different kinds of models to represent a system. The two most important
ones are the Platform Independent Model (PIM) and the Platform Specific Model (PSM).
The PIM has a high level of abstraction and does not contain any information about the
concrete implementation technology. A PIM can be transformed to several PSMs, each one
adapted to a certain implementation technology.
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The general process of transforming a model into another model is illustrated in Fig-
ure 2.12. The transformation is performed by a transformation engine which executes a
transformation model instance. This model instance contains definitions how an input
model should be transformed to an output model. To achieve this, the transformation
model instance has access to the metamodels of the source model and the target model. The
model instance itself also has a metamodel which it must conform to. All the metamodels
conform to a higher-level metametamodel. In MDA, the Meta Object Facility (MOF) is used
as the metametamodel. Instances of MOF, i.e., metamodels, serve as definitions for the con-
crete user-defined models. MDA does not prescribe a specific metamodel, but suggests the
UML metamodel or other metamodels derived from MOF. There also exists a specification
for a transformation language metamodel called Query/View /Transformation (QVT) [39].

After the transformation is completed, the PSM contains all the needed data about the
system and information about the targeted platform. In the next step, a model to code
transformation is performed. Similar to a model to model transformation, a code gener-
ation engine reads the PSM and executes a model instance with definitions to generate
source code.

2.5 MBT and MDT

Similar to methodologies using models in the development of software systems, there exist
concepts for creating testing specification with models. The main idea of Model Based Test-
ing (MBT) is to derive executable test cases from existing models of a system or a system
specification. In contrast to that, the goal of Model Driven Testing (MDT) is to define test
cases themselves as models and then to generate executable code using model to model
and model to text transformations.

Model Based Testing (MBT)

The MBT methodology requires a specification of the System Under Test (SUT) in the form
of a model to be present [18]. If this is the case, then tests can be created based on a
graphical model that describes the behavior of the SUT. The idea is that a number of test
cases are generated automatically by analyzing the system model. For example, there exist
methods for deriving test cases from state automata [41] and from transition systems [20].

A path in a system model is a sequence of events that can occur in the system. This
means that a path defines one possible execution scenario. At the beginning of the test
case generation process, all the paths that should be tested are determined. The selection
criterion can be, for example, path coverage or branch coverage [43]. In those cases, path
coverage includes all the possible paths whereas branch coverage means choosing paths
so that each branch is included at least once.
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Each selected path is traversed and testing directives for each event in the path are gen-
erated. A testing directive can be, for example, a simulation of a user input or a call of an
operation in the SUT. All the testing directives of a path form a test case. The generated test
cases can be applied to the actual system that is represented by the analyzed model. Dur-
ing the execution, the system follows the same paths determined in the model and reacts
to the stimuli of the test cases.

Model Driven Testing (MDT)

Baker et al. [17] define Model Driven Testing as application of the MDA principles to
software testing. In contrast to MBT, in this approach the tests themselves are specified as
models, independently from the specification of the system that is tested. Executable test
cases are then generated through model to model and model to text transformations.

Similar to MDA, there are models defining tests on different abstraction levels [45]. The
Platform Independent Test model (PIT) specifies tests on a high abstraction level, not re-
lying on a specific technology. Those tests are transformed into the Platform Specific Test
model (PST) through model to model transformations. This model contains details of the
technology on which the tests will be executed. In the last step, the PST is transformed into
executable code of a programming language.

2.6 Topological Sorting

As described previously, a UML sequence diagram defines interaction fragments that are
partially ordered. This means that one diagram specifies a number of possible sequences
of the fragments. In this section, an algorithm for retrieving all the possible sequences, i.e.,
linear extensions of a partially ordered set of elements is described.

A partial order < on a set X is a binary relation that is reflexive, antisymmetric, and
transitive, i.e., it holds for all a, b and ¢ in X that:

e g < g (reflexivity)
e ifa < band b < athena = b (antisymmetry)
e ifa <band b < cthena < c (transitivity)

A partially ordered set of elements can be displayed as a directed acyclic graph (Fig-
ure 2.13). Such a graph does not have any cycles in it and contains edges which point in
one direction. The order is here defined by the directed edges. The elements in the graph
have only a partial order, because some of them cannot be related to each other. In Fig-
ure 2.13, the two nodes N3 and N4 are not related, because it cannot be determined, which
one has a higher precedence in the order.
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Partially ordered elements
Linear extensions

Figure 2.13: Topological sorting

Topological sorting is a method to sort a partially ordered set. It produces at least one
linear extension of the partial order. In this extension, the elements are totally ordered. In
the example in Figure 2.13, there exist two linear extensions of the original set. Since the
nodes N3 and N4 do not relate to each other, there are two possibilities to sort them.

There exist several topological sort algorithms for finding all linear extensions (two effi-
cient ones are described in [40] and [44]). For this thesis, a simple algorithm specified by
Kahn [29], which only returns one possible linear extension, was extended in the way that
it computes all the linear extensions of a partial order set (Listing 2.1). It is sufficient for
simpler test cases. However, for more complex test cases, one of the efficient algorithms
might be necessary.

1 LS := List containing all nodes with no incoming edges

2 LE := Empty list that will contain the nodes of one linear extension
3 L := Empty list that will contain all linear extensions

4 return getSorts(LS, LE, L)

5

6 function getSorts(list LS, list LE, list[list] L) returns list[list]
7 for each node n in LS do

8 LSlocal := LS

9 LElocal := LE

10 remove n from LSlocal

11 insert n into LElocal

12 if LElocal is a valid linear extension then
13 insert LElocal into L

14 else

15 for each node m with an edge e from n to m do
16 remove edge e from the graph

17 if m has no other incoming edges then
18 insert m into LSlocal

19 getSorts(LSlocal, LElocal, L)

20 return L

Listing 2.1: Algorithm to retrieve all linear extensions from a partial order
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Figure 2.14: Part of the Ecore metamodel

The algorithm in Listing 2.1 calculates all linear extensions with the help of iteration
and recursion. At the beginning, there is a number of start nodes, i.e., those that do not
have any incoming edges. Each of those nodes is processed and moved to a sorted list. At
the same time, all the children of the current node are determined and the corresponding
edges are removed from the graph. A child that does not have any incoming edges after
that, is shifted to the start nodes. The whole procedure is repeated recursively, until all the
elements are moved through the list of the start nodes and then to the sorted list. Each
recursion path has its own copies of those lists, and so each sorted list, which represents a
linear extension, is added to a global list of lists that at the end is returned as result.

2.7 Eclipse Modeling Framework (EMF)

EMF is a “framework and code generation facility for building Java applications based on
simple model definitions” [42]. It provides a modeling environment for Java programmers.
Once a model of a system is created, Java classes and interfaces can be generated automat-
ically that represent the whole model in terms of Java code. EMF contains a metamodel,
called Ecore metamodel, that is used to build Ecore models. A model can either be created
by hand from scratch or imported from one of several supported formats. For example, it
is possible to convert an XML schema into an equivalent Ecore model. Other sources are
UML models and annotated Java interfaces.

Conceptually, the Ecore metamodel can be compared to the part of the UML metamodel
that is used to define class diagrams. That part of the UML is also reused by the MOF
metametamodel, so the Ecore metamodel can also be used as a metametamodel (in the
M3-level). Ecore is compatible to Essential MOF (EMOF), which is a subset of MOFE.
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An excerpt of the Ecore metamodel is shown in Figure 2.14. According to the Ecore
notation, all Ecore element names are prefixed with an E to distinguish them from the
corresponding UML elements. The container for the other Ecore elements is an EPackage
element. Packages can contain other packages and classifiers. The element EClassifier
is an abstract metaclass, hence a concrete element must be either a class or a data type.
Classes can have other classes as supertypes. A class can contain structural features, i.e.,
references and attributes, as well as operations (not displayed here). A reference always
points to another class (also not shown here). The containment attribute of the EReference
element specifies the relation between the referenced class and the parent class. If the value
of the attribute is true, then the referenced class is placed directly inside the parent class.
Otherwise, the referenced class is located somewhere else in the model. The EAttribute
element is another structural feature of a class. An attribute is always contained directly
in its parent class. The type of an attribute is defined by the EDataType element. It can be
either a simple type, for example boolean or string, or an enumeration, which consists of
enumeration literals.

2.8 openArchitectureWare (0AW)

OpenArchitectureWare (0AW) [12] is a generator framework for model-driven software
development. It is implemented in Java as a set of plug-ins for the Eclipse platform [5]. It
supports model to model, model to text, as well as text to model transformations. A variety
of models are supported, e.g., EMF, UML2, XML models and simple JavaBeans. It is also
possible to integrate other model kinds. The models can be checked against constraints.
Code for arbitrary programming languages can be generated from the models.

Expressions language

OpenArchitectureWare provides domain-specific languages for model to model transfor-
mations and code generation which are discussed in the subsequent sections. The lan-
guages share a common base language called the expressions language. The expressions
language allows the other specialized languages to operate on the same models and meta-
models. The following features are offered by the expressions language:

¢ Common arithmetic and boolean operators for numerical data types and strings, sim-
ilar to Java operators;

* Conditional "question mark” expression;
¢ Switch expression for choosing one execution branch out of several;

* Several expressions can be processed with the chain expression denoted by "->’;
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* Local variables can be defined with the 1et expression;

* Data types from the same heritage hierarchy can be casted exactly like in Java (static
casting).

The 0AW collection types List and Set can be processed by collection operations, which
are similar to OCL operations.

e A subset of a collection for which a condition is true can be selected with the select
statement.

e The reject statement removes the elements for which the condition evaluates to
true.

* typeSelect selects all elements of the given type.

e A given attribute from all elements of a collection can be retrieved with the collect
statement. A list of the attributes is returned. A shorthand for collect is the dot
operator. For example, employees.birthDate returns a list with all the birth dates
from all elements in the collection employees.

¢ The elements in a collection can be sorted with the statement sortBy.

e forAll is a boolean statement and returns true, if a given condition is true for all
elements in the collection.

e If a condition evaluates to true for at least one element, then exists returns true,
otherwise false.

Xtend

Xtend is a language for defining libraries for the other textual languages in AW, but can
also be used to specify model to model transformations and in-place model modifications.
The main structure element of the language is extension. The syntax of an extension is as
follows:

1 [create] ReturnType extensionName(ParamTypel paramNamel, ...):
2 expression-using-params;

The body of the extension consists of an expression defined in the oAW expressions
language. The passed parameter values can be used to compute the return value. Instead
of an expression, the extension body may contain a mapping to a Java method, in which
case the specified method will be called. If the optional create statement is given, an object
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of the return type is automatically created and can be accessed in the expression through a
this reference (or without any prefix as a shortcut).

An extension can be called in two ways: like a function or with a syntax that looks like a
method call on an object. The following examples show the two possibilities.

1 extensionName(paramValuel, ...);
or

1 paramValuel.extensionName(...);

For a single value of a simple type as the first argument, the two versions have the
same semantics. The value before the dot is just mapped to the first parameter of the
extension. This makes extension calls like 56.add (1) possible, which is the same as add (5,
1). For an object, the meaning of the two versions could be different, if namely the object
contains a method with the same name. In this case, the method has a precedence before
the extension.

The biggest difference between the two possibilities of invoking an extension can be seen
if the first argument is a collection, i.e., a list or a set. Xtend does not provide any structures
for explicit loops. However, it is possible to invoke an implicit loop using the method call
syntax. If an extension with a certain parameter type exists, and the extension is called
with a collection containing objects or values of that type, then the second version will loop
implicitly over all the items in the collection and invoke the extension once for each of
them.

There is another implicit behavior involved in calling extensions which are prefixed with
the create keyword. If the same create extension is called several times with the same set
of parameter values, then the object created in the first call is returned every time. This
behavior is useful in model to model transformations for creating references in the output
model. Instead of searching explicitly in the model for the object to be referenced, simply
the extension that created the object can be called one more time with the same set of
arguments.

Xpand

The Xpand language is used in model to text transformations to control generation of code
from models. The central concept in Xpand is template, specified as a DEFINE block. The
following example displays the general structure of a template.

1 <<DEFINE templateName(formalParameterList) FOR MetaClassName>>

2 <<FILE fileName.java->>
3 sequence-of-statements
4 <<ENDFILE>>

5 <<ENDDEFINE>>
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A template is always defined for a certain metaclass from the metamodel of the used
input model. The template in the above example contains a FILE statement which redirects
all the output to the specified file. All the text in the body of the FILE statement including
whitespaces is considered to be output. A minus sign before a closing guillemet bracket
can be used to remove the directly following newline character from the output. Other
templates, which do not contain a FILE statement, can be called, or expanded, in the body
of the template. The output of those templates is also written to the file.

Another way to produce output is to compute it with statements defined in the oAW ex-
pressions language. These must be placed inside a DEFINE or FILE statement and enclosed
in guillemets. Any strings that are returned from the expressions are also redirected to the
generated text file.

Xpand defines some other structures to process the input model, which are explained
below.

e The FOREACH statement loops over all elements of a collection.

* IF uses the expressions language for boolean guards to make conditional execution
of statements possible.

¢ [ocal variables can be defined with the LET statement.

Workflows

The script that performs the model to model and model to text transformations using def-
initions in the languages described above, is called workflow and is executed by a workflow
engine. A workflow is a sequential execution of special objects called workflow components.
Each component fulfills a certain task in the transformation process. oAW contains several
predefined workflow components for reading and writing files, executing the Xtend and
Xpand definitions, checking constraints on a model, and other tasks.

The order and configuration of the workflow components is specified in an XML file, the
workflow file, which can be read by the workflow engine. Here, the classes of the work-
flow components are referenced and the configuration arguments are given. The workflow
engine instantiates objects using this information and executes them.

2.9 Testing And Test Control Notation Version 3 (TTCN-3)

TTCN-3 [16] is a language which was designed explicitly for specifying tests and it is stan-
dardized by the European Telecommunications Standards Institute (ETSI) [7]. While the
previous versions were limited to testing telecommunication protocols, the current version
can be used to specify tests for a number of application areas, including grid computing,
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real-time testing, and software testing in general. Both the asynchronous message-based
communication and the synchronous procedure-based communication paradigms are sup-
ported.

TTCN-3 is an abstract language with different presentation formats. Apart from the
textual format, there is a tabular and a graphical MSC-like format. The syntax of the textual
format is similar to that of the programming languages C and C++. However, TTCN-3 is
highly adapted to testing purposes. It contains special constructs — like test components,
ports, templates, matching operators for matching test data, or a very fine-grained type
system — which cannot be found in other programming languages.

Test definitions in TTCN-3 are organized in modules. The modules contain specifica-
tions for test cases, test components, the interface to the SUT, and data definitions. Apart
from data types, constants, and variables, TTCN-3 offers port types, verdict types, timers,
and templates. A port type defines ports which are used by the test components to send
messages to the SUT and to each other, or to call operations in the SUT and in each other.
Messages are represented as templates which can contain values or matching expressions.
Verdicts are used to define the results of single test cases and of the entire tests. Timers
make it possible to perform real-time tests and detect lost messages. Test cases are exe-
cuted from a central point, the control part of the module.

2.10 Related Work

There are several approaches that are similar to the method described in this thesis. They
all produce executable test cases from test models using model to model and/or model
to text transformations, i.e., they follow the MBT or the MDT methodology as defined in
Section 2.5. In the following, some of those approaches are discussed and the similarities
as well as the differences to this method are pointed out.

The SAMSTAG method [24] makes it possible to generate test cases from a test architec-
ture and system specification defined in Specification and Description Language (SDL) [28]
and from behavior of test cases modeled in Message Sequence Charts (MSCs) [27]. The test
architecture contains the test components and the System Under Test (SUT) as well as the
communication interfaces between them. An MSC consists of lifelines corresponding to
the objects of the test architecture which send messages with data units to each other. The
output of the SAMSTAG tool, which is the implementation of the SAMSTAG method, are
test cases in the testing language TTCN. The SAMSTAG method is similar to the method of
this thesis. The major difference is that it does not have an intermediate model, but trans-
forms the source model directly into code. Another difference is that the inner behavior of
the SUT is considered, whereas in this thesis, the SUT is viewed as a black box.

The approach of Dai [21] is different with respect to the source of the test definitions.
Test cases are not modeled independently from the system specification, but are directly
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derived from the system specification which is given in a UML model. In the first step,
the UML model is analyzed and a UTP model is produced that contains the test cases.
This transformation was implemented in Tefkat [14]. In the second step, the UTP model
is mapped to TTCN-3. Instead of restricting UTP, extensions to the TTCN-3 language are
proposed so that a one-to-one transformation would become possible.

There are several tools that follow the MBT principle, which means that they derive test
cases from system specification models. In Elvior MOTES [6], system models are defined
as finite state machines. Like in this thesis, test cases are generated in TTCN-3. The tool
Conformiq [3] accepts system models specified in Java or UML. Test cases can be generated
for different languages, for example, TTCN-3, Visual Basic, XML, or Python. TGV [15] uses
a model defined as a Labeled Transition System (LTS) and generates TTCN test cases.

Like the approach in this thesis, the method of Zander et al. [45] is based on the MDA
and MDT methodologies. UTP is also used to model tests and TTCN-3 is the target lan-
guage for test cases. However, that method does not restrict UTP and therefore the model
to text transformation is defined by general rules that produce TTCN-3 code which must
be completed manually to become executable. The transformation was also implemented
for the Eclipse platform, but in Java instead of languages that are designed specifically for
model to model and model to text transformations.

The Eclipse plug-in oAW-Test [10] can be used to model own test cases and transform
them automatically into test scripts for the tool JMeter [2]. Instead of UML or UTP, the
models must be defined in a special XML format specified for the plug-in. The similarities
here are that openArchitectureWare is used and that test case generation from test models
is performed.
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Like UML, UTP is not an exact programming language and can be used in different ways
by different developers. The examples in the UTP specification [33] make this clear: They
do not prescribe rules for the modeler to use UTP, but rather provide suggestions. For
example, a default might be modeled as a state machine or as an interaction. Similarly, test
cases can be modeled as interactions or as activities. Due to this fact, it is difficult to derive
executable test cases from a model that is created without following certain rules. For this
reason, UTP models that are supposed to be suitable for transformations, must be more
restrictive than the examples in the specification. In Section 3.1, a variant of UTP called
SWEUTP is presented, which is used in this thesis to model test cases. It is described in
terms of general rules for the structure of models that it describes. The differences to the
UTP standard are addressed. Additionally, formally defined restrictions for the models
conforming to SWEUTP are presented in Section 3.2.

The goal of this thesis is to create a method to produce executable test cases from models.
However, SWEUTP being a UML profile is a very complex modeling language. Hence, it
is difficult to produce test cases directly from an SWEUTP model. For this reason, an
SWEUTP model is first transformed to a simpler model that is easier to manage. In Sec-
tion 3.3, the metamodel called SWETest is presented, which defines the structure of such
models. The transformation from SWEUTP to SWETest is described in Section 3.4.

An interaction in both SWEUTP and SWETest defines behavioral statements, such as
sending a message, which are partially ordered. Since test cases are modeled as interac-
tions, there is a number of test cases defined in each interaction. To obtain all the linear
extensions, i.e., all the possible test cases from an interaction, the statements can be sorted
topologically. This process requires another model to model transformation which is pre-
sented in Section 3.5. An SWETest model is transformed again into an SWETest model. For
each test case in the source model, the resulting model contains a number of test cases with
topologically sorted statements.

The last step is the transformation of an SWETest model into executable code. In this
thesis, the testing language TTCN-3 has been chosen as the target language of the transfor-
mation. This process is described in detail in Section 3.6.
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package Examples| Test Architecture ]J

<<TestContext>> B <<TestComponent>> @ Arbiter @®
MyContext ComponentOne +getVerdict() : Verdict
-componentPart : ComponentOne | |-myTimer : Timer = 5.0 +setVerdict( v : Verdict )
<<SUT>>-SUTPart : Type_for_SUT - = = - " ﬁl
-myArbiter : Arbiterimpl +startTimer( timer : Timer, duration : Duration )
-myVariable : String = "initial value’| | +StopTimer( timer : Timer ) |
+timeOut( timer : Timer ) Arbiterimpl
<<TestCase>>+aTestCase() +finishTestCase() P
+getVerdict() : Verdict
Type_for_SUT +setVerdict( v : Verdict )

Figure 3.1: SWEUTP test architecture

3.1 SWEUTP

The UTP variation created for this thesis is called SWEUTP. It contains most of the elements
from the UTP standard. Unlike the standard, SWEUTP has a defined structure that speci-
fies, among other things, which elements are inside which other elements, or how exactly
test cases are modeled. In this section, SWEUTP is described informally by explaining,
what the models conforming to it must look like.

Besides attributes that represent test components, the SUT, and the arbiter, the test con-
text can contain attributes of primitive or user-defined types (myVariable in Figure 3.1).
Optionally, those attributes can have default values. Such attributes are considered global
variables and can be used in the behaviors and parts of the test context, e.g., in the test
cases or test components.

Similarly, test components can contain timer attributes which can be used in the test cases
on the respective test components. Here, as well, the timers might have an initial value
which is interpreted as the default duration of the timer. Additionally, a test component
can contain operations that correspond to the actions in UTP.

The two attributes SUTPart and myArbiter of the test context (Figure 3.1) represent the
SUT and the arbiter. More precisely, the SUT, like the test component, is a part in the
composite structure of the test context. The two can be connected with each other via ports
and connectors. The SUT has an empty class for its type. In general, the type of the SUT
should be a class of, or an interface to the tested system, which is also modeled in UML and
imported to the testing project. The arbiter type is represented by the ArbiterImpl class
which realizes the UTP interface Arbiter. However, like for the timer attribute of the test
component, it is sufficient to use the interface directly as the type for the arbiter in the test
context. SWEUTP also contains a stereotype called Arbiter that can be applied to classes.

The scheduler interface from UTP is not used in SWEUTP. Instead, the starting of test
cases is modeled in a test control. The test control is an activity, which is the classifier
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behavior of the test context. It controls the execution of test cases by referring to them
through interaction use nodes. The verdict returned from a test case can be stored in an
object node. This is modeled by an object node of type Verdict directly following the
interaction use. The stored verdict might be used in subsequent conditions on edges which
originate from decision nodes. In this way, it is possible to control the execution of test
cases dependent on the outcome of the previous test cases. Since the UML standard does
not define a syntax for boolean expressions, SWEUTP uses Java-like syntax for guards. An
overview of the syntax is presented in Listing 3.1. The test case execution process can be
logged using UTP log actions.

expr+ | ELSE

atom (AND | OR | GREATER | LESS | GREATEREQUALS | LESSEQUALS
| EQUALS | NOTEQUALS ) atom

atom ::= (NOT)? (INT | ID | TRUE | FALSE |

(LEFTPAREN expr RIGHTPAREN))

Listing 3.1: Syntax for SWEUTP guards

prog ::
expr ::

g = W N =

The referenced test cases in the test control are modeled as interactions. For every test
case interaction, there exists a test case operation in the test context that refers to the respec-
tive interaction. Lifelines in the interaction represent the parts of the test context composite
structure (test components and SUT) and the arbiter.

An interaction use can be placed on a lifeline. It refers to another interaction that will be
executed in its place. The advantage of this is that one common behavior can be started in
different test cases.

To stimulate the SUT, test component lifelines send signal messages to the SUT lifeline.
The SUT can react by sending again signal messages to the test components. The messages
are not sent to the SUT or components directly, but to ports contained in them, which are
modeled in the composite structure of the test context. The sending and receiving ports are
specified implicitly by referring to the connector which connects the two ports. A connector
has to be referenced if the signal message is sent from a test component to the SUT. In the
other direction it can be omitted. In this case, it means that the message can be received at
any port in the test component. This can be used for unexpected messages coming from
the SUT, for example to model erroneous situations. Similarly, a signal message sent from
the SUT to a test component can, but does not have to, contain a signal. If no signal is
contained in the message, it means that the test component is prepared to receive any
possible signal. If a signal definition contains attributes, then the signal message may
contain arguments of the same types. Those arguments can also be omitted. Another
way to define such arguments are UTP wildcards. Instead of a concrete value, an arbitrary
string can be passed, which is stereotyped as LiteralAny or LiteralAnyOrNull. For a
better overview, the string itself should be, e.g., "?" or any’ for LiteralAny and ™ or
‘anyOrNull” for LiteralAnyOrNull. For an explicit omitting of a value, an argument can
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(activity startTimer( timer : Timer, duration : Duration ) [2] startTimer]J

duration : Duration X
<<StartTimerAction>>ﬂ

/

timer : Timer

Figure 3.2: A UTP action in an activity

be a LiteralNull value from UML. The wildcards are useful for test components to receive
messages with unknown or non-existing arguments.

Operation call messages can be sent to the arbiter. The components can call the operation
setVerdict in the arbiter to indicate their verdicts. The operation has an argument of the
enumeration type Verdict.

In SWEUTP, the UTP actions are used in activities. The test components can execute
activities containing actions indirectly with a call message to self. The message to self in-
dicates that a lifeline calls some behavior contained in the object which the lifeline refers
to. The call message contains a reference to an operation in that object. The operation
refers to an activity which contains the UTP action to be executed. As an example, the
StartTimerAction within an activity is displayed in Figure 3.2. In this case, a timer refer-
ence and the duration until the timeout are passed to the action through activity parameter
nodes. The operation that is called on the lifeline must have parameters of the same types.
Other UTP actions which can be used in this way are:

¢ StopTimerAction, to which a timer reference must be passed;
¢ TimeoutAction, also with a timer reference;
* FinishAction, which does not need any parameters.

Defaults are useful to handle unexpected SUT behavior and error situations. Like test
cases, a default is modeled as an interaction. A default interaction contains an alt block
as its outer element. A default can be assigned to a lifeline in a test case by a comment
attached to that lifeline with the word "default’ and the name of the default interaction.

The ports defined for the SUT and the test components in the test configuration have port
types, which in SWEUTP are modeled as simple UML classes. Port types are not defined
in the UTP standard. In SWEUTP, ports can only send and receive signal messages. The
possible signals for those messages are connected by associations.

36



3 Test Case Generation using Model to Model Transformations

A signal may contain attributes of built-in or user-defined data types. User-defined types
can be DataType, PrimitiveType, or Enumeration classifiers. Unstructured data types, i.e.,
with no attributes on themselves, have the meaning of renaming a built-in UML type. They
refer to a UML type in their baseClassifier property to declare what type they redefine.
This technique is useful to define own meaningful names for built-in types. Structured
user-defined data types can model arbitrarily complex data structures. The values of those
types, that can be sent in signal messages, are UML instances. The instances have slots,
which contain values for each attribute of the structured data type. Recursively, a struc-
tured data type can contain attributes of other structured types. In this case, an instance
slot contains a reference to another instance. If a value for an instance slot is not known or
not important, it can be empty. As with arguments in signal messages, an instance slot may
contain a LiteralNull to explicitly indicate an omitted value or it might contain an arbi-
trary string value, which is marked with one of the UTP wildcard stereotypes LiteralAny
or LiteralAnyOrNull.

3.2 Constraining SWEUTP

The SWEUTP restrictions presented in this section are realized as OCL constraints. More
precisely, the syntax corresponds to the OCL variant of the OCL Eclipse project [4]. This
implementation contains some operations not available in the specification of OCL [35],
for example, getAppliedStereoypes() and returnResult (), which slightly simplify the
expressions.

The constraints presented here prescribe the structure of models that are conformant to
SWEUTP. The context is always a UML metaclass, which means that the constraints are
applied to elements of the M2-level. The context is not given specifically in a context
definition, because all the constraints start with the name of the respective metaclass.

The test context is the container for the test configuration and the test cases. That is why
every SWEUTP model has at least one test context. The following constraint ensures this.
It is applied to all the instances of the metaclass Class that are contained in the model, i.e.,
all the classes in class diagrams. Only the classes that have the stereotype TestContext
applied to them are selected and the constraint ensures that this collection contains at least
one element.

1 Class.alllnstances()->select(getAppliedStereotypes()->
2 exists(name=’TestContext’))->notEmpty ()

An SWEUTP model can contain more than one test context. In that case, each of the test
cases is in its own package. This is stated by the next two constraints. The first constraint
selects all the test cases and returns true, if every one of them is owned by a package. In
contrast to that, the owner of a class in UML can also be for example another class. The
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second constraint ensures that the owner of every test context is unique, i.e., there are no
two packages with test contexts that are the same.

1 Class.alllInstances()->select(getAppliedStereotypes()->

2 exists(name=’TestContext’)) .owner—->

3 forAll (oclIsTypeOf (Package))

4

5 Class.allInstances()->select(getAppliedStereotypes()—>
6 exists(name=’TestContext’))->isUnique (owner)

Each of the test contexts in the model has a classifier behavior. This behavior is an activity
that contains instructions for executing the test cases, i.e., it models the test control. The
following two constraints are used to ensure this. The first constraint checks for each test
context, if its classifierBehavior property is not empty. Since it must be an activity, the
second constraint makes sure that the classifier behavior is of type Activity.

Class.allInstances()->select(getAppliedStereotypes()->
exists(name=’TestContext’))->forAll(classifierBehavior->
notEmpty ())

1
2
3
4
5 Class.allInstances()->select(getAppliedStereotypes()->

6 exists(name=’TestContext’))->forAll(classifierBehavior.

7 oclIsTypeOf (Activity))

The test configuration is given in the composite structure of the test context. It contains
parts, ports and connectors. The next constraint returns true, if at least one part is contained

in every test context. A part is an attribute that has its property isComposite set to true.

1 Class.allInstances()->select(getAppliedStereotypes()->
2 exists(name=’TestContext’))->forAll (ownedAttribute->
3 exists(isComposite))

The composite structure of the test context in an SWEUTP model always contains parts,
which are either test components or an SUT. This constraint selects all test context attributes
for which isComposite is true, and examines them. A part is an SUT, if the SUT stereotype
is applied to it. In contrast to that, a test component part is not stereotyped directly. The
stereotype TestComponent must be applied to its type, i.e., the classifier that represents the
test component.

1 Class.allInstances()->select(getAppliedStereotypes()->

2 exists(name=’TestContext’)).ownedAttribute->

3 select (isComposite)->forAll(getAppliedStereotypes()—>
4 exists(name=’SUT’) or type.getAppliedStereotypes()->
5 exists(name=’TestComponent’))

In SWEUTP, the messages between the test components and the SUT are exchanged
through ports. This means, that the connectors in the test configuration always connect
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ports, and never directly the parts. This restriction is stated by the following constraint.
Each end of every connector in the model contains the property role, which must be of
type Port.

1 Connector.allInstances().end.role->forAll (oclIsTypeOf (Port))

Each port has a type, which is represented by a classifier. The next constraint ensures
this by checking for every port in the model, if its type property is set.

1 Port.allInstances()->forAll (type->notEmpty())

Since test cases only make sense, if there is an SUT to be tested, the test configuretion
of each test context contains a part representing the SUT. This constraint analyzes every
test context and checks, if it contains a part among its attributes, which also has the SUT
stereotype applied to it.

1 Class.alllnstances()->select(getAppliedStereotypes()->

2 exists(name=’TestContext’))->forAll (ownedAttribute->
3 select (isComposite)->exists(getAppliedStereotypes()->
4 exists(name=’SUT’)))

The SUT in a test context is always a property. All properties must have a type, so the
next constraint makes sure that each SUT contains a reference to its type. The constraint
selects all attributes of all test contexts, filtrates all SUTs from the resulting collection, and
checks, if the type property of each SUT is not empty.

1 Class.allInstances()->select(getAppliedStereotypes()->

2 exists(name=’TestContext’)).ownedAttribute—>
3 select(getAppliedStereotypes()->exists (name=’SUT’))->
4 forAll (type->notEmpty())

The main behavior in SWEUTP is given by test cases. A model conforming to SWEUTP
contains at least one test case. Test cases are represented by operations in the test con-
text, which are stereotyped by TestCase. This next constraint analyzes all operations of
every test context, and checks, if at least one operation exists that contains the stereotype
TestCase.

1 Class.alllnstances()->select(getAppliedStereotypes()->
2 exists(name=’TestContext’))->forAll (ownedOperation.
3 getAppliedStereotypes () ->exists(name=’TestCase’))

The test case operations do not contain the behavior for the test cases. They only point
to the right behavior, which is located elsewhere in the model. In SWEUTP, the behavior
type for test cases is interaction. The constraint below selects all the test case operations of
all test contexts and ensures for each operation, that it includes the property method, which
points to the behavior, as well as that the referenced behavior is of type Interaction.
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1 Class.allInstances()->select(getAppliedStereotypes()->

2 exists(name=’TestContext’)) .ownedOperation—>

3 select(getAppliedStereotypes()->exists(name=’TestCase’))->
4 forAll (method->notEmpty ()

5 and method->oclIsTypeOf (Interaction))

SWEUTP supports the three interaction operators alt, opt, and loop. The next con-
straint selects all instances of the CompinedFragment metaclass and checks for each of them,
if the interactionOperator property is set either to the enumeration literal alt, the enu-
meration literal opt, or the enumeration literal 1oop.

1 CombinedFragment.allInstances()->

2 forAll(interactionOperator=InteractionOperatorKind::alt
3 or interactionOperator=InteractionOperatorKind::opt
4 or interactionOperator=InteractionOperatorKind::loop)

All the messages used by the test components to stimulate the SUT, as well as the answer
messages from the SUT, have names. The messages used for communication in SWEUTP
are asynchronous messages containing signals. The following constraint analyzes all mes-
sages and returns true, if all the messages of the sort asynchSignal have a name which
does not equal to an empty string.

1 Message.allInstances()->
2 select (messageSort=MessageSort: :asynchSignal)->
3 forAll (name<>’’)

3.3 The SWETest Metamodel

SWETest is a metamodel designed specifically for representing tests. It belongs to the M2-
level and is comparable to the UML metamodel with UTP. However, it is a much sim-
pler metamodel, containing only metaclasses for testing purposes. SWETest conforms to
the Ecore metamodel, hence Ecore is in this context a metametamodel. Since SWETest is
a metamodel, the Ecore EClass element is called metaclass in the following. All the other
Ecore elements are also not referred to by the specific Ecore names. For example, an EPack-
age is just called package and an EAttribute is called attribute. In this section, the SWETest
metamodel is mostly described from the perspective of a possible model that conforms to
SWETest. For example, ‘a test case’” means here "an instance of the TestCase metaclass’.
So, if no metaclass name is mentioned specifically, a model from the M1-level is being
described.

All SWETest metaclasses are contained in the package swetest_mm (Figure 3.3). The
metaclass Model defines the container for all the classes of models conforming to SWETest.
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a4 f swetest_mm
4 H Model
5 testSuite : TestSuite

4 f testElements
- [ TestSuite
- H TestContext
- H SUT -» ConnectableElement
- H TestCompenent -> ConnectableElement
- H Port -> ConnectableElement
- H TestData
- H PortType
. DataPool
. [ Arbiter -> ConnectableElement
- TestConfiguration
- H Connector
- [ Timer

. H activities

. & interactions

. 8 datatypes

. expressions
Figure 3.3: Overview of the SWETest metamodel

The rest of SWETest is partitioned in five packages containing further metaclasses. The par-
titioning is only used for structuring purposes, i.e., the metaclasses from different packages
can have relations to each other. The separate packages are described below.

* The package testElements contains metaclasses to model the static structure of tests.
A test suite, for example, represents a consistent and independent testing unit with
its own test context, test components, an arbiter, and test data definitions. The SUT
is also represented by a metaclass. The test components and the SUT contain ports to
communicate with each other.

¢ The activities package holds metaclasses that model behaviors containing actions.
The actions are modeled as activity nodes connected by activity edges.

* Metaclasses for modeling the behavior of test cases and defaults are contained in the
package interactions. Interactions consist of lifelines, which refer to test compo-
nents, arbiters, and the SUT from the package testElements. The communication
between those elements is modeled by messages sent between the lifelines.

¢ All the metaclasses that define data are contained in the datatypes package. This
includes data for the messages as well as parameter and argument definitions for
interactions and activities.
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H Model
testSuite
0.*
TestContext ;
ED e testContext E TestSuite testData 0.1 E TestData
= name
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testComponent
= testConfiguration E] sut | 0.1
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H Timer
0. = name
H Connector = durationDefault
o 0.
. 0. E PortType
port g port *- [
[# = name
0.2 type 0.1
| Ed

Figure 3.4: The testElements package of SWETest

* In the package expressions, metaclasses to represent conditions are contained. For
every boolean expression operator like ‘equals” or ‘and’ there is a corresponding
metaclass that holds the operands which can be simple values or again operator
metaclasses.

In Figure 3.4, all the metaclasses of the package testElements and their relations to each
other are displayed. Additionally, all the relations to metaclasses from the other packages
are shown in Figure 3.5. A model can contain an arbitrary number of test suites. A test
suite can hold elements described in the following enumeration.

e The test context serves as a container for the test cases, modeled as interactions, and
a test control, modeled as an activity (3.5). Other interactions and activities can be
referred to with the corresponding references. Attributes and one test configuration
can also be contained in the test context.

* The test data element holds all the data definitions. Signals and port types are in-
cluded directly in the test data. All the data types and instances are contained in its
child element data pool.
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Figure 3.5: Relations of test elements to elements in other SWETest packages
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¢ The three active test elements test component, arbiter, and SUT are descendants of
the connectable element, which is used for references from lifelines. An arbiter can
contain activities. A SUT and a test component can have activities, interactions, and
ports. Additionally, test components can contain timers with duration defaults.

The test configuration from the test context consists of connectors. Each of the connectors
has at most two references to ports. A port contains a reference to its type, which itself
references a number of signals.

An activity can have parameters, activity edges, and activity nodes as its children (Fig-
ure 3.6). The activity edge and the activity node have references to each other. An activity
node can refer to arbitrarily many incoming and outgoing edges. An activity edge, in con-
trast, can only have at most one node as its source reference and one node as its target
reference. A Condition class can be contained inside an activity edge. The ActivityNode
metaclass has descendants, which are described below.

* An activity parameter node is a means of storing a reference to a parameter of the
activity.

¢ A call behavior action can have arguments and refers to an interaction.

* The other six actions represent behavior indicated by their names. A log action con-
tains an attribute called value, which stores data to be logged.

* Decision and merge nodes are nodes for conditional execution.

* An object node represents an object, whose type is given by the referenced DataType
metaclass.

The contents of the interactions package are displayed in the Figure 3.7. The parts of
an interaction are parameters (see below), lifelines, and interaction fragments. An interac-
tion fragment points to the lifelines it belongs to through its reference covered. A lifeline
has a type, which is a connectable element. Moreover, a lifeline can contain a number of
defaults, each of them referencing to an interaction, in which their behavior is specified.
The metaclass InteractioinFragment is a superclass for other metaclasses, representing
more specific concepts.

¢ An interaction use stands for a call of another interaction. The link is stored in the
interaction reference. If the referenced interaction contains parameters, the inter-
action use can contain arguments, represented as value specifications.

* An interaction fragment can be a message. Since messages are sent from one life-
line to another, the Message metaclass contains the references sourceLifeline and
targetLifeline. More specialized messages are call messages and signal messages.
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Figure 3.6: The activities package of SWETest and relations to elements from other packages
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Figure 3.7: The interactions package of SWETest and relations to elements from other packages
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A call message stores a reference to an activity to be called. A signal message refers
to a signal, which can contain a number of attributes. Signal messages are sent from
one port to another, which is why they have references to source and target ports.

* A combined fragment consists of interaction operands, which can contain a condition
defining a guard for their execution. An interaction operand contains again interac-
tion fragments.

The metaclasses in the package datatypes represent data concepts (Figure 3.8). The ele-
ment ValueSpecification is the superclass for all metaclasses representing data values. A
literal specification can be either a wildcard value or a value of a primitive type. The value
attribute stores the actual value of the respective type. An instance of the VariableName
metaclass holds a string value of a variable name. NativeCode may be used to store some
platform-specific code. A timer reference is a link to a timer from the testElements pack-
age. A duration value contains a value specification to store either a literal float or a vari-
able name.

An instance value has a reference to an instance specification, which stores a number of
value specifications. The referenced data type defines the structure for its instance specifi-
cations by containing attributes, which again reference DataType instances for the defini-
tion of their types. An attribute can have default value specified as a value specification.
Like the attributes, parameters also refer to a data type. A data type with no inner structure
may have the redefines attribute set, which indicates what other type this one is having
as a base.

The last possible value specification is an enumeration value. It stores an enumeration
literal and references the enumeration containing that literal. Enumeration is a subclass
of DataType and consists of enumeration literals. The value in the enumeration literals is
stored as a string value.

The package datatypes additionally contains four enumerations, displayed in Figure 3.9.
These enumerations can only define static values and should not be confused with the pre-
viously described metaclasses that store user-defined dynamic enumeration values. The
enumeration ParameterDirectionKind is used in parameters to specify their direction in
the activity or interaction. The MessageSort enumeration describes the kind of a message.
A verdict can have the values defined in the Verdict enumeration. The last one, which
is called InteractionOperatorKind, consists of literals specifying the kind of a combined
fragment.

The expresions package holds metaclasses to define boolean conditions. The metaclass
Condition contains a containment reference to Expression, which is a superclass for sev-
eral more specific expression kinds. An expression can be itself a value specification. So, a
‘not” expression can have as its operand attribute either a value, or recursively another ex-
pression. Similarly, all the binary expressions have two operands, which can be values or
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Figure 3.8: datatypes package of SWETest and relations to elements from other packages
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Figure 3.11: Transformation from SWEUTP to SWETest

expressions. The Else metaclass represents a special kind of expression used in combined
fragments of type alt.

3.4 SWEUTP to SWETest Transformation

The first step of producing code for test cases from an SWEUTP model is to transform
the model into a simplified, more manageable model. This intermediate model conforms
to the SWETest metamodel specified in the previous section. In this section, the transfor-
mation of an SWEUTP model into an SWETest model is described. Figure 3.11 shows an
overview of the transformation process. It can be compared to a model to model transfor-
mation in MDA. However, there are some differences to that method, which are listed in
the following.

¢ The target model does not conform to a metamodel that conforms to MOF. The
metametamodel used here is Ecore, which is similar to a subset of MOF called Es-
sential MOF (EMOF).

¢ The transformation language is not a metamodel, but is defined as a textual notation.
However, in the sense of MDE, the language can be viewed as a metamodel and the
concrete transformation definitions as a model.
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* MDA defines the transformation of a platform-independent model into a platform-
specific model before generating code. In contrast to that, both SWEUTP models and
SWETest models are platform-independent. SWETest can be viewed as a version of
SWEUTP that is simplified and more structured.

The transformation process is described below in terms of mapping rules in tables. Each
line in a table defines a mapping from left to right. There are three kinds of rules that
can be contained in a table: rules for metaclasses, for metaattributes, and for metaclass
references’. The tables show the types of the elements? involved in the transformation, i.e.,
the metaclasses or the metaattributes from the corresponding metamodels. However, the
meaning is that each element of the given source type maps to one element of the given
target type. The definitions for UML metaclasses (which are reused in SWEUTP) can be
found in Appendix A and in in the UML specification [38].

The rules also define the context of the current element in the respective model. For
SWEUTP metaclasses, the context is given informally, explaining where in the model the
element of that type is placed. The formal definition of the context is not possible here,
because the SWEUTP metamodel does not specify a strict structure for the placement of
all the elements. Therefore, elements in an SWEUTP model could be scattered, only con-
nected by references. In contrast to that, each SWETest element has a specifically defined
parent element. The context of the SWETest metaclasses is given as a prefix to the meta-
class name. The prefix consists of names of the container metaclasses that precede the
current metaclass in the SWETest metamodel, separated by colons. In some cases however,
the absolute context in SWETest cannot be given, because there are several possibilities or
even an infinite number of possibilities due to recursive structures. In that situation, only a
relative context is specified, starting with three dots. The context of the metaattributes and
references is always specified as an OCL-like path from the current metaclass. The target
metaclass of a reference is always given after an arrow. To achieve a better overview, the
context of the target metaclass is omitted.

Main Test Containers

Test cases, test components, and all the other elements necessary to design a complete test
are included in a container. In SWEUTP, that container is a package. In an SWETest model,
all the test elements are contained in a test suite. Several of those packages or test suites
can be bundled inside a model. First, the transformation rules for those containers are de-
scribed.

'In the Ecore language, this kind of reference is a non-containment reference. The other kind of reference,
containment reference, is defined as parent—child relations in the text between the tables

2The word element is used here both to refer to an instance of a metaclass and to an attribute of such an
instance
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SWEUTP element SWETest element
Model Model

An SWEUTP Model element that contains the entire model is transformed into a cor-
responding SWETest Model element, which also serves as a container for all other model
elements. Since both elements are the top level containers in the respective models, and
both models contain exactly one element of the respective type, the transformation is fin-
ished when the one is mapped to the other. All the other elements are either direct or
indirect children of the two Model elements and are transformed in the process as defined
by the rules in the following.

SWEUTP element SWETest element
Package containing a class with stereotype | Model:TestSuite
«TestContext»

Package.name TestSuite.name

The source model contains one or more test contexts, which are all placed in separate
packages. For each of those packages, there is a test suite in the target model. The name
of the corresponding package is taken as the name for the test suite. An SWETest model
always consists of one or more test suites, because the TestSuite elements are the only
children of the SWETest Model element. A test suite is a self-contained unit, which has all
the necessary information to test a system. That information is contained in the elements
inside the the test suite, which are described in the following subsections.

Data Definition Elements

The elements discussed in this subsection define types for data values, ports, and signals.
These elements are used as types for references by other SWETest elements. For that rea-
son, transformations including the data definition elements are discussed here first so that
the other transformations can be described later completely.

SWEUTP element SWETest element
Package of the test context Model:TestSuite:TestData

For each package with a test context in the SWEUTP model, there exists a TestData el-
ement in the SWETest model. More precisely, the data in that SWEUTP package is used
by the descendants of the TestData element. The test data is a container for all elements
storing data related information.
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SWEUTP element SWETest element
Signal referenced by a send signal event | Model:TestSuite:TestData: Signal
Signal .name Signal.name

SWEUTP signals map to SWETest signals. Since SWEUTP Signal elements can be placed
anywhere in the model, only signals that are actually used are selected. This means that
only signals sent between the test components and the SUT become Signal elements in
SWETest and are placed as children into the test data. The name of each signal in the
source model is the same as the new name in the target model.

SWEUTP element SWETest element

Class referenced as type for a port in the | Model:TestSuite:TestData: PortType
SUT or a test component
Class.name PortType.name

Class.attribute.type — Signal PortType.signal — Signal

In SWEUTP, each port has a type modeled as a class. For each of such classes that are
actually referenced from a port, there exists a PortType element in the SWETest model.
The corresponding name of the class is taken for the name of the port type. A port type in
SWEUTP can contain a number of references to signals, which are types of its attributes.
Those references map to signal references in SWETest that point to corresponding Signal
elements.

SWEUTP element SWETest element
Package of the test context Model:TestSuite:TestData: DataPool

For each package containing a test context in SWEUTPD, there is a DataPool element in
SWETest. The package does not map to the corresponding data pool, but the data in the
package is used for transformations involving the children of the data pool. The data pool
is a container for all instances and data types that are not used to define ports or signals,
but rather to define values to be sent in messages.

SWEUTP element SWETest element
Classifier referenced in an instance | Model:TestSuite:TestData:
specification, attribute, or parameter as | DataPool:DataType

type
Classifier.name DataType.name
Classifier.baseClassifier DataType.redefines

The package of the test context (including the test context itself) can contain instance
specifications, attributes, and parameters, which have type references. Each classifier de-
fined as type in one of those elements is mapped to a DataType element in SWETest. The
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value of the name attribute is mapped correspondingly. If the baseClassifier attribute in
the classifier is set, then it is taken as the value for the redefines attribute.

SWEUTP element SWETest element
Enumeration referenced in an interaction Model:TestSuite:TestData:
DataPool :Enumeration

Enumeration.name Enumeration.name

Each enumeration that is used in a test case or another interaction in the SWEUTP model
maps to an enumeration in the SWETest model. Like data types, enumerations in SWETest
are children of a data pool. The name of the source element is the same as the name of the
target element.

SWEUTP element SWETest element
EnumerationLiteral inside an enumera- | Model:TestSuite:TestData:
tion DataPool:Enumeration:

EnumerationLiteral
EnumerationLiteral.name EnumerationLiteral.name
EnumerationlLiteral.specification. EnumerationLiteral.value
body

Like the enumerations in SWEUTP, the enumerations in SWETest consist of enumeration
literals. Besides the name of the literal, a specification can be present in SWEUTP. This is
an opaque expression whose body property specifies the constant that the literal represents
in the enumeration. This property becomes a value attribute in the SWETest enumeration
literal.

SWEUTP element SWETest element
InstanceSpecification referenced from | Model:TestSuite:TestData:

an instance value in a message as argu- | DataPool: InstanceSpecification
ment

InstanceSpecification.name InstanceSpecification.name
InstanceSpecification.classifier — | InstanceSpecification.type —
Classifier DataType

The last kind of children of the data pool in SWETest are instance specifications. For each
instance specification in SWEUTP that is actually sent in a message as argument, there is
an instance specification in SWETest with the same name. The reference to a classifier in
SWEUTP becomes a type reference to a DataType element in SWETest.
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Test Structure Elements

The main static elements of a test are the test context and active test elements like test com-
ponents, arbiters, and the SUT. These elements define the structure of a test specification.
In this subsection, the transformations involving such elements are defined.

SWEUTP element SWETest element
Property of the test context with stereo- | Model:TestSuite:SUT
type «SUT»

Property.type.name SUT .name

Each test context in an SWEUTP model contains a stereotyped property that represents
the SUT. This property becomes a SUT element in the SWETest model. The SUT property
in SWEUTP has a type, which is a class and is referenced by the type attribute. The name
of that class is the same as the name of the SUT in the SWETest model.

SWEUTP element SWETest element

Class with stereotype «TestComponent», | Model:TestSuite: TestComponent
referenced as type for a part in the test con-
text

Class.name TestComponent .name

In SWEUTP, test components are specified as classes with TestComponent stereotypes.
Those classes actually serve as types for test component instances in the test context, which
participate in test cases. Such an instance is a property of the test context, or, more precisely,
a part in the composite structure of the test context. Each class serving as a type for such
a property maps to a TestComponent element in the SWETest model, including the name
attribute.

SWEUTP element SWETest element

Port inside a SUT type Model:TestSuite:SUT:Port

Port inside a test component Model:TestSuite:
TestComponent :Port

Port.name Port.name

Port.type — Class Port.type — PortType

In SWEUTP, there are ports inside test components and the SUT, which are used to trans-
fer messages with signals. Each of those ports maps to a port in SWETest and is a child of
the corresponding test component or SUT. The respective name of the port is mapped to a
name attribute. The type of the port, which is a class in SWEUTP, becomes a reference to a
PortType element.
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SWEUTP element

SWETest element

Property of a test component with the
type “Timer’

Model:TestSuite:
TestComponent:Timer

Property.name

Timer.name

Property.defaultValue.body

Timer.durationDefault

Test components can contain properties that represent timers. For each of those prop-
erties, there is a Timer element in SWETest with the same name as the property. If there
exists an opaque expression in the attribute defaultValue, the body of the expression is
mapped to a durationDefault attribute in the SWETest timer.

SWETest element
Model:TestSuite:Arbiter

SWEUTP element

Class with stereotype «Arbiter», refer-
enced as type for an attribute in the test
context

Class.name

Arbiter.name

Similar to the test components above, there are classes in the SWEUTP model that repre-
sent arbiter types, i.e., those are used as types for arbiter instances in the test context. Each
of those classes corresponds to an Arbiter element in the test suite of the SWETest model.

SWEUTP element SWETest element

Property of the test context, type name is | Model:TestSuite:Arbiter
"Arbiter’

Property.type.name Arbiter.name

As an alternative to using a class for an arbiter type in SWEUTP, an interface named
Arbiter can serve as type for a test context property. In this case, the property itself maps
to an Arbiter element in SWETest. The name attribute of the property’s type is taken as
name for the arbiter in SWETest.

SWETest element
Model:TestSuite:TestContext
TestContext.name

SWEUTP element
Class with stereotype «TestContext»
Class.name

Each class stereotyped as TestContext in SWEUTP becomes a respective TestContext
element in SWETest. The name of the class corresponds to the name of the test context in
SWETest. The test context in SWETest contains children representing the test configura-
tion, test cases, the test control, and other behavioral features. Transformations involving
those children are described next.
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SWEUTP element SWETest element
Composite structure of Class with stereo- | Model:TestSuite:TestContext:
type «TestContext» TestConfiguration

Each test context in SWEUTP contains a composite structure which represents the test
configuration. Each of those composite structures corresponds to a TestConfiguration
element in SWETest.

SWEUTP element SWETest element
Connector inside test context Model:TestSuite:TestContext:
TestConfiguration:Connector

Connector.end.role — Port Connector.port — Port

A composite structure of a test context contains ports connected by connectors. For each
of the connectors there is a corresponding Connector element in SWETest inside the test
configuration. The ports in SWEUTP are referenced by the role attribute of connector
ends. Each of those roles maps to a port reference in SWETest. The referenced port can be
either inside a SUT or inside a test component.

SWEUTP element SWETest element

Property inside test context Model:TestSuite:TestContext:
Attribute

Property inside signal Model:TestSuite:TestData:
Signal:Attribute

Property inside class or data type Model:TestSuite:TestData:
DataPool:DataType:Attribute

Property.name Attribute.name

Property.type — Type Attribute.type — DataType

Properties are structural features of test contexts, signals, classes, and data types. A
property from SWEUTP is always mapped to an Attribute element inside the according
element in SWETest. The name of the property is taken as the name for the attribute. The
reference to the type of the property becomes a reference to a corresponding DataType
element in SWETest.

Interactions

Interactions can be contained in several elements in both models. An interaction is used to
define a test case, a general function, or the implementation of a default. The transforma-
tion rules for interactions and their structure elements are defined next.
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SWEUTP element SWETest element

Interaction inside test context Model:TestSuite:TestContext:
Interaction

Interaction inside test context with | Model:TestSuite:TestContext:

stereotype «TestCase» Interaction as testCase

Interaction inside test component Model:TestSuite:
TestComponent:Interaction

Interaction inside SUT Model:TestSuite:SUT: Interaction

Interaction.specification.name or | Interaction.name

Interaction.name

An interaction inside a test context, a test component, or a SUT is transformed into an
interaction inside a corresponding element in SWETest. A special case of interaction is a
test case. In SWEUTTD, a test case can only occur inside a test context. Such an interaction is
transformed to an Interaction element and is placed inside the test contextin SWEUTP as
a child named testCase. An interaction in SWEUTP can have a specification attribute
set, i.e., there is an operation pointing to this interaction. In this case, the name of the op-
eration is preferred and taken as the name for the interaction in SWETest. Otherwise, the
name of the source interaction is mapped to the name of the target interaction.

SWEUTP element SWETest element

Lifeline inside interaction ...:Interaction:Lifeline
Lifeline.represents Lifeline.type — ConnectableElement
— ConnectableElement

Lifelines contained in interactions also map to lifelines in SWETest. The reference called
represents that points to a connectable element becomes a type reference in SWETest,
which also points to an according connectable element. This is a generalized rule for three
other elements, since the connectable element is in SWETest a superclass for SUT, test com-
ponent, and arbiter.

SWEUTP element SWETest element

Comment in an interaction annotating a life- | ... :Interaction:Lifeline: Default
line and starting with ‘default’

Substring of Comment .body | Default.defaultInteraction

— Interaction — Interaction

The use of a default in SWEUTP is represented by a comment that starts with the string
‘default’ and is attached to a lifeline. For each of those comments, there exists a Default
element in SWETest as child of a lifeline. The substring of the body attribute following
‘default’ is a name of an interaction specifying the behavior of the default. The reference
defaultInteraction refers to the interaction in SWETest that has that name.
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The elements specifying the behavior of an interaction are interaction fragments. In both
models, the element named InteractionFragment is a supertype for other, more special-
ized elements. In the following, the transformations of the subtypes of the interaction

fragment are defined.

SWEUTP element SWETest element
InteractionUse in an interaction ...:Interaction: InteractionUse as
fragment

InteractionUse.refersTo
— Interaction

InteractionUse.interaction
— Interaction

InteractionUse.covered — Lifeline

InteractionUse.covered — Lifeline

An interaction use is an interaction fragment that specifies the call of another interac-
tion. The element in SWEUTP is transformed to a corresponding element in SWETest and
placed in an interaction. The refersTo attribute in SWEUTP holds a reference to the called
interaction and is mapped to an interaction attribute in SWETest. The references to the
covered lifelines in SWEUTP are the according references in SWETest to the mapped life-

lines.

SWEUTP element

SWETest element

MessageOccurrenceSpecification thatis
received by a lifeline, with a send signal
event

...:Interaction:SendMessage
fragment

as

message.sendEvent.covered
— Lifeline

MessageOccurrenceSpecification. SendMessage .name
message.name

MessageOccurrenceSpecification. SendMessage .messageSort
message.messageSort

MessageOccurrenceSpecification. SendMessage.signal — Signal
event.signal — Signal

MessageOccurrenceSpecification. SendMessage.sourcelLifeline

— Lifeline

MessageOccurrenceSpecification.
covered — Lifeline

SendMessage.
— Lifeline

targetLifeline

The two last ones above

SendMessage.covered — Lifeline

MessageOccurrenceSpecification.
message.connector.end.role — Port

SendMessage.sourcePort — Port

MessageOccurrenceSpecification.
message.connector.end.role — Port

SendMessage.targetPort — Port
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In SWEUTP, there are two kinds of message occurrence specifications at the receiving
end of a message: those that reference a send signal event and those that do not. The
transformation for the first kind is defined in the table above. Such a message occurrence
specification maps to a SendMessage element in SWETest. Since it is also an interaction
fragment, the send message is placed in the interaction in the attribute named fragment.
The two attributes name and messageSort of the message reference become attributes of
the send message with the same names. The occurrence specification has a reference to
an event. The reference to a signal in this event becomes a reference to the corresponding
signal in the SWETest model.

All the references to the involved lifelines and ports are also transformed to SWETest
references. In SWEUTP, references to the source lifelines are stored in message occur-
rence specifications that belong to send points of messages. The current message oc-
currence specification belongs to the receive end of the message, so its counterpart can
be found through the sendEvent reference of the message. The covered association that
points to the lifeline sending the message is mapped to the reference sourceLifeline in
SWEtest. The covered association from the current occurrence specification becomes a
targetLifeline reference. Additionally, both associations are mapped to a multivalued
attribute named covered in SWETest. References to the ports through which the message
is sent are mapped to corresponding references in SWETest. In SWEUTP, the ports are ref-
erenced in the connector ends as role associations. The connector end that belongs to the
source lifeline holds the outgoing port. The reference to that port maps to a correspond-
ing reference named sourcePort. Similarly, the reference to the receiving port in SWEUTP
maps to a reference named targetPort.

SWEUTP element SWETest element
MessageOccurrenceSpecification thatis | ... :Interaction:CallMessage as
received by a lifeline, without a send sig- | fragment

nal event

MessageOccurrenceSpecification. CallMessage.messageSort
message.messageSort

MessageOccurrenceSpecification. CallMessage.operation — Activity
event.operation.method — Activity

MessageOccurrenceSpecification. CallMessage.sourcelLifeline
message.sendEvent.covered — Lifeline

— Lifeline

MessageOccurrenceSpecification. CallMessage.targetlLifeline
covered — Lifeline — Lifeline

The two last ones above CallMessage.covered — Lifeline
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If a message occurrence specification does not have a send signal event, it means that
the associated message is a call message, which references an operation to be executed.
That occurrence specification is transformed to a call message in SWETest. The value of
the message sort from the associated SWEUTP message is copied to the corresponding
messageSort attribute in the call message. In SWEUTP, the message occurrence specifi-
cation contains a reference to an event that refers to an operation. The behavior of the
operation is specified by an activity, which is referenced by the method attribute of the op-
eration. That activity maps to an SWETest activity, which is linked from the call message
by the attribute operation. The transformations for the source and target lifelines, as well
as for the covered attribute, are the same as the ones for send messages described above.

SWEUTP element SWETest element

CombinedFragment in an interaction ...:Interaction: CombinedFragment as
fragment

CombinedFragment. CombinedFragment.

interactionOperator interactionOperator

CombinedFragment.covered — Lifeline | CombinedFragment.covered — Lifeline

The last kind of interaction fragments in SWEUTP is the combined fragment. A com-
bined fragment is mapped to an SWETest element with the name CombinedFragment and,
like the other fragments, put into the fragment attribute of the interaction. The interac-
tion operator and the covered reference are transformed to the corresponding SWETest
elements with the same names.

SWEUTP element SWETest element
InteractionOperand inside a combined | ...:Interaction: CombinedFragment:
fragment InteractionOperand as operand

A combined fragment consists of interaction operands in both models. An interaction
operand is a container for interaction fragments, i.e., it can contain messages, interaction
uses, or other combined fragments. Like in an interaction, the fragments here are contained
in a multivalued attribute named fragment. The transformation rules for the interaction
fragments are defined above.

Activities

Like interactions, activities can be contained inside several possible elements in both mod-
els. An activity can represent supporting behavior for the test cases, e.g., execution of a
timer, as well as the ordered execution of the test cases, i.e., the test control. In the follow-
ing, the transformation rules for activities and their containing children are described.
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SWEUTP element

SWETest element

Activity that is the classifier behavior in-
side a test context

Model:TestSuite:TestContext:
Activity as testControl

Activity.name

Activity.name

The classifier behavior of a test context is an activity in SWEUTP. It is used as a control
behavior for test cases that are also contained in the test context. That activity is trans-
formed to an activity in SWETest with the same name. In SWETest, the activity is a child

named testControl inside the test context.

SWEUTP element

SWETest element

Operation inside a test component

Model:TestSuite:
TestComponent:Activity

Operation inside an arbiter

Model:TestSuite:Arbiter: Activity

Operation.name

Activity.name

SWEUTP operations in test components and arbiters also map to activities in SWETest.
The parent and the name of the operation are the same as the parent and the name of the
corresponding activity. If the operation contains a reference to an activity, then the the in-
ner structure of the SWEUTP activity is transformed to corresponding elements that are
children of the SWETest activity. An activity mainly consists of activity nodes and activity
edges. Transformation rules for those elements are discussed next.

SWEUTP element

SWETest element

ActivityNode inside activity

...tActivity:ActivityNode

ActivityNode.incoming
— ActivityEdge

ActivityNode.incoming
— ActivityEdge

ActivityNode.outgoing
— ActivityEdge

ActivityNode.outgoing
— ActivityEdge

An activity node is in SWETest again an activity node. This rule is a general rule for all
subtypes of the ActivityNode element, both in SWEUTP and in SWETest. Each activity
node contains references to incoming edges and references to outgoing edges. The ref-
erences are mapped to corresponding references in SWETest. In the following, the rules
involving concrete activity nodes are defined.

SWEUTP element

SWETest element

SendObjectAction with stereotype ‘Lo-
gAction” inside activity

...tActivity:LogAction

SendObjectAction.target.value
or SendObjectAction.request.value

LogAction.value
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Each send object action in SWEUTP that is stereotyped as log action becomes a LogAction
element in SWETest. A send object action might have the value of either the target or the
request attribute set. That value maps to a value attribute of the log action in SWETest.

SWEUTP element SWETest element
CallBehaviorAction inside activity ...tActivity: CallBehaviorAction
CallBehaviorAction.behavior CallBehaviorAction. interaction
— Interaction — Interaction

A call behavior action also maps to a call behavior action. In SWEUTP, a call behavior ac-
tion has a reference called behavior that points to the interaction that should be executed.
This reference corresponds to the interaction reference in SWETest.

SWEUTP element SWETest element
CallOperationAction referring to opera- | ...:Activity: CallBehaviorAction
tion with stereotype “TestCase’ inside ac-

tivity

CallOperationAction.operation. CallBehaviorAction. interaction
method — Interaction — Interaction

A call operation action in SWEUTP might refer indirectly to an interaction that imple-
ments a test case by containing a reference to a test case operation. In this case, the call
operation action is transformed to a call behavior action like in the previous rule. Here, the
method reference of the contained operation becomes the reference to the called interaction
in SWETest.

SWEUTP element SWETest element
CentralBufferNode inside activity ...:Activity:0bjectNode
CentralBufferNode.name ObjectNode.name
CentralBufferNode.type — Classifier | ObjectNode.type — DataType

Central buffer nodes are used to store a value or an object of a certain type. For each
central buffer node in SWEUTP, there is an object node in SWETest with the same name.
The reference to the type of the buffer node, which is a classifier, becomes a reference to a
data type in SWETest.

SWEUTP element SWETest element

ActivityParameterNode inside activity ...tActivity: ActivityParameterNode
ActivityParameterNode.parameter ActivityParameterNode. parameter
— Parameter — Parameter
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An activity parameter node refers to a parameter of the enclosing activity. The node it-
self, as well as the reference to a parameter, are transformed to corresponding elements in
SWETest.

SWEUTP element SWETest element
CallOperationAction with stereotype | ...:Activity: StartTimerAction
‘StartTimerAction” inside activity

CallOperationAction with stereotype | ...:Activity: StopTimerAction
‘StopTimerAction” inside activity

AcceptEventAction  with  stereotype | ...:Activity: TimeOutAction
‘TimeOutAction” inside activity

CallOperationAction with stereotype | ...:Activity: ValidationAction
‘ValidationAction” inside activity

OpaqueAction with stereotype ‘FinishAc- | ...:Activity:FinishAction

tion” inside activity

DecisionNode inside activity ...:Activity:DecisionNode
MergeNode inside activity ... tActivity:MergeNode

The table above shows the transformation rules for the remaining possible activity nodes.
Those nodes do not contain any attributes or references, so the rules are combined in one
table. The different kinds of stereotyped actions are transformed to actions in SWETest
with the names of the corresponding stereotypes. Decision nodes and merge nodes are
mapped to a respective DecisionNode and MergeNode elements in SWETest.

SWEUTP element SWETest element
ActivityEdge inside activity ...:Activity:ActivityEdge
ActivityEdge.source — ActivityNode ActivityEdge.source — ActivityNode

ActivityEdge.target — ActivityNode ActivityEdge.target — ActivityNode

Activity edges represent directed connections between the activity nodes. An activity
edge is in SWETest also an activity edge. The references source and target also map to
corresponding references in SWETest.

SWEUTP element SWETest element

Parameter inside activity ...:Activity:Parameter
Parameter inside operation ...tActivity:Parameter
Parameter inside interaction ...:Interaction:Parameter
Parameter.name Parameter.name
Parameter.direction Parameter.direction
Parameter.type — Type Parameter.type — DataType
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Activities, operations, and interactions in SWEUTP can contain parameters. The param-
eters from activities and operations become parameters of activities in SWETest. Interac-
tion parameters are also children of interactions in SWETest. The two attributes name and
direction map to corresponding attributes in SWETest. The reference to the type of the
parameter becomes a reference to a DataType element.

Value Specifications

Value specifications are used in places where concrete values are needed. For example,
they can represent simple data values like strings or integers, or they can point to complex
values, i.e., instances and enumerations. The transformation rules presented in this sub-
section involve ValueSpecification elements, as well as elements of inherited types.

SWEUTP element SWETest element
ValueSpecification in a value specifica- | ... :Interaction: InteractionUse:
tion action of an interaction use, refer- | ValueSpecification as argument
enced as argument

ValueSpecification inside a message, | ...:Interaction:Message:
referenced as argument ValueSpecification as argument
OpaqueExpression inside a call message | ... :DurationValue:

as argument, type of the operation param- | ValueSpecification as value
eter is ‘Duration’
ValueSpecificationinside aslotof anin- | Model:TestSuite:TestData:

stance specification, referenced as value DataPool: InstanceSpecification:
ValueSpecification as value

ValueSpecification inside an attribute, | ... :Attribute: ValueSpecification as
referenced as defaultValue defaultValue
ValueSpecification.name ValueSpecification.name

A value specification can be contained inside several elements in SWEUTP. An inter-
action use can have arguments for the called interaction. In SWEUTP, those arguments
are represented by value specification actions containing value specifications. The value
specifications are mapped to arguments in SWETest, which are represented by Value-
Specification elements stored as argument children in an interaction use. The same
transformation is applied to value specifications inside messages. An opaque expression
inside a call message is treated as a special case if the the corresponding parameter of the
referenced operation is of type Duration. In this case, the argument is transformed into a
DurationValue element containing a value specification. The context in the target model
is cannot be specified in the table above, because the duration value is itself a value speci-
fication and thus there are a number of possible contexts.
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Instance specifications have slots, which contain value specifications. Those are trans-
formed into value specifications directly inside the corresponding instance specifications
in SWETest. Default values in attributes also become value specifications in SWETest refer-
enced as defaultValue. A value specification can have a name, which is also transformed
into a name in SWETest. However, the the name is only set if the parent is a slot in an
instance specification, because in all the other cases it is not required.

In the following, transformation rules for the subtypes of ValueSpecification are de-
fined. Since the context is the same, i.e., there is a number of possibilities, it is not given in
the following rules.

SWEUTP element SWE'Test element
Literallnteger ...:Literallnteger
Literallnteger.value LiterallInteger.value
SWEUTP element SWETest element
LiteralBoolean ...:LiteralBoolean
LiteralBoolean.value LiteralBoolean.value
SWEUTP element SWETest element
LiteralString ...:LiteralString
LiteralString.value LiteralString.value

The three elements LiteralInteger, LiteralBoolean, and LiteralString map to cor-
responding elements in SWETest. The value attribute is just copied to the SWETest version
of the attribute for each element.

SWEUTP element SWETest element
LiteralString whose value can be con- | ...:LiteralFloat
verted to a floating point number

LiteralString.value LiteralFloat.value

SWEUTP does not contain elements for storing floating point numbers. However, if a
literal string contains a value that can be parsed and transformed into a float, that string
literal becomes a FloatLiteral element in SWETest. The string value becomes a floating
point value inside the literal float.
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SWEUTP element SWETest element
ValueSpecification with stereotype | ...:LiteralAny
«Literal Any»

ValueSpecification with stereotype | ...:LiteralAnyOrNull
«Literal AnyOrNull»

LiteralNull ...:LiteralNull

SWEUTP contains three elements to specify wildcard values for matching purposes. A
value specification stereotyped as LiteralAny or LiteralAnyOrNull is transformed into a
LiteralAny and a LiteralAnyOrNull SWETest element, respectively. A literal null is just
mapped to an element also called LiteralNull.

SWEUTP element SWETest element
InstanceValue ...:InstanceValue
InstanceValue.instance InstanceValue.instance
— InstanceSpecification — InstanceSpecification

An instance value is a value specification that holds a reference to an instance specifica-
tion elsewhere in the model. Instance values map again to instance values in SWETest. The
instance reference points in SWETest to the according instance specification transformed
before.

SWEUTP element SWE'est element
InstanceValue whose instance reference | ... :EnumerationValue
points to an enumeration literal

InstanceValue.instance.name EnumeraitonValue.

enumerationLiteral

InstanceValue.instance.owner EnumeraitonValue.type — Enumeration
— Enumeration

In SWEUTP, there is no special element for values from enumerations. Instead, an in-
stance value is used as a container for a reference to an enumeration literal. Such an
instance value is transformed into an EnumerationValue element. The name of the ref-
erenced literal becomes an attribute that is called enumerationLiteral in SWETest. The
reference to the owner of the literal, which is an enumeration, maps to a type reference,
which also points to an enumeration.

Some values that are useful to model test cases do not have corresponding elements in
SWETest. Such values are represented as opaque expressions. The expressions have differ-
ent meanings in different contexts. The following rules describe transformations involving
opaque expressions.
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SWEUTP element

SWETest element

OpaqueExpression as argument in a call

...:TimerReference

message, the corresponding operation pa-
rameter is of type “Timer’
OpaqueExpression.body — Timer

TimerReference.timer — Timer

An opaque expression in SWEUTP can contain a name of a timer. Such an expression can
be contained in a call message that calls an operation. The expression is an argument for
that operation. The corresponding parameter definition of the operation must be of type
Timer. In that case, the opaque expression is transformed into a TimerReference element.
The body attribute of the expression contains the name of the referenced timer. Out of this
information, a reference called timer is produced in SWETest.

SWEUTP element

OpaqueExpression as argument in a call
message, the corresponding operation pa-
rameter is of type ‘Duration’

SWETest element

...:DurationValue

An opaque expression is also used in SWEUTP to specify a duration for a timer. Here,
the parameter type of the operation is Duration. In this case, the opaque expression is
transformed into a DurationValue element in SWETest. The duration value contains a
child element of type ValueSpecification, which is described at the beginning of this
subsection.

SWETest element

...:NativeCode

SWEUTP element

OpaqueExpression as argument in a call
message, the corresponding operation pa-
rameter is also of type ‘OpaqueExpression’
OpaqueExpression.body

NativeCode.value

For exceptional cases, it is possible to input a line of code for the target testing language
directly into an SWEUTP model. In this case, the parameter type of the called operation
must be OpaqueExpression. Such an expression is mapped to a NativeCode element and
the body of the expression is copied to the value attribute.

SWETest element
...:VariableName

SWEUTP element

OpaqueExpression as argument inside a
signal message

OpaqueExpression.body

VariableName.value

A test context can attributes with default values, that are treated like global variables in
the test cases. In that situation, it is possible to send such a variable in a signal message by
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giving the name of the attribute inside an opaque expression, which is transformed into a
VariableName element with the value attribute containing the variable name itself.

Boolean Expressions

Boolean expressions are stored inside guards in SWEUTP. A guard can occur in a com-
bined fragment of an interaction or in an edge of an activity. Transformations for guards
are defined next.

SWEUTP element SWETest element

OpaqueExpression inside activity edge, | ...:Activity:ActivityEdge:
referenced as guard Condition

LiteralString inside interac- | ...:Interaction: CombinedFragment:
tion operand, referenced as | InteractionOperand: Condition
guard.specification

SWEUTP does not define a syntax for boolean expressions, so those are just stored in-
side opaque expressions and literal strings. If an activity edge contains a guard, it is trans-
formed into a condition in SWEUTP. Interaction operands inside combined fragments can
contain guards that have a literal string with a boolean expression. Such a literal string is
also transformed into a Condition element.

SWEUTP element SWETest element
body of the OpaqueExpression from above | ...:Condition:Expression
value of the LiteralString from above ...:Condition:Expression

The two attributes body and value from the elements of the previously described trans-
formations both map to expressions in SWETest, which are contained inside a condition.
Expression is a supertype for other concrete expressions, which are described below.

SWEUTP element SWETest element
body or value containing the operator “!” | ... :Condition:Not
and one operand

SWEUTP element SWETest element
Single operand in body or value ...:Condition:Not:
ValueSpecification as operand

If the body or value from above contain the ‘not” operator displayed as an exclamation
mark and an operand, each of them maps to a Not expression in SWETest. The operand,
which in SWEUTP is represented by a substring of body or value, maps corresponds to
a value specification inside of the Not element. In SWETest, Expression inherits from
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ValueSpecification, so the operand can either be an arbitrary value from the previous
subsection, or recursively another expression.

SWEUTP element SWETest element

body or value containing two operands | ...:Condition: BinaryExpression
and a binary operator

SWEUTP element SWETest element

Left operand in body or value ...:Condition: BinaryExpression:
ValueSpecification as leftOperand

Right operand in body or value ...:Condition: BinaryExpression:

ValueSpecification as rightOperand

BinaryExpression is a supertype for other possible expressions that are described be-
low. Similar to the rules of the unary ‘not” expression, the string value from SWEUTP is
transformed into a BinaryExpression element. The two operands are again mapped to
value specifications.

SWEUTP element SWETest element

body or value containing two operands as- | ... :Condition:And

sociated with “&&’

body or value containing two operands as- | ... :Condition:0r

sociated with “| |”

body or value containing two operands as- | ... :Condition:Less

sociated with ‘<’

body or value containing two operands as- | ... :Condition:LessOrEquals
sociated with ‘<=’

body or value containing two operands as- | ...:Condition:Greater
sociated with >’

body or value containing two operands as- | ... :Condition:GreaterOrEquals
sociated with ">=’

body or value containing two operands as- | ... :Condition:Equals
sociated with ‘==’

body or value containing two operands as- | ... :Condition:NotEquals
sociated with “!=’

The table above lists the rules for all possible binary expressions. If the operator in the
SWEUTP string value is the one defined on the left, then the string is transformed into the
corresponding element on the right.
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SWEUTP element SWETest element
body or value containing the word ‘else’ | ... :Condition:Else

The last expression variant in SWEUTP contains only the word else. It is used for choos-
ing an interaction operand or an activity edge if all the other expressions are false. The
word is mapped to an empty element called Else.

3.5 SWETest to SWETest Transformation

An SWETest model produced by the transformation rules in the last subsection contains
test cases whose interaction fragments are partially ordered. If one test case contains at
least two test components, then the order of their messages to the SUT cannot be deter-
mined. Likewise, other interaction fragments that involve only some of the test compo-
nents cannot be ordered in a sequence. This means that the test case has a non-deterministic
behavior.

To obtain deterministic behavior of a test case, its fragments must be sorted topologically.
This is done with the help of the extended version of Kahn's algorithm from Chapter 2,
which computes all linear extensions of the partial order set defined in the interaction.
The partial order is specified by the rule, that only fragments on the same test component
lifeline are totally ordered. Each resulting linear extension maps to one separate new test
case. In addition to the sorting, all the test components are merged into one test component
that contains all the ports, timers, and behaviors.

In this section, the rules for transforming an SWETest model into another SWETest model
are defined. The target model contains a number of test cases with topologically sorted
fragments and only one merged test component. Most of the elements from the source
model are not changed in the target model, so the rules below define only parts that are
different in the target model. Attributes and references inside metaclasses that stay the
same, are also not shown in the transformation tables.

Source element Target element

All Model:TestSuite: TestComponent | One Model:TestSuite:TestComponent el-

elements ement

TestComponent . name TestComponent.name = ‘CompositeCom-
ponent’

In order for the target model to contain test cases with deterministic behaviors, there
must be only one test component that stimulates the SUT. All the test components from
the source model become one test component in the target model. The name of the new
component is CompositeComponent.
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Source element Target element

Model:TestSuite: Model:TestSuite:TestComponent:
TestComponent : Timer Timer in composite component
Timer.name TestComponent .name and Timer.name
Source element Target element

Model:TestSuite: Model:TestSuite:TestComponent:Port
TestComponent :Port in composite component

Port.name TestComponent .name and Port .name
Source element Target element

Model:TestSuite: Model:TestSuite:TestComponent:
TestComponent:Activity Activity in composite component
Activity.name TestComponent .name and Activity.name

All the contents of the test components in the source model is moved into the new com-
posite component in the target model. This includes timers, ports, and activities. For each
of those elements, the name in the target model is composed from the name of the original
test component and own name. This prevents collisions if elements of the same type in
different original test components have the same name.

Source element Target element
Model:TestSuite:TestContext: Model:TestSuite:TestContext:
Connector Connector

Connector.port — Port in all test compo- | Connector.port — Port in composite
nents component

Connectors have references to ports that can be contained inside of test components. In
that case, such a reference is mapped to a reference that points to the corresponding port
in the composite component.

Source element Target element
Model:TestSuite:TestContext: Several Model:TestSuite:TestContext:
Interaction as testCase Interaction elements as testCase
Interaction.name Interaction.name and index number

All the test cases in SWETest are stored inside the test context as interactions in the mul-
tivalued child testCase. Each of the test cases in the source model maps to a number of
test cases in the target model. The target test cases contain interaction fragments that are
topologically sorted, i.e., represent linear extensions of the original test case. The name for
each target test case is composed of the original name and a running index.
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Source element

Target element

All Model:TestSuite:
TestContext:Interaction: Lifeline
elements

One Model:TestSuite:TestContext:
Interaction:Lifeline element

Lifeline.name

Lifeline.name = ‘compositeComponent’

Lifeline.type — TestComponent

Lifeline.type — composite component

Like the test components themselves, their lifelines in the test cases, which can be viewed
as their instances, must be joined into one lifeline. The new lifeline gets the name com-
positeComponent. Its type in the target model is a reference that points to the composite

component transformed previously.

Source element

Target element

Model:TestSuite:TestContext:
Interaction:Message

Model:TestSuite:TestContext:
Interaction:Message

Message.covered — Lifeline of a test
component

Message.covered — Lifeline of compos-
ite component

Message.sourceLifeline — Lifeline of
a test component

Message.sourceLifeline — Lifeline of
composite component

Message.targetLifeline — Lifeline of
a test component

Message.targetLifeline — Lifeline of
composite component

Since the messages in the test cases are sent to or from test component lifelines, some
references are mapped to references pointing to the new lifeline in the target model. This
is a general rule that is valid for both call messages and signal messages whose transfor-

mations are defined below.

Source element

Target element

Model:TestSuite:TestContext:
Interaction:CallMessage

Model:TestSuite:TestContext:
Interaction:CallMessage

CallMessage.operation — Activityina
test component

CallMessage.operation — Activity in
composite component

Source element

Target element

Model:TestSuite:TestContext:
Interaction:SignalMessage

Model:TestSuite:TestContext:
Interaction:SignalMessage

SignalMessage.sourcePort — Port in a
test component

SignalMessage.sourcePort — Port in
composite component

SignalMessage.targetPort — Port in a
test component

SignalMessage.targetPort — Port in
composite component
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Call messages and signal messages contain references to elements inside test compo-
nents. The reference to an activity in a call message is transformed into a reference to the
corresponding activity in the new composite component. Similarly, the source port and
the target port references in a signal message map to ports that are inside the composite
component.

3.6 SWETest to TTCN-3 Transformation

SWETest models define test cases that cannot yet be executed. For that reason, an SWETest
model must be transformed into executable code of a programming language that is suit-
able to represent test cases. In this thesis, the testing language TTCN-3? was chosen as the
target language for the model to text transformation.

Similar to the previous two sections, transformation rules are defined in mapping tables.
SWETest elements on the left are opposed to TTCN-3 code samples on the right. The code
contains placeholders for data values that are enclosed in angle brackets. The placeholders
contain attributes of the source element or a path starting from the source element. They
indicate data that is transferred from the model to the code during the transformation. If
there is a list of elements involved in a transformation, e.g., a parameter list, then only code
for the first element is displayed and the list is indicated by three dots.

SWETest element TTCN-3 code
Model:TestSuite module <name>{}

Each test suite in the source model maps to a TTCN-3 module. The name of the test suite
becomes the name of the module. A module in TTCN-3 is a container for other elements,
e.g., definitions for data types, templates, components, or test cases. Transformation rules
for those elements are presented in the following subsections.

Data Definitions

All the data elements in an SWETest model are transformed into suitable definitions in
TTCN-3. This includes data elements in the TestData container, as well as some elements
containing data inside the test context and test cases.

3For TTCN-3 code to be executable, it is required that implementations of an execution environment and an
SUT adapter are present
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SWETest element TTCN-3 code

Model:TestSuite: modulepar{

TestContext:Attribute <type.name><name> := <defaultValue>;
.}

A test context attribute in an SWETest model is visible to all the test cases that are inside
the same test context. Such an attribute maps to a module parameter in TTCN-3. The type
and the name of the attribute are transferred to the definition of the parameter. If the pa-
rameter contains a default value, it is taken to initialize the TTCN-3 parameter.

SWETest element

TTCN-3 code

Model:TestSuite:
TestData:DataPool:
Enumeration

type enumerated <name>{
<enumerationLiteral.name>
(<enumerationLiteral.value>),

.}

SWETest enumerations are transformed into corresponding structures in TTCN-3, which
are called enumerated. The names and the values of the SWETest enumeration literals are
used to define fields in the TTCN-3 enumerations. The value in the brackets is only speci-
fied, if the optional value attribute in the SWETest model is set.

SWETest element

TTCN-3 code

Model:TestSuite:
TestData:DataPool:
DataType with no attributes

type <redefines> <name>;

SWETest element

TTCN-3 code

Model:TestSuite:
TestData:DataPool:
DataType with attributes

type record <name>{
<attribute.type> <attribute.name>
optional,

.

Each data type element in SWETest maps either to a simple type definition or to a record.
In the first case, the data type does not have any attributes. The value of redefines is
optional, so it is only used if it is set. The second kind of DataType elements, which is
transformed to records, contains attributes. Each of the attributes is mapped to a field in-
side the TTCN-3 record. The keyword optional is only set if the SWETest model contains
instances of the current data type that do not have a value for the respective attribute or
contain a literal null value in that place.
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SWETest element TTCN-3 code
Model:TestSuite: type record <name>{
TestData:Signal <attribute.type> <attribute.name>
optional,
.t

Similar to the complex data types above, for each signal, there is a record in the TTCN-3
source code. In this case, the optional keyword is produced if there are signal messages
in the model that send the signal and do not contain an argument for the attribute or if the
attribute has the value literal null.

SWETest element TTCN-3 code

Model:TestSuite: type template <signal.name> <name>{
TestContext:Interaction: <signal.attribute.name>:= <argument>,
SignalMessage St

The data from a signal message is used to define a TTCN-3 template. The name of the
referenced signal is taken as the template type, i.e., it is a record from the transformation
rule above. The name of the signal message maps to the name of the template. For each
argument that is sent in the message, there is a field in the template that assigns the argu-
ment value to an attribute of a signal. If for a certain attribute, there is no corresponding
argument in the signal message, or if the argument value is literal null, then the TTCN-3
keyword omit is used instead of the argument value.

For reasons of simplification and a better overview, the transformation rules above and
those in the subsequent sections show ValueSpecification and DataType elements as
simple text inside TTCN-3 code samples. This is the case for all placeholder paths that end
with value, argument, or type. The actual mappings are shown in the two tables below.

SWETest element TTCN-3 code
.:LiteralString "<value>"
.:LiteralInteger <value>
.:LiteralBoolean <value>
.:LiteralFloat <value>
..:LiteralAny 7
.:LiteralAnyOrNull *

.:LiteralNull omit
. :EnumerationValue <enumerationLiteral>
:InstanceValue {
<instance.type.attribute.name>:=
<instance.value>,
..}
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Each kind of value specification maps to TTCN-3 code specified by the rules in the table
above. A LiteralString element is transformed into the value it contains, enclosed in
quotation marks. The other elements containing values of simple types just map to their
values. The wildcard elements from SWETest become corresponding expressions for wild-
cards in TTCN-3. Enumeration values contain enumeration literals that are copied to the
TTCN-3 output. For each instance value, a block containing initializations of attributes to
value properties is defined. That value is again one of the value specifications listed in the
table above.

SWETest element TTCN-3 code
Model:TestSuite: charstring
TestData:DataPool:
DataType named ‘String’
Model:TestSuite: verdicttype
TestData:DataPool:
Enumeration named ‘Ver-
dict’

Model :TestSuite: timer
TestData:DataPool:
DataType named ‘Timer’
Model:TestSuite: integer
TestData:DataPool:
DataType named ‘Integer’
Model :TestSuite: boolean
TestData:DataPool:
DataType named ‘Boolean’
Model :TestSuite: <name>
TestData:DataPool:
DataType

Each data type or enumeration in SWETest has a name. Depending on that name, the
element is transformed into a string on the right in the above table. The last line of the table
states that for each other data type with a different name, the name itself is taken into the
TTCN-3 code.

Test Structure

The structure of a test is defined by test components, the SUT, and the communication
ports. The mappings involving transformations of those elements are discussed in this
subsection.
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SWETest element TTCN-3 code
Model:TestSuite: type port <name> message {
TestData:PortType inout <signal.name>;

..t

Each SWETest PortType element maps to a message port definition with the same name.
For each signal referenced by the port type, there is a record definition in the TTCN-3 port.
The keyword inout is set by default. However, if the model contains only messages with
that signal that are all received by a test component, then the keyword in is output instead.
Similarly, out is used if there are only sent messages.

SWETest element TTCN-3 code
Model:TestSuite: type component <name>{
TestComponent port <port.type.name> <port.name>;
timer <timer.name>:= <timer.durationDefault>;
.1

A test component is transformed into a type component. All the ports and timers in-
side the test component map to port and timer definitions. The duration default value of a
timer is optional, i.e., it is only copied to TTCN-3 if it is set in SWETest.

SWETest element TTCN-3 code
- type component MainTestComponent {}

An SWETest model can contain several test components that will be mapped to TTCN-
3 components. In TTCN-3, each test case needs a component which it runs on. During
the transformation, an empty component with the name MainTestComponent is produced,
which takes that role for the test cases.

SWETest element TTCN-3 code
Model:TestSuite:SUT type component SUTInterface {
port <port.type.name> <port.name>;
.

The SUT element is also transformed into a component. The name of that component is
always SUTInterface. Each port of the SUT maps to a TTCN-3 port definition inside the
component.

General Behavior

SWETest interactions that are not test cases, are used to model behavior supporting the
test cases. Those interactions are transformed into altsteps and functions in TTCN-3. The
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transformation rules defined here are partly reused in the next subsection, where the gen-

eration of test cases is described.

containing only one alt

combined fragment

SWETest element TTCN-3 code
Model:TestSuite: altstep <name>
TestContext: Interaction | (<parameter.type> <parameter.name>, ...) runs

on <lifeline.type.name>{}

Each interaction that contains only one combined fragment of type alt is transformed
into an altstep. The name and the possible parameters are taken to specify the name and
the parameter definitions for the altstep. The test component whose lifeline is included in
the interaction corresponds to the TTCN-3 component that is defined in the runs on clause.

CombinedFragment:
InteractionOperand

SWETest element TTCN-3 code
Model:TestSuite: [<condition.expression>] <fragment>
TestContext:Interaction: >

In TTCN-3, an altstep consists of several alt blocks. Hence, each operand in the com-
bined fragment is transformed into an alt block inside the altstep. If the operand contains
a condition with a boolean expression, it is transformed into a guard of the alt block. Each
fragment inside the operand maps to a TTCN-3 statement inside the alt block. Transfor-
mation rules for expressions and fragments are described below.

SWETest element TTCN-3 code

Model:TestSuite: function <name>

TestContext: Interaction | (<parameter.type> <parameter.name>, ...) runs
on <lifeline.type.name>{}

Every other interaction of the test context is mapped to a TTCN-3 function definition.
The only difference to the transformation above is the keyword function and the fact that
a function does not have the inner structure of an altstep. All the transformation rules in-
volving the structure of a function are described in the following.

SWETest element

TTCN-3 code

Model:TestSuite:
TestContext:Interaction:
Lifeline:Default

var default <interaction.name>Default :=
activate
(<interaction.name>(<parent.timer>)) ;

deactivate(<interaction.name>Default);
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3 Test Case Generation using Model to Model Transformations

If the test component lifeline in the interaction contains a Default element, a default
activation and deactivation are generated at the beginning and at the end of the function,
respectively. The dots here do not have the meaning of repetition, but indicate that there
can be other code in that place. For the activation of the default, there is a TTCN-3 default
variable that is also used to deactivate the same default. If the test component of the lifeline
contains a timer, then that timer is placed into the default activation as argument.

Next, the transformation rules for all the possible interaction fragments are described.
Fragments correspond to statements that can be contained inside a TTCN-3 function. Those
statements define the behavior of the function.

SWETest element TTCN-3 code
...:Interaction: <interaction.name>(<argument>,...);
InteractionUse

An interaction use defines the call of another interaction. It maps to a call of a TTCN-3
function or altstep. Possible arguments are taken into the argument list.

SWETest element TTCN-3 code

...:Interaction: <sourcePort.name>.send(<name>) ;
SignalMessage sent by a
test component

Signal messages define the transfer of signals and arguments for the signal attributes
between test components and the SUT. Each signal message that is sent from a test com-
ponent to the SUT is transformed into a send statement in TTCN-3. The sending port is
the source port of the test component. Since signal messages were also transformed into
templates above, the name of the signal message corresponds to the name of a template
that is sent to the SUT.

SWETest element TTCN-3 code

...:Interaction: <targetPort.name>.receive(<name>) ;
SignalMessage sent by

the SUT

The second kind of signal messages are those that are sent out from the SUT and received
by a test component. In this case, the message maps to a receive statement. Since the be-
havior in TTCN-3 is defined for test components, the target port is taken as the receiving
port in TTCN-3. In SWETest, a target port in a received signal message is optional. If it is
not set, then the expression any port is output instead.
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SWETest element TTCN-3 code

...:Interaction: stop;

CallMessage referencing

an activity with a finish action

SWETest element TTCN-3 code

...:Interaction: <argument.timer.name>
CallMessage referencing | .start(<argument.value>);
an activity with a start timer

action

SWETest element TTCN-3 code

...:Interaction: <argument.timer.name>.stop;
CallMessage referencing

an activity with a stop timer

action

SWETest element TTCN-3 code

...:Interaction: <argument.timer.name>.timeout;
CallMessage referencing

an activity with a timeout

action

The rules above define the transformations for call messages that references an activ-
ity to be executed. The result of the transformation is dependent on the contents of the
activity. More precisely, the activity can contain one of the four actions specified in the
tables above. A finish action defines the stopping of a test component. In TTCN-3, the
corresponding statement is stop. The other three transformation rules involve timer ac-
tions. The call messages are transformed into corresponding TTCN-3 timer statements. In
this case, the first argument in SWETest is of type TimerReference, whose timer property
refers to a timer in a test component. The second argument, which is used in the start
statement, is a DurationValue, i.e., it is the duration for the timer in TTCN-3.

SWETest element TTCN-3 code
...:Interaction: setverdict
CallMessage with a ver- | (<argument.enumerationLiteral>);
dict argument
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3 Test Case Generation using Model to Model Transformations

SWETest element TTCN-3 code
...:Interaction: <argument.value>
CallMessage with a

NativeCode argument

In SWETest, there are two kinds of call messages that do not refer to an activity, but have
a specific kind of arguments. If there is an argument of type Verdict, the call message
becomes the setting of a verdict in TTCN-3. The argument is an enumeration value, so its
enumeration literal corresponds to the TTCN-3 verdict value. An exception to that occurs,
if the value of the literal is inconclusive. In that case, it is mapped to inconc.

SWETest element TTCN-3 code
...:Interaction: while(<operand.condition.expression>){
CombinedFragment with | }

operator loop

SWETest element TTCN-3 code
...:Interaction: if (<operand.condition.expression>)q{
CombinedFragment with | }

operator opt

Combined fragments of types loop and opt each contain only one operand. They are
transformed into the corresponding type of blocks in TTCN-3. The condition of the operand
maps to a condition in TTCN-3 syntax. All the other contents of the operand, i.e., interac-
tion fragments that can be again combined fragments, are transformed and placed inside
the curly braces of the block.

SWETest element TTCN-3 code
...:Interaction: alt{
CombinedFragment with | [<operand.condition.expression>]
operator alt guard messages | <operand.fragment>{}

.t
SWETest element TTCN-3 code
...:Interaction: if (<operand.condition.expression>){ } else if
CombinedFragment with | (<operand.condition.expression>){
operator alt and no guard | }...
messages else {

}
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3 Test Case Generation using Model to Model Transformations

An alt fragment can map either to an alt or to an if statement. A guard message can be
either an incoming signal message or a call message that triggers a timeout. It must be the
tirst fragment of an interaction operand. In that case, this message is treated like an addi-
tional guard and the enclosing combined fragment is transformed into an alt statement
with the first fragment as the additional guard of each alt block. If no such guard message
is present, then the combined fragment is mapped to an if-else construct.

SWETest element TTCN-3 code
. :Greater <leftOperand> > <rightOperand>
..:Less <leftOperand> < <rightOperand>
. :Equals <leftOperand> = <rightOperand>
. :Greater(OrEquals <leftOperand> >= <rightOperand>
. :LessOrEquals <leftOperand> <= <rightOperand>
. :NotEquals <leftOperand> != <rightOperand>
..:Not not (<operand>)
.:And (<leftOperand>) and (<rightOperand>)
:0r <leftOperand> or <rightOperand>
. :Else else

The table above defines transformation rules for all the possible boolean expressions and
for the else statement. Each SWETest expression corresponds to a TTCN-3 boolean guard
containing operands and the proper operator. Those transformations are applied to the
placeholders ending with expression in other rules.

Test Cases

All the interactions of the test context that are inside the testCase property are trans-
formed to TTCN-3 test cases and supporting functions. A test case in TTCN-3 is used to
initialize and start the behavior of test components. The behavior of each component is
always defined in an extra function.

SWETest element TTCN-3 code

Model:TestSuite: function <name>_<lifeline.name>
TestContext:Interaction (<parameter.type> <parameter.name>, ...) runs
as testCase on <lifeline.type.name>{}

Each SWETest test case maps to several TTCN-3 functions. Each function contains the
behavior of one of the test components involved in the test case. The instance of that test
component is represented by a lifeline, whose name is used to compose different names
for the functions. Also, the type of the lifeline, i.e., the test component itself, maps to the
TTCN-3 component definition in the runs on clause.
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SWETest element TTCN-3 code

Model:TestSuite: testcase <name>

TestContext:Interaction (<parameter.type> <parameter.name>, ...) runs
as testCase on MainTestComponent system SUTInterface {3}

The test cases are also mapped to TTCN-3 test case definitions, which run on the prede-
fined main test component. The system clause always defines the predefined interface to
the SUT. Test cases do not contain any other behavior than the statements described in the
following three transformation rules.

SWETest element TTCN-3 code

Model:TestSuite: var <type.name> <name>:= <type.name>.create;
TestContext:Interaction:
Lifeline of a test component

For each test component lifeline in the interaction, there is a variable definition with the
assignment of a component instance to it. This means that concrete components named
like the lifelines are created. The TestComponent element that is referenced in the lifeline
supplies the name for the variable type.

SWETest element TTCN-3 code

Model:TestSuite: map (<sourceLifeline.name>: <sourcePort.name>,
TestContext:Interaction: system:<targetPort.name>) ;

SignalMessage

In TTCN-3, ports of the test components must be mapped to ports of the SUT in order to
send messages between those ports. For this, signal messages from the SWETest model are
selected that contain different port pairs and are transformed into map statements. In the
table above, the case for a signal message is shown, where it is sent from a test component
to the SUT. In the other direction, source and target will be swapped.

SWETest element TTCN-3 code

Model:TestSuite: <name>.start(

TestContext:Interaction: <parent.name>_<name>

Lifeline of a test component | (<parent.parameter.name>, ...)
)

The last possible statement in a generated test case is the starting of a component be-
havior. The previously created component variable is used to start the previously created
component function. If there are any parameters in the parent interaction of the lifeline,
then they are passed to the function.
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3 Test Case Generation using Model to Model Transformations

Test Control

Both in SWETest and in TTCN-3, there is a control part that is used to execute the test cases.
In SWETest, it consists of test case calls whose verdicts can be stored, logged, and evaluated
for simple conditional branching. Transformation rules for mapping a test control part of
an SWETest model to TTCN-3 source code constructs are defined in the following.

SWETest element TTCN-3 code
Model:TestSuite: control {}
TestContext:Activity
as testControl

The activity in the test context that is inside the property testControl is transformed
into a control part of the TTCN-3 module. The contents of the activity map to TTCN-3
structures inside the control part. Transformation rules for those structures are described
next.

SWETest element TTCN-3 code
Model:TestSuite: var <type> <name>;
TestContext:Activity:

ObjectNode

For each object node with different names in the test control activity, there is a variable
definition in TTCN-3. The type and the name of the object node are are used as the name
and the type for the variable.

SWETest element TTCN-3 code

Model:TestSuite: <outgoing.target.name>:=
TestContext:Activity: execute(<interaction.name>);
CallBehaviorAction

Call behavior actions map to TTCN-3 execute statements that start the test case whose
name is the same as the referenced interaction in SWETest. In SWETest, an object node
might follow the call behavior action, which means that the verdict of the called test case
will be stored in it. In this case, the execute statement is assigned to a variable that has
been declared in the above transformation.

SWETest element TTCN-3 code
Model:TestSuite: log("<value>");
TestContext:Activity:

LogAction
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3 Test Case Generation using Model to Model Transformations

An SWETest log action corresponds to a 1og statement in TTCN-3. The value stored in
the log action becomes the string value to be logged in TTCN-3.

SWETest element TTCN-3 code

Model:TestSuite: if (<outgoing.condition.expression>){

TestContext:Activity: }

DecisionNode else if
(<outgoing.condition.expression>){
Yoo

Decision nodes define simple branching execution that depends on conditions in outgo-
ing edges. Decision nodes are transformed into if statements that can be followed by else
if blocks. The conditions in outgoing edges map to TTCN-3 conditional statements.
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The concepts that are described in the previous chapter are implemented with the help of
several tools, which are based on the Eclipse platform [5]. The primary tool used is openAr-
chitectureWare (0AW) [12]. It executes the model to model and model to text transforma-
tions. SWEUTP models (which are the input to oAW in the first transformation) are created
with the UML tool MagicDraw [9]. The models are stored as XMI files in the EMF UML2
format, which can be processed by oAW. This is done with the help of the UML2 plug-in
that is part of the Model Development Tools (MDT) of Eclipse [4]. Constraint checking and
transformations are coordinated in oAW workflows that contain workflow components
for each performed action. Definitions for model to model transformations are specified in
Xtend. More complex behavior like expression parsing and topological sorting is imple-
mented in Java. The grammar and the parser for boolean expressions were generated with
ANTLR [1]. The SWETest metamodel, which was created with EMF Ecore editors, exists as
an XMI file and as generated Java classes. The additional Java format is necessary for the
algorithms that are implemented in Java. The model to text transformation that generates
TTCN-3 code is implemented as a number of templates in Xpand. The structure of this
chapter is as follows:

e InSection 4.1, itis described how the OCL constraints are used to validate an SWEUTP
model.

¢ The two implementations of model to model transformations are described in Sec-
tion 4.2 and Section 4.3.

¢ The generation of TTCN-3 code is explained in Section 4.4

4.1 Constraining SWEUTP

There is a number of exemplary OCL constraints that are used to validate an SWEUTP
model, i.e., to check if the model is suitable for the transformation into an SWETest model.
The constraints are stored in a file which is structured as shown in the following listing.
For each constraint, there is a comment representing a short description, followed by the
constraint expression.
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1
2
3

This file is read by a workflow component that parses it and extracts single constraints
and the descriptions belonging to each constraint. Each constraint is then evaluated on the
model, which is accessible from the workflow component. The Eclipse OCL implementa-
tion [4] is used for the evaluation. The next listing illustrates Java code that evaluates one

-- Signal messages must have names

Message.alllnstances()->select (messageSort=MessageSort: :asynchSignal)

->forAll (name<>’?)

constraint.
1 IOCLFactory<Object> oclFactory = new UMLOCLFactory(context) ;
2 Modelinglevel modelinglevel = Modelinglevel.M2;
3 0CL<?, Object, 7, 7, 7, ?, 7, 7, 7, 7, 7, 7> ocl;
4 ocl = oclFactory.createOCL(modelinglevel);
5 OCLHelper<Object, 7, 7, 7> helper = ocl.createOCLHelper();
6 try {
7 modelinglevel.setContext(helper, context, oclFactory) ;
8
9 switch (modelinglevel) {
10 case M2:
11 OCLExpression<Object> parsed = helper
12 .createQuery (expression) ;
13 Object results = ocl.evaluate(context, parsed);
14 if (results instanceof Boolean) {
15 boolean bool = (Boolean) results;
16 if (bool == false)
17 issues.addError("0OCL Check failed: " + currentDescription);
18 X
19 break;
20 case Mi:
21 // not implemented
22 break;
23}
24
25 } catch (ParserException e) {
26  issues.addError(e.getMessage());
27 }

The context object contains the UML model that will be validated. First, a factory is
initialized with that object (line 1). The enumeration object named modelingLevel is set
to M2, as all the OCL constraints operate on OMG’s M2-level, i.e., on metamodel elements
(line 2). An OCL object is built using the first two objects and a corresponding helper is
created that will parse the string containing the OCL expression (lines 3 - 5). The method

setContext in line 7 associates the given context to the helper.
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MOF Ecore
M3

conforms to conforms to

SWETest metamodel

Xtend
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Figure 4.1: Model to model transformation with openArchitectureWare

Since the modeling level is always M2, the first case block is executed. The variable
expression is a string containing the OCL constraint. In line 11, the helper parses it and
produces an OCLExpression object. Now, the OCL object can evaluate the parsed expression
on the UML model contained in context (line 13). If the evaluation returns false, an error
is generated containing the description of the constraint. The error message will be printed
in the console.

1 <component

2 class="workflow.components.oclvalidator.UMLOCLValidatorComponent">
3 <oclConstraintsFile value="${oclfilel}"/>

4  <modelSlot value="umlmodel"/>

5 </component>

The workflow component that evaluates the OCL constraints is started in a workflow
as shown in the listing above. The file referenced in the oclfile property is the file that
contains the constraints. The slot named umlmodel holds the whole model that is supposed
to be validated.

4.2 SWEUTP to SWETest Transformation

Model to model transformations are defined in Xtend. In Figure 4.1, an overview of the
transformation from SWEUTP to SWETest is shown. An SWEUTP source model serves
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as input to Xtend definitions that transform it into an SWETest target model using both
metamodels. The definitions are executed by the workflow engine of oAW. In this section,
tirst some examples of the implemented transformation definitions are described. After
that, the process of invoking the definitions from a workflow is explained.

Transformation definitions in Xtend are called extensions, because they can be used not
only to transform models, but also to extend a present model without creating a new one.
A special form of extensions, create extensions, are used here to instantiate new objects of
SWETest metamodel elements.

1 create Model transform( uml::Model uml_model ):

2 testSuite.addAll(

3 uml_model.allOwnedElements () .typeSelect (uml: :Class).

4 select(ell|el.getAppliedStereotypes().exists(s|s.name ==
5 "TestContext")) .createTestSuite() );

In the listing above, a new SWETest Model object is created and the extension named
transform is executed. The object is available in the extension through the reference this,
which is omitted here. The information contained in the only argument of the extension,
which contains the SWEUTP source model, can be accessed inside the extension. The mul-
tivalued containment reference testSuite of the Model object is filled with elements that
are returned by the statement inside the brackets. This statement analyzes the SWEUTP
model for certain elements. It selects only classes that have the stereotype TestContext
and executes the extension createTestSuite for each of them. The whole statement pro-
duces a list of TestSuite objects that are added to testSuite. In the following listing, the
creation of a test suite is defined.

1 create TestSuite createTestSuite(uml::Class uml_testContext) :

2 setName( uml_testContext.package.name )->

3 setTestData(uml_testContext.package.

4 createTestData(uml_testContext))->

5 sut.addAl1( uml_testContext.getAllAttributes().

6 select(ala.getAppliedStereotypes() .exists(s|s.name == "SUT")).
7 createSUT (this))->

8  testComponent.addAll( uml_testContext.part.type.

9 typeSelect (uml: :Class) .select(ala.getAppliedStereotypes() .

10 exists(s|s.name == "TestComponent")).createTestComponent(this) )->
11  arbiter.addAl1( uml_testContext.getAllAttributes().type.

12 typeSelect (uml::Class) .select(ala.getAppliedStereotypes().

13 exists(s|s.name == "Arbiter")).createArbiter(this) )->

14  arbiter.addAl1( uml_testContext.ownedAttribute.

15 select(attr|attr.type.name == "Arbiterl"

16 || attr.type.name == "Arbiter").createArbiter(this) )->

17  setTestContext (uml_testContext.createTestContext (this) );
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To set all the properties of a test suite, the data in the SWEUTP test context is used,
which is a UML class. The name and the test data are taken from the package that the
class is in (lines 2 — 4). The SUT is transformed on lines 5 through 7. All the attributes
of the test context that contain the stereotype SUT are selected and passed to the extension
createSUT (which is not shown here). Similarly, test components are created by selecting
the types of the parts in the test context that are stereotyped as TestComponent. For each
of them, the extension createTestComponent is called. Since there are two kinds of arbiter
types possible in SWEUTP — a user-defined class or the predefined interface — there are two
corresponding statements that create SWETest arbiters. MagicDraw exports the predefined
interface as Arbiter1, therefore that name is also checked in the second statement (lines 14
—16). Finally, the SWEUTP test context is passed to an extension to create an SWETest test
context.

1 create Interaction createInteraction(uml::Interaction uml_interaction,
2 TestSuite swe_suite):
3 uml_interaction.specification != null?

4 setName (uml_interaction.specification.name)

5 :setName (uml_interaction.name)->

6 lifeline.addAll(uml_interaction.lifeline.

7 createLifeline(swe_suite))->

8  fragment.addAll(uml_interaction.fragment.

9 select(f|f.metaType.name == "uml::MessageOccurrenceSpecification"
10 && ((uml::MessageOccurrenceSpecification)f) .message.

11 receiveEvent == f || f.metaType.name == "uml::CombinedFragment"
12 || f.metaType.name == "uml::InteractionUse").

13 createInteractionFragment (this, swe_suite))->

14  fragment.addAfter(this)->

15 uml_interaction.specification != null?

16 parameter.addAll (uml_interaction.specification.

17 ownedParameter.createParameter (swe_suite.testData.dataPool))
18 : parameter.addAll (uml_interaction.ownedParameter.

19 createParameter (swe_suite.testData.dataPool));

Test cases are represented as interactions inside the test context. The extension above cre-
ates an SWETest interaction using a UML interaction. The second argument, swe_suite,
is part of the target SWETest model and is used in called extensions to manipulate or ref-
erence already existing model elements. In lines 3 — 5, the name of the newly created
Interaction object is set. The name of the referencing operation is preferred. All the
lifelines are just passed through to another extension (lines 6 and 7). To create SWETest in-
teraction fragments (lines 8 — 13), only certain UML fragments are selected. The first part of
the boolean expression that involves MessageOccurrenceSpecification selects only those
specifications that occur on receiving lifelines. Those specifications will be transformed
into call messages or signal messages. Additionally, all the combined fragments and inter-
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action uses are selected. There are several extensions named createInteractionFragment,
which are called dependent on the type of the first parameter, i.e., the fragment.

In line 14, an extension is called for each SWETest fragment. The extension finds out
which other fragment is executed directly before the argument fragment. The result is a
partial order defined on all the fragments of an interaction. This information will be used
during the next model to model transformation in the next section to compute topolog-
ical sorts. The conditional block at the end of the extension transforms either operation
parameters or interaction parameters into SWETest parameters.

There are three workflow components that are responsible for transforming an SWEUTP
model into an SWETest model: one that reads the source file, another that performs the
transformation, and a third one that writes the resulting model to a target file. The config-
urations for those components are discussed in the following.

1  <component class="oaw.emf.XmiReader">
2 <modelFile value="${inputuml}"/>

3 <outputSlot value="umlmodel"/>

4  </component>

The workflow component with the type XmiReader reads a file in the EMF UML2 format.
The model contained in the file is put into the slot umlmodel. After that, the model is
available to other workflow components.

1  <component class="oaw.xtend.XtendComponent" skipOnErrors="true">
2 <metaModel id="mm" class="oaw.type.emf.EmfMetaModel">

3 <metaModelPackage value="swetest_mm.Swetest_mmPackage"/>

4 </metaModel>

5 <metaModel class="oaw.type.emf.EmfMetaModel"

6 metaModelPackage="org.eclipse.enf.ecore.EcorePackage"/>

7 <metaModel class="oaw.uml2.UML2MetaModel"/>

8 <invoke value="${xtendfile}::transform(umlmodel)"/>

9 <outputSlot value="swemodel"/>

10  </component>

After loading the necessary metamodels, the component above executes the transform
extension, which is the top level extension in the file containing the transformation defini-
tions. The SWEUTP model that is inside the slot umlmodel is passed as an argument to the
extension. The returned SWETest model is stored in the output slot swemodel.

1  <component class="org.eclipse.mwe.emf.Writer">
2 <useSingleGlobalResourceSet value="true"/>

3 <modelSlot value="swemodel"/>

4 <uri value="${outputxmi}"/>

5 </component>
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Finally, the SWETest model is written to a file by the Writer component. The slot of the
model is the same as the output slot in the previous listing. The output path for the file is
given here by the outputxmi property.

4.3 SWETest to SWETest Transformation

This kind of transformation is an in-place transformation, because there is only one model
that is modified directly. The intention of this transformation is to generate test suites that
contain test cases with deterministic behaviors. Therefore, the resulting model contains
only one test component that communicates with the SUT. The behavior fragments of each
test case that involves more than one component in the original model, are sorted topolog-
ically. There is a new test case for each linear extension of the partial order in the original
test case.

1 performTopologicalSorting( Model this ):

2 testSuite.addNewElements()->

3 testSuite.testContext.testCase.addTestCase()->
4 testSuite.removeOldElements();

The extension called performTopologicalSorting starts the transformation process. At
the beginning, the Model argument contains the original model. Some new elements and
test cases are added to it and elements that are not needed anymore are deleted from it.

1 create TestComponent createTestComponent (

2 List[TestComponent] old_components ):

3  setName("CompositeComponent")->

timer.addAll (old_components.timer.createTimer())->
port.addAll (old_components.port.createPort())->
activity.addAll(old_components.activity.createActivity());

N U1 W

One of the elements that are added to the model is a test component named Composite-
Component, which replaces all the other test components. Timers, port, and activities of
the original test components are copied into the new component. All the references in the
model referring to the original elements are changed to point to the new elements.

1 addTestCase( Interaction old_testCase ):

2 ((TestContext)old_testCase.eContainer) .testCase.addAll(
3 getTopologicalSorts(old_testCase) .integerList.

4 createTestCase(old_testCase) );

The extension above is called once for each test case in the original model. Each time, a
number of new test cases is added to the test context. The extension getTopologicalSorts
is mapped to a Java method that implements the extended version of Kahn’s algorithm,
which is described in the “Foundations” chapter. The Java method returns several linear
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extensions represented as integer lists. Each list is ordered corresponding to the respec-
tive topological sort. For each of those lists, an interaction is created by the extension
createTestCase, which is described below.

1 create Interaction createTestCase( IntegerList numbers,
2 Interaction old_testCase ):

3

O 0 N O U

11
12
13

let testCaseNumber = ((ListOfLists)numbers.eContainer).integerList.
index0f (numbers) : null->

setName (0old_testCase.name + testCaseNumber)->

lifeline.addAll(old_testCase.lifeline.select(11|1l.type.metaType.
name != "swetest_mm::testElements: :TestComponent") .
createNonComponentLL (testCaseNumber) ) ->

lifeline.add(old_testCase.lifeline.select(11|11.type.metaType.
name == "swetest_mm::testElements::TestComponent") .
createComponentLL (testCaseNumber))->

fragment.addAll (numbers.item.handleFragment (old_testCase,
testCaseNumber)) ;

The name of each new test case id constructed from the old name and the index value
of the position of the integer list inside its parent, i.e., the sequence number of the lin-
ear extension. New lifelines are created using the data of the old ones. The extension
handleFragments, which is called for each number in the linear extension, returns the frag-
ment that is in that position. Therefore, the new fragment list contains fragments ordered
as specified in the numbers list.

g = W N =

O 0 N3 O U = W N -

<component class="org.openarchitectureware.emf.XmiReader">
<modelFile value="${inputfilel}"/>
<outputSlot value="swemodel"/>
<firstElementOnly value="true"/>

</component>

<component class="oaw.xtend.XtendComponent" skipOnErrors="true">
<metaModel id="mm" class="oaw.type.emf.EmfMetaModel">
<metaModelPackage value="swetest_mm.Swetest_mmPackage"/>
</metaModel>
<metaModel class="oaw.type.emf.EmfMetaModel"
metaModelPackage="org.eclipse.emnf.ecore.EcorePackage"/>
<invoke
value="${xtendfile}: :performTopologicalSorting(swemodel)"/>
</component>

The two listings above show the configuration of the workflow components that are
needed to perform the transformation. The first component reads the model from a file
and puts it into the slot swemodel. The second component invokes the start extension in
the Xtend file and passes the model as argument. The writing of the result model to a file
is the same as in the previous section.
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4.4 SWETest to TTCN-3 Transformation

During the model to text transformation, TTCN-3 code is generated. The transformation
is implemented as Xpand templates. Some example templates and the integration of the
transformation into a workflow are described in this section.

1 <<DEFINE ttcn3Module FOR TestSuite>>

2 <<FILE name+"_gen.ttcn3"->>

3 module <<name>> {

4 <<EXPAND moduleparams FOR testContext->>

5 <<EXPAND dataTypes(this) FOREACH testData.dataPool.dataType->>
6 ...

7 <<FOREACH testContext.testCase AS tc—>>

8  <<EXPAND componentBehaviour(tc) FOREACH tc.lifeline.

9 select(1l|1l.type.metaType.name ==

10 "swetest_mm: :testElements: : TestComponent")>>

11 <<ENDFOREACH>>

12 <<EXPAND testCases(this) FOREACH testContext.testCase->>
13 <<IF testContext.testControl != null->>

14 <<EXPAND control FOR testContext.testControl->>

15 <<ENDIF->>

16 }

17 <<ENDFILE>>

18 <<ENDDEFINE>>

The main template shown in the listing above generates a TTCN-3 file for each test suite
in an SWETest model. It produces a module with the name of the test suite and calls di-
rectly or indirectly all the other templates. Each of the called templates generates a certain
part of the TTCN-3 module using data of some elements from the SWETest model. In lines
7 through 11, the template called coomponentBehavior is called for each component life-
line in each test case. Each call generates a TTCN-3 function that encapsulates the behavior
of one component. The template is described below.

1 <<DEFINE componentBehaviour(Interaction inter) FOR Lifeline->>
2 function <<inter.name>>_<<name>>

3 (<<EXPAND param FOREACH inter.parameter>>)

4 runs on <<type.name>> {

5 <<FOREACH this.defaults AS def->>

6 var default <<def.interaction.name + "Default">> :=

7 activate(<<def.interaction.name>>(<<IF def.interaction.

8 parameter.size > 0>><<((TestComponent)this.type).timer.

9 first() .name>><<ENDIF>>)) ;<<"\n"->>

10 <<ENDFOREACH->>
11 <<EXPAND frag(this, "\t") FOREACH inter.fragment->>
12
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13 <<FOREACH this.defaults AS def->>

14 deactivate(<<def.interaction.name + "Default">>) ;<<"\n"->>
15 <<ENDFOREACH->>

6}

17 <<ENDDEFINE>>

Since it is possible that a test component participates in different test cases, the generated
name of the function is prefixed with the interaction name. If the lifeline contains defaults,
then default activations are generated at the beginning and default deactivations at the end
of the function body. If the called default interaction, which in TTCN-3 is an altstep, has
parameters, then the call of the altstep gets a timer argument. In line 11, all the interaction
fragments, i.e., signal messages, call messages, combined fragments, and interaction uses,
are transformed into corresponding TTCN-3 structures.

1  <component class="org.openarchitectureware.xpand2.Generator">

2 <metaModel

3 class="org.eclipse.m2t.type.enf.EnfRegistryMetaModel" />

4 <expand

5 value="${templatefile}: :ttcn3Module FOREACH swemodel.testSuite"/>
6 <outlet path="${outputttcn}">

7 <postprocessor

8 class="workflow.postprocessors.ttcn3beautifier.TTCN3Beautifier"/>
9 </outlet>

10  </component>

The Xpand template definitions are executed by a workflow component. In lines 4 and
5 in the above listing, the root template ttcn3Module that is contained in a file is called
for each test suite of the SWETest model that is inside the slot swemodel. The path for
the generated TTCN-3 file is given by the property outputttcn. Additionally, a TTCN-3
beautifier is referenced, which formats the generated code.
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In this chapter, an example for the modeling of test cases, transformation to an intermediate
model, as well as the code generation for a test language is described. First, a simple
communication protocol called Inres is presented. The Inres protocol allows for one entity
to connect to a second entity and send data packets to it through a medium. The second
entity can answer with receive acknowledgments and then close the connection.

The behavior of the Inres protocol is tested by test cases, which are modeled in SWEUTP
and presented in the subsequent section. Two test components replace two entities of the
Inres protocol and exchange data with the SUT, which represents the other Inres entities.
The structure of the test suite as well as the data that is exchanged are shown and explained
in detail.

Transforming the SWEUTP model with the tools implemented in this thesis produces
an SWETest model and in the second step a TTCN-3 code file. In the last section of this
chapter, the SWETest model and the generated code are presented.

5.1 Inres Protocol

The Inres protocol [25] is a simple communication protocol which can be used for black-
box testing of distributed systems. It is not a real-life protocol, but was rather specified to
be used in education and research. The protocol transfers data from one client entity to
another.

In Figure 5.1, the structure of Inres is shown. The two entities Initiator user and Respon-
der user are the clients that use the Inres service. They can exchange data by accessing
the interface of the Inres service called ISAP (Inres Service Access Point). The clients can
only see this interface and it is not important to them how the service is implemented. The
two Inres service entities Initiator and Responder send data units to each other using the
MSAP (Medium Service Access Point) interface of the underlying Medium service. No
further structure of the Medium is specified. It is only known, that messages can get lost,
but not corrupted or switched. Whenever a data unit comes in at one MSAP, the Medium
service transmits it to the opposite MSAP.

MSAP and ISAP offer service primitives which are used by the Inres and client entities to
communicate with each other. For example, the Initiator user can use the service primitive

97



5 Case Study

Initiator user Responder user
4 IcONcont IcONind 4
IDISind IDATind
ISAP ISAP
Inres service
ICONreq IDISreq
y |[DATreq ICONresp y
Initiator | Inres protocol Responder
Inres entity Inres entity
MDATind MDATind
MSAP y MDATreq MDATreq y MSAP

Medium service

Figure 5.1: The structure of the Inres protocol [31]

98




5 Case Study

ICONTreq (stands for ISAP Connection Request)! from the Initiator to request a connection.
The Inres service can be used by clients for the following actions:

¢ The Initiator user can establish a connection to the Responder user;
* The Initiator user can send data to the Responder user;

* The Responder user can release the current connection.

The ISAP offers a different service primitive for every possible action that can be exe-
cuted. In contrast to that, the MSAP interfaces have only two primitives, which are used
universally for all kinds of actions: MDATreq to request a data transfer on the medium
and MDATind to indicate incoming data to an entity of the higher layer. The sort of the
message contents is distinguished by the first argument given to the primitive.

e If a connection is requested, ‘CR’ is sent through the medium.
* A connection confirmation is indicated by "CC’.
e ‘DT’ is used for data transfers.

* Whenever an acknowledgment for a received data unit is sent, an "AK" attribute is
added.

* A’DR’is sent to indicate a disconnection request.

The establishment of a connection is performed as indicated in Figure 5.2. First, the
information that the Initiator user wishes to make a connection is passed through all the
Inres service entities to the Responder user. Along the way, a service primitive of every
service entity is called, whereupon the entity reacts by calling the right primitive of another
entity, thus propagating the information. When the Responder user gets the connection
request, it sends out an acknowledgment, which is forwarded back to the Initiator user.

While connected, the Initiator user can send data units to the Responder user. The Ini-
tiator user passes the data to the Initiator, which calls the MSAP primitive MDATreq. As
described above, the primitive is called with the argument 'DT’. In addition to this, a se-
quence number is added, which can be used to detect switched messages. Finally, the
delivered data unit is appended and the message is sent to the other end of the medium.
The Responder receives all the data through the service primitive MDATind. The data unit
from the Initiator user is sent to the Responder user. The sequence number, in contrast, is

IThe names of the service primitives are acronyms for the according actions which they represent. The parts
of the words have the meanings: I = ISAP, M = MSAP, CON = connection, DIS = disconnection, DAT =
data, conf = confirmation, ind = indication, req = request, resp = response
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interaction Inres Connection| @ Inres Connection])

Initiator user | | Initiator | | Medium | | Responder | | Responder user
I
| 1:1CONreq _ | | | |
2: MDATreq(CR)
3: MDATInd(CR) _ | |
4: ICONind
L 5: ICONresp

| ‘T _ 6: MDATreq(CC)
7: MDATInd(CC)

| 8:1CONconf

_——— — — =

Figure 5.2: Inres connection establishment

extracted and together with an "AK” attribute sent back to the Initiator. The acknowledg-
ment is used internally by the Inres protocol to indicate message arrivals.

If the Responder user wishes to close the connection, it uses the ISAP service primi-
tive IDISreq. The Initiator user gets this information through the primitive IDISind. The
Medium transfers the disconnection request as a ‘DR’ argument.

5.2 Modeling Test Cases for Inres

The test cases are based on the InresDistributed example2 [31]. There are two test compo-
nents that replace the Initiator user and the Responder. The Initiator and the Medium are
the services that are tested and hence they are the SUT. The Responder user is not part of
the test system. By stimulating the SUT, i.e., by calling the right primitives on the right

2In the InresDistributed example only the ‘data transfer’ test case is implemented. A preamble function is
used to establish a connection and a postamble function closes the connection. Here, the connection is
established and closed by own test cases. Moreover, the ‘data transfer’ test case is here simplified, since not
all the features of TTCN-3 used in InresDistributed can be modeled and transformed in the implementation
of this thesis
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package InresExample] InresArchitecture U

<<TestContext>> B <<TestComponent>> <<TestComponent>>
InresContext InitiatorUserType ResponderType
<<SUT>>-inresSUT : SUTType -T : Timer —
-initiatorUser : InitiatorUserType - - - - - +finish()
-responder : ResponderType +startTimer( timer : Timer, duration : Duration )
-inresArbiter : Arbiter +stopTimer( timer : Timer )
-maxRetransmissionTime : float = 20.0 +finish() ) SUTType
+timeout( timer : Timer )
<<TestCase>>+connectionEstablishment(
<<TestCase>>+dataTransfer()
<<TestCase>>+connectionRelease()

Figure 5.3: Inres test architecture

access points, the test components establish a connection, exchange some data, and then
close the connection. If the SUT reacts as expected, then the verdict is set to pass, otherwise
the verdict can be fail or inconclusive.

Test Architecture

The Inres test architecture (Figure 5.3) contains a test context, two types for test compo-
nents, and one type for the SUT. The test context holds one attribute for each of the types.
These attributes are parts in the test configuration and are represented by lifelines in the
test cases, described below. The attribute inresArbiter is used in the test cases to set the
verdicts of the test components. The float attribute maxRetransmissionTime stores a sim-
ple value. The name of this attribute is used by the test components to specify the waiting
time for a message. The three test case operations hold references to interactions with the
same names, which implement the actual test cases.

The test component type InitiatorUserType contains a timer T and operations to han-
dle it. The operations point to activities containing the respective UTP actions. The opera-
tion finish () refers to an activity with the FinishAction inside it.

Test Configuration

The test configuration for the modeled test cases is displayed in Figure 5.4. The ISAP and
the MSAP interfaces are modeled as pairs of ports which are connected by connectors. The
Inres service primitives are modeled by signals, that are sent in messages between the ports
(cf. Figure 5.5). The initiator user can communicate with the SUT through its ISAP port.
Outgoing messages are immediately transported to the connected ISAP port of the SUT.
In reverse, messages sent by the SUT to its ISAP port are forwarded to the initiator user’s
port as incoming messages. Similarly, the messages are transferred between the two MSAP
ports of the SUT and the responder.
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class InresContext[ @ InresContext]J

<<TestComponent>> @
initiatorUser : InitiatorUserType
P

ISAP
ISAP

<<SUT>>
inresSUT : SUTType MSAP

MSAP

<<TestComponent>>
responder : ResponderType

Figure 5.4: Inres test configuration

Test Data

All the required Inres service primitives and the data units passed through them are mod-
eled as classifiers and instances (Figure 5.5). For each primitive there is a corresponding
signal which can be sent in a sighal message from a port to another port. InresSAP and
MediumSAP are types for the actual ports ISAP and MSAP. The port types define with asso-
ciations, which signals can be sent to or received from the ports of the respective type.

Some signals contain attributes of user-defined types which correspond to the parame-
ters that are contained in the according primitives. The IDATreq primitive in Inres always
contains a data unit to be sent to the responder user. The data type of this unit is not speci-
tied in Inres. In the test case modeled here, the unit is represented by the attribute iData of
the signal IDATreq. Its type is the user defined type UserPDU, which is derived from float.
So, floating point data units can be sent out to the SUT. The other signal attribute is mData
in the signals MDATreq and MDATind. In Inres, it is possible to pass up to three argu-
ments to the corresponding primitives: The type of the data (e.g., 'DT” for data transfer), a
data unit, and a sequence number. Here, those three arguments are modeled as one user
defined data type InresPDU which is a structured data type and contains three attributes
corresponding to the Inres arguments. The data unit field iData is again of the UserPDU
type since it only forwards the data units from the initiator user. For the other two fields,
there are two enumerations: InresPDUType and SequenceNumber. InresPDUType contains
all the possible values that also can be used in Inres. Since only two data units will be sent
in the test case, the possible values for a sequence number are zero and one.

The actual data that will be sent in the signals MDATreq and MDATind is modeled as
UML instances (Figure 5.5). Those will be used for communication between the SUT and
the responder test component.
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package TestData[ DataDiagram]J

InresSAP MediumSAP
<<signal>> <<signal>> <<signal>>| |<<signal>>, <<signal>> <<signal>>
ICONreq IDATreq ICONconf IDISind MDATreq MDATind
-iData : UserPDU -mData : InresPDU |-mData : InresPDU
<<dataType>> |<<enumeration>> <<enumeration>> <<dataType>>
UserPDU InresPDUType SequenceNumber InresPDU
CR zero -iPDUType : InresPDUTypg
CcC one -segNo : SequenceNumber
DR -iData : UserPDU
DT
AK
MConReq : MConConf : MDisReq :
InresPDU InresPDU InresPDU
iPDUType = CR || iPDUType = CC || iPDUType = DR
MDatTransZero MAckZero : MDatTransOne : MAckOne :
: InresPDU InresPDU InresPDU InresPDU
iData = "0.42" iPDUType = AK || iData = "0.52" iPDUType = AK
iPDUType = DT || segNo = zero iPDUType = DT || seqNo = one
segNo = zero segNo = one

Figure 5.5: Inres test data
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* MConReq, MConConf, and MDisReq are used for connection request, connection confir-
mation, and disconnection request, respectively. The iPDUType fields are set to the
respective enumeration values which correspond to the Inres arguments.

* MDatTransZero and MDatTransOne represent the transmission of two data units. The
first one has the sequence number zero and transmits the data '0.42". ’0.52" is sent by
the second one, which contains the sequence number one.

* Finally, MAckZero and MAckOne are used to send acknowledgements for the two re-
ceived data units. In addition to the argument "AK’, those contain the respective
sequence numbers, which are the same as in the incoming signals with the data units.

Test Control

An interaction overview diagram gives an overview of the test case execution (Figure 5.6).
The start and the finish of the execution are logged. A test case called connectionEstab-
lishment is called first. The verdict of the test case is stored in the object node myVerdict.
The following decision node has two outgoing edges: the one with the guard is taken, if the
value in the previous object node is pass, otherwise the other one. So, if the first test case
returns pass, the second test case named dataTransfer is executed. Its verdict is again put
in an object node and forwarded to the next decision node (that is also a merge node at the
same time). Again, if the verdict is pass, the last test case, connectionRelease, is called.
The third test case is only executed, if the other two both returned pass. This dependency
between the test cases is modeled, because for the second and the third test case certain
states must be present. The data can only be transferred after the connection is established.
The connection can only be closed if the first two test cases execute with no errors.

Test Cases

The test cases are modeled as interactions. The lifelines represent the SUT, the test com-
ponents, and the arbiter. In the following, only those elements are addressed, so "the SUT’
means here “the lifeline representing the SUT".

In the test case connectionEstablishment, the opening of a connection is simulated
(Figure 5.7). The initiator user starts its timer T via a call message to self with the duration
stored in the attribute maxRetransmissionTime. It then sends a signal message containing
the ICONreq signal to the port ISAP of the SUT. If after that a message with the ICONconf
signal comes in on its own ISAP port, then the initiator user considers the test case as
passed. It stops the running timer and calls the operation setVerdict in the arbiter with
the argument pass.

When the SUT receives the connection request message from the initiator user, it is ex-
pected to send a data indication message with the MConReq instance to the MSAP port of
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(interaction inresControl[ [£5] inresControl ]J

<<LogAction>> Starting test execution...
ref

connectionEstablishment

| myVerdict : Verdict |

<Q [myVerdict == pass] ref
dataTransfer

V

| myVerdict : Verdict |

[myVerdict == pass]

ref
connectionRelease

!

I myVerdict : Verdict |

Test execution terminated

Figure 5.6: Inres test control
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<<TestComponent>> <<TestComponent>>

inresSUT : SUTType )
initiatorUser : InitiatorUserType responder : ResponderType

T T
|

- | |
default | 1: startTimer(timer=T, duration=maxRetransmissionTime) ‘— ~ T |default
initiatorFailOrIncon | responderFail
¢ |
|

|
L 3: MDATind(MConReq)

inresArbiter : Arbiter (O

2: ICONreq

4: MDATreq(MConConf)
T 5: ICONconf 6: setVerdict(v=pass)

7: stopTimer(timer=T)

8: setVerdict(v=pass)

Figure 5.7: Inres test case connectionEstablishment

the responder. As soon as the responder gets this message, it sends back the respective
connection confirmation to the SUT. After that, the responder also sets its verdict to pass.
Until now, the expected behavior in the test case has been described. The two defaults
attached to the lifelines of the test components handle unexpected situations, which are
not modeled in the interaction. The default with the name initiatorFailOrInconc is
presented in Figure 5.8. It monitors the messages from the SUT and the running timer.

e If for some reason the SUT sends a disconnection indication, the verdict is set to
inconclusive.

e If a message with another unexpected signal or no signal is received from the SUT,
the verdict will be fail.

e If no message is received in a predefined time, i.e., the timer T generates a timeout,
then the arbiter also gets the verdict fail.

In all three cases, the initiator user stops its behavior by finishing the test case. The
second default, responderFail, will be executed, if any unexpected message is received by
the port MSAP of the responder. If this happens, the verdict is set to fail and the responder
quits its execution.

The second test case (Figure 5.9) simulates the exchange of data units. The initiator
user sends out two data request messages to the ISAP port of the SUT. The data that is
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interaction initiatorFailOrincond initiatorFaiIOrInconc]J

<<TestComponent>> | inresSUT : SUTType I |inresArbiler:Arbiler OI
initiatorUser : InitiatorUserType T T
O
alt T T
| 1: IDISind | |
3 2: setVerdict(vsinconclusive) o
| 3: finish()
. .
T oo - === -= ===
4:? | |
5: setVerdict(v=fail) |
| 6 finish()
] T

N e F—=-=== === - - =

[else] 7: timeout(timer=T) | |

| |
:I 8: setVerdict(v=fail)

9: finish()

Figure 5.8: Example of a default
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interaction dataTransfer [ @daﬁaTransfer U

<<TestComponent>>
initiatorUser : InitiatorUserType

T
|

1: IDATreq("0.42")

’ [ inresSUT : SUTType | ’
T

7: IDATreq("0.52")

Type

<<TestComponent>> = | [ inresArbiter : Arbiter (O I

default -
responderFail

T
|
|
|
S

T
|
|
&
|

8: MDATind(MDatTransOne)

2: MDATind(MDatTransZero) |
[] 3: MDATreq(MAckZero) |
|
[else] 4: MDATind("?") ‘
5: setVerdict(v=inconclusive) |
6: finish()
|
| |
|
-

9: MDATreq(MAckOne)

11: setVerdict(v=pass)

10: setVerdict(v=pass)

Figure 5.9: Inres data transfer test case
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transmitted is just two floating-point numbers. After that, the initiator user sets its verdict
to pass.

On receiving the first message, two alternative reactions from the SUT are possible: ei-
ther it behaves as expected and sends the respective message to the responder or it sends a
message with a wrong argument. The construct is an example of modeling unexpected be-
havior in the test case itself instead of a default. If the responder receives a data indication
message with the right instance as its argument, it sends back the respective acknowledg-
ment message and continues its execution after the alt block. If, however, a message with
some other argument is received, the verdict of the responder is set to inconclusive and
it finishes its execution in the test case. The second possibility might occur if the first mes-
sage from the initiator user to the SUT gets lost and instead, the second one comes in its
place. Additionally, any other unexpected messages are caught by the default activated for
the responder.

When the SUT receives the second message from the initiator user, it is expected to for-
ward the data unit in the instance MDatTransOne to the responder. If this is the case, the
responder answers with the MAckOne instance and transfers the verdict pass to the arbiter.

In the last test case, the reaction of the SUT is observed while a connection is released.
The responder transmits a message with the instance MDisReq to the port MSAP of the SUT.
The SUT is then expected to send a disconnection request message to the initiator user.
After that the two test components set their verdicts to pass. To catch unexpected behavior,
the two defaults mentioned above are activated on the respective lifelines.

5.3 Transformation Results

The SWEUTP to SWETest transformation and the generation of TTCN-3 code described in
Chapter 3 and Chapter 4 are applied to the example from the previous section. In the next
two subsections, the results of the model to model and the model to text transformations
are presented. Since the second model to model transformation only performs topological
sortings on the test cases of an SWETest model and does not introduce any new concepts,
it is not discussed here.

SWETest Model

The resulting SWETest model is stored as an XMI format. For overview reasons, exemplary
sections of the model are visualized here as graphs similar to UML class diagrams. The
graphs show instances of SWETest metamodel elements and the relationships between
the instances. Aggregation relationships mark containment references, i.e., parent—child
relations. Non-containment references are represented as directed association arrows. The
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Model
TestContext “InresContext" TestSuite "InresExample™
00 9
TestComponent "InitiatorUserType"
TestComponent "ResponderType"
SUT "SUTType"
Arbiter "Arbiter1" TestData

Figure 5.10: Inres test suite in SWETest

value of the name attribute is always placed next to the type of the instance. Other attributes
are listed below in a separate compartment.

The SWETest model consists of one TestSuite instance named InresExample (Figure
5.10). The test suite contains the test context, test components, and the SUT whose names
correspond to the names of the classes in SWEUTP. The arbiter gets the generic name
Arbiter1, because the predefined interface is used in SWEUTP.

Some exemplary contents of the TestData element are presented in Figure 5.11. Only
two signals, which are referenced by port types, are shown. The attributes of the signals
refer to DataType elements, which are contained in the data pool. The data type UserPDU
is used as a renamed float type. The other one, named InresPDU, is also referenced by
the only instance specification displayed here. The data type contains three attributes that
define the structure of its instances. The instance specification has a ValueSpecification
child for each of the attributes with the same names. Additionally, there are concrete values
defined in the instance specification.

The type for the SUT and the test component ResponderType are shown in Figure 5.12.
Both contain ports that refer to corresponding port types. The activity in the test compo-
nent has only a finish action, because it is used to stop the behavior of the test component.

The test context is structured as displayed in Figure 5.13. The attribute maxRetransmis-
sionTime is of data type float and contains a literal float with a value. The three inter-
actions connectionEstablishment, dataTransfer, and connectionRelease represent test
cases. The other two interactions store the behavior of defaults. Nodes and edges of the
test control are contained in the activity InresControl. The test configuration consists of
two connectors that reference the corresponding ports in test components and in the SUT.
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I —{TestDatak—

PortType "Inres SAP" ?
PortType "Medium SAP"
Signal "IDATreq" 1
({ Signal "MDATind" DataPool
Attribute "iData" ? 0

Attribute "mData"

DataType "UserPDU"
-redefines = "float"

—— Instance Specification "MDatTransZero" -——

T

LiteralFloat "iData"
-value = 0.42 Y

DataType "InresPDU" -

EnumerationValue "segNo" Atribute "iData"

-enumerationValue = zero

Attribute "segNo"

EnumerationValue "iPDUType"
-enumerationLiteral = DT Attribute "iPDUType"

Figure 5.11: SWETest element instances representing test data
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| SUT "SUTType" | TestComponent "ResponderType" |

|Port "ISAP"| |Port "MSAP"| |Port "MSAP"| |Activity "finish"|

|PortType "Inres SAP" | W
|PortType "Medium SAP" H

Figure 5.12: SUT and test component in SWETest

TestContext "InresContext" |

00079 ?

|Attribute "maxRetransmissionTime" |

|TestConfiguration |

DataType "float" LiteralFloat
-value = 20.0
Connector | |Connector 'r

|Interaction "connectionEstablishment” |
|Interaction "dataTransfer" |7
Port "ISAP"
|Interaction "connectionRelease" |7 parent: "SUTType"
Port "ISAP"
. I - parent: "initiatorUserType"
| Interaction "initiatorFailOrInconc™ |7
|Interaction "responderFail” |— Port "M SAP"
parent: "SUTType"
i w Port "MSAP" . |
|Act|V|ty inresControl | parent: "ResponderType"

Figure 5.13: Contents of the test context instance
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| Interaction "ConnectionEstablishment” |

0 09
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Figure 5.14: An Inres test case in SWETest

113




5 Case Study
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-value = "Starting test execution..." Y (]

ActivityEdge
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LiteralString
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ActivityEdge

‘Enumeration "Verdict" L |

€

DecisionNode

Figure 5.15: Inres test control in SWETest

As an example of an Inres test case in SWETest, the one with the name connectionEstab-
lishment is shown in Figure 5.14. It contains four lifelines and a number of interaction
fragments. As an example, only one call message and one signal message are displayed.
The two lifelines that belong to test components have defaults, which have references to
interactions with their behavior. The shown call message is sent by the initiatorUser
to itself, which is indicated by the two references to the lifeline. The activity startTimer,
which is supposed to be executed, is referenced in the call message. There are two argu-
ments of types TimerReference and DurationValue. The signal message sends a signal
from initiatorUser to inresSUT. The corresponding ports are referenced, as well.

in Figure 5.15, a section of the test control structure is presented. All the nodes and edges
are contained in the activity inresControl. Starting with the log action, the activity nodes
are connected by activity edges to each other. The call behavior action references the test
case to be executed. The name of the object node is used in the condition to determine the
path of the execution.

TTCN-3 Code

During the model to text transformation, TTCN-3 code is generated. It contains definitions
for data types, components, test cases, and so on, which correspond to the Inres elements
in the SWETest model. Some exemplary sections of the produced code are discussed in the
following.
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1 module InresExample {
2
3}

The transformation generates one TTCN-3 file with a module called InresExample. The
name is a copy of the test suite name. All the other code blocks are placed inside the
module.

modulepar {
float maxRetransmissionTime := 20.0;

X
type float UserPDU;

type record InresPDU {
InresPDUType iPDUType,
SequenceNumber seqNo optional,
UserPDU iData optional

O 0 N O U = W N~

[N
=]

};

For the attribute of the test context, there is a module parameter which is initialized
with the defaultValue of the attribute. The SWETest data type UserPDU, which has its
redefines property set to float, becomes a user-defined type definition in TTCN-3. Since
InresPDU is a structured data type, it is a record in TTCN-3. The two fields segNo and
iData are not always set by the instance specifications of that type. Therefore, they are
marked as optional.

type record IDATreq {
UserPDU iData

i

type record MDATind {
InresPDU mData

};

template IDATreq IDataRequestZero := {
iData := 0.42

O O N3 O U W N

3
template MDATind MDataTransferZero := {
mData := {
iPDUType := DT,
seqNo := zero,
iData := 0.42
b

e e S S = W S G Y
N O Uk W= O

3

All the signals, for example IDATreq and MDATind that are shown above, are transformed
into records. A message that sends a certain signal becomes a TTCN-3 template of the
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corresponding record type. The data fields are filled with concrete data values that come
from the arguments of the SWETest signal message.

1
2
3
4
5
6
7
8
9

10
11
12
13

type port MediumSAP message {
in MDATind;
out MDATreq;

X

type component ResponderType {
port MediumSAP MSAP;

3

type component MainTestComponent {

b

type component SUTInterface {
port InresSAP ISAP;
port MediumSAP MSAP;

by

As an example, the TTCN-3 definitions for the port MSAP and for the component called
ResponderType containing an instance of that port are presented above. The component
MainTestCommponent is generated for the runs on clause of test components (see below).
The SUT is represented by the component SUTInterface.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

altstep initiatorFailOrInconc () runs on InitiatorUserType {
[] ISAP.receive ( IDisconnectionIndication ) {
setverdict ( inconc );
stop;
}
[J ISAP.receive {
setverdict ( fail );
stop;
}
[ T.timeout {
setverdict ( fail );
stop;
}
}

The behavior of a default is defined as an altstep in TTCN-3. The three possible er-
roneous situations are specified in blocks with receive statements and a timeout action
used as conditions. The timer T is defined in InitiatorUserType. The verdicts are set with
the setverdict directive and the behavior of the current component is finished using the
stop statement.

1
2
3
4

function connectionEstablishment_initiatorUser ()
runs on InitiatorUserType {
var default initiatorFailOrInconcDefault :=
activate ( initiatorFailOrInconc () );
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5 T.start ( maxRetransmissionTime );

6 ISAP.send ( IConnectionRequest );

7 ISAP.receive ( IConnectionConfirmation );

8 T.stop;

9 setverdict ( pass );

10 deactivate ( initiatorFailOrInconcDefault );
1}

12

13  function connectionEstablishment_responder ()
14 runs on ResponderType {

15 var default responderFailDefault := activate ( responderFail () );
16 MSAP.receive ( MConnectionRequest ) ;

17 MSAP.send ( MConnectionConfirmation );

18 setverdict ( pass );

19 deactivate ( responderFailDefault );

20}

The behavior of the two components initiatorUser and responder in the test case
connectionEstablishment are specified in two functions, which run on the respective
component types. Since there are defaults on the lifelines in the SWETest model, there are
corresponding default activations and deactivations in TTCN-3. Otherwise, each code line
representing behavior corresponds to an interaction fragment from the SWETest model.

1 testcase connectionEstablishment () runs on MainTestComponent

2 system SUTInterface {

3 var InitiatorUserType initiatorUser := InitiatorUserType.create;
4 var ResponderType responder := ResponderType.create;

5 map ( responder:MSAP, system:MSAP );

6 map ( initiatorUser:ISAP, system:ISAP );

7 initiatorUser.start ( connectionEstablishment_initiatorUser () );
8 responder.start ( connectionEstablishment_responder () );

9

3

The behavior of a complete test case is defined in a TTCN-3 testcase. First, the two
components are created and stored in variables. To enable communication between the
components and the interface the the SUT, their ports are then connected to each other.
Finally, the behavior of the components is started referring to the functions defined previ-
ously.

1  control {

2 var verdicttype myVerdict;

3 log ( "Starting test execution..." );

4 myVerdict := execute ( connectionEstablishment () );
5

6 if ( myVerdict == pass ) {

7 myVerdict := execute ( dataTransfer () );

8 by
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9 if ( myVerdict == pass ) {

10 myVerdict := execute ( connectionRelease () );
11 }

12 log ( "Test execution terminated" );

13}

The last section of the generated TTCN-3 code presented here defines the control part.
The variable myVerdict is used to store the returned verdicts from the executed test cases.
Only if the execution of a test case is successful, the next test case will be executed. The
beginning and the finish of the control execution is logged with the log statement.
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In this last chapter, the results of the thesis are summarized and an outlook for future work
is given. In the summary, the developed method as well as the underlying implementation
are referred to. Possible improvements and extensions to the method are mentioned in the
outlook.

6.1 Summary

Although models are widely used in development of software systems today, the applica-
tion of models in the area of software testing is still rare. The main reason for this is that
there is no universally applicable method to build test models and to transform them into
code. The objective of this thesis was to make a proposition for such a method.

Since UML as well as the used UML profile UTP are very complex modeling languages,
a restricted subset of UTP was defined which is called SWEUTP. For the specification of the
restrictions, the constraint language OCL was chosen, which is a part of the UML specifi-
cation. Furthermore, a concrete syntax for conditional statements in SWEUTP models was
defined. A model that conforms to SWEUTP can be processed by the transformation tool
implemented in this thesis.

The method for generating test cases from models that is presented in this thesis is re-
alized as model to model and model to text transformations. To simplify the structure
of modeled test cases and to make it uniform and consistent, a new metamodel called
SWETest was created, which is based on Ecore. SWETest is used as the output format in
the model to model transformation from SWEUTP. The transformation process was imple-
mented using the language Xtend which is part of openArchitectureWare.

SWETest models containing test cases can easily be altered by further model to model
transformations. The example that is given in this thesis changes SWETest models in the
way that all the distributed test components are merged into one test component and de-
terministic test behavior is created with the help of a topological sorting algorithm. The
process was implemented in Xtend as an in-place transformation, i.e., the model is changed
directly and no new model is generated.

The last transformation method presented is a model to text transformation that gener-
ates code for test cases. The input is an SWETest model containing one or more test suites.
Each test suite is mapped to a TTCN-3 module consisting of all the definitions that are
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needed to execute the test cases. This transformation is implemented in Xpand, a template
oriented language which is also part of oAW.

6.2 Outlook

The presented method can be regarded as an approach to Model Driven Testing as de-
scribed by Baker et al.[17] Just as Baker et al. suggest, the test data is contained in the UTP
model along with the test behavior and the test architecture. However, data for testing
a system is likely to be very extensive, since even small systems have a large number of
possible input and output values. Modeling the test data can be very time-consuming.
Therefore, it should be considered to create a possibility to define the test data externally
and import it during the transformation. For example, the data could be imported from a
database or an XML document.

The defined UTP variant called SWEUTP does not contain all the concepts of UTP. For
example, data selectors, schedulers, and timezones are not processed by the transforma-
tions. Consequently, there are no corresponding elements in the SWETest metamodel and
no mappings to TTCN-3. Ideally, all the UTP elements should be included in SWEUTP
and the transformation algorithms should be adapted to process them. The mappings to
TTCN-3 can be implemented as proposed in the UTP specification [33]. For example, data
selectors could be represented as external functions.

During the generation of TTCN-3 test cases, only the combined fragments with the op-
erators alt, opt, and loop are processed. Additional mappings for other kinds should be
defined and implemented to allow more complex structures for the behavior of the test
cases. The operator par, for example, could be used to explicitly mark parallel regions
of the test behavior. Invalid behavior sections that lead to unsuccessful verdicts might be
represented in neg sections.

So far, only message-based communication between the test components and the SUT
was considered. In SWEUTP, operation calls are only sent onto the same lifeline and to
the arbiter. It is also possible to add corresponding model elements and transformation
rules for procedure-based communication between the test components and the SUT. The
transformation to TTCN-3 would be straightforward, since the language contains corre-
sponding concepts.

Finally, generation of code for other programming languages other than TTCN-3 can be
implemented. For example, test cases could be generated for the Java-based framework
JUnit [8] or the multi-purpose programming language Ruby [13].
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Appendix A: UML metamodel

package uml metamode] class diagram ]J

+classifier | Classifier
. InstanceSpecification ?
+instance
1 Class DataType | dataType
+owningInstance | 1 +cClass 0.1
0..1
+slot|* +class|0..1 +dataType|0..1
Slot
+oynedAttribute | *
+owrjedAttribute
Property
-owningSlot | 0..1
+value|*
ReteSpechication PrimitiveType Enumeration
+ownedOperation| *
Operation +enumeration|0..1
+ownedOperation L]
+operation|0..1 <<enumeration>>
+ownedParameter| * ParameterDirectionKind
Parameter in
7t -~ : inout
-direction : ParameterDirectionKind |5t
return
- +ownedLiteral |*

EnumerationLiteral

InstanceValue | | LiteralSpecification OpaqueExpression
-body : String
LiteralBoolean | | Literalinteger LiteralString | | LiteralNull
-value : Boolean | |-value : Integer | |-value : String

Figure 6.1: Part of the UML metamodel for class diagrams
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package uml metamode] sequence diagram ])

+interaction | Interaction +enclosingInteraction
+lifeling|* 1 . —J %1 iragment|*
T +interaction 1 InteractionFragment
Lifeline +fragment
. +covered +coveredBy -
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Property -messageSort : M yeSortl.rmessage | | MessageOccurreceSpecification
0..1 0..1
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1
1

Figure 6.2: Metaclasses defining UML sequence diagrams
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package uml metamodel [ avtivity diagram ]J

+activity | ACVItY | L activit
+node | * 0.1 0.1 * |+edge
ActivityNode |+target +incoming ActivityEdge
+source +outgoing
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A | 0.1
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MergeNode ValuePin ControlFlow [
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ActivityParameterNode
|| InitiaINode 1
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Parameter
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Figure 6.3: Metamodel for activity diagrams
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package uml metamode] composite structure ]J

ConnectableElement
StructuredClassifier | 1 N
+part]/ ? 1 |+role
0.1 Property
?
* | +ownedConnector Port « | vend
Connector

2.+ |ConnectorEnd

+end

Figure 6.4: Metamodel for composite structure diagrams
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Appendix B: Modeling Test Cases with Magic

Draw

Step-by-step procedure for modeling a test suite in Magic Draw.

1. Basic structure of the test suite:

Create a new project using the UTP template.

Create a package which will contain all the test elements and test cases.
Create a Test Architecture Diagram in the package.

Create a Test Context element in that diagram.

Create a Classifier Behavior in the Test Context. Go to Specification, select Ac-
tivity next to Classifier Behavior, type in a name for the behavior. This behavior
will correspond to the control part in the TTCN-3 code.

Create a Test Overview Diagram inside the behavior: Right-click on the behav-
ior in the Containment Tree and select 'New Diagram’. The Test Overview Dia-
gram is part of this work, so it has to be installed manually.

Similarly, create a Test Configuration Diagram in the Test Context.

Create a number of Sequence Diagrams in the Test Context. Those will corre-
spond to the test cases which will be generated in TTCN-3.

Optionally create a package for test data (like Signals, Datatypes and Instances).
The advantage of this is that this package can be shared between several test
suites.

In this package, create a Test Architecture Diagram on which all the test data
will be placed.

2. Active Test Elements and connections between them:

Create Test Components and an Arbiter in the Test Architecture Diagram with
the TestContext. The Arbiter will be responsible for setting the Verdict.

Create a simple Class in the Test Architecture Diagram, which will be used as
the type for the SUT element.

In the Test Configuration Diagram, create a SUT Part and Test Component Parts.
Choose the previously created Test Components and the SUT Class as types for
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the Parts. Type in the names for the Parts. Note that corresponding attributes
are added automatically to the Test Context.

On the Test Architecture Diagram for the test data, create Classes, which will
serve as types for Ports.

In the Test Configuration Diagram, add Ports to the Test Components and the
SUT. Select the previously created Classes as types. The ports of the SUT will be
the "system:’-ports in TTCN-3.

Connect the Ports, which should be mapped to each other, with Connectors.

3. Data to be sent in Messages:

In the Test Architecture Diagram in the Data Package, create Signals, which
should be sent between Test Components and the SUT. The Signals can have
Attributes of primitive types (like Integer or String) or of user-defined types
(see later). The Signals will be transformed to records in TTCN-3.

Draw Directed Association arrows from Port types to the Signals, which should
be sent through the Ports.

Define your own Data Types and Enumerations. If a Data Type should be de-
rived from a primitive type like String or float, the primitive type must be given
in the BaseClassifier of the Data Type. Like Signals, own DataTypes can have
attributes, in which case they are also transformed to records. If Enumera-
tionLiterals are supposed to have other integer values than 0, 1, etc., then each
value can be specified in the Specification of the EnumerationLiterals, in the
tield "Specification’.

Create Instances of your own structured Data Types. Those can be sent as argu-
ments in Signals later in the Sequence Diagrams. The Instances are transformed
to (inner) templates in TTCN-3 (as fields inside of ‘Signal’-templates, see later).

Instead of regular values, some special values can be defined in the Slots of the
Instances:

- A LiteralNull results in an omit-statement.

- A LiteralString stereotyped as Literal AnyOrNull results in a *.

— A LiteralString with the value "parameter” and stereotyped as LiteralAny
generates a parameter for the template.

- A LiteralString with any other value stereotyped as Literal Any results in a
?

4. Basic test cases

Add Operations to the TestContext. Assign the TestCase stereotype to them if it
is not done automatically.
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* Connect the Operations to the Interactions by choosing the right ones for the
Method field in the Specification dialog.

* Create the Arbiter which will accept and set Verdicts:

— Add an attribute to the TestContext with the predefined type Arbiter (inter-
face) or

— Create your own Arbiter Class which implements the Arbiter interface and
add an attribute of that type to the TestContext.

¢ In the Interactions, create Lifelines out of the attributes of the TestContext (Test-
Components, SUT, Arbiter).

* Following elements can be created on the Lifelines:

- ’Call Message’ to the Arbiter to set or get the verdict. Choose the right op-
eration in the Operation field. MagicDraw might generate a string attribute
for the setVerdict operation. Delete it and create a new attribute of type In-
stanceValue. Choose a verdict value from the enumeration Verdict in the
UTP package.

- ’Send Message’ to send Signals between the TestComponents and the SUT.
The name for the message must be given (it is used to generate a template
in TTCN-3). The arguments of the message must correspond to the types
of the Signal attributes or can be wildcards (as described for Instance Slots
above). Different messages may have the same name if they contain the
same signal with the same arguments (in this case only one template will
be generated). The ports can be specified by choosing a Connector. If the
Connector field is empty, then an ‘any port’ statement will be generated
in TTCN-3. The Signal does not have to be given in messages that come
from the SUT. In that case a 'receive’ statement with no arguments will be
generated.

— 'Message to self’ to call an Activity (see below) or a nativeCode operation.
An operation with the name 'nativeCode’ can be used to input a code line
of the language that will be generated. This is useful if some features are
needed that are not (yet) implemented in the transformation process.

5. Activities and timers

* Create Activities in the TestComponents to be able to use some UTP Actions.
Activities with the following Actions inside them can be created:
- StartTimerAction
— StopTimerAction
— TimeOutAction
— FinishAction
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Create a corresponding operation for each Activity in the TestComponents and
assign the Activity to the operation:
— The operation that starts a timer must have two parameters: one of type
Timer and one of type Duration (from the UTP package).
— The one that stops a timer must have a Timer parameter.
- The timeout operation also must have a Timer parameter.

Assign the Activities to the corresponding operations. For each parameter of the
operation, one activity parameter and one parameter node are generated. Give
names to all the activity parameters.

The generated parameter nodes can be dragged onto the Activity Diagram and
used as input for the Action.

Add attributes of type Timer to the TestComponents to be able to use timers in
the test cases.

To add an execution of a UTP Action to a lifeline, create a Message to self, choose
the desired operation (which is assigned to the Activity with the Action) and
specify the arguments. For a timer, the argument must be the name of a Timer.
Duration can be a numerical value or a variable name (see below). The argu-
ments must be OpaqueExpressions, since MagicDraw’s "ElementValue’ is not
in the UML standard and thus will not be exported to the EMF UML file. The
simplest way to create arguments as OpaqueExpressions is to just type in the
values directly in the Sequence Diagram.

Attributes of the TestContext which are not TestComponents, SUT, or Arbiters
are treated like ‘global variables’ for the test cases. Their names can be used as
arguments in the Call Messages/Messages to self. The initial values for those at-
tributes can be typed in in the TestContext definition in the Diagram. In TTCN-3,
modulepar parameters are generated.

6. Defaults

Create a new Sequence Diagram in the TestContext which will be a default.
A default is properly generated in TTCN-3, if it consists of one alt block.

Assign the default Interaction to a test component: Create a Comment and at-
tach it to a lifeline of a test component. The text of the comment must start with
‘default<enter>" and then contain the name of the Interaction.

7. Test control

In the Activity diagram for the classifier behavior of the TestContext, create an
initial node and an activity final node.

Create LogActions to log some statements. Create a ValuePin in each LogAction
and type in the statement that should be logged in the "value’ field. MagicDraw
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shows an error message if a pin is created from the toolbar on the LogAction, so
create the pin in the Specification dialog of the LogAction (either under Request
or under Target).

¢ Create InteractionUses and choose Interactions.

* An ObjectNode following an InteractionUse means that the result of the test
case (the verdict) is stored in the object.

* An object can be passed to a decision node. Outgoing edges of the decision node
should have guards to specify conditions. An outgoing edge without a guard
indicates the main flow. Different flows can be merged with merge nodes.
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