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Abstract—Fault prediction on high quality industry grade
software often suffers from strong imbalanced class distribution
due to a low bug rate. Previous work reports on low predictive
performance, thus tuning parameters is required. As the State of
the Art recommends sampling methods for imbalanced learning,
we analyse effects when under- and oversampling the training
data evaluated on seven different classification algorithms. Our
results demonstrate settings to achieve higher performance values
but the various classifiers are influenced in different ways.
Furthermore, not all performance reports can be tuned at the
same time.

I. INTRODUCTION

In recent years, software gained importance in cars [7], as
multiple features are only enabled by software. A modern
day premium car as the 2016 Audi A4 might consist of up
to 90 Electronic Control Unit (ECU), carry two Subscriber
Identification Module (SIM) cards and 11 communication
networks. Altogether a modern car might be powered by up
to 1.000.000 Lines Of Code (LOC) [11]. Developing software
in general is expensive, but maintaining it is even more cost
intensive. In contrast to consumer electronics, the automotive
industry has to consider its long Product Life Cycle (PLC) and
development cycle [29]. Software maintenance costs raised
from 49% in the 1970s to 75% during 1990s [23] and might
climb up to 80% [8] nowadays. Fixing bugs late, i.e. after
release, costs significant more money [9], [31] than during
development phases. Thus, finding bugs early is of economic
interest. Specific to automotive engineering, finding bugs prior
to exhaustive testing phases with prototype cars, is even more
important, as every bug fix patch has to traverse all prior test
stages. Nowadays automotive software development uses the
W-development [20] process where every specification stage
has got an associated test definition stage. Multiple surveys
[6], [14] report upon good knowledge and acceptance of this
process by the engineers. The majority of automotive software
does not use handwritten code, as model-based development
techniques are more common in automotive industry and
developer are used to it [6]. A recent survey [4] identifies
MATLAB/Simulink as the most commonly used model-based
development environment, whereas Simulink is used to design
the models. dSpace TargetLink is the most common tool to
generate C code. Simulation and testing might be executed

using Polyspace or other dedicated tools. Automotive fol-
lows strict development guidelines e.g., the MISRA-C [28]
standard that reduces the available language features by e.g.,
not allowing pointers. Similarly on model level, guidelines as
MAAB [24] limit the available block sets or force treatment of
every case output. These guidelines are enforced using auto-
mated conformance checks. Additionally commit guidelines
enforce those checks prior a hook is accepted by the Source
Control Management (SCM), conform [2].

One approach to improve software development, mainte-
nance activities and identify faults as early as possible is
Software Fault Prediction (SFP). With SFP, a model of the
software under development is used to predict which instances
of the software likely contain defects1. If sufficiently accurate,
this knowledge can be used to steer the development and
maintenance activities and reducing the risk of post-release
bugs. While lots of foundational research was conducted on
defect prediction [10], [16], to the best of our knowledge only
one paper considered the application of SFP to automotive
software [3]. The authors concluded that defect prediction
within the automotive domain is a hard problem, despite
the assumption that the restrictions due to the model-based
nature of the development and the strict MISRA-C guidelines
would allow for good defect prediction models. Within this
paper, we want to revisit the problem with the aim to answer
the following research questions for SFP in the automotive
domain:

• RQ1: Which classification models yield reliable SFP
results even in case of highly imbalanced data with only
few defects?

• RQ2: Can unsupervised resampling of the training data
be used to deal with the data imbalance problem?

• RQ3: Which resampling rates are most suitable?
The paper is structured as follows: Section II introduces

our experimental setup, the used dataset, the classifiers to
evaluate, performance characteristic to report and the resam-
pling approach we choose. Afterwards, Section III presents
the results we obtained. Then, Section IV discusses related

1The terms ’defects’, ’bugs’ and ’faults’ are used as synonyms within this
publication, thus they are interchangeable.
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Fig. 1. experiment Setup

literature and Section V threads to the validity of our findings.
Finally, Section VI concludes our work.

II. EXPERIMENT DESIGN

Figure 1 visualizes our setup, in total 2.275 experiments
were performed on all three automotive projects [2], hereafter
referred to as A, K and L.

TABLE I
PARAMETERS AND THEIR RANGES USED DURING EXPERIMENTS.

Parameter min step max
undersampling % 0 10 100
oversampling % 200 100 900
oversampling % 1.000 500 3.500
oversampling % 4.000 1.000 10.000

A. Data

Our experiments are based on an industry grade dataset
compiled of three automotive projects [3]. All of them were
developed using model driven approaches utilizing Matlab
Simulink and TargetLink to auto generate a MISRA-C [28]
compliant source code. The sizes of the projects range between
10,000 LOC and 36,500 LOC. The projects natures are safety
relevant, thus the testing effort is very high and restrictive de-
velopment processes ensure high quality bug data information.
For example, an author can only commit if he links the hook
to an Issue Tracking System (ITS) ticket. For every feature
there exists a dedicated ticket as well as for known bugs. This
makes the identification of bug fixing commits reliable. The
SZZ algorithm [2], [22] was used to identify the fault-inducing
commits, which make up 0,7-3% percent of the commits,
depending on the project. Previous work with this data set
analysed the type of faults and determined a very low influence
upon the gathered metrics [1].

The experiments we perform use historic data from the
same project for training and prediction, defined as ’within-
project’ SFP. All three projects were developed over a period
of three years with the first releases after one and a half year.
Therefore, we decided to use the data prior this first release
as training and all data from the subsequent development as
test data. This is a realistic setting which can be used the
same way for future projects. This lead to a data split of the

Fig. 2. bug density for project K

projects A and L into 50% training and 50% test data for
evaluation. For the project K, we use 40% as training and
60% as test data, due to a difference in the release strategy.
Table II shows detailed information about the sample size of
the training and test data, as well as the number of defects. It
can be seen that by the definition of Weiss [33] all data sets
suffer from class imbalance and can be considered as at least
”modestly” imbalanced. Figure 2 shows the fault distribution
of the project K. As can be seen, the defects are distributed
over time. The same holds for projects A and L as well. We
did not use cross validation, as cross validation cannot be used
in practice like our training data setup, but only for estimation
of the performance if one would use such a realistic setup.
Moreover, cross validation may overestimate the performance
of classification models, especially in terms of precision [32].

TABLE II
TOTAL SIZE AND NUMBER OF DEFECTS OF TRAINING AND TEST DATA.

size # faults
training test training test bug rate

Project A 596 1313 40 48 4.61%
Project K 941 1579 123 252 14.89%
Project L 1517 1376 32 44 2.63%

B. Classification Models

In order to gain insights for answering RQ1 and to de-
termine the impact of different classification models on the
achievable performance, we evaluate eight different classi-
fication algorithms: Logistic Regression (LR), Näive Bayes
(NB), Random Forest (RF), Support Vector Machine (SVM)
with RBF Kernel, dcSVM [17], Ada Boost M1 with NB,
Ada Boost M1 with RF and xgBoost [12]. All experiments
were performed using the open-source suite of machine learn-
ing software WEKA [15] including all algorithms except
for xgBoost and dcSVM. For these two, we utilized their
implementations in R2, which we bridged into WEKA using
the rPlugin to ensure a constant workflow for the experiments.
We did not perform any specific tuning of the parameters for
these algorithms.

2Packages: xgboost and SwarmSVM
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C. Resampling

Multiple studies from the literature support the hypothesis
that resampling the training data by either oversampling the
minor or downsampling the major class enhances classifier
performance when dealing with imbalanced data [18], [21]. In
this work, we use the unsupervised Resample filter of WEKA,
which generates a randomly drawn set by copied samples
from the original data into the re-sampled data. Using the
’upsampling’ parameter, it is possible to create smaller data
set (undersampling) or a larger data set (oversampling). For
example, upsampling by 200% means that twice the number
of samples will be drawn in comparison to the size of the
original data, 0% means we do not touch the original data
and 100% represents the same number of samples as original,
but the distribution might be effected by resampling. Table I
shows the sampling rates we use in this experiment. We train
each classification model with each of the resampling rates.
Through different values for the upsampling parameters, we
determine the impact of different sampling strategies on the
prediction results. These results will be used to answer RQ2.

D. Performance Metrics

To report the performance of the different classification
models achieved with multiple resampling rates, we use the
F1 score and the G-Measure as suggested by literature [35],
[19], [33] as we deal with imbalanced class distribution.

recall = pd =
TP

TP + FN
(1a)

precision =
TP

TP + FP
(1b)

F1 = 2 · precision · recall
precision+ reall

(1c)

pf =
FP

TN + FP
(1d)

Gmeasure = 2 · pd · (1− pf)

pd+ (1− pf)
(1e)

III. RESULTS

Below, we present the detailed results for the K project
which are representative for projects A and L as well. The
complete results for all classifiers, sampling rates and projects
are available online together with scripts for the replication of
our results.3

Figures 3 shows the rate for the F1 score. Without resam-
pling (value at resampling 0%), there is only a small difference
between all classification models except dcSVM, which is
significantly worse. The undersampling requires at least 40%
of the sample size to remain, as the performance degrades
drastically for all classifiers otherwise. For all other sampling
rates, the impact depends on the classification model. Table III
presents an overview denoting whether the impact is positive
(+) or negative (-) or negligible (0). We define positive if

3GitHub: https://github.com/sherbold/replication-kit-saner-2017
ZIP Archive: http://hdl.handle.net/21.11101/0000-0001-8177-7

any sampling setting archives a higher F1 or G score as the
original dataset, negative if the Score is below. Figure 3 and 4
among others are used for this impact analysis. Undersampling
only has a positive effect for rbfSVM. Oversampling shows
good results for Ada Boost NB, NB, and the dcSVM. In case
of massive oversampling, xgBoost also shows improvements.
With regard to the overall performance, the sampling also leads
to differences between the classifiers. The best single value is
achieved with Ada Boost NB and a sampling rate of 700%.
However, the results of Ada Boost NB jump a lot depending on
the sampling rate and are, therefore, unreliable. In contrast, NB
yields a very solid performance for all sampling rates >600%
with nearly no changes and only a slightly worse performance
than Ada Boost NB. Considering no sampling (shown as 0%
within Figure 4) NB performs best and dcSVM the worst, all
other classifiers deliver comparable results. The resampling
impact is summarized in Table IV. Using the G-measure, the
effect on NB is relatively small, and actually slightly negative
especially for large resampling rates. Boosting algorithms as
Ada M1 and xgBoost are effected the most unpredictable
by sampling, SVM based algorithm performance seem to
degenerate with high oversampling.

RQ1: NB yields the most stable and reliably good
performance of all classification models, as measured by
our performance metrics.

Moreover, our results show that resampling can work, but
it depends on the classification model.

RQ2: Resampling can improve classification models.
However, undersampling and oversampling can have both
a positive or negative effect depending on the classifica-
tion model and should, therefore, be chosen carefully.

To get further insights into how the sampling affects the
classifiers, we analysed how the recall, precision, and pf,
on which the F1 and the G-measure are based, behave for
different sampling rates for the NB classifier. Figure 5 shows
the results for different sampling rates. The figure shows a
clear trend: undersampling improves the recall at cost of the
precision, oversampling improves the precision at cost of the
recall.

RQ3: For NB the sampling strategy should be chosen
depending on whether one values recall (i.e., finding all
faults) or precision (i.e., all findings are actually faults)
higher. Undersampling improves recall, oversampling im-
proves precision at the cost of the other.

IV. RELATED WORK

SFP is a quite active field of research, various early ap-
proaches [30], [5], [36] were presented using linear regression
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TABLE III
IMPACT OF RESAMPLING ON THE F1 SCORE.

Undersampling Oversampling Oversampling
(40-90%) (200-1000%) (>1000%)

Ada Boost NB - + +
Ada Boost RF 0 0 0
xgBoost - 0 +
dcSVM - + -
rbfSVM + - -
RF 0 0 0
NB - + +

TABLE IV
IMPACT OF RESAMPLING ON THE G-MEASURE.

Undersampling Oversampling Oversampling
(40-90%) (200-1000%) (>1000%)

Ada Boost NB - + -
Ada Boost RF 0 0 0
xgBoost - + +
dcSVM - + 0
rbfSVM + - -
RF 0 0 0
NB 0 0 -

to predict bugs in software. This work specific discusses
the metrics to use and prediction model to use. Later work
[25], [27] uses machine learning algorithm and argues to
use whatever metric is available. Within their opinion the
choice of which algorithm to choose is of lower priority as
most of them achieve an overall comparable performance.
The majority of publications [30], [25], [27] reports upon
no modification on the date during training phase. Further
[34] reports on a comparable experiment using the NASA
dataset [26]. Within their results the predictive performance
using over and undersampling is strongly project dependant
and outperformed by reducing the training set to high density
fault modules.
[18] presents under- and oversampling as methods to over-
come the imbalanced class problem. The authors study an
artificial dataset with binary class distribution. Upon their
results both strategies are valid. Another work dealing with
SFP and imbalanced class problem is [13], they suggest to use
undersampling. The authors evaluated their findings with the
C4.5 classifier and use supervised resampling. [21] presents
work on an Eclipse dataset dealing with imbalanced class
distribution. They focus on reducing the number of input
dimensions (software metrics) by applying feature ranking.
Within their analysis the reduced set performs better than the
full set. In addition they discovered sampling the data has no
significant impact on the resulting performance.

Based on the definition by [33] our dataset is a mid-
imbalanced two class problem with a rate of 4:100. They
suggest to use no ’divide and conquer’ based predictor, such
as RF would be affected by data fragmentation as one of their
leafs will contain rare data samples. Further they recommend
to use recall and precision as performance report values4, as

4or any other which is based on recall and/or precision, such as F1

Fig. 3. classifier F1 performance overview on K using 40% train and 60%
test

Fig. 4. classifier G-measure performance overview on K using 40% train and
60% test

they can be targeted at the minority class and will not be de-
formed. [19] perform tests on four datasets with binary classes
suffering from imbalanced distribution. They are mainly using
SVM to predict. Upon their analysis AUC seems to mask poor
predictive data, whereas precision, F1 score and recall are less
effected. Thus authors suggest to use F1, precision and recall
to report predictive performance on imbalanced datasets.

V. THREATS TO VALIDITY

We obtained the best results using high oversampling, thus
causes high computational efforts. We admit for small dataset
oversampling is computationally possible which might be no
option for bigger datasets. We performed no specific parameter
tuning for machine learning algorithm. This will include cost
sensitive evaluation as well as weighted output classes. Thus
one might achieve higher performance values than we report.

Fig. 5. Performance trend on project K using 40% training and 60% testing
evaluation NB.
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VI. CONCLUSION & FURTHER WORK

We performed SFP on a dataset with a bug rate between
2.63% and 14.89%, thus suffering from a strong imbalanced
class distribution. To overcome this we applied a wide range of
under- and oversampling parameters to determine the achiev-
able performance and influences upon seven classification
algorithms. The original dataset is split in test and training data
prior any modification, using the train data on the sampling ap-
proach and the test data to evaluate the performance. We focus
on a realistic setting keeping the data in chronological order
and do not draw random samples for evaluation. To report
our findings we choose F1 score and G measure along with
recall and precision as literature reports the lowest impacts on
them by the imbalanced class distribution. Our three research
questions identify NB as the most stable predictor resulting in
reliable performance results, under- and oversampling to have
positive impacts on performance specific to each classifier.
When using under- and oversampling one needs to carefully
choose the classifier and decide whether to favour precision
or recall.
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