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Abstract. Software metrics are an essential means to assess software
quality. For the assessment of software quality, typically sets of com-
plementing metrics are used since individual metrics cover only isolated
quality aspects rather than a quality characteristic as a whole. The choice
of the metrics within such metric sets, however, is non-trivial. Metrics
may intuitively appear to be complementing, but they often are in fact
non-orthogonal, i.e. the information they provide may overlap to some
extent. In the past, such redundant metrics have been identified, for ex-
ample, by statistical correlation methods. This paper presents, based on
machine learning, a novel approach to minimise sets of metrics by identi-
fying and removing metrics which have little effect on the overall quality
assessment. To demonstrate the application of this approach, results from
an experiment are provided. In this experiment, a set of metrics that is
used to assess the analysability of test suites that are specified using the
Testing and Test Control Notation (TTCN-3) is investigated.

1 Introduction

Quantitative methods like software metrics are a powerful means to assess and
control software development [1]. In software development process maturity mod-
els, like Capability Maturity Model Integration (CMMI) [2] or Software Process
Improvement and Capability dEtermination’ (SPICE) [3], the usage of metrics
is considered as an indicator of a high process maturity. For the quality assess-
ment of test suites that are specified using the Testing and Test Control Nota-
tion (TTCN-3) [4, 5], we have thus proposed a set of several TTCN-3 metrics [6].
When we presented and discussed these metrics at the Fifth International Work-
shop on System Analysis and Modelling (SAM’06), it was pointed out that the
assessment of TTCN-3 specifications depends on the quality characteristic to be
evaluated and that several metrics are needed to measure all aspects of a charac-
teristic. Therefore, we developed subsequently a comprehensive test specification
quality model [7] that takes various different quality characteristics into account
to asses the quality of a test specification. Following the ISO/IEC 9126 stan-
dard [8], each quality characteristic is divided into further sub-characteristics
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and each sub-characteristic is quantified using several metrics. By taking the
measurements of the different metrics into account, a classification of the over-
all quality of a test specification can be made. But, as also pointed out at the
discussion at SAM’06, this may lead to a cluttered set of metrics that is hard to
interpret.

Hence, we developed a machine learning approach that can be used to op-
timise a set of metrics and that helps to judge whether a new metric should
become part of the metrics set (i.e. measures a new quality aspect) or whether
it is already subsumed by other metrics (i.e. the new metric leads to the same
conclusion as other metrics already do). In this paper, we present our machine
learning approach and show its practicability by applying it to a set of TTCN-3
metrics.

This paper is structured as follows: after this introduction, we provide foun-
dations on software metrics and machine learning in Sect. 2. As our main contri-
bution, we present our approach of using learning techniques to evaluate metric
sets in Sect. 3. Then, in Sect. 4, we demonstrate the usage of this approach by
applying it to a suite of TTCN-3 metrics. Finally, we conclude with a summary
and outlook.

2 Foundations

In this section, foundations on software metrics and on pattern analysis using
Probably Approxzimately Correct (PAC) learning are presented. In our case, the
patterns to be learned will be the varying values of a metric set that contribute
to a corresponding overall classification of the quality of a test specification.

2.1 Software Metrics

According to Fenton et al. [1], the term software metrics embraces all activities
which involve software measurement. Software metrics are mostly used for man-
agement purposes and quality assurance in software development. They can be
classified into measures for attributes of processes, resources, and products.

For each class, internal and external attributes can be distinguished. FExter-
nal attributes refer to how a process, resource, or product relates to its envi-
ronment; internal attributes are properties of a process, resource, or product on
its own, separate from any interactions with its environment. Internal product
attributes are typically obtained by static analysis of the code to be assessed.
External product attributes on the other hand are normally gained by accumu-
lating quantitative data of interest during program execution.

Internal product metrics can be structured into size and structural met-
rics [1]. Size metrics measure properties of the number of usage of programming
or specification language constructs, e.g. the metrics proposed by Halstead [9].
Structural metrics analyse the structure of a program or specification. The most
popular examples are complexity metrics based on control flow or call graphs
and coupling metrics.
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Concerning metrics for measuring complexity of control structures, the most
prominent complexity metric is the cyclomatic complezity from McCabe [10,
11]. It is a descriptive metric, i.e. its value can be objectively derived from
source code. By additionally using threshold values, this metric becomes also
prescriptive [12], i.e. it helps to control software quality. For example, when
threshold violations of the metric values are analysed, it can help to identify
complex modules which shall be split into several simpler ones [11].

Metrics are often used in the context of a quality model. The ISO/IEC stan-
dard 9126 [8] defines such a quality model for internal quality, external quality,
and quality-in-use of software products. It is possible to apply such quality mod-
els to test specifications as well [7]. The ISO/IEC quality model describes each
distinct quality characteristic of a software product by further subcharacteris-
tics that refine each characteristic. To quantify the quality with respect to each
subcharacteristic, according metrics can be used. Based on these metrics and
related thresholds, an overall classification of a given software product can be
made. The actual scheme used for the overall classification may vary from project
to project, e.g. one project may require a scenario in which all the calculated
metric values need to be within the corresponding thresholds, whereas in other
projects it may be sufficient if only a certain percentage of the involved metrics
do not violate their thresholds.

To make sure that reasonable metrics are chosen, Basili et al. suggest the
Goal Question Metric (GQM) approach [13]: First, the goals which shall be
achieved (e.g. improve maintainability) must be defined. Then, for each goal, a
set of meaningful questions that characterise a goal is derived. The answers to
these questions determine whether a goal has been met or not. Finally, one or
more metrics are defined to gather quantitative data which give answers to each
question. The GQM approach, however, does not make any statement on the
similarity of metrics and whether certain metrics are statistically replaceable by
others.

There are numerous publications that try to tackle the orthogonality problem
of software metrics, i.e. they try to identify those measures in a set of metrics
that do not deliver any meaningful additional information. One early work of
Henry et al. [14] demonstrated the high-degree relationship between the cy-
clomatic complexity and Halstead’s complexity measures by means of Pearson
correlation coefficients. A good overview on further related work is provided by
Fenton et al. [1]: they list approaches to investigate the correlation of metrics
using Spearmans’ rank correlation coefficient and Kendall’s robust correlation
coefficient. To express the nature of the associations, regression analysis has been
suggested. Furthermore, principal component analysis has been used to reduce
the number of necessary metrics by removing those principal components that
account for little of the variability. We are not aware of any approaches that use
a learning approach as described in the remainder of this paper.
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2.2 Extracting pattern from data

The so-called Keplers’s third law states that the squares of the periods of planets
are proportional to the cubes of their semimajor axes. The law corresponds to
regularities present in the planetary data recorded by Tycho Brahe. Johannes
Kepler’s extraction of these regularities from Brahe’s data can be regarded as
an early example of pattern analysis.

There are various models to formalise such pattern analysis problems in di-
verse degrees of generality. A very prominent one is Valiant’s learning model [15,
16] that is outlined in the following.

We are given an input space X C R™. Usually we think of X as being a set of
encodings of instances or objects in the learner’s world. Examples are rectangles
in the Euclidean plane R?, two 2-dimensional arrays of binary pixels of a fixed
width and height when it comes to recognising characters, or simply Boolean
vectors of length n. The input space is the data source in this model. To this
end, a random element X € X is given. It induces an arbitrary distribution Px
on X.

A concept over the input space X is a +1/ — 1-valued function on X or equiv-
alently a subset of X. A concept class C is a collection of concepts. Examples are
all rectangles in the Euclidean plane R?, pixel representations of a given alpha-
bet, and all Boolean monomials of a fixed length k£ over the Boolean variables
L1y L2y ey Ty

An algorithm A is a PAC learner of the concept class C by a hypothesis class
‘H, which usually comprises C, if for every accuracy € > 0 and every confidence
0 > 0 there is minimal sample size m 4 (¢, d) such that for every target concept
g € C, all m > mu(e,d), and all distributions Px the following property is
satisfied. Let A be given access to a learning sample

U(m) = ((XI;Q(XI))v (XQag(XQ))a IR (vag(Xm))) (1)

of length m, where (X1, Xs,...,X,,) is a sample drawn independently from
X according to the distribution Px. Then A outputs with probability at least
1 — 0 a hypothesis H := A (U(m)) € 'H satisfying err(H) < e. This probability
is taken over the random learning samples according to (1) and any internal
randomisation, if the learning algorithm is a probabilistic one. The error err(h)
of any hypothesis h € H is defined by P (h(X) # g(X)). The preceding condition
is sometimes referred to as consistency of the learning algorithm A.

In order to devise a PAC learner, it is reasonable to output a hypothesis h
that performs faultless on the learning sample (1). To ensure that this will work,
especially to avoid what is called overfitting, it is, moreover, necessary to bound
the capacity of the hypothesis class H. Very popular capacity measures are the
Vapnik-Cervonenkis dimension [17-19] and the Rademacher complexity [20]. For
an overview see [21, 22].

PAC learning can be canonically generalised to what might be called pattern
analysis or pattern extraction. Starting point is the observation that the second
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components Y; of the learning sample
U™ = (X1, Y1), (X2, Y2), o, (X, Vi) (2)

need not always be totally depend on the first components X;. Again we restrict
ourselves to classification problems, that is to the cases, where the so-called
output variables Y; take values in the output space P = {—1,+1}, The product
= X x 9 is denoted as learning universe. Using a random variable U =
(X,Y) € 4, it is regarded as source of data. The first component X of U is
called input element, the second component Y the output variable. Analogous
to the cases of PAC learning, the distribution Py with the random element
U induced on the learning universe is not determined, but sometimes it has
guaranteed qualities.

A pattern analysis algorithm A by a pattern class P C Map(U, {—1,+1})
takes a learning sample (2) as input. It computes a pattern A(U(™)) € P that
7approximates” the risk infimum risk P := inf,cp risk 7w of the class P in the
sense of consistency defined below. The risk of a pattern @ € P, which is denoted
by risk 7, in turn is defined to be the expected value E 7(U) of w(U). On overview
on this setting is given in [22].

In this paper, we make only use of pattern classes consisting of patterns of the
type £o/1(y, h(z)), where h ranges over a hypothesis class H C Map(X, {1, +1}),
and £y, is the so-called 0/1-loss function: Eo/l(yl, yg) =1- 5(y1,y2), where §
is the Kronecker function.

An example for a guaranteed quality mentioned above is that Y equals g(X),
for some target concept g belonging to the concept class C. If the pattern class
is formed by means of a hypothesis class H O C, then riskm = err h provided
that 7(x,y) = £o/1(y, h(x)). That way PAC learning is a special case of pattern
extraction. From now on we identify the pattern 7 (z,y) = £o,1(y, h(z)) with the
hypothesis h(z), and consequently the pattern class P with the hypothesis class
H.

A pattern analysis algorithm A by H is called consistent, if for every accuracy
e > 0 and every confidence § > 0 there is a minimal sample size m4 (e, d) such
that for all m > my(e,d), and all distributions Py the following condition is
fulfilled. Taking the learning sample (2) as input, A outputs with probability at
least 1 — ¢ a hypothesis H := A (U(m)) € 'H satisfying

risk H < risk H + €. (3)

The problem with the risk of a hypothesis is that it cannot be calculated since
the distribution Py is not determined. Consequently, one cannot try to compute
a hypothesis of minimal risk. The empirical risk minimisation induction principle
ERM recommends a pattern analysis algorithm to choose a hypothesis h that
minimises the empirical risk

riskemp (h ‘U(m)> = %240/1 (Y, h(X3)) (4)
i=1
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on the learning sample (2). A pattern analysis algorithm A obeying ERM is
consistent, if, for example, the Rademacher complexity rc,, (H) of H is an o(1).
In this cases the empirical risk of the output of A is a consistent estimator of
the risk infimum in the sense of mathematical statistics.

In this paper ERM means that one has to minimise the number of misclas-
sifications on the learning sample (2). Practically, one has to ensure that for
sufficiently small accuracy and confidence — say € = 0.005 and § = 106 — the
learning sample length suffices to fulfil (3).

To get an idea of what the Rademacher complexity rc,, (H) of a finite H
with respect to samples of length m means, let us mention that rc,, (H) <

V2InH|//m [23].

3 Using Learning Techniques to Evaluate Metric Sets

In this section we describe how to approximate a comprehensive software quality
assessment scheme based on a set of n metrics by a restricted scheme supported
by the "best” v-subset (0 < v < n) of these metrics in terms of learning tech-
niques. To this end, we assign to a family of parametrised comprehensive schemes
a concept class in the sense of PAC learning. For each v-subset, the corresponding
family of parametrised restricted schemes is, moreover, mirrored by a hypothesis
class. We evaluate the performance of the approximation using the risk infimum
of the best hypothesis class (see (3)).

In the following, we define the learning setup: The input space X equals the
Cartesian product of n intervals [0, ¢1], [0, ¢2], ..., [0, ¢,], that are the ranges of
the n metrics. Thus each behavioural entity is represented by a vector of length
n.

The concept class C, which is equivalent to the parametrised comprehensive
assessment schemes, consists of all concepts g such that for all z € X

g(z) = +1 < x; >7; for at most k of the indices {1,2,...,n},

and g(xz) = —1 otherwise. Therein the parameter (71, 72,...,7,) is any element
of X, and k € {0,1,...,n — 1} is a constant. The concept g is equivalent to
the following comprehensive software quality assessment scheme: A behavioural
entity is positively evaluated, if and only if at most k£ of the n metrics violate
their quality threshold given by (71,72, ..., 7s).

We restricted ourselves to a “reasonable” concept gy € C from the point
of view of software quality assessment, rather than to learn the whole concept
class in the sense of PAC learning. Our concept ¢gg is determined by n threshold
values 71,72, -..,7%n, one for each metric, based on our expertise in software
testing. Then the learning samples were assumed to be drawn according to (1),
with the target concept g being gg as guaranteed quality of the distribution Py
(see Section 2.2).

For each v-subset i1 < is < ... <1, of {1,2,...,n}, we define the elements
h of the hypothesis classes H (i1, 42, . . .,i,) determining a restricted scheme by

h(z) =+1 <= x;; >7; for at most x elements j of the set {1,2,...,v},
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where 7; € [0,¢;,], for j = 0,1,...,v — 1, are the parameters of the hypothesis,
and 1 < x < v is a constant. Thus each v-subset determines one restricted model
of software assessment.

Clearly, learning a hypothesis of the above kind amounts to computing the v
hypothesis thresholds T1,Ts, ..., T, from the training data. These thresholds need
not be the same as the corresponding ones in the sequence ~v1,72,...,7v,. This
is due to the fact that we approximate n metrics by v ones.

Without proof we notice that for a moderately large number n of metrics the
pattern classes defined above are of relatively small capacity such that learn-
ing samples of reasonable size suffice to ensure (3) for acceptable accuracy and
confidence.

What is a reasonable course of action in our learning setup to approximate a
larger scheme by a smaller one and to evaluate the performance of the approxi-
mation? The one that follows is rather standard.

1. Represent all available behavioural entities as a vector of length n using the
n metrics.

2. Classify them by the concept g € C.

3. Randomly divide these data set into three parts: a training set (50%), a
validation set (25%), and a test set (25%). This is because there are in fact
two goals that we have in mind:

Model selection: estimating the performance of the v-subsets of our n-set of
metrics to choose the best one.

Model assessment: having chosen a final v-subset of metrics, estimating the
infimum risk.

4. In general, the training set is used to fit the models. In our case this means
to compute for each v-subset {iy,ia,...,4,} of the index set {1,2,...,n}
a hypothesis h (i1,42,...,4,) € H(i1,42,...,%,) in terms of its hypothesis
thresholds that minimises the empirical risk (see (4)) on the training data.

5. Choose a best hypothesis h (igo),zéo), .. .,if,o)> on the validation set. This
is done by computing the empirical risks of all hypotheses h (i1, 42, ..,1,)
found in Step 4 on the validation data, the so-called validation errors.

6. Calculate the empirical risk of h <i§0)7 igo), e ,i,(jo)) on the test set, the so-

called test error, thus estimating the risk infimum risk H <i§0)7 iéo), . ,i(yo)>

that in turn measures how well n metrics can be approximated by v ones.

4 Application

To evaluate the practicability of our approach, we performed an experiment. In
this experiment, we applied our approach to investigate whether it is possible to
approximate a set of four metrics by a minimised set of one or two metrics only.
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4.1 Metrics

In the following, the four metrics used in the experiment are introduced in more
detail. The metrics are selected to capture different perceptions of complexity
of behaviour within a TTCN-3 test suite with regards to the maintainability
characteristic and its analysability subcharacteristic of the refined quality model
for test specifications [7]. In TTCN-3, test behaviour is specified by test case,
function, and altstep constructs. We start by describing a measure called Number
of Statements.

Metric 1 (Number Of Statements NOS). The number of statement count
NOS is mostly self explaining. Unlike the common lines of code (LOC) measure,
counting the number of statements ignores information regarding the code itself
such as the code’s formatting or comments while retaining an intuitive measure
of the code length.

Even though NOS delivers a measure for the code length per behavioural
entity, it does not deliver any statement about code complexity. It is missing a
sense of behavioural complexity. McCabe’s cyclomatic complexity [10] attempts
to deliver this, essentially by counting the number of branches of the control flow
graph and thus penalising conditional behaviour.

Metric 2 (Cyclomatic Complexity v(G)). The cyclomatic complexity v(G)
of a control flow graph G can be defined! as:

v(G)=e—n+2

In this formula, e denotes the number of edges and n is the number of nodes
in G.

While the cyclomatic complexity v(G) penalises conditional behaviour, it is
missing another factor that comprises code complexity: deeply nested branches
are not penalised any different than flat branches. For example, a conditional
nested within another conditional is penalised the same as two subsequent con-
ditionals even though nested conditionals obviously complicate things. Thus, we
chose to add a simple nesting level metric to our set of metrics.

Metric 3 (Maximum Nesting Level M NL). The maximum nesting level
MNL is obtained by inspecting all conditionals within a test behaviour and
counting their nesting levels. For example, an if-statement within an if-statement
would yield the nesting level 2. The maximum nesting level denotes the highest
nesting level measured per behavioural entity.

! Several ways of defining v(G) can be found in literature. The above definition as-
sumes that G has a single entry and a single exit point. In the presence of several
exit points, this assumption can be maintained by adding edges from all exit points
to a single exit point.
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Since structured test behaviour may invoke other callable behaviour (e.g. by
calling other functions), the complexity of each code fragment also depends on
the complexity resulting by calls to such other behavioural entities. For develop-
ers, deeply nested call structures can be bothersome as they have to look up and
understand each called behaviour within the code piece in front of them when
working on this code. The Mazimum Call Depth provides such a measure.

Metric 4 (Maximum Call Depth M CD). The maximum call depth M CD is
obtained by analysis of the call graph?. For each behaviour A, the corresponding
graph of behaviours called by A is calculated recursively to include indirect calls
(i.e. the call relation is transitive); in this graph, the length of each path starting
from A is measured and the resulting M CD value is the length of the longest
distinct path. If the path contains a cycle due to a recursive call, the M C'D value
is o0o.

We calculate these four metrics for each behavioural entity (i.e. test case,
function, altstep) of a TTCN-3 test suite and use the vector of calculated metric
values to obtain an overall classification of the quality of a test behaviour with
respect to the quality sub-characteristic analysability. To obtain such an over-
all classification, for each behaviour we compare the calculated metric values
against corresponding thresholds. Each element of the vector may be classified
as positive, i.e. does not violate its corresponding threshold value, or negative,
i.e. does violate the corresponding threshold value. The overall classification of
a behavioural entity is again a positive or negative verdict that depends on
how many of the elements of the corresponding vector are classified as positive
(indicating a good quality) or negative (indicating a bad quality) respectively.

4.2 Experimental Settings

To obtain a reasonable amount of data for applying and assessing our learn-
ing approach, we performed an experiment with several huge test suites that
have been standardised by the European Telecommunications Standards Insti-
tute (ETSI). The first considered test suite is Version 3.2.1 of the test suite for
the Session Initiation Protocol (SIP) [24], the second is a preliminary version of
a test suite for the Internet Protocol Version 6 (IPv6) [25]. Together, both test
suites comprise 2276 behavioural entities and 88560 LOC.

The data used in this experiment was computed by our TRex TTCN-3
tool [26, 27] using the metric thresholds given in Table 1. Based on our TTCN-3
experience, these basic thresholds were determined along the lines of the GQM
approach mentioned in Sect. 2.1. TRex calculated a vector containing the values
of the four metrics for every behavioural entity. Concerning the overall classifi-
cation, we investigated two different scenarios:

2 In the call graph, a directed edge from node A to node B indicates that behaviour
A calls behaviour B.
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Scenario 1. In the first scenario, every metric in the vector must be classified as
positive to get a positive classification for this behavioural entity, i.e. a concept
go(z) = 41 < Vi : x; < 7, where x; are the metric values computed
by TRex, «; are the corresponding metric thresholds as given in Table 1 and
€ [1,4]. Using these thresholds, this scenario results in nearly 50% negative
examples, i.e. behavioural entities that have a negative overall classification.

Scenario 2. In the second scenario, only three of the four metrics must be
classified as positive to get an overall positive classification for the behavioural
entity, i.e. a concept go(z) = +1 <= x; > 7;, for at most one of the indices

€ [1,4]. Using the same thresholds ; as in Scenario 1 (Table 1), this scenario
leads to approximately 13% negative examples.

Table 1. Metric thresholds used for generating the data

NOS |14
v(G) | 4
MNL|3
MCD|10

Preprocessing

We implemented our learning approach and applied it to the data generated
by TRex. For conducting the experiments, we randomly divided the data from
the 2276 behavioural entities into three parts: The first part is used for learning
and contains 50% of the behavioural entities. The second part contains 25% of
the entities, this part is used for validation. Finally, the third part contains the
remaining 25% and is used for testing. We have done such a partitioning for
every experiment to have independent data sets.

The Different Experiments

We examine the best and the two best metrics that yield the closest approxima-
tion of the vector of four for every scenario, i.e. we try to find one metric and
a combination of two metrics that predict the overall classification as good as
possible.

For using just one metric, this means we have to find an occurring threshold.
Therefore, we begin with the smallest possible threshold that divides all values
of one metric in positive and negative examples. In each step we have the hy-
pothesis thresholds 7; and the positive (the metric value < 7;) and the negative
(the metric value > 7;) examples in the hypothesis class H. Then, we compare
this with the overall classification, i.e. the concept class C, and count the num-
ber of misclassifications. Performing the same steps for all possible thresholds



66 E. Werner, J. Grabowski, H. Neukirchen, N. Rottger, S. Waack, B. Zeiss

we get the threshold that results in the smallest error. Afterwards, we proceed
with the next metric and do the same. Finally we compare the metric/threshold
combinations and choose the best. This means, we are looking for the smallest
error in all metrics using a specific threshold.

For using two metrics, we try to find a combination of thresholds of two met-
rics that leads to the smallest error with respect to the overall classification. We
do exactly the same as above, not searching a specific threshold but a threshold
pair. So, we are searching in each of the possible metric combinations for the
best threshold which leads to the smallest error.

4.3 Experimental Results

By investigating the two scenarios and for each scenario two different approxi-
mations (using either one or two metrics respectively), we obtain four different
results.

Results for Learning the “Best” Metric in Scenario 1

For Scenario 1 (i.e. all four metrics must be classified as positive to yield a posi-
tive overall classification) and the assumption that the overall classification can
be approximated by only one of the four metrics, the resulting data is provided
in Table 2. If we select the biggest threshold it is clearly evident that all exam-
ples are classified as positive. Then the error is equal to the proportion of the
negative examples. For a better overview we append this to the result table as
allNeg. For any metrics, the resulting error is very big if it is the only metric
used to predict the overall classification. For the best metric the risk infimum
estimated on the testset is 19.61%. As usual we have estimated the risk only for
the best metric. Hence, it is not advisable to replace the four metrics by only one
metric. However, it is remarkable that the threshold chosen by the algorithms
for the M C' D metric is exactly the same as used for data generation. The other
located thresholds are at least similar to those used for data generation.

Table 2. Learning the “best” metric in Scenario 1

lMetric ‘Empirical risk‘ T HValidation errorHTest error

MCD 18.93 10 18.09 19.61
NOS 19.19 7 18.97 -
v(G) 29.80 2 34.22 -
MNL 33.57 2 37.41 -
allNeg 44.35 - 45.57 -

Results for Learning the “Best Two” Metrics in Scenario 1
When trying to approximate all four metrics using just two metrics, the results
for Scenario 1 look like provided in Table 3. If the combination of the two metrics
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NOS and MCD is chosen, it is possible to reproduce the overall classification
with a quite small risk infimum of 1.94%. The thresholds that have lead to this
small error are exactly the same as chosen to generate the dataset. For all other
combinations of metrics, the error is significantly larger and it is not advisable
to use them instead.

Table 3. Learning the “best two” metrics in Scenario 1

[Combination [Empirical risk[7; [ [[Validation error[[Test error

NOS, MCD 2.11 14/10 1.76 1.94
v(g), MCD 7.98 3 (10 7.56 -
MNL, MCD 11.84 3110 12.30 -
MNL, NOS 19.73 3|7 18.80 -
v(g), NOS 19.82 3|7 18.98 -
v(g), MNL 30.87 2|3 30.93 -
allNeg 44.74 - |- 43.94 -

Results for Learning the “Best” Metric in Scenario 2

In comparison with the first scenario, we here obtained a different ordering in
the metrics, i.e. where M CD was the best metric in Scenario 1, it is now v(g)
(Table 4). The learned threshold for the first metric is exactly the same like
the one chosen to generate the dataset. The estimated risk infimum for the best
metric v(G) is 5.57%. Similar to Scenario 1, a risk infimum of 5.57% is too high
to use just one metric to compute the overall classification.

Table 4. Learning the “Best” Metric in Scenario 2

lMetric [Empirical risk[ T “Validation errorHTest error

v(G) 5.75 4 5.94 5.57
NOS 8.94 22 8.22 -
MNL 9.02 3 9.97 -
MCD 13.01 14 12.94 -
allNeg 13.01 - 12.76 -

Results for Learning the “Best Two” Metrics in Scenario 2

As in the previous experiment, the set of the best metrics as shown in Table 5
is a different one to Scenario 1. The estimated risk infimum for the combination
v(G), NOS that has the smallest validation error is 6.47%. Although the highest
empirical risk in this experiment is 13.12% and therefore smaller than for the
corresponding experiment in Scenario 1, the smallest empirical risk is much
greater than for Scenario 1 and therefore less significant. Also, for NOS, the
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learned threshold 7o = 27 differes very much from the threshold v = 14 that was
used to generate the data.

Table 5. Learning the “Best Two” Metrics in Scenario 2

ICOmbination [Empirical risk[n [Tg “Validation error“Test error

v(G), MNL 5.02 414 5.11 -
v(G), NOS 5.46 4|27 4.93 6.47
v(G), MCD 5.55 414 5.46 -
MNL, NOS 7.57 3120 6.51 -
NOS, MCD 8.63 20(14 8.63 -
MNL, MCD 9.42 3|14 8.27 -
allNeg 13.12 - - 12.85 -

5 Summary and Outlook

In the previous sections, we have presented a machine learning based method
for the minimisation of metric sets. In this method, tuples of this metric set are
first used to classify each measured entity of the software under investigation as
either “good” or “bad”. This classification is determined by threshold values for
each metric in the set. The presented approach then attempts to approximate the
same classification with a smaller set of metrics to reduce the number of necessary
metrics in this set and to identify metrics with overlapping information.

We have tried this approach in two different classification scenarios on a set
of four metrics substantiating the analysability quality characteristic of TTCN-3
test specifications. In the first scenario, the classification has been obtained by
requiring that every metric value in the observed set must be smaller than its
corresponding threshold value to be classified as “good”. Given this setting, we
have tried to approximate the entity classifications by using one single metric
and by using a set of two metrics. According to the results, the risk of misjudging
the classification of a behavioural entity by using just one single metric is quite
high. By using a combination of two metrics, i.e. the NOS and M CD metrics,
the approximated classification is very reasonable.

In the second scenario, only three of four metric values in the set have been
required to be below their corresponding threshold values to be classified as
“good”. Again we have tried to approximate the classifications by using one
single metric and a set of two metrics respectively. In both cases the risk of an
incorrect assessment has been too high. The detailed reasons will be subject of
further investigations.

In the experiments presented, we have applied our approach to metrics ex-
tracted from TTCN-3 test suites. We are currently working on quality assurance
techniques for graphical languages such as the Specification and Description Lan-
guage (SDL) and Unified Modeling Language (UML) which also includes metrics
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for models. We expect that our presented approach will also deliver reasonable
results for metric sets designed to work on models. In addition, we want to
evaluate metric sets used on Java implementations.

So far, we have only used a small set of metrics for the evaluation and there-

fore time and space complexity of our algorithm was not yet an issue. However,
to make our technique applicable to larger sets of metrics as well, we plan to
investigate the complexity of our method in more detail and optimise it accord-

ingly.
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