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Abstract

The collective and coordinated usage of resources for joint problem solutions within
dynamic virtual organizations across different institutes is realized with the Grid
computing technology. Since the deployment of Grid computing grows, the quality of
Grid computing environments and Grid applications has to be assured. An important
constituent of quality assurance is testing.

This thesis investigates the applicability of the Testing and Test Control Notation
version 3 (TTCN-3) for testing Grid applications. As case study of this thesis, test
cases implemented in TTCN-3 have been applied to an application running in a Grid
computing environment.

A description of the implemented example Grid application that is tested with
TTCN-3 is covered by this thesis. The main focus of the thesis is on the realization
of a basic TTCN-3 test system and its test harness in order to check the correctness
of the application that runs in a Grid environment. The realized tests demonstrate
that TTCN-3 is applicable for distributed testing in Grid environments. The Grid
environment used in the case study is the Instant-Grid. It is based on the Grid middleware
Globus Toolkit.
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1 Introduction

Grid computing is an infrastructure that allows an integrated and joint usage of different
autonomous resources, which may be located in different geographical locations. The
concept of Grid computing has been introduced by Ian Foster in the end of the year
1998 [11].

The motivation that led to the establishment of Grid computing, or computer
Grids, was the collective solving of problems within dynamic virtual organizations
across different institutes [13]. This allows, after the determination of billing data
and authorizations, direct collective access to computing power, applications, data,
instruments and so on. A Virtual Organization (VO) in this context is a dynamic union of
individuals and/or institutes that pursue common purposes with their established Grid.
The focus of Grid computing is on tasks that run in a distributed manner. But the main
goal is analog to the establishment of the Internet, the realization of a uniform, consistent
and global computer Grid.

Since Grid computing is used in many different areas, for example in medical, physical,
biological, or automotive industries, it has to be assured that the services provided by the
Grid work in a proper way. Applications running inside a Grid computing environment
have to trust the provided and used services of the Grid in order to perform their own
tasks. These applications are typically very computing intensive. Applications running in
a Grid environment are allowed to use applicable resources of the Grid in order to decrease
their computational times. Typically, these applications are parallelizable in order to
allow a breakdown of the main task into smaller tasks. These tasks use the resources of
the Grid in a parallel manner. The determination, distribution and synchronization of
the smaller tasks and even of different applications are typically done by a management
software that includes a scheduler. All applications and their tasks have to be managed.
If more than one application runs in the Grid, the management has to determine which
resources in the Grid are the most applicable for the tasks of the applications. Each
application has a sub-management that has to follow the main management. The main
management can assign resources to the sub-managements, which themselves can assign
these resources to the determined tasks of their managed application.

Grid computing is still in a beginning phase, but with recent developments, this
technology gets more and more complex as the above example with the sub-managements
shows. The quality assurance of Grid computing is an important role in its development.
An important constituent of quality assurance is testing. Testing reveals defects through
executing a System Under Test (SUT). The actual behavior is compared with the
expected behavior that can be, for example, extracted from the specification of the
software that has been tested. The computer Grid itself has to act as expected in order
to be accepted by user communities.
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1 Introduction

The realization of functional and non-functional tests can be done with the Testing and
Test Control Notation version 3 (TTCN-3), which is widely used for test specifications
and test implementations for distributed systems. This standardized language is well
supported by several vendor tools, that provide beside a TTCN-3 compiler also test
harness development and execution environments.

1.1 Scope of this thesis

This thesis concentrates on a case study for TTCN-3 based testing of Grid applications.
It is investigated if it is possible or applicable to test Grid computing applications and
their Grid computing managements using TTCN-3.

In the used Grid only one application and its sub-management, in the following
called management, is executed in order to keep the description straightforward. The
application itself is parallelizable and, therefore, can be divided into smaller tasks by its
management. Hereby, it has to be assured that the composed output of the smaller tasks
is the same as the output of one main task. Therefore, as case study of this thesis, such
an application and its management are implemented in order to realize test scenarios
based on TTCN-3 in a Grid computing environment.

In this thesis two main test items have been determined:

1. Testing the application executed on a Grid node,

2. Testing the application management.

The first test item examines if a single task has been executed in the Grid computing
environment as expected. The second test item checks if the management of the
application determines and assigns the tasks to resources in the Grid correctly and
composes the final result as expected. The test cases related to these test items are
realized with TTCN-3.

1.2 Structure of this thesis

The structure of this thesis is as follows: After this introduction, in Chapter 2, the
Grid computing technology and its concepts are described. The history and basics of
Grid computing are explained, followed by an overview of Grid computing systems and
a Grid computing architecture. This Chapter includes the description of the used Grid
computing middleware Globus Toolkit 4 and the used Grid environment Instant-Grid.
Furthermore, the gridification of an application is described.

Afterwards in Chapter 3, the foundations of software testing are explained. This
includes testing fundamentals and the test process. Dynamic testing is explained in
particular.

Following is a description of TTCN-3 in Chapter 4 that introduces main concepts of
this software testing specification language. This includes the realization of a distributed
test system architecture based on TTCN-3.

2



1.2 Structure of this thesis

Chapter 5 describes the development of an example Grid application and its
management that are used for the case study of this thesis. The example application is
the calculation of the Mandelbrot set, which is executed distributedly by its management.

Chapter 6 describes how this example Grid application can be tested using TTCN-3.
First of all, test purposes, test architectures and test behaviors are explained. Afterwards,
the TTCN-3 specifications and the test adapter implementations are described. This
chapter also covers a description of the executions of the implemented tests.

Finally, Chapter 7 concludes with a summary, an outlook and a discussion of related
work. The Master’s thesis is completed by a list of acronyms and the bibliography.
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2 Grid computing

A Grid computing environment that is also known as a computer Grid is created with
the purpose of providing users easy access to a collection of heterogeneous computers
and resources. These are usually spread across multiple administrative domains [21].
This Chapter describes Grid computing in detail: Section 2.1 gives an insight of the
historical origin. In Section 2.2, the basics of Grid computing are described, followed
by an overview of the different kinds of Grid systems in Section 2.3. A description of a
common Grid architecture is given in Section 2.4. The focus of Section 2.5 is the Globus
Toolkit 4 (GT4). Globus Toolkit 4 is a common and open source middleware for Grid
technologies and provides communication and security services. This Grid middleware is
used by Instant-Grid that is described in Section 2.6. Instant-Grid provides a computer
Grid environment and is a primary base point of the case study used in this thesis.
General instructions about the integration of an application into a computer Grid are
given in Section 2.7.

2.1 The history of Grid computing

The term “Grid” has been adapted from electric power grids, since a computer Grid
follows the same concept. In 1910, electric power generation became possible and
everybody could use a generator to produce electricity [83]. By this time, the electric
power grid has been developed and changed the situation for associated transmission
and distribution technologies of power. These developments had made reliable low-cost
access and standardized services possible. As a result, they have provided universally
accessible power [3].

For performing computationally intensive and complex tasks, a Grid computing
environment provides an efficient sharing and management of computing resources.
Since the early 1990s, Grid computing has emerged in the scientific and defense
community. However, in the late 1990s the drivers behind the Grid technology were
mostly businesses with a limited fund of supply, which needed powerful, inexpensive,
flexible computational power. Also university and research facilities had developed more
and more computational intensive applications, which needed the processing power of a
supercomputer. A big problem was that many users could not afford a supercomputer.
The solution to this problem was to build a computational environment that uses
the computational power of every connected computer, e.g. on the whole campus or
enterprise, to execute complex calculations [36].
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2 Grid computing

2.2 The basics of Grid computing

Grids are a newer technology with huge developing potential. That is the reason a
discussion started about what exactly a computer Grid is [36]. Ian Foster suggests a
three point checklist for the definition of a Grid:

“A Grid is a system:

1. that coordinates resources that are not subject to centralized control...

2. ... using standard, open, general-purpose protocols and interfaces...

3. ... to deliver nontrivial qualities of service.” [8]

The three point checklist signifies that a Grid integrates and coordinates resources
and several users living within different control domains, where the issues of security,
policy, payment, membership and so forth are solved by the Grid. Related to these
issues, resources can be heterogeneous and include clusters, mass storages, databases,
applications and sensors. The communication and data exchange between these domains
are built from multi-purpose protocols and interfaces that allow the handling of such
fundamental issues as authentication, authorization, resource discovery and resource
access.

It is important that standard and open protocols and interfaces are used. The
reason is the need of establishing resource-sharing arrangements dynamically with any
interested party. Standards are also relevant for the use of general-purpose services and
tools development. A Grid has to be clearly distinguished from local managements and
application specific systems.

To obtain various qualities of service, which are measured with, for example response
time, throughput, availability and security, a Grid has to allow its constituent resources
to be used in a coordinated way to meet complex user demands. Therefore, the utility
of the combined system has to be significantly greater than the utility of the sum of its
parts [8].

The definition of Ian Foster is helpful in classifying a Grid compared to other
technologies, like distributed computing, cluster computing, peer-to-peer computing, or
meta computing, which are similar to Grids. A more convenient description of a Grid
can be found in [11]:

“A computational Grid is a hardware and software infrastructure that
provides dependable, consistent, pervasive and inexpensive access to high
end computational capabilities.”

In this description, the Grid is referred to as an infrastructure, because it is related
to a large-scale pooling of resources, whether to reckon cycles, data, sensors, or people.
A pooling of this caliber needs an outstanding hardware infrastructure to keep all the
necessary interconnections up-to-date. A complex software infrastructure is required for
checking and controlling all interacting applications and their results [11].

Providing a dependable service is fundamental, because users need to be assured
that they will receive expected and persistent performance to generate outputs from a

6



2.3 Grid systems

diversity of components, of which the Grid consists. If such conditions will not be ensured,
applications should not be executed, written, or used inside the Grid. Due to different
applications, the performance characteristics, which indicate the efficiency of a system,
are different, depending on the components and the submitted jobs. The performance
characteristics may also include network bandwidth, latency, jitter, computer power,
software services, security and reliability to ensure a fail-safe computation of jobs in the
Grid [11].

The second critical concern is the need for consistency of service, like standard
services, accessible via a standard interface and operating with standard parameters.
Since the Grid consists of heterogeneous resources, without designing standardized
applications and pervasive use of these, a Grid computing environment is inefficient [11].

The infrastructure should provide a pervasive and universal access in order to make
services available that are independent of the environment it is being used in. The access
fee to the Grid should be offered at a reasonable price (inexpensive) if it is needed to
capture the greatest market share [11].

However, dependability, consistency and pervasiveness are important reasons for
creating the Grid to get a transforming effect on how computation is performed and
used [11].

By enhancing the set of capabilities and ensuring it to the resources and users of the
Grid, Grids allow new tools to be developed and widely deployed. Increasing the number
of capabilities with transparency and utility would lead to a more user friendly system.
If the Grid is transparent, users do not have to take care where their jobs will be executed
or where temporary data is being stored. The management of the middleware has to
assign resources, which are best suited to perform the submitted task and has to locate
and retrieve the output data. Utility assures that demanded computer power or storage
capacity is being allocated efficiently for the submitted task, like electricity from the
outlet [54].

The base development of application interfaces needs to be modified in order to allow
pervasive access to applications in the applied Grid. The change is required, because
most of today’s applications are designed for single computing and are not suitable for a
computer Grid. Furthermore, a Grid has to provide an environment that allows the use of
different resources that are seen as one resource by the applications. Therefore, computer
Grids can change our thinking about computation and resources constitutively [11].

2.3 Grid systems

A Grid system can be distinguished in a computational, data, or service Grid as
shown in Figure 2.1. A computational Grid system has a significant higher combined
computational capacity, which is available for single applications, than the capacity
of any resource in this Grid. Depending on the capacity utilization, such systems
can be differentiated into distributed supercomputing and high throughput. Whereas
distributed supercomputing Grids minimize the completion time of jobs by executing
these in a parallel manner on several resources, high throughput Grids increase the

7



2 Grid computing

Grid systems

computational Grid

data Grid

service Grid

distributed supercomputing

high throughput

on demand

collaborative

multimedia

Figure 2.1: A Grid system’s taxonomy [24]

completion rate of a stream of jobs. Distributed supercomputing Grids are mainly
required by applications for complex computational intensive analysis like climate
modeling, astronomy applications and nuclear simulations, whilst jobs that can be divided
into independent jobs through ‘parameter swap’ mainly run on high throughput Grids
as for example Monte Carlo simulations [25] or SETI@Home [79].

Data Grid systems provide an infrastructure in order to allow a merged view of already
existing data, which are distributed in a wide area network. These are made available as
new information, such as digital libraries or data warehouses.

A computational Grid has to offer services for data operations to the applications,
too. The main difference to a data Grid are the infrastructure and services, which are
provided to the applications for storage and data management. In a computational Grid,
the applications use their own implemented storage management schemes, whereas in a
data Grid, applications use these services as provided by the Grid. Several data Grid
initiatives, such as the European DataGrid Project [78] and Globus [42], design large
scale data organizations, catalog, management and access technologies.

Service Grids provide services that are not provided by any single resource. They
can be subdivided in on-demand, collaborative and multimedia Grid systems. An
on-demand Grid provides new services by aggregating several resources dynamically to
satisfy short term requirements. A collaborative computing Grid provides a shared
workspace for enabling real time interactions between users and applications in a
collaborative workgroup. A multimedia Grid makes an infrastructure for real-time
multimedia applications available.

Most of the present research in developing Grid systems can be classified in one of the
above categories. There still remains the challenge to develop a truly general-purpose
Grid system, which can support multiple or even all of these categories [24].

Today, it is not yet possible to convert every application for allowing parallel runs
on a Grid. There is only the possibility to use parallelizable applications on a Grid.
Practical tools for transforming arbitrary applications to exploit the parallel capabilities
of a Grid are not available, yet. Automated transformation of applications is a science
in its infancy, since there are practical tools that can only be used by skilled developers
for writing parallel Grid applications [3].
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2.4 Grid architecture

2.4 Grid architecture

After about one decade of intensive research, development and experiments, a general
specification of the architecture for computer Grid technologies has been defined.
Additionally, open and standard protocols for communication and controlling have been
developed in order to create a foundation for further interoperability that Grid systems
depend on. Another important issue is the definition of standard interfaces to provide
libraries through standard Application Programming Interfaces (API) and ease the
construction of Grid components by allowing code components to be reused [3].

According to the role in a Grid system, protocols and APIs can be categorized
schematically as shown in Figure 2.2. A Grid architecture can be seen as several
constitutive layers with different width as in the “hourglass model”. Components of
a layer have similar characteristics and normally are dependent on abilities and behavior
of deeper layers. A small set of core abstractions and protocols, e.g. TCP and HTTP
on the Internet, are defined in the narrow neck of the hourglass. Onto this set many
high-level behaviors can be mapped (the top of the hourglass) and the set itself can be
mapped on several underlying technologies (the bottom of the hourglass). By definition,
the number of protocols defined at the neck must be small [7,13]. Each layer is described
in the following1.

Tools and applications

Directory brokering, 
diagnostics, and 

monitoring

Secure access to 
resources and 

services

Diverse resources

COLLECTIVE SERVICES

RESOURCE AND
CONNECTIVITY PROTOCOLS 

FABRIC 

APPLICATION

TRANSPORT

INTERNET

LINK

Grid Protocol Architecture Internet Protocol Architecture

USER APPLICATION

Figure 2.2: Architecture concept of a Grid (based on [11] and [13])

Fabric: The lowest level provides a basis as a common interface for all kinds of
physical devices or resources. Higher layers access the fabric layer through standardized
methods. All resources, to which this uniform layer is applicable, can be integrated in
the Grid concept. The resources can include computers, storage systems, networks and
various forms of sensors [11,13].

Resource and connectivity protocols: The resource and connectivity protocols
layer is located above the fabric level and defines the core communication and

1A more detailed description about Grid architecture is given by Foster, Kesselman and Tuecke [11].
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authentication protocols, which are required by the Grid. The communication protocols
allow the transmission of data between different resources, connected through the
fabric layer whereas the authentication protocols have to verify the identity of users
and resources by providing communication services with cryptographically secure
mechanisms. The delegation of authorizations and methods for a single sign-on are
also essential for this layer. In the resource protocols, the common access to several
resources is organized in order to enable secure initiation, monitoring and control of
resource-sharing operations, like assignment or reservation [3].

The Open Grid Service Architecture (OGSA) [14] is used in many Grid projects
for the realization of this layer [30]. The Globus Toolkit 4 (GT4), which is explained
in Section 2.5, is a common implementation of the OGSA specification and provides
software services and libraries in order to realize an OGSA as resource and connectivity
layer [11,13,14].

Collective services: The role of this layer is the coordination between different
resources. Access to these resources does not happen directly, but merely by the
underlying protocols and interfaces. Because this layer analyzes and consolidates
components from the relatively narrow resource and connectivity layers, the components
of the collective layers can implement a wide variety of tasks without requiring new
resource-layer components. Responsibilities of the collective services layer include
directory and brokering services for discovery, allocation, monitoring and diagnostic of
resources. Furthermore, this layer provides Data Replication Services (DRS) as well as
membership and policy services to observe and handle the accreditation of members to
access resources [3, 11,13].

User applications: In this layer, all user applications are implemented and supported
from the components of the other layers. The user applications can call services from
lower layers and use resources transparently [11,13].

2.5 Globus Toolkit

Globus Toolkit 4 (GT4) of the Globus Alliance [42] is a middleware for Grid systems
and provides all required components for a realization of a computer Grid, as a
community-based, open architecture, open-source set of services and software libraries.
These components include software for security, information infrastructure, resource
management, data management, communication, fault detection and portability. It is
packaged as a set of components that can be used either independently or together to
develop applications [12].

GT4 defines protocols as well as APIs for each component. In addition, it provides
open-source reference implementations in C and Java (for client-side APIs). In terms
of these basic components, a wide variety of higher-level services, tools and applications
have been developed. Several of these services and tools are integrated in the components
of the GT4, while others are distributed through other sources [10].
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2.5.1 Architecture

Ian Foster [10] describes the Globus Toolkit architecture with various aspects. A
schematic view of GT4.0 components is depicted in Figure 2.3. The components of
GT4.0 can be divided in three sets as described in the following.

Figure 2.3: Schematic view of GT4.0 components [9]

• At the bottom half of the figure a set of service implementations implements
infrastructure services. These services address such concerns as execution
management (GRAM), data access and movement (GridFTP, RFT, OGSA-DAI),
replica management (RLS, DRS), monitoring and discovery (Index, Trigger,
WebMDS), credential management (MyProxy, Delegation, SimpleCA) and
instrument management (NTCP) [37]. Whereas most of them are Java Web
Services, the others on the bottom right are implemented in other languages and/or
use other protocols [9, 10].

• User developed services written in Java, Python and C are hosted respectively in one
of the three containers, which provide implementations of security, management,
discovery, state management and other mechanisms frequently required when
building services [9, 10].

• Invocation operations of GT4 and user-developed services are possible with client
programs in Java, C and Python that are provided by a set of client libraries [9,
10].

GT4 provides components for Web Services (WS), which are depicted on the left of
Figure 2.3 and for non-WS on the right of Figure 2.3 [10]. Another perspective on the
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GT4 structure is provided in Figure 2.4 showing the components provided for security,
data management, execution management, information services and basic runtime.

Security tools are responsible for authentication, which means creating identities of
users or services, protecting communication and authorization that is the regulation of
actions that a user is allowed to perform. Supporting functions such as managing user
credentials and maintaining group membership information are provided, too [9].

Data Management tools allow the location, transfer and management of distributed
data. Various basic tools, e.g. GridFTP for high-performance and reliable data transport,
RFT for managing multiple transfers, RLS for maintaining location information for
replicated files and OGSA-DAI for accessing integrated structured and semi structured
data, are provided by the GT4 [9].

Execution Management tools are responsible for initiation, monitoring,
management, scheduling and/or coordination of remote computations. GT4 supports
the Grid Resource Allocation and Management (GRAM) interface as a basic mechanism
for these purposes. The GT4 GRAM server is typically deployed in association with
delegation and RFT servers to handle data staging, delegation of proxy credentials and
computation monitoring and management in an integrated manner [9].
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Figure 2.4: Globus Toolkit 4 components [43]
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Information Services provide monitoring and discovery mechanisms that are
responsible for obtaining, distributing, indexing, archiving and handling information
about the configuration and status of services and resources. The motivation for collecting
this kind of information is on one hand the discovery of services or resources and on the
other, the monitoring of the system status [9].

The Common Runtime provides a basis for platform independence of the services
named and explained above. GT4 provides libraries to facilitate the development of
abstract layers and support a comfortable realization of functionalities on the base of
WS [9].

The installation of GT4 requires a special expertise and needs an expenditure of time
due to a high measure of complexity. A detailed description of the installation and
configuration progress can be found in [45,67].

2.5.2 Alternative Grid middleware systems

Several Grid middleware technologies have been analyzed by Buyya et al. [1]. The
functionality, differences and similarities between chosen Grid middleware systems
including UNICORE [82], Gridbus toolkit [81] and Legion [65] are briefly described in
the following.

UNICORE is a multi-tiered Grid computing system implemented in Java. It
focuses on high level programming models providing a seamless and secure access to
distributed resources. UNICORE is an open source implementation and is used in several
projects including EUROGRID [50], OpenMolGrid [73] and Grid Interoperability Project
(GRIP) [77].

The open source Gridbus toolkit extensively leverages related software technologies.
It provides an abstraction layer to hide idiosyncrasies of heterogeneous resources and
low level middleware technologies from application development. The focus is on the
implementation of utility computing models including clusters, Grids and peer-to-peer
computing systems. The Gridbus toolkit is included in projects like ePhysics Portal [2]
[72] and Belle Analysis Data Grid [59].

Legion is an object-based middleware system. It helps to combine heterogeneous
domains, storage systems, database legacy codes and user objects distributed over
wide-area-networks into a single, object-based metacomputer. This metacomputer
provides high degrees of flexibility and site autonomy. Legion is implemented in projects
like the NPACI Testbed [71]. Ultimately Buyya et al. describes that the analyzed Grid
middleware technologies all have similar functionalities.

2.6 Instant-Grid

Instant-Grid [60] is a project of the Gesellschaft für wissenschaftliche Datenverarbeitung
mbH Göttingen (GWDG) and is financed by the German Federal Ministry of Research
and Technology (BMFT). Instant-Grid is mainly developed by the GWDG, but also
supported by partners like ed-media, the FernUniversität of Hagen, FIZ Chemie and
Fraunhofer FIRST.
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The main purpose of Instant-Grid is to provide a computer Grid environment for users
without special expertise in Grid technologies. It includes an automated configuration
mechanism, which installs the Instant-Grid on common local connected computers
without user interaction, to address a wide variety of users. Instant-Grid demonstrates
basic Grid technologies and makes a development of user-specific Grid applications
possible. In particular, Instant-Grid shows increases of performance in a computer Grid
environment compared with a standard single computer environment [41].

Instant-Grid uses the software services and libraries provided by GT4, which are
integrated in the Instant-Grid environment. GT4 realizes the “Resource and connectivity
protocols” layer, while Instant-Grid represents the layers “Collective services” and “User
applications” of the Grid architecture (see Section 2.4).

2.6.1 Architecture

Instant-Grid provides a complete independent computer Grid environment based on
a Linux Knoppix live CD-ROM, which includes all required services for establishing
a Grid for x86 computers. As depicted in Figure 2.5, the front-end computer boots
from the Instant-Grid CD-ROM and provides mechanisms to initialize several nodes
over an Ethernet by the use of a Preboot Execution Environment (PXE) (Figure 2.5(a)).
Therefore, services including Dynamic Host Configuration Protocol (DHCP), Trivial File
Transfer Protocol (TFTP) and Network File System (NFS) server, are initialized and
started in the booting sequence of the front-end. An additional service, the Distributor,
is needed to distribute further information and configurations to the clients. Furthermore,
all components of the Grid middleware GT4 and a service for certification, the CA, will
be initialized (Figure 2.5(b)). The Instant-Grid consists of different components that
are provided in a GNU/Linux environment (Figure 2.5(c)) [41]. These components are
described in the following.

Figure 2.5: Architecture of Instant-Grid [41]
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The Instant-Grid Infrastructure mainly consists of two categories. The
IP-Collector is concerned to refresh basic information about resources in the Grid. The
Distributor distributes information about configurations within the Grid through a file
structure on the NFS [41].

The GT4 and its belonging components are responsible for data transfer (GridFTP),
job submitting (WS-GRAM) and identification of resources and services of the Grid
(MDS4). This behavior can be controlled by the user in the command line or via a web
based user interface [41].

Besides the command line, the web based user interface that is provided by the
Apache HTTP server and the Apache servlet container Tomcat is an important interface
for the user. Most of the functionalities are provided by the GridSphere [62] portal.
Additional information about resource load can be displayed with Ganglia [56], which
is a scalable and distributed system for monitoring. The distributed rendering tool
“POV-Ray” [76] is an application that demonstrates the distributed computation in a
Grid and can be controlled through a web interface [41].

The distribution and administration of tasks within the Grid are controlled by the
interface WS-GRAM of GT4. The applications for demonstration have to choose
appropriate resources and have to compose the results of the resources on their own [60].

2.6.2 Alternative Grid environments

There are several initiatives and organizations, which provide implementations for Grid
software, e.g. Sun Grid [68], NorduGrid [70], Open Science Grid [61], OurGrid [74],
Enabling Grids for E-scienceE [53].

Sun Grid is an on-demand Grid computing service operated by Sun Microsystems. Sun
Grid delivers computing power and resources over the Internet and allows developers,
researchers, scientists and businesses to optimize performance, speed up the time to
results and accelerate innovation without investment in their IT infrastructure. The Sun
Grid Compute Utility provides paid access to a computing resource over the Internet. It
supports open-source technologies such as Solaris 10, Grid Engine and the Java platform,
which is based on the open-source Sun Grid Engine. [69]

NorduGrid is a Grid Research and Development collaboration with the purpose of
developing, maintaining and supporting the Advanced Resource Connector, a free Grid
middleware. [70]

The Open Science Grid is a production-quality Grid computing infrastructure for large
scale scientific research, built and operated by a consortium of universities and national
laboratories, scientific collaborations and software developers. The Open Science Grid
Consortium was established in 2004 to enable diverse communities of scientists access
to a common Grid infrastructure and shared resources. Groups that choose to join the
Consortium contribute effort and resources to the common infrastructure. [61]

OurGrid is a peer-to-peer grid founded in 2004. Users can access a large amount
of computational power that is provided as a Grid by the idle resources of all
participants [74].

Enabling Grids for E-sciencE (EGEE) is a project that provides researchers in
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academia and industry access to a production level Grid infrastructure, independent
of their geographic location. [53]

The implementations discussed above might not be Grids according to the theory that
is depicted in Section 2.2. Nevertheless, most of the functionalities of the Grids above
are the same, whereas the realization can differ.

The decision on using Instant-Grid for the research of this thesis was mainly driven
by its use of the middleware GT4, because Globus Toolkit is one of the most widely
used low-level middlewares today [1]. Besides that, Instant-Grid provides a user-friendly
establishment and hosting of a Grid computing environment.

2.7 Gridification of an application

Gridification means the integration of an application into a computer Grid in order to use
all advantages of Grid computing. Hereby, the utility of the Grid integrated application
has to be significantly greater than the utility of the monolithic application, as mentioned
in Section 2.2 [8].

A task that is solved by an application, which will be integrated into a Grid, has to be
parallelizable in order to allow a division into several job parts. The division should be
handled by a management system that includes a scheduler. The management system is
mainly responsible for the determination of all jobs and their descriptions. Another task
of the management system is the synchronization of the jobs. It assures that dependent
jobs are executed in the correct order. The job dependencies have to be entered by the
user, for instance with the Grid Workflow Execution Service (GWES). The user has to
enter the rules of the division of the application into jobs. This can be difficult and time
intensive, since the management system has to be readjusted for similar applications or
new implemented.

The core point of the management system is the determination of the jobs and
their synchronized distribution. The management system itself uses the services of
the Grid middleware. If the jobs and their order have been determined, the jobs are
distributed to the resources in the Grid. The management system should assign the jobs
to the resources, when it is necessary in order to allow a maximum flexibility. For the
assignment, the execution service of the Grid middleware is used. This service is usually
a command line call with parameters, which include the job and its description, e.g. the
application name with the determined application parameters. It is possible that assigned
resources disappear and the jobs have to be reassigned. The management system uses
the service of the Grid middleware in order to determine if jobs are running, finished,
or failed. The collection of the output data from the jobs is done with services of the
Grid. That includes copying of files or transforming data from the assigned nodes. If the
application is integrated into the Grid and using the Grid mechanism for its advantage,
the application is gridificated. The realization and integration of an application into a
Grid environment is described in Chapter 5.
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This Chapter gives an overview of software testing. Software testing is an essential
part of Software Engineering. It checks the developed fragments in every phase of the
development process.

Section 3.1 describes the fundamentals of testing. The dynamic testing technique black
box testing is explained in Section 3.2, whereas Section 3.3 gives a detailed explanation
of the fundamental test process.

3.1 Testing fundamentals

Software testing is an analytic activity for evaluating the quality of software [39], which
is included in the activities of Software Quality Assurance (SQA) [31]. SQA contains
additionally activities for organizing examination, which comprises software project
management, and constructive activities, which includes software engineering, in order
to avoid errors [26].

Testing is the examination of test objects by their execution. A test object is a part of
a software system or the software system itself that has to be tested. Testing should not
be confounded with debugging, which is the localization and correction of defects, bugs
and not fulfilled specifications of software systems. The task of debugging is to localize
and correct defects in a software system in order to increase the quality of a product
with the assumption that no new defects are caused by the correction. Testing itself
provides a base for debugging, since the goal of testing is the detection of failures, which
indicate defects of the tested software. Besides this, testing can increase the confidence
in a software product, measure quality and avoid defects through analyzing programs or
their documentations [23,35].

A test is defined as the whole process of systematic execution of a program in order
to find out whether the software realization matches the requirements. For a efficient
realization of tests, it is important to characterize a test process that includes the test
object execution with test data as well as the planning, design, implementation and
analysis, which are also specified by the test management. The fundamental test process
is described in detail in Section 3.3. The defined test conditions, the inputs and the
expected outputs or the expected behavior of the test object are specified in test cases.
A test case should be designed with the intent to detect undiscovered faults with a high
probability [29]. The execution of one or more test cases is part of a test run or test
suite. In a test suite detailed instructions, goals and the system configurations used
during testing are specified for each collection of test cases [35].
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The ability of proving the absence of defects is not possible through testing. Testing
can only discover present defects that a software product has. For the detection of
different classes of faults, it is necessary to construct testing as systematical as possible
and, in addition, with the constraint of having a minimum amount of time and effort [66].

3.2 Dynamic Testing

Software testing comprises dynamic and static testing. Static testing includes methods
like code reviews, coding guidelines and inspection, whereas dynamic testing is the
execution of test objects on a computer for testing a software product. The test object
has to be executed with input data. If the test object is not executable, like in an early
software development phase, it has to be embedded in a test bed as shown in Figure 3.1
in order to obtain an executable program. A test object usually calls different parts of
a software product through predefined interfaces. If these parts are not implemented or
if they should be simulated for the test, placeholders, called stubs that substitute parts,
are required. Stubs simulate the input and/or output behavior of programs or their parts
which are called by the test object [35].

Test case 1 Test case 2 … Test case n

Stub 1

Stub 2

…

Stub k

Test object PoO

PoC

Test driver

Test output

Comparison
& protocol

Run time environment
Analysis tools, monitors

Test stubs

Figure 3.1: Test Bed [35]

The test bed has to provide the input data realized through the test driver. The
test driver simulates programs that are supposed to call the test object with test data
specified in test cases. The test bed comprises the driver and the stubs and constitutes the
executable program with the test object. Test beds have either to be created, adjusted,
expanded, or modified by the tester [35].

There exist several different approaches for testing the test object. Dynamic testing
is divided into two groups: black box and white box testing. These test case design
techniques provide a base for creating test cases [35]. The black box testing technique is
described in the following, since it is applied in the case study of this thesis.
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If the black box testing technique is used, the test object is seen as a black box, i.e., no
knowledge of internal logic or code structure is required. As depicted in Figure 3.2, the
focus of black box testing lies on the input and output data. For a given input, an input
related behavior is expected and, hence, the expected outputs have to be determined
before the execution of the test object. The test cases are built from the specification of
the test object. The Point of Control (PoC) is outside the test object, which means the
test object can only be controlled through inputs. The Point of Observation (PoO) is
outside the test object, too. That is the reason why the test can only be evaluated through
the outputs. There is no direct access to the structure of the test object. The base of the
black box testing strategy lies in the selection of appropriate data as per functionality and
testing it against the functional specifications in order to check for normal and abnormal
behavior of the system. The generic type of functional testing includes black box testing.
Test cases can be developed from equivalence classes, boundary value analysis, state
transition testing and/or cause-effect graphing and decision table techniques [35].

ZTest object PoO

PoC

Test output data

Test input data

Figure 3.2: PoC and PoO at black box technique [35]

3.3 The fundamental test process

For structured and controllable testing, it is necessary to define a test process. Each
phase of a development process, e.g. of the V-Model, should have a corresponding testing
phase. Each testing phase of the development can be divided into the fundamental test
process. As shown in Figure 3.3, the fundamental test process consists of five phases;
test planning and control, test analysis and design, test implementation and execution,
evaluation of test exit criteria and reporting and post testing activities [35].

1. Planning and control

A controlled realization of tests cannot be done without planning. Planning of
tests is at the beginning of the test process. Test planning may include planning of
resources, determination of test strategies, test intensity, prioritization of tests and
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Figure 3.3: Fundamental test process [35]

tool support. Tasks and goals of the test have to be specified in a test plan that
may also include the coordination of required resources, like employees, equipments,
utilities and time. The control comprises test progress monitoring where test
activities are compared with the test plan in order to reach goals as specified in the
test plan or to reconfigure resources as demanded from the situation to achieve the
goal specified in the test plan [35].

A main point of test planning is the determination of the test strategy. This includes
a prioritization of subsystems of the software product depending on the expected
risk and severity of failure effects in order to assess the test effort for each of them.
The intensity of testing depends mostly on the used test methods and the test
coverage. The test coverage is a test exit criterion. Besides this, the completion of
certain specifications given by the customer can be a test exit criterion, too. All
test exit criteria should be defined in order to decide, when tests are completed.
Additionally, testing tools that will be used should be acquired or updated [35].

2. Analysis and design

Based on the analysis of the specifications, the expected behavior and the structure
of the test object, the preconditions and requirements for the test case design can
be determined. The specifications have to be reworked if they are not concrete
enough. If the specifications are imprecise, the testability would be insufficient.
The testability is the degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to determine whether
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those criteria have been met [91]. The most important task is to define logical test
cases in order to design concrete test cases. The test techniques are adapted from
the test plan and also determined in the analysis corresponding to the complexity
of the test object. Therefore, test planning, test analyzing and test designing can
be considered simultaneously. For every test case, the input and the expected result
have to be defined as well as the expected behavior, changes to global data and
states and any other consequence of the test case [35].

3. Implementation and execution

In this phase, concrete physical test cases are developed from logical test cases.
Additionally, it has to be defined how and in which order the test cases will be
executed. For this issue, the priority that was defined in the test planning phase
has to be considered. To conduct a test, its environment includes test harnesses,
which comprise stubs and drivers have to be programmed, built, acquired or set up
as part of the test implementation. The correct functioning of the test environment
has to be ensured, since faults can also be caused by added test harnesses. The test
execution technique is used to perform the actual test execution, either manually
or automated [35].

If a failure is found, it has to be exactly determined how it was caused. It
can be caused by an inexact test specification as well as by a wrong software
implementation. Real failures have to be documented. If more than one failure
has been found, the priority of the fault correction has to be determined. For later
evaluation the test coverage should be measured [35].

4. Evaluation of the test exit criteria and reporting

The test objectives are compared with the test protocols, i.e., it is evaluated if the
test criteria are fulfilled. This can either mean that the tests are finished because
every criterion has been reached or it may be decided that additional tests should
be run or the test criteria had a too high level. When the test criteria are achieved
or not achieved criteria are clarified, a test summary report should be written.
Traceability, which is the ability to identify related items in documentation and
software, such as requirements with associated tests, should be assured in a high
level in order to improve reproducibility [35].

5. Post testing activities

In this final phase experiences of the test work should be analyzed and conserved for
future projects. Especially discrepancies between planning and execution of various
behaviors and supposed causes should be considered and reported. In addition,
software system release date, test finishing date, achievement of milestones, etc.
should be documented. The test evaluation report is a document that is produced
in the end of the test process summarizing all testing activities and results. It also
contains an evaluation of the test process and lessons learned [35].
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4 Testing and Test Control Notation
Version 3 (TTCN-3)

The Testing and Test Control Notation Version 3 (TTCN-3) was specifically designed
for testing and certification [55]. The language comprises many constructs similar to
those in other programming languages. TTCN-3 additionally applies concepts like a
rich type system including native list types and support for sub-typing. It embodies a
powerful built-in data matching mechanism and distributed test system architecture [40].
It provides a snapshot semantics, i.e., well defined handling of port and timeout queues
during their access. Furthermore, it introduces the concept of verdicts and a verdict
resolution mechanism. In addition, specifications of concurrent test behavior and timers
are supported by TTCN-3. It allows test configuration at run-time and the tests focus
only on the implementation that is to be tested [55].

TTCN-3 supports test specifications using black box testing techniques that are
applicable for a diversity of tests for reactive and distributed systems [17], e.g. telecom
systems (ISDN, ATM), mobile systems (GSM, UMTS), Internet (IPv6, SIP) and CORBA
based systems [18].

The TTCN-3 language is standardized by the European Telecommunications
Standards Institute [64]. The standard is divided into several parts, whereas each covers
a different aspect of the language. Examples are listed in the following:

• Part 1: TTCN-3 Core Language [85],

• Part 2: TTCN-3 Tabular Presentation Format [86],

• Part 3: TTCN-3 Graphical Presentation Format [87],

• Part 4: TTCN-3 Operational Semantics [88],

• Part 5: TTCN-3 Runtime Interface [89],

• Part 6: TTCN-3 Control Interface [90].

The textual syntax of the TTCN-3 language is specified in Part 1. This part describes
the development of TTCN-3 test suites. Additional, the tabular presentation format is
specified in Part 2 and the graphical presentation format in Part 3. The semantics of the
TTCN-3 core language is specified in detail by using a flow graph notation in Part 4 [22].
Part 5 describes the runtime interface to the system and platform adapters and Part 6
the control interface, for example to the test management and component handling [58].

TTCN-3 is not tied to a particular application or its interface(s) and neither to
any specific test execution environment, compiler or Operating System (OS). TTCN-3
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itself is not executable and requires a compiler/interpreter as well as adapter and codec
implementations [55].

Concepts of TTCN-3 are described in Section 4.1. Basic elements of the language are
briefly explained in Section 4.2 and a typical TTCN-3 test architecture is explained in
Section 4.3, which is adapted for distributed systems in Section 4.5. Section 4.4 explains
the process of how to build tests in TTCN-3 and Section 4.6 gives an overview of ongoing
TTCN-3 tools.

4.1 Concepts

A test environment in TTCN-3 contains basically one or more test cases that are
communicating with the System Under Test (SUT) through ports. First of all, the
SUT has to be stimulated through a stimulus that is sent over a TTCN-3 port, which is
mapped to the SUT. After sending the stimulus, a related response will be received by
the TTCN-3 port and evaluated by the test case [20].

Due to the fact that TTCN-3 allows the specification of dynamic and concurrent test
systems, several scenarios can be realized. A test system in TTCN-3 includes a set of
interconnected test components with well-defined communication ports. In addition, an
explicit Test System Interface (TSI) defines the boundaries of the test system. Figure 4.1
shows a possible TTCN-3 test system [19].

Test System Interface (TSI)

System Under Test (SUT)

MTC
PTCs

PTC

PTC

create, start and stop

portcommunication path

Test System

stop

Figure 4.1: Dynamic configuration in TTCN-3 [19]

The Main Test Component (MTC) is the base of the test case and is started
automatically at the beginning of each test case execution. A test case terminates when
the MTC terminates. The MTC manages the test execution and is usually responsible for
the main workflow of the test system. The behavior of the MTC is specified in the body
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of the test case definition. Parallel Test Components (PTCs) can be created, started
and stopped dynamically during test case execution. A Test Component (TC), which is
either a PTC or the MTC, may stop itself or can be stopped by another TC [19].

For communication purpose between TCs, TTCN-3 provides the port concepts that is
shown in Figure 4.2. Each TC can be mapped to the SUT or connected to another TC in
order to send and receive messages either from the SUT or a TC. Ports have directions,
which should be in for receiving messages, out for sending messages or inout for both. A
test port with the direction in is modeled as an infinite FIFO queue. Incoming messages
are stored by the FIFO queue until they are processed by the receiving TC. Outgoing
information is not buffered, because message sent through a port with the out direction
are directly linked to the communication partner [19].

TC 2TC 1

IN

IN
OUT

OUT

TTCN-3 Test System

Abstract Test System Interface (ATSI)

OUT

OUT

IN

IN

Real Test System Interface (RTSI)

System Under Test (SUT)

Mapped Ports

Connected Ports

Figure 4.2: Illustration of the connect and map operations [85]

Ports can be defined as message-based, procedure-based, or mixed. Message-based
communication adapts the principle of asynchronous message exchange. Procedure-based
communication allows calling procedures in remote entities [19].

TTCN-3 distinguishes between the Abstract Test System Interface (ATSI) and
the Real Test System Interface (RTSI). The ATSI that is modeled as a collection
of ports defines the abstract interface to the SUT. That means, the communication
endpoints to the SUT are specified by the ATSI in an implementation independent
manner. The application specific part of a TTCN-3-based test environment is the RTSI,
because it implements the real interface of the SUT. That means, the RTSI defines the
implementation dependent adaptation between ATSI and SUT [6,19].

4.2 Basic elements

Modules are the building blocks of all TTCN-3 test specifications. A module consists of
a definition part and an optional control part. In the definition part, definitions, e.g. for
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test components, their communication interfaces, types, test data templates, functions
and test cases, are defined. The structure of a TTCN-3 module is depicted in Figure 4.3.

The definition part covers constant and data type definitions that are based on
TTCN-3 predefined and structured types. TTCN-3 types are grouped in basic (e.g.
integer, float), structured (e.g. record, set), any type (i.e., every type which is known in
the module) and configuration types (e.g. port type, component type) [34].

The test data description is defined in templates to either transmit a set of distinct
values or to test whether a set of received values matches the template specification.
Templates support matching mechanisms for the denotation of a variety of expected
data [34].

For the test configuration, it is required to define test components and their
communication interfaces. The test components communicate through ports. Timers
can be used for guarding the behavior of test components [34].

Furthermore, the test behavior has to be defined. This includes definitions of test
cases, functions and altsteps. A test case runs on a component type and can be called
through the TTCN-3 execute operation in the control part of a module. Hence, in the
module control part, the execution can be controlled [34].

Modules can be imported into other modules. Hence, this mechanism allows a fine
granular reuse of all TTCN-3 objects. Therefore, new test scenarios can be developed on
the basis of existing tests.

For evaluation of test runs, TTCN-3 provides a special test verdict mechanism. The
base for this mechanism is a set of predefined verdicts that are evaluated in local and

TTCN-3 Module

Module definition part
Data types
Constants

Data templates
Signature templates

Communication ports
Timer
Test components

Functions
Altsteps
Test cases

Module control part
Execution of test cases 
and control of execution

based on predefined 
TTCN-3 types

defines test data

for test configuration

defines behavior

Figure 4.3: A TTCN-3 module [34]
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global test verdicts. The local test verdict can be affected by the set operation and read
by the read operation. The predefined verdicts are pass, inconc, fail, error and none.
With help of the verdict test runs can be judged [19].

4.3 Test system architecture

A TTCN-3 test system conceptually consists of a set of interacting entities where
each entity implements specific test system functionalities. These entities manage test
execution, interpret or execute compiled TTCN-3 code, realize the communication with
the SUT, administer types, values and test components, implement external functions
and handle timer operations [89]. The test system architecture in TTCN-3 is shown in
Figure 4.4 [90].

The TTCN-3 Executable (TE) entity is a component of the test system. It implements
TTCN-3 modules on an abstract level. This abstract concept is made concrete through
the other entities [33]. The TE entity has to realize three tasks, which are the control of
test case execution, the proper execution of TTCN-3 behavior and queuing of events. The
TE communicates with the Test Management and Control (TMC), which includes the
Test Management (TM), the Component Handling (CH), the Test Logging (TL) and the
CoDec (CD), via the TTCN-3 Control Interfaces (TCI). The interfaces between the TE,
the System Adapter (SA) and the Platform Adapter (PA) are defined by the TTCN-3
Runtime Interfaces (TRI) that are used for the realization of the communication with
the SUT [4,89].
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Figure 4.4: General Structure of a TTCN-3 Test System [89]
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4.4 TTCN-3 based test development process

The process of the base development of tests in TTCN-3 is depicted in Figure 4.5. Test
purposes are defined from the SUT specifications through test definitions. After the
tests have been designed, they can be specified in TTCN-3 modules. These modules
can be divided into data and behavior modules. It is possible to define arbitrary finer
granularity of modules for possible reuse. The Abstract Test Suite (ATS) represents the
test specification and includes these TTCN-3 modules. These steps belong to the test
planning, test analyzing and test designing phases related to the fundamental test process
that is described in Section 3.3 [16,38].

Executable Test Suite (ETS)

Abstract Test Suite (ATS)

Data modulesData modulesData modulesData modules

SUT and platform requirement

System Adapter
(SA)

Codec
(CD)

TTCN-3 Executable
(TE)

Behavior modulesBehavior modulesTest purposes

Test results

SUT
specifications

Test 
definitions

Test 
specifications

compilation

Test runs

Adaptation

Test plan, analysis, and design

Test implementation, 
and execution

Figure 4.5: TTCN-3 based test development process [38]

The ATS is not executable on its own and must be compiled to the TTCN-3 test
executable (TE). The TTCN-3 code has to be compiled to Java (or depending on
the TTCN-3 environment C#, C, or C++) code. This compiled code is part of the
Executable Test Suite (ETS). To obtain a complete ETS, elements related to the SUT
and the test platform, such as the CD and the SA must be developed and combined with
the TE. The SA mediates between the SUT and the TE. Messages sent to the SUT have
to be encoded by the encoder and messages received from the SUT have to be decoded by
the decoder. The encoder and decoder are part of the CD. The SA and the CD have to
adapt concepts of the SUT and its platform requirements in order to communicate with
it. The tests of the ETS can be run to provide the required test results in order to evaluate
them [38]. The process described in this paragraph belongs to the test implementation
and test execution phase of the fundamental test process that is described in Section 3.3.
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4.5 Distributed testing

For testing in a Grid computing environment, a support for distributed testing is required.
Concepts like component-based distributed test systems in dynamic test configurations
are available in TTCN-3 [33]. The general structure of a distributed TTCN-3 test
system is illustrated in Figure 4.6. The TE is instantiated on each test device. The
communication between distributed test system entities is realized through the CH. The
CH entity provides the structure for synchronizing test system entities, which might be
distributed onto several nodes. The CH entity allows the test management to create and
control distributed test systems in a manner which is transparent and independent from
the TE [90].

PASA

SA
CH

TM

Special TE:
Initiating Start-Testcase
Calculation final verdict

TL

CD

TE
TE

Figure 4.6: General structure of a distributed TTCN-3 test system [90]

Each node within a test system includes the TE, SA, PA, CD and TL entities. The
entities Component Handler (CH) and TM intercede between the TEs on each node.
The TE which starts a test case is a special TE. It calculates the final test case verdict.
Besides this, all TEs are treated equally [90].

For deploying and executing distributed tests, Din et al. [5] designed the architecture
shown in Figure 4.7. The test console is the control point of this platform. It handles the
management operations to create test sessions, deploys test components into containers
and controls the test execution. In the context of a test session, the tests are deployed,
configured and executed. An important functionality of the session manager is the load
balancing, which coordinates the distribution algorithms [5].

A test daemon is installed on each host as a standalone process and manages the
container, which belongs to a specified session. A container includes the specific test
system’s entities: TM, CH, TE, CD, TL, SA and PA. For the communication, the
containers provide services to the test console and the test components, including
transaction support and resource pooling. Hence the containers intercede between
the test console and the test components. The containers manage the installation,
configuration and removal of PTCs. The containers are the target operational
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Figure 4.7: Distributed test platform architecture

environment and comply with the TCI standard [90] for TTCN-3 test execution
environments. The containers themselves are connected through a CORBA [32] platform
in oder to communicate with each other [5].

The CH realizes the distributed handling of test components. It is responsible
for the distribution of TTCN-3 configuration operations like create, start and stop
of test components, the connection between test components (connect and map) and
inter-component communication like send, call and reply among two TEs participating
in the test session [5].

4.6 Tools

Various vendors provide TTCN-3 tools in order to compile TTCN-3 code into Java, C#,
C, or C++ to build executables. Some of these vendors and their tools are listed in the
following:

• Danet Group - TTCN-3 Toolbox [63],

• Elvior - MessageMagic [49],

• Fraunhofer FIRST and Metarga GmbH - TTCN-3 Express [51],

• Métodos y Tecnoloǵıa - ExhaustiF/TTCN [84],

• OpenTTCN - OpenTTCN Tester [75],

• Telelogic - Tau Tester [80],

• Testing Technologies - TTworkbench [57].
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A discussion or comparison of these tools is not in the scope of this thesis. The best
description of each tool is given by the supporting vendor on their websites, which are
referenced in the bibliography.

The realization of the case study of this thesis has been implemented with the
TTworkbench Enterprise provided by Testing Technologies. TTworkbench Enterprise
is a graphical test development and execution environment for TTCN-3. It includes the
full range of features needed for test specification, execution and analysis [57].

The main point for this decision was that TTworkbench Enterprise allows executing
test scenarios in a distributed manner, which is an important requirement for executing
tests in a Grid computing environment. The TTmex feature of the TTworkbench
Enterprise allows managing, executing and analyzing of distributed TTCN-3 test
scenarios. The TTworkbench series compile TTCN-3 code into Java code. Hence the
test harnesses are implemented in Java [57].
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5 A Grid application

This Chapter gives an overview about the Grid application that is used in the case
study of this thesis. Section 5.1 gives an insight into this Grid application, whereas
Section 5.2 gives an explanation on how this application has been integrated into the
Grid. Section 5.3 describes the realization of the application management used in the
Grid, whereas Section 5.4 gives a description about its technical specification .

5.1 Description of the application

The algorithm of an application that is supposed to run in a Grid computing environment
should be parallelizable in order to tap the full potential of the advantages of Grid
computing. The reason behind the parallelization is that the Grid has to compute a task
distributed with the power of more than one resource. The main task has to be divided
into smaller tasks in order to allow concurrent runs in the Grid.

The application used in this case study is the calculation of Mandelbrot sets [27].
This algorithm is parallelizable and allows a spreading in different independent jobs.
The Mandelbrot set is a set of points in the complex plane that forms a fractal.
Mathematically, the Mandelbrot set can be defined as the set of complex c-values for
which the orbit of zero under iteration of the quadratic map x2 +c remains bounded [46].
Each point of the complex plane has to be inserted in the iteration formula zn+1 := z2

n+c.
A point of the plane belongs to the Mandelbrot set if it does not leave a predefined radius.
It is possible to calculate the points parallel, because their calculation is independent from
each other.

The application used in the case study of this thesis is implemented in the
programming language Python, which allows a direct calculation of complex numbers. A
function Mandelbrot that includes the Mandelbrot set algorithm is shown in Listing 5.1.
The parameters of this function allow the calculation of a specified part of the set.
Multiple independent executions of this function are possible through different parameter
specification in order to allow a parallelization. The most important parameters are left,
right, top and bottom, which specify the part, i.e., the local set, of the global Mandelbrot
set. The parts can be put together to the global Mandelbrot set after their calculation.
The other parameters cover the color of the set, the output file and the resolution of the
output image (line 1). Variables are initialized in lines 2 to 6 as described in the following.
The predefined radius of the Mandelbrot set is set to 2.0 and shown in Listing 5.1 in line 2.
The maximum iteration of the formula is set to 20 (line 3). If the iteration is set to a
higher number, the picture would be more detailed but more computationally intensive.
Afterwards an image is initialized, the main algorithm begins. The first two for loops
iterate through each pixel of the image and determine the complex number, which is
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1 def Mandelbrot ( l e f t , r i ght , top , bottom , red , green , blue , f i l e , width , he ight ) :
2 l im i t = 2 .0 # rad iu s
3 maxi te rat ion = 20 # deta i l ed , number o f i t e r a t i o n s
4 im = Image . new( "RGB" , ( width , he ight ) , (255 , 0 , 0) ) # s e t up c o l o r
5 draw = ImageDraw . ImageDraw( im) # se t up an image
6 for x in range ( width ) :
7 c r e a l = l e f t + x∗( r i g h t − l e f t ) /width
8 for y in range ( he ight ) :
9 c imaginary = bottom + y∗( top − bottom ) / he ight

10 c = complex ( c r ea l , c imaginary )
11 z = 0 .0
12 i = 0
13 for i in range ( max i te rat ion ) :
14 i f abs ( z ) > l im i t :
15 break
16 z = ( z ∗∗2) + c
17 i f i == ( maxi te rat ion − 1) :
18 draw . po int ( ( x , y ) , ( red , green , b lue ) )
19 else :
20 draw . po int ( ( x , y ) , ( i ∗10 , i ∗15 , i ∗30) )
21 im . save ( f i l e )

Listing 5.1: Mandelbrot set algorithm

inserted in the iteration formula zn+1 := z2
n + c in line 16. If it is part of the Mandelbrot

set, the pixel gets the basic color (line 18), if not, it gets a color that depends on the
number of iterations (line 20). After the computation is terminated, the calculated data
is written into an image file (line 21) that is specified by the parameter file (line 1).
Figure 5.1 shows a typical visualization of the Mandelbrot set.

Figure 5.1: Mandelbrot set of the implemented Grid application
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5.2 Integration into the Grid

The parallelization of the application explained in Section 5.1 is handled by an application
management system that has been integrated into the Instant-Grid environment. The
Instant-Grid environment uses most of the services provided by the Grid middleware
GT4 automatically. These services include services for security, authentication and
authorization. Services like distributing tasks or copying files to another node have
to be handled by a management system that includes a scheduler. The management
system controls and monitors the distribution and execution of tasks on Grid nodes by
using the services of GT4. Figure 5.2 shows how the Mandelbrot set application and its
management have been integrated into Instant-Grid.

Grid environment (Instant-Grid)

Grid Middleware: Globus Toolkit 4, Network File System

Application 
management

Client 1

Mandelbrot set
Application 

Client 2

Mandelbrot set
Application

Master
…

Client n

Mandelbrot set
Application

User 
interaction

Figure 5.2: Application integration into Instant-Grid

The user interacts with the application management system through a web interface
that is shown in Figure 5.3. The user enters service parameters, including the resolution
of the output image and the number of tasks and requests the application management to
start the calculation. The application management is mainly responsible for computing
the task parameters, assigning tasks to free hosts, synchronizing the tasks, monitoring

Figure 5.3: Web interface
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the execution of tasks and collecting and composing the results of the tasks.
After the user has sent a request, the management divides this request into tasks

and submits them as jobs to the GT4 in order to execute them on an idle client. For
the submission of the tasks a call to the GT4 service globusrun-ws is used. This call
requires as parameters, besides GT4 options, the name of an idle host and the task
options including the task name, its location and parameters. The task parameters have
been determined by the application management system and are equal to those of the
application explained in Section 5.1.

After a task has been finished, a file is written in the NFS directory by the responsible
node. Alternatively, it is possible to use the GT4 service GridFTP instead of the NFS.
The GridFTP is a service for copying files between the nodes of the Grid. However, since
the Instant-Grid provides an NFS automatically, the NFS infrastructure is used by the
application management.

Once all tasks are completed, the application management initiates the composition
of the job results from the NFS. The composed overall result is presented to the user
through the web interface. The interaction can be described as a grid application scenario,
which is depicted as a sequence diagram in Figure 5.4. In this example the user starts
the calculation through the web interface as explained above. In this scenario the Grid
computing environment consists of a master host, on which the management system
is running and two clients. Two jobs are calculated from the user’s request by the

send overall result

submit_compose_job()

start_calculation

submit_job (parameters)

submit_job (parameters)

send job result

send job result

Master Client 1 Client 2

composed result

Figure 5.4: Grid application scenario
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application management. The first task is submitted to client one and the second to
client two. After their completion, the final job, which composes both results, is assigned
to client one and its output is presented to the user at the web interface on the master
host. The user can download the composed result.

While the application management distributes the tasks, monitoring is provided to the
user through the web interface. It monitors task completion and displays the progress
to the user. The related web interface is shown in Figure 5.5. In this example nine jobs
with different parameters have been created as it can be seen in the shown table. In
that table, the user is informed about the progress of the determined jobs. For example,
information, on which host the job ran or is running, whether the job is finished and
since when an unfinished job is waiting, is shown. The last column provides the runtime
of finished jobs. In this case, four jobs have already been completed. They are also
shown in the image preview on the bottom of Figure 5.5. Between the table and the
image preview, the command of the actual job submissions and their GT4 status can be
evaluated.

Figure 5.5: Web interface: Assigning and monitoring tasks
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5.3 Realization of the application management

The application management has been implemented in PHP in order to provide a web
interface to the user. To control concurrent tasks, the management periodically reloads
itself to keep the user up-to-date. After the user has requested a calculation, parameter
related jobs will be determined and inserted into a database as depicted in Figure 5.6.
If a node is idle in the Grid, a job will be assigned to this node by the management and
executed on it through the GT4 service globusrun-ws. This service call includes the
idle client and the application with its belonging and previously determined parameters.
GT4 starts the submitted jobs as standard executables on the specified node. GT4 is
allowed to execute tasks on other nodes in the Grid, because they have been certified
in the Grid through GT4 during the boot process (see Section 2.4). Before starting the
tasks on the nodes, the application itself has to be distributed to them. In this case
study the application has been integrated in the Knoppix boot image in order to make
it available on each client file system. Another possibility the copying of the application
files to each node before the tasks have been assigned using the GridFTP service that is
provided by GT4.

The management evaluates the file “/etc/bin/machines” to distinguish which clients
are currently belonging to the Grid. After a node has been registered within the Grid,
the file will be updated with the new node. This is possible, because a DHCP server and
the IP-Collector are running on the master host, which are polling for new nodes and
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Figure 5.6: Distributed task management
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node losses repeatedly. After the management has assigned a task, the task is marked
as running in a database with the node identification. If the task has been completed,
an output image file is written on an NFS folder, which every node can access. After
the output has been recognized by the management, the related task will be marked as
finished. If there is an unfinished task, this task will be submitted to an idle node.

The application management has to make sure that on each node only one task is
running. Synchronization of the task is not important in that case, since every task is
independent from the other tasks. A restrictive condition is that the final compose job,
which is dependent on all previous jobs, has to be executed after all the other task have
been finished. Since the management waits for all outputs before it submits the final
compose job, that condition has been fulfilled.

While the application itself belongs to the layer “User Application”, the application
management is part of the “Collective Services” layer as it is depicted in Figure 2.2. In
addition to the “Collective Services” layer, services of the Instant-Grid, like directory
brokering and diagnostics, which are provided automatically by the Instant-Grid, also
have to be included. The services provided by the GT4 are included by the “Collective
Services” layer. GT4 services also cover the “Resource and Connectivity Protocols” layer,
since it is responsible for secure access to resources and services.

5.4 Technical specification

For determination of test data and test behavior for a software product, its specification
has to be analyzed (see Chapter 3). The events that are handled by the Mandelbrot set
application management are depicted in Figure 5.7 as an event-driven process chain. The
user calls the web interface http://server/grid-mandelbrot as depicted in Figure 5.3,
which is the first step in this process. After this web interface is loaded, the user has
to enter the service parameters for the output image of the Mandelbrot set. These
parameters include the resolution of the output image, i.e., the number of pixels in
horizontal and vertical directions, and the number of parts in vertical and horizontal
directions, which signify how the image will be divided by the management.

The management has to determine the parameters for each task for the Mandelbrot
set function, as shown in Listing 5.1, from the service parameters that are provided by the
user through the web interface. This determination is a prerequisite for the distribution
and synchronization of the tasks. For controlling the distribution, each task with its
belonging parameters and preferences is inserted into an SQL database. Before a task is
distributed, the management builds a shell script that includes the application location
and the belonging determined parameter. The application itself is located on each node in
the folder /usr/local/mandelbrot/ with the name mandelbrot.py. Each task receives
an ID from the management in order to control the different tasks. The ID is included
in the file name of the output of each task. After execution and correct termination of
a task, its output is stored in the NFS folder /clusterwork/grid-mandelbrot, which is
in the following called the working path or directory.

Technically, these shell scripts are submitted to the nodes for execution as tasks
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Figure 5.7: Event-driven process chain for the application management

by the management with help of the GT4 execution service. The shell scripts are
also located in the working directory. The assigned nodes, wait times and run times
of the tasks are inserted into the SQL database in order to handle timeouts and to
provide a monitoring of the distribution progress to the user through the web interface.
The image parts for the preview in the web interface are collected in the directory
/var/www/grid-mandelbrot/result/.

After all jobs have been distributed, executed and terminated correctly on the nodes,
an overall image is created from the results of all tasks that have been collected in the
working directory. The file names of the task results consist of the task number and
the file extension, for example 4.png. The management considers this file as the output
of task number four and it is, therefore, related to the fourth entry in the database.
The composed image is saved in the folder /var/www/grid-mandelbrot/result/ with
the file name mandelbrot.png. Afterwards, a file named finished is created by the
application management in the working directory in order to signalize that all jobs have
been terminated correctly. The composed image is the final result and provided to the
user by the web interface. To keep the management up-to-date, it reloads itself every 10
seconds in order to poll for new information about the determined and executed tasks.

Concluding, this application and its management can be realized more efficiently.
The application and its management are kept simple, because this thesis concentrates
on testing a Grid application using TTCN-3. For example, it is not possible to submit
parallel user requests. For further developments of this Grid application many aspects
can be improved.
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This chapter describes the development of test cases based on TTCN-3 for applications
running in a Grid environment. In Section 6.1, the determination of the test items
is described. Afterwards, in Section 6.2, the test purposes are determined, whereas
in Section 6.3 their related test architectures and test behaviors are described. The
TTCN-3 specifications of the test cases related to the determined test purposes are given
in Section 6.4. Afterwards, the implemented test adapters are explained in Section 6.5,
followed by a description of the execution of test cases in Section 6.6.

6.1 Determination of test items

The aim of this case study is to find out if TTCN-3 based tests are applicable for testing
applications running in a Grid environment. The tests of the case study focus on the
application output as well as the determination and the distribution of the tasks in
order to make sure that the main aspects related to Grid computing are tested and
covered through tests. This means the tests have to ensure that the Grid functionalities
of the application work in the same way as it has been described in the specification in
Chapter 5. This case study concentrates on functional testing that is realized in TTCN-3
using environments of TTworkbench Enterprise provided by Testing Technologies IST
GmbH [57].

The tests in the scope of this thesis assume that GT4 runs in a proper way and that
occurred failures are not related to it, but to the Grid application or its distribution
management themselves. Hence, the tests applied in this case study include tests of the
layers “User Application” and “Collective Services” and do not include the “Resources
and Connectivity Protocols” and “Fabric” layers. Testing the Grid middleware GT4
itself will not be discussed, developed, or evaluated.

Several functional tests are thinkable and have to be evaluated in detail. These tests
should include the check of the correctness of the distributed execution of the application
in the Grid through the application management as well as the creation of an expected
output. In addition, the tests have to check if the application produces the expected
output while running on a specified node by using the distributed execution service of
the Grid middleware GT4. Furthermore, tests of the correct determination of tasks and
their distribution through the application management should be included.

The following test items have been determined:

1. Testing the application executed on a Grid node,

2. Testing the application management.

The test purposes and their related test cases are described in the following.
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6.2 Test purposes

In this section, test purposes belonging to the above mentioned test items are determined.
From the item “Testing the application executed on a Grid node” the test purpose TAG
and from the test item “Testing the application management” the test purpose TAM are
derived. Both test purposes are explained in the following, starting with test purpose
TAG.

Test purpose TAG includes testing the Mandelbrot set application, which is executed
on a Grid node. It checks if this application creates the correct output. This is
important, because the user expects an accurate result. If the application itself behaves
incorrectly, the application management would deliver a wrong output independent of
the distribution.

The Implementation Under Test (IUT) of this test purpose is the Mandelbrot set
application itself. The SUT includes besides the IUT, the Grid infrastructure provided
by GT4 and NFS provided by Instant-Grid. The SUT can be stimulated through
calling services of GT4, for example globusrun-ws, which should result in an expected
output. The expected behavior of the SUT has to be determined. According to the Grid
application scenario shown in Figure 5.4, a simple test sequence diagram, which shows
the test purpose TAG, is depicted in Figure 6.1. The test system stimulates the SUT by
submitting a job, whereupon the SUT returns the image as the result.

submit_job (parameters)

send job result

Test System SUT

Figure 6.1: Test purpose TAG illustrated in a sequence diagram

For this test purpose, it is important that the application runs through the execution
service of GT4 and produces a predefined result. It is not tested specifically if the
job is executed on the specified node. The tests assume that the GT4 execution
service runs properly as it is specified in the GT4 documentation [44]. Hence, if an
expected output has been created, it is assumed that it was created by the specified
node. More information about the execution service can be found in the Globus Toolkit
documentation [44].

In the following, the test purpose TAM is described. Test purpose TAM includes
testing the management of a Grid application. It checks if the management determines
the tasks correctly and distributes all of them to the nodes. After the execution of all
tasks on the nodes, a final output has to be created as expected. Testing the application
management focuses on Grid functionalities, i.e., distributing all tasks and merging
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their outputs. Executing the application in a Grid computing environment without
the application management would be no advantage against non-distributed computing.
Therefore, the interaction of the management and the application is also tested. The test
purpose comprises tests that check if the Grid user obtains a correct output after it is
composed from all partial outputs of the tasks.

The application management, which runs on the master node, is the focus of this test
purpose. The functionalities of the task distribution management have to be tested. The
responsibilities of this management are: the retrieval of user request, the determination
of tasks from that request, the assignment of the tasks to idling nodes in the Grid and the
start of the final compose job after all tasks have been executed and terminated correctly.
Hence, the application management is the IUT that has to be investigated. Figure 6.2
shows the determination of the IUT and the SUT based on Figure 5.6.

access

Database

Finish task

jobs finished?

updates idle
host

Compose job

update

no

yes

Determine tasks

Nodes

Retrieve request

Globus Toolkit

NFS

insert

execute
call

retrieve

select

(Distributed Task Management)

Assign task

/bin/usr/machines

DHCP server

interacts

IUT
SUT

Figure 6.2: IUT and SUT specifications used in test purpose TAM

In addition to the IUT, the SUT comprises the Grid infrastructure and certain services.
These include an SQL database, DHCP services, which update the file containing the
node list, the GT4 infrastructure, which is provided to each node in the Grid and the
NFS that each node can access.

The test purpose TAM is depicted in the sequence diagram in Figure 6.3. Initially,
the test system sends a message for stimulation of the SUT (interaction 1). This stimulus
includes the data, which is supposed to be entered by the user. The IUT requires
this provided data in order to determine the task’s options and parameters. After this
determination, the IUT assigns the tasks to the nodes. In the test purpose that is depicted
in the sequence diagram, the simulated users request results in the determination of two
tasks and the additional final task that composes the result. After the submission, the
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3. submit_job (parameters2)

1. start_calculation

2. submit_job (parameters1)

4. send job result1

5. send job result2

SUT

6. composed result

Test System

Figure 6.3: Test purpose TAM illustrated in a sequence diagram

tasks are intercepted by the test system in order to evaluate the task commands and
their parameters (interaction 2 and 3). The test system creates an image file, which is
sent back to the SUT, because the it expects a result from the task’s assigned nodes
(interaction 4 and 5). After all expected results have been received by the SUT, the final
compose job is called by the SUT. The composed result is sent by the SUT to the test
system (interaction 6). This test purpose is derived from the application behavior, which
is shown in the sequence diagram of Figure 5.4. This test purpose has to be transformed
into a test case as described in the next sections.

6.3 Test architectures and behaviors

The test architectures and test behaviors of the test purposes TAG and TAM are
described in the following. The test architecture related to the test purpose TAG is shown
in Figure 6.4, which is based on Figure 5.2. The SUT consists of the application itself,
which is the IUT, the provided GT4 services and the NFS provided by the Instant-Grid.

Grid environment (Instant-Grid)

Grid Middleware: Globus Toolkit 4, 
Network File System

MTC

Client 1

IUT 

Master

SUT

Figure 6.4: Test architecture of test purpose TAG
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The stimulation of the SUT occurs, when the submission of a job, which includes
calling the execution service of GT4, is invoked through the MTC. This stimulation is
the PoC of test purpose TAG, because the behavior and the result can be influenced
by changing the input data. After sending that stimulation message, an output can be
read from a specified folder by the MTC on the NFS. This is the PoO, since through the
output, the behavior and results can be acquired and evaluated. The MTC has to poll for
the output of the IUT, since it does not get a direct response from the IUT. The IUT is
started with specified parameters by the execution service of GT4 and writes an output
to the NFS. As described in Section 5.1, the output of the Mandelbrot set application is
an image, which has to be matched with the data of the expected image. Keeping the
match overhead small, an MD5 hash sum will be used to match the actual output image
with the expected image. Since the MD5 sum is not collision free, an alternative for the
matching is a comparison of the byte streams of both images. This comparison leads to
test cases, which involve huge amounts of binary data.

As recapitulation, the stimulus of the SUT is the call of the GT4 execution service
including the path, name and parameters of the application. The expected result is an
image related to these parameters. The test case passes if the correct image is produced
and stored into the NFS.

It is possible to add a PTC on client 1 in order to have a more precise test purpose that
includes a testing of the Grid middleware GT4. This PTC could guard the executions
on its installed client and send a message to the MTC if a certain application has been
executed in order to determine if the application has been submitted to the correct node
by the GT4 execution service. Since it is assumed that GT4 runs correctly, this issue is
not considered in this test purpose.

For the test purpose TAM, a prerequisite is that at least two nodes are running in the
Grid in order to test the distributing functionalities of Grid computing. The IUT, which
in this case is the application management, is going to be stimulated with the necessary
parameters by the MTC, which substitutes the user, as it is shown in Figure 6.5. The
base of this figure is related to Figure 5.2 and shows how the test environment has
been integrated into the Grid environment. The SUT comprises the IUT itself, the
infrastructure provided by GT4 and the NFS.

Grid environment (Instant-Grid)

Grid Middleware: Globus Toolkit 4, Network File System, …

IUT

Client 1

PTC 1 

Client 2

PTC 2 

Master
…

Client n

PTC n 
MTC

Testing Tech TTmex

SUT

Figure 6.5: Test architecture of test purpose TAM
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After a stimulation by the MTC, the IUT is supposed to determine the tasks from
the transmitted parameters. The determination is the premise for the distribution of the
tasks by the IUT using the execution service of the Grid middleware GT4. In the tests,
it has to be evaluated if the correct parameters for the tasks have been determined and
submitted by the IUT.

Therefore, the application itself has been substituted through a stub in order to
intercept the parameters that have been transmitted through the execution service
of GT4. One stub runs on each node in order to replace the application that is
located on each node. Additionally, a PTC runs on every node in order to receive
the parameters from the stub. The PTC itself has to send these parameters to the
MTC through the distributed TTworkbench functionality TTmex, which is based on
CORBA [15, 32], because the PTC does not have the knowledge whether the received
parameters are correct. TTmex provides its own infrastructure for the test system in
order to allow a realization of SUT independent communication between test components.
The integration of the TTmex functionality in the Grid environment is also shown in
Figure 6.5.

The distribution of the tasks does not follow any restrictions, since the Mandelbrot
set algorithm is parallelizable. It is not possible to predict which node executes which
tasks distributed by the SUT. The reason behind this is that a node could have much
more computing power than another one and, therefore, calculates its assigned task faster
than a slow one. Therefore, the MTC has to collect all messages with the parameters
received from the PTCs and has to evaluate if the correct parameters for each job have
been determined by the SUT. It is also important that the MTC checks if the correct
number of jobs has been executed. Additionally, the MTC has to check if the outputs of
the tasks have been put together correctly through executing the final compose job.

The interactions between the SA and the TTCN-3 test system of test purpose TAM
are depicted in Figure 6.6. The messages intercepted by the stubs are forwarded to
the SA via a socket connection, whereas the SA sends these messages that include the
application parameters further to the TTCN-3 test system. These messages are received
by a port of the TTCN-3 test system. As responses of such messages, the SA gets image
specifications that are sent via a port of the TTCN-3 test system in order to create image
files. These image files are stored in the NFS working directory, which is used by the IUT.
The image file creations are required, because the IUT waits for results of the assigned
tasks.

socket File 
operationSystem Adapter

TTCN-3 Test System

port.receive port.send

parameterlist image_conf

NFSStub for executables

Figure 6.6: Communications in test test purpose TAM
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According to the test purpose TAM in Figure 6.3, a simple graphical test case
representation, which shows the expected behavior of the test purpose TAM, is depicted
in Figure 6.7. This includes a simple test trace for an exemplified straightforward view on
the behavior of test purpose TAM. This is the reason that the computer Grid comprises
only 2 PTCs, where each runs on a client node. An arbitrary number of PTCs can be
added. Additionally, this computer Grid contains the master node, on which the MTC
and the IUT run.

8. composed image

pt_Image

4. Received_job_data (parameters)
pt_PTCPara pt_PTCPara

pt_Image pt_Image
5. Image

pt_SUTPara
3. submit_job (parameters)

pt_SUTPara

pt_SUTPara pt_SUTPara
2. submit_job (parameters)

1. start_calculation
pt_httppt_http

pt_PTCPara

7. Image

MTC SUT PTC 1 PTC 2

pt_Image

pt_PTCPara

pt_ImageAnwser pt_ImageAnwser

setverdict

6. Received_job_data (parameters)

Figure 6.7: Expected behavior of test purpose TAM illustrated as a sequence diagram

In order to start a test, the MTC stimulates the SUT with a simulated user request
that results in the determination of two jobs through the management (interaction 1).
The stimulus is sent through the pt http port of the MTC to the pt http port of the
SUT. After the subdivision of this imitated request through the SUT, the first job is
submitted with its belonging parameters to PTC 1 (interaction 2) and the second with
its calculated parameters to PTC 2 (interaction 3). The parameters observed by the stub
are received as a message by the pt SUTParameters port of a PTC and forwarded by the
pt SUTParameters port of the SUT. This message is further forwarded to the MTC by
PTC 1 (interaction 4) and later by PTC 2 (interaction 6). After such a message has been
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forwarded, an arbitrary image is created by PTC 1 (interaction 5) and later by PTC 2
(interaction 7) using the parameters of the received message in order to feign an image
creation to the SUT so that the SUT continues the task distribution. The image handling
takes place through the pt Image ports of the SUT and the PTCs. When all tasks are
executed and terminated correctly, the SUT submits the final task to a node in the Grid,
in order that the final output from all task results is going to be composed. Hence,
the overall output is received by the pt ImageAnswer port of the MTC (interaction 8).
The MTC has to check if the correct number of tasks has been executed, if the job
determinations match the expected ones in relation to the stimulus and if the output has
been composed correctly.

6.4 TTCN-3 specification

This section describes the TTCN-3 implementation of the test cases. Hereby, test case
tc TAG is related to the test purpose TAG and test case tc TAM is related to the test
purpose TAM. The TTCN-3 data definitions are described in Subsection 6.4.1, whereas
the TTCN-3 behaviors are explained in Subsection 6.4.2.

6.4.1 TTCN-3 data definitions

In Listing 6.1, the module parameter definition in TTCN-3 belonging to a test suite that
includes test case tc TAG is shown. The definition takes place within the curly braces
of the TTCN-3 statement modulepar. The module parameter defined here has the type
charstring and the name HOST with default content “bombay”, which is the host name
of a node in the Grid (line 2). Through the command with (line 3), a description can
be added to the module parameter (line 4). The module parameter can be changed after
the TE has been compiled and can also be found in the Campaign Loader File (CLF),
which is explained in Section 6.6 and depicted in Listing 6.23 (lines 7-24).

1 modulepar {
2 charstring HOST := ”bombay” ;
3 } with {
4 extension (HOST) ”Host on which the app l i c a t i on runs . ” ;
5 }

Listing 6.1: Module parameter definitions used in test case tc TAG

Listing 6.2 shows the definition of the module parameters that are used in test
case tc TAM. The seven module parameters are described in the following. The
NUMBER OF PTCS signifies how many PTCs have to be started (line 2). This number
has to be equal to the number of nodes registered in the Grid. Starting a PTC on each
node is necessary, because the management can distribute the tasks to any of them.
Therefore, it has to be ensured that every task that can be called on any node in the
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Grid is observed by a PTC. In this example, the Grid consists of three nodes, whereas
even on the master node a PTC runs, because tasks can also be executed on the master
node itself.

1 modulepar {
2 integer NUMBER OF PTCS := 3 ;
3 integer HORIZONTAL := 5 ;
4 integer VERTICAL := 4 ;
5 f loat SPEED PTC1 := 2 . 0 ;
6 f loat SPEED PTC2 := 2 . 0 ;
7 f loat SPEED PTC3 := 2 . 0 ;
8 boolean COLORED := true ;
9 } with {

10 extension (NUMBER OF PTCS) ” Defau l t number o f PTCs” ;
11 extension (HORIZONTAL) ”Number o f h o r i z on t a l p i e c e s f o r the output image” ;
12 extension (VERTICAL) ”Number o f v e r t i c a l p i e c e s f o r the output image” ;
13 extension (SPEED PTC1) ”Reaction time o f PTC 1” ;
14 extension (SPEED PTC2) ”Reaction time o f PTC 2” ;
15 extension (SPEED PTC3) ”Reaction time o f PTC 3” ;
16 extension (COLORED) ” I f t rue then each job i s in the c o l o r o f the ptc ” ;
17 }

Listing 6.2: Module parameters definitions used in test case tc TAM

The next two module parameters signify the two application management parameters
that are entered by the user in the web interface. The number of parts, in which the
image is going to be divided, is set in this case to 5 x 4. This means that the SUT
calculates 20 tasks for the distribution (lines 3, 4).

The next three module parameters are defined for handling the reaction time of each
PTC (lines 5-7). In this test suite the speeds of the PTCs are uniform. Through the
PTC reaction times, nodes with different computing power can be simulated.

The COLORED module parameter is related to the color of a partial image created by
a node through a task execution. If the COLORED module parameter is set to true, every
image created by the same PTC is colored in the same predefined color. If this parameter
is set to false, the partial image will be colored related to the job number and its place in
the complete image (line 8). For the case that COLORED is set to true, it is not possible to
predict the complete image with a hexadecimal representation, because the distribution
of the tasks by the SUT cannot be determined exactly. If this option is set to false, this
representation can be predicted and be matched with the one of the expected image. In
lines 9 to 17, a short description of each module parameter is given in order to determine
their meanings easily.

Template definitions used in test case tc TAG are shown in Listing 6.3. For a
better reusability, the templates are defined parameterized. The choice of parameterized
templates was taken because in parameterized templates static content can be added
easily.

The first template a GridClientAssign belongs to the type GridType (lines 1-13).
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1 template GridType a Gr idCl i entAss ign ( I d e n t i f i c a t i o n p i d e n t i f i c a t i o n ,
2 charstring p host ,
3 charstring p path ,
4 charstring p app l i c a t i on ,
5 charstring p parameters ,
6 charstring p execType ) := {
7 i d e n t i f i c a t i o n := p i d e n t i f i c a t i o n ,
8 host := p host ,
9 path := p path ,

10 app l i c a t i o n := p app l i c a t i on ,
11 parameters := p parameters ,
12 execType := p execType // hash or by te
13 }
14
15 template GridAnswerType a GridClientAnswer ( I d e n t i f i c a t i o n p i d e n t i f i c a t i o n ,
16 charstring p Checksum ) := {
17 i d e n t i f i c a t i o n := p i d e n t i f i c a t i o n ,
18 Checksum := p Checksum
19 }

Listing 6.3: Template definitions used in test case tc TAG

This template is used for sending messages to the SUT. This means a message contains
a host that lives within the Grid (line 8), on which the specified application (line 10),
which is located in the specified path (line 9) has to be invoked with certain parameters
(line 11). A message includes, additionally, the identification number (line 7) in order to
assure the correct synchronization of messages. The execType can be hash or byte, which
signifies the method that is used for the image matching process (line 12). Depending
on this, the output of the SUT is treated differently by the SA as further described in
Section 6.5.

The second defined template a GridClientAnswer is required for matching responses
from the SUT (lines 15-19). This template includes the identification number that should
be the same as the one that has been sent (line 17). The SUT requires a correctly
processed identification number in order to differentiate the outputs of the tasks. The
checksum that is used in this test case is an MD5 checksum and is defined as type
charstring (line 18). Alternatively, for the byte-type option, the type octetstring has
to be used.

The template definitions required for test case tc TAM are shown in Listing 6.4.
First, a template for the stimulus of the SUT is defined (lines 1-16). The template
a httpStimulus has two parameters that signify the number of parts of the image in
vertical and horizontal direction (lines 1 and 2). Their product is the number of all parts
in the image. The same number of jobs will be determined. The third parameter defines
the working directory, where the IUT stores temporary data (line 3). This parameter is
assigned in line 15. The protocol is specified as http (line 4), the host, in this case the
web server, is a node inside the Grid (line 5) and the script, which has to be called, is
the PHP script that computes the tasks inside the IUT (line 6).
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1 template StimulusType a httpSt imulus ( integer p hor i zon ta l ,
2 integer p v e r t i c a l ,
3 charstring p workingpath ) := {
4 p ro to co l := ”http ” ,
5 host := ” s e r v e r ” ,
6 f i l e := ” gr id−mandelbrot / c a l c u l a t e . php” ,
7 ResolutionXKey := ” xp i x e l ” ,
8 ResolutionXValue := 1500 ,
9 ResolutionYKey := ” yp i x e l ” ,

10 ResolutionYValue := 1500 ,
11 pcsHorizontalKey := ”xpart ” ,
12 pcsHor izonta lValue := p hor i zon ta l ,
13 pcsVert i ca lKey := ”ypart ” ,
14 pcsVer t i ca lVa lue := p v e r t i c a l ,
15 workingpath := p workingpath
16 }
17
18 template ImageType a Image ( charstring p ou tpu t f i l e , integer p red ,
19 integer p green , integer p blue ,
20 integer p width , integer p he ight ) := {
21 o u t pu t f i l e := p ou tpu t f i l e ,
22 red := p red ,
23 green := p green ,
24 blue := p blue ,
25 width := p width ,
26 he ight := p he ight
27 }
28
29 template ImageAnswerType a ImageAnswer ( charstring p Checksum):= {
30 Checksum := p Checksum
31 }
32
33 template ReactionType a React ion ( charstring p app l i c a t i on , f loat p r ight ,
34 f loat p l e f t , f loat p top , f loat p bottom ,
35 integer p red , integer p green , integer p blue ,
36 charstring p ou tpu t f i l e , integer p reso lut ionX ,
37 integer p re so lu t i onY ) := {
38 app l i c a t i o n := p app l i c a t i on ,
39 r i g h t := p r ight ,
40 l e f t := p l e f t ,
41 top := p top ,
42 bottom := p bottom ,
43 red := p red ,
44 green := p green ,
45 blue := p blue ,
46 o u t pu t f i l e := p ou tpu t f i l e ,
47 re so lu t i onX := p reso lut ionX ,
48 re so lu t i onY := p re so lu t i onY
49 }

Listing 6.4: Template definitions used in test case tc TAM

Since the application management, i.e., the IUT, uses a web interface, CGI [36,92]
variables have to be sent with the request. The CGI variables are defined in lines 7
to 14. Variables ending with Key in their names indicate that their contents are the
names of CGI variables and the belonging variables ending with Value comprise the
values of these CGI variables. For instance, the value of ResolutionXKey is xpixel
(line 7) that is a CGI variable in the calculate.php. The content of the CGI variable
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xpixel is assigned to the value of ResolutionXValue that is 1500 (line 8). Typically,
these variables are filled in the web interface by the user. But in this test case, the MTC
has to send them. Therefore, the script calculate.php is called with these four CGI
variables on the specified host, which is in this case the node with the host name server.

The SUT expects four inputs from the user’s request, which is simulated through the
call of the MTC. The record type StimulusType has to be adjusted or a new record type
has to be defined if the management expects more than four CGI parameters.

Second, the template a Image that includes the characteristics of an image is specified
(lines 18-27). It includes attributes for defining a simplified image. These attributes are
the file, in which the image is written (line 23), the color of the image (lines 24-26) and
the resolution of the image (lines 27, 28). This template is completely parameterized in
order to allow a maximum flexibility of image creations. The template is used for sending
messages to the SUT.

Third, the template a ImageAnswer of type ImageAnswerType is required for matching
a checksum of a file. The checksum in this case is an MD5 checksum and is provided
through a parameter (lines 29-31). The type record ImageAnswerType is used in order
to allow adding other attributes of a file. Hence, an addition of attributes, like location,
size, file type, or file name, is possible.

Fourth, the template a Reaction for matching received messages from the SUT
is defined (lines 33-49). This template is based on the parameter list for the Grid
application. It includes the application name and location (line 38), the specification for
the part of the Mandelbrot set (right, left, top, bottom, lines 39-42), the color base for the
Mandelbrot set in RGB model representation (lines 43-45), the output file (line 46) and
the resolution of the local image (lines 47, 48). This template is parameterized because
more than one message is expected from the SUT. Hence, a parameterized template
allows a better structure in the test behavior specification because of its reusability.

The port type defined for test case tc TAG is listed in Listing 6.5. This port type is
called GridPort and uses message-based communication (line 1). The types of messages
that can be sent or received by a port that is declared in this type are defined in lines 2
and 3. A port instance of this port type would have a direction out for sending messages
of type GridType and a direction in, which means that possible received messages should
match the type GridAnswerType.

1 type port GridPort message {
2 out GridType ;
3 in GridAnswerType ;
4 }

Listing 6.5: Port type definition used in test case tc TAG

The port type definitions required for test case tc TAM are shown in Listing 6.6. Four
message based port types are declared. The port type httpType with the direction out is
defined in lines 1 to 3. A port of this port type can send messages of type StimulusType.
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The port type AppReactionType is defined with an inout direction in order to allow a
port of this type receiving and sending messages of type ReactionType (lines 5-7). A
port defined with the type CreateImageType can send messages of type ImageType.
Therefore, for this type, a direction out is assigned (lines 9-11). A port of port
type CreateImageAnswerType evaluates received messages of type ImageAnswerType
(lines 13-15).

1 type port httpType message {
2 out StimulusType ;
3 }
4
5 type port AppReactionType message {
6 inout ReactionType ;
7 }
8
9 type port CreateImageType message{

10 out ImageType ;
11 }
12
13 type port CreateImageAnswerType message {
14 in ImageAnswerType ;
15 }

Listing 6.6: Port type definitions used in test case tc TAM

The TTCN-3 definition of components, including their belonging ports used in test
case tc TAG, are shown in Listing 6.7. Port pt mtc of type GridPort belongs to the
component type GridClient (lines 1-3), which is the MTC type of the following described
test case. Port pt system, also of type GridPort, belongs to the component type
systemType (lines 5-7), which can be seen as the abstract interface to the SUT. These
components are going to communicate with each other through these ports using the
types described above.

1 type component GridCl i ent {
2 port GridPort pt mtc ;
3 }
4
5 type component systemType {
6 port GridPort pt system ;
7 }

Listing 6.7: Component and port definitions used in test case tc TAG
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Figure 6.8 shows the abstract realization of the port connection in test case tc TAG.
The pt system port can be seen as the interface between the ATSI and the RTSI that
includes the SA, as described in Section 4.1. The RTSI interacts through the ATSI with
the TTCN-3 test system in order to realize a communication between the SUT and the
TTCN-3 test systems.

Test System

ATSI

INOUT

OUT IN

RTSI

SUT

pt_system

pt_mtc

MTC

Figure 6.8: Port realization of test case tc TAG

The test component types and their ports defined for test case tc TAM are shown
in Listing 6.8. The definition of component type MTCType includes three port and two
timer definitions (lines 1-7). The defined ports of the MTCType component type are the
pt http port that has to send the stimulus to the web interface of the IUT (line 2), the
pt PTCParameters port in order to receive messages with the task parameters from the
PTCs (line 3) and the pt ImageAnswer port in order to receive a message with the final
composed image via the file system from the IUT (line 4). The MTCTimer is defined with
a timeout of 50 seconds in order to guard alt constructs in the test behavior (line 5). The
WaitForCompletionTimer is used in the MTC behavior to wait 40 seconds for further
messages, after all expected messages have been received (line 6). This timer is required
because it has to be ensured that the correct number of jobs has been submitted.

The definition of the component type PTCType is used for executing parallel test
behavior in order to observe the task submissions on several nodes in the Grid. The
definition of component type PTCType includes three port and two timer definitions
(lines 9-15). The defined ports of the PTCType component type are the pt SUTParameters
port in order to receive the task parameters from the system component (line 10), the
pt PTCParameters port that sends the received task parameters further to the MTC
(line 11) and the pt Image port that initializes a creation of an image for the SUT
(line 12). The PTCTimer is defined with a timeout of 50 seconds in order to guard alt
constructs in the PTC test behavior (line 13). The PTCApplicationTimer is used in the
PTC behavior to simulate the response time of the node on which the PTC runs.
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1 type component MTCType {
2 port httpType pt http ;
3 port AppReactionType pt PTCParameters ;
4 port CreateImageAnswerType pt ImageAnswer ;
5 timer MTCTimer := 5 0 . 0 ;
6 timer WaitForCompletionTimer := 4 0 . 0 ;
7 }
8
9 type component PTCType {

10 port AppReactionType pt SUTParameters ;
11 port AppReactionType pt PTCParameters ;
12 port CreateImageType pt Image ;
13 timer PTCTimer := 5 0 . 0 ;
14 timer PTCApplicationTimer ;
15 }
16
17 type component SystemType {
18 port httpType pt http ;
19 port AppReactionType pt SUTParametersArray [NUMBER OF PTCS ] ;
20 port CreateImageType pt ImageArray [NUMBER OF PTCS ] ;
21 port CreateImageAnswerType pt ImageAnswer ;
22 }

Listing 6.8: Component and port definitions used in test case tc TAM

The component type SystemType is the abstract interface to the SUT. This
component type comprises four ports (lines 17-22). The pt http port is
supposed to receives the HTTP request as stimulus for the SUT (line 18). The
pt SUTParametersArray[NUMBER OF PTCS] port sends a message with the intercepted
task parameters to the PTC (line 19). The pt ImageArray[NUMBER OF PTCS]
port receives attributes from the PTC for creating an image (line 20). The
pt ImageAnwserType port sends a message with the specifications of the final composed
image to the MTC (line 21).

An overview of the communication flow between the components and their defined
ports used in test case tc TAM is given in Figure 6.9. The SUT is stimulated
through a message sent by the pt http port of the MTC. This stimulation message
is of type StimulusType and is sent out of the TTCN-3 test system to the SUT.
After the stimulation, the IUT determines all tasks. Once the tasks have been
submitted to the nodes, i.e., in the test system to the PTCs, the PTCs receive
messages with the parameters of the task submissions from the system component port
pt SUTParametersArray[n] by their port pt SUTParameters. This message of type
ReactionType is forwarded to the MTC port pt PTCParameters by the PTC ports
pt PTCParameters. After a specified amount of time, an image creation is initialized
by the PTC port pt Image through sending an image specification message to the
system component port pt ImageArray[n]. The message for the image creation is
of type ImageType and is sent out of the TTCN-3 test system. When the MTC
port pt PTCParameters has received all expected messages from the PTCs, the MTC
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typically receives a message with attributes of the composed image through its port
pt ImageAnswer from the system component port pt ImageAnswer. This message is
received from outside the test system and is of type ImageAnswerType.
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Figure 6.9: Ports realization in test case tc TAM

6.4.2 TTCN-3 behavior definitions

The behavior of test case tc TAG implemented in TTCN-3 is shown in Listing 6.9.
This test case uses an MTC of component type GridClient that is specified by the
TTCN-3 runs on clause (line 1). Additionally, a system component of component type
systemType is used and indicated by the TTCN-3 operation system (line 1).

First, timer and certain variables are declared (lines 2-15). The variables are the
abstract parameters for the GT4 execution service. In line 5, an arbitrary identification
is assigned. Afterwards, the working path, where temporary data is stored by the IUT
(line 7), the application name that will be executed (line 9) and its belonging parameters
(lines 11, 12) are defined. Also, one part of the expected response, which is the expected
MD5 hash code, is assigned (line 15). After these initializations, port pt mtc is mapped
to the port pt system (line 17) in order to receive or send messages between the MTC
and the SUT. The technical realization of the communication is given in Section 6.5.

The message that is sent in line 20 includes the variables assigned above and the
host identification. The host identification is provided as a TTCN-3 module parameter,
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1 testcase tc TAG() runs on GridCl i ent system systemType {
2 timer replyTimer ;
3
4 // v a r i a b l e s f o r the SUT st imu lus
5 var I d e n t i f i c a t i o n v id := 1234 ;
6 // working path
7 var charstring v path := ”/ c lu s t e rwork / gr id−mandelbrot /” ;
8 // app l i c a t i on fo r execu t ion
9 var charstring v app l i c a t i o n := ”/ usr / l o c a l /mandelbrot /mandelbrot . py ” ;

10 // parameters f o r the app l i c a t i on
11 var charstring v parameters := ”−2.25 0 .75 −1.5 1 .5 255 125 125 ”
12 & v path & int2str ( v id ) & ” . png 500 500” ;
13
14 // expec ted par t o f the response
15 var charstring v hashsum := ”8dbdbdb61381636c5897347f6888366b” ;
16
17 map(mtc : pt mtc , system : pt system ) ;
18
19 // send the St imulus
20 pt mtc . send ( a Gr idCl i entAss ign ( v id , HOST, v path , v app l i c a t i on ,
21 v parameters , ”hash” ) ) ;
22
23 replyTimer . start ( 200 .0 ) ;
24 alt {
25 // handle the case when the expec ted answer i s r ece i v ed .
26 [ ] pt mtc . receive ( a GridClientAnswer ( v id , v hashsum ) ) {
27 replyTimer . stop ;
28 setverdict ( pass ) ;
29 }
30 // Handle the case when unexpected answer i s r e ce i v ed .
31 [ ] pt mtc . receive {
32 replyTimer . stop ;
33 setverdict ( f a i l ) ;
34 }
35 // Handle the case when no anwser i s r e ce i v ed .
36 [ ] replyTimer . timeout {
37 setverdict ( f a i l ) ;
38 }
39 }
40 unmap(mtc : pt mtc , system : pt system ) ;
41 stop ;
42 }

Listing 6.9: Test behavior implementation of test case tc TAG

which can thus be changed after the TTCN-3 compilation process. It specifies the node,
on which the application has to be executed. Since the expected response could be an
MD5 hash sum or a hexadecimal representation of the output, the message includes
the type information “hash”. After this stimulus has been sent (line 20), the timer is
started with a timeout of 200 seconds (line 23), which guards the following alt construct
(lines 24-39).

An alt statement means that several different alternatives of behavior can take place
at a given time. Hence, an alt construct that contains several alternatives like in
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Listing 6.9 (lines 24-39) blocks until any one of its alternatives matches [40]. In this
construct, one alternative is that the port pt mtc waits for a message from the system
component port pt system (line 26). After receiving a message at the pt mtc port, it
has to be evaluated if the expected message has been received or not (lines 26, 31, 36).
If the message matches the template a GridClientAnswer(v id, v hashsum) with its
belonging and above defined and assigned parameters, the timer will be stopped (line 27)
and the local verdict will be set to pass (line 28). If a message is received that does not
match the template a GridClientAnswer(v id, v hashsum) (line 31), the timer will
be stopped (line 32) and the local verdict will be set to fail (line 33). If no message
is received by the MTC port pt mtc, the verdict will be set to fail (line 37) after the
timeout of 200 seconds has been reached (line 36). After the alt construct has been left,
the two mapped ports will be unmapped (line 40) and all components will be stopped
(line 41). The global verdict will be set by evaluating the local verdict, as briefly described
in Section 4.2.

The first part of the behavior of test case tc TAM is shown in Listing 6.10. This
includes variable definitions, the initiation of the PTCs and the start of their behaviors.
This test case runs on an instance of component type MTCType and on an instance of
component type SystemType as an abstract interface to the SUT (line 1).

1 testcase tc TAM() runs on MTCType system SystemType {
2
3 // de f ine app l i c a t i on working path
4 var charstring v workingpath := ”/ c lu s t e rwork / gr id−mandelbrot /” ;
5
6 // uniform task parameters
7 var charstring v app l i c a t i o n := ”/ usr / l o c a l /mandelbrot /mandelbrot . py” ;
8 var integer v re so lu t i onX := 300 ;
9 var integer v re so lu t i onY := 375 ;

10 var integer v red := 255 ;
11 var integer v green := 125 ;
12 var integer v b lue := 125 ;
13
14 // t o t a l job number
15 var integer v jobnumber := HORIZONTAL∗VERTICAL;
16
17 // PTC handl ing
18 var PTCType PTCArray [NUMBER OF PTCS ] ;
19
20 // v a r i a b l e s f o r support o f the e v a l u s t i on o f the PTC messages
21 var boolean v check := fa l se ;
22 var boolean v ov e r a l l c h e c k := true ;
23 var ReactionType JobArray [HORIZONTAL∗VERTICAL ] ;
24 var boolean checkArray [HORIZONTAL∗VERTICAL ] ;
25 var ReactionType v Parameters := null ;
26
27 // fo r i t e r a t i o n purposes
28 var integer i :=0 , j := 0 ;
29
30 // i n i t i a t e the array
31 for ( i :=0; i<v jobnumber ; i := i +1) {
32 checkArray [ i ] := fa l se ;
33 JobArray [ i ] := setup Jobarray ( v app l i c a t i on , v red , v green , v blue ,
34 v reso lut ionX , v reso lut ionY , i ,
35 v workingpath ) ;
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36 }
37
38 // map mtc por t s with system component por t s
39 map (mtc : pt http , system : p t ht tp ) ;
40 map (mtc : pt ImageAnswer , system : pt ImageAnswer ) ;
41
42 // i n i t i a t e and s t a r t the PTCs
43 for ( i :=0; i<NUMBER OF PTCS; i := i +1) {
44 // crea t e the PTCs
45 PTCArray [ i ] := PTCType . c r e a t e ;
46 }
47 for ( i :=0; i<NUMBER OF PTCS; i := i +1) {
48 // map the PTC por t s to the system por t s
49 map (PTCArray [ i ] : pt SUTParameters , system : pt SUTParametersArray [ i ] ) ;
50 map (PTCArray [ i ] : pt Image , system : pt ImageArray [ i ] ) ;
51 // connect the ptc to the mtc por t
52 connect ( s e l f : pt PTCParameters , PTCArray [ i ] : pt PTCParameters ) ;
53 }
54 for ( i :=0; i<NUMBER OF PTCS; i := i +1) {
55 // crea t e co l o r f o r each PTC
56 var Color v c o l o r ;
57 var integer va r i an t s := NUMBER OF PTCS;
58 var integer v swi tch := i mod va r i an t s ;
59 var f loat v speed ;
60 i f ( v swi tch == 0) {
61 v c o l o r := {0 , 125 , 255} ;
62 v speed := SPEED PTC3;
63 } else i f ( v swi tch == 1) {
64 v c o l o r := {0 , 255 , 125} ;
65 v speed := SPEED PTC2;
66 } else i f ( v swi tch == 2) {
67 v c o l o r := {125 , 0 , 125} ;
68 v speed := SPEED PTC1;
69 }
70 // s t a r t the PTC’ s behav ior s
71 PTCArray [ i ] . start (PTCBehavior ( v app l i c a t i on , v red , v green , v blue ,
72 v reso lut ionX , v reso lut ionY , i ,
73 v speed , v c o l o r ) ) ;
74 }
75
76 . . . // Part two i s shown in L i s t i n g 6.12
77
78 }

Listing 6.10: Test behavior implementation of test case tc TAM (Part one)

First of all, the working path of the IUT is defined (line 4). The variables, declared and
assigned from lines 7 to 12, are the expected parameters of the tasks. These parameters
are determined from the stimulus through the CGI variables assigned in the template
a httpStimulus(integer, integer, charstring). The number of expected tasks is
determined in line 15. Afterwards, the array PTCArray[NUMBER OF PTCS] of component
type PTCType is defined (line 18). The size of this array corresponds to the number
of PTCs required in this test case. The two variables v check and v overall check
(lines 21, 22) guard the later evaluation of the messages received from the PTCs. The
arrays JobArray and checkArray (lines 23, 24) are required for handling and evaluation of
all messages from the PTCs. The variable v Parameters (line 25) is used for temporarily

59



6 Grid application testing

saving received messages of this type. The variables i and j are defined for iteration
purposes (line 28).

In the for loop in lines 31 to 36, the two arrays are initialized. The checkArray
is related to the JobArray and, therefore, in the checkArray received messages are
marked as true. Hence, this array is initialized with false values (line 32). The
array JobArray includes all expected messages from the PTCs. It is initialized with
the parameterized function setup JobArray, where all expected messages have been
determined (lines 33-35).

The pt http port of the MTC is mapped to the system component port pt http
(line 39). Afterwards, the pt ImageAnswer port of the MTC is mapped to the system
component port pt ImageAnswer (line 40).

In the for loop from line 43 to 46, the PTCs are initialized using the TTCN-3
operation create in order to assign them to the array PTCArray[NUMBER OF PTCS]
(line 45). The ports of each PTC are either mapped or connected in the following for
loop (lines 47-53) (see also Figure 6.9). The port pt SUTParameters of a PTC is mapped
to the pt SUTParametersArray[i] port of the system component (line 49). The port
pt Image of a PTC is mapped to the pt ImageArray[i] port of the system component
(line 50). Additionally, the port pt PTCParameters of the MTC is connected to the
port pt PTCParameters of each created PTC (line 52). The third for loop (lines 54-74)
determines different colors of the images created by the PTCs (lines 60-69) and starts
the behavior for each PTC using the TTCN-3 operation start (lines 71-73). The
PTC behavior is realized as a parameterized TTCN-3 function and further explained
in the following paragraph. The test behavior implementation of test case tc TAM part
two includes the evaluation of the received PTC messages and is explained after the
description of the PTC behavior.

The behavior of a PTC, realized as a function that runs as an instance
of the component type PTCType, is shown in Listing 6.11. The parameters
of the function PTCBehavior include the application name, the color represented
as red, green and blue of an image, the image’s resolution, the identifier of
the component, a timeout and the color of the feigned image. The identifier
p componentId is required in order to distinguish the behaviors of different
PTCs.

After the declaration of required variables, an infinite loop is started in order to
wait for responses from the SUT. The timer PTCTimer, defined as component type
PTCType with a timeout of 50 seconds, is started in line 9 in order to guard the following
alt construct. In the alt construct, three alternatives are specified. In the first and
second alternative, the port pt SUTParameters is observed. The third alternative waits
for a timeout of the PTCTimer (line 47). The first alternative checks if a received
message matches the parameterized template a Reaction(p application, ?, ?,
?, ?, p red, p green, p blue, ?, p resolutionX, p resolutionY), whereas the
?-parameters represent wild cards (lines 11-13). The content of this received
message is assigned to the variable v Reaction for temporary storage (line 14).
The PTCTimer is stopped with the TTCN-3 timer operation stop (line 15),
because the expected message has been received within the timeout. The
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1 function PTCBehavior ( charstring p app l i c a t i on ,
2 integer p red , integer p green , integer p blue ,
3 integer p reso lut ionX , integer p reso lut ionY ,
4 integer p componentId ,
5 f loat p timeout , Color p c o l o r ) runs on PTCType {
6 var ReactionType v React ion := null ;
7 var integer v jobnumber ;
8 while ( true ) {
9 PTCTimer . start ;

10 alt {
11 [ ] pt SUTParameters . receive ( a React ion ( p app l i c a t i on , ? , ? , ? , ? ,
12 p red , p green , p blue , ? ,
13 p reso lut ionX , p re so lu t i onY ) )
14 −> value v React ion {
15 PTCTimer . stop ;
16
17 // send rece i v ed message f o r eva lua t i on to the MTC
18 pt PTCParameters . send ( v React ion ) ;
19
20 // wait u n t i l g i v i n g response to the SUT
21 PTCApplicationTimer . start ( p t imeout ) ;
22 PTCApplicationTimer . timeout ;
23
24 // send image s p e c i f i a c t i o n message to the system component
25 i f (COLORED) {
26 pt Image . send ( a Image ( v React ion . ou tpu t f i l e , p c o l o r . red ,
27 p c o l o r . green , p c o l o r . blue ,
28 p reso lut ionX , p re so lu t i onY ) ) ;
29 } else {
30 v jobnumber := ex subSt r ing ( v React ion . o u t p u t f i l e ) ;
31 i f ( ( v jobnumber mod 3) == 0) { // every t h i r d p ic shou ld be b l a c k
32 pt Image . send ( a Image ( v React ion . ou tpu t f i l e , 0 , 0 , 0 ,
33 p reso lut ionX , p re so lu t i onY ) ) ;
34 } else i f ( ( v jobnumber mod 3) == 1) { // gray
35 pt Image . send ( a Image ( v React ion . ou tpu t f i l e , 125 , 125 , 125 ,
36 p reso lut ionX , p re so lu t i onY ) ) ;
37 } else { // whi te
38 pt Image . send ( a Image ( v React ion . ou tpu t f i l e , 255 , 255 , 255 ,
39 p reso lut ionX , p re so lu t i onY ) ) ;
40 }
41 }
42 }
43 [ ] pt SUTParameters . receive {
44 PTCTimer . stop ;
45 setverdict ( f a i l ) ;
46 }
47 [ ] PTCTimer . timeout {
48 setverdict ( f a i l ) ;
49 }
50 }
51 }
52 }

Listing 6.11: PTC behavior implementation of test case tc TAM

variable v Reaction is sent by the port pt PTCParameters to the MTC in
order to forward the received message for evaluation of all messages through the
MTC (line 18).
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The simulation of the response time of the nodes is realized with the
PTCApplicationTimer (line 21). The PTC waits until the timeout of this timer occurs
(line 22) and sends, afterwards, an image specification to the SA for creating an image
(lines 25-41). The image specifications differ in the color. If the module parameter
COLORED is set to true, the then branch is taken (lines 25-28). The color is predefined
by the parameter p color and is sent with the other entries of the image specification
through the port pt Image using the parameterized template a Image. Each image has
a predefined color that corresponds to the PTC, which has created the image. If the
module parameter COLORED is set to false, the else branch is taken (lines 29-41). The
color of the image is then dependent on the job number. Therefore, the job number is
extracted from the name of the output file (line 30) that includes the number of the task.
This is realized with the external TTCN-3 function ex subString. In the final composed
image, every third part is dependent on the job number colored in black, white, or gray.
The color is also integrated in the parameterized template a Image and sent via port
pt Image to the SUT (lines 32, 35, 38).

If a message is received that does not match the parameterized template
a Reaction(p application, ?, ?, ?, ?, p red, p green, p blue, ?,
p resolutionX, p resolutionY), the second alternative is taken (lines 43-46).
Since other messages from the SUT are not expected, the PTCTimer is stopped (line 44)
and the verdict of this component is set to fail (line 45).

If no messages are received within the timeout of timer PTCTimer, the third alternative
of the alt construct is taken (lines 47-49) and the verdict of this PTC is set to fail.

This PTC behavior polls for new messages from the SUT. After the PTC has received
a message, the message will be evaluated and forwarded to the MTC. The PTC behaviors
run parallel to the MTC behavior, which is further explained in the following paragraph.

Listing 6.12 shows the second part of the source code for the MTC behavior of test
case tc TAM. After the PTC behaviors have been started as described in the previous
paragraphs, a variable for default behavior is defined. Additionally, the variable i for
iteration purposes is reset (line 7).

1 testcase tc TAM() runs on MTCType system SystemType {
2
3 . . . // Part one i s shown in L i s t i n g 6.10
4
5 // i n i t
6 var default v rece iveAny := activate ( a l t r e c e i v eAny ( pt PTCParameters ) ) ;
7 i := 0 ;
8
9 // send the St imulus

10 pt http . send ( a httpSt imulus (HORIZONTAL, VERTICAL, v workingpath ) ) ;
11
12 // check rece i v ed messages
13 while ( i<HORIZONTAL∗VERTICAL) {
14 alt {
15 [ ] pt PTCParameters . receive ( a React ion ( ? , ? , ? , ? , ? , ? , ? , ? , ? , ? , ? ) )
16 −> value v Parameters {
17 v check := fa l se ;
18 for ( j :=0; j<HORIZONTAL∗VERTICAL; j := j +1) {
19 // check i f the r ece i v ed message i s in the array
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20 i f ( v Parameters == JobArray [ j ] ) {
21 log ( ”matched ReactionType” ) ;
22 checkArray [ j ] := true ;
23 v check := true ;
24 i := i +1;
25 }
26 }
27 // i f the message does not match , t e s t c a s e f a i l e d
28 i f ( v check == fa l se ) {
29 log ( ”mismatch” ) ;
30 v ov e r a l l c h e c k := fa l se ;
31 setverdict ( f a i l ) ;
32 i :=HORIZONTAL∗VERTICAL;
33 }
34 }
35 }
36 }
37
38 deactivate ( v rece iveAny ) ;
39
40 // check i f to many messages were rece i c ed
41 i f ( v ov e r a l l c h e c k != fa l se ) {
42 WaitForCompletionTimer . start ;
43 alt {
44 [ ] pt PTCParameters . receive {
45 log ( ” i n c o r r e c t number o f messages r e c e i v ed ” ) ;
46 setverdict ( f a i l ) ;
47 }
48 [ ] WaitForCompletionTimer . timeout {
49 log ( ” c o r r e c t number o f messages r e c e i v ed ” ) ;
50 }
51 }
52 }
53
54 // check i f every message has been rece i v ed
55 i f ( v ov e r a l l c h e c k != fa l se ) {
56 for ( i :=0; i<HORIZONTAL∗VERTICAL; i := i +1) {
57 i f ( checkArray [ i ] == fa l se ) {
58 log ( i ) ;
59 log ( ”message i s miss ing ” ) ;
60 v ov e r a l l c h e c k := fa l se ;
61 setverdict ( f a i l ) ;
62 }
63 }
64 }
65
66 // check i f the co r r e c t image has been crea ted
67 checkImage ( MTCTimer , pt ImageAnswer ) ;
68
69 stop ;
70 }

Listing 6.12: Test behavior implementation of test case tc TAM (Part two)

The stimulus is sent in line 10 by the port pt http from the MTC to the SUT. This
stimulus is specified by the parameterized template a Stimulus(integer, integer,
charstring), which uses the module parameters HORIZONTAL and VERTICAL and the
variable v workingpath that have been described previously.
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The while loop in lines 13 to 36 adapts the concepts of the TTCN-3 interleave
operation. Since the messages received from the PTCs do not have to be received in
a certain order and the number of involved PTCs or ports is not known at compile
time, a mechanism for the reception of messages from different PTCs has been realized
in this loop. For this purpose, an alt construct is used in order to receive messages
through the port PTCParameters. The first alternative waits for messages of template
a Reaction(?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?) (line 15). The correct number of
parameters and the correct corresponding types of the parameters are required by the
message in order to be accepted by this receive branch. The received message is saved in
the variable v Parameters for further handling and evaluation (line 16). After receiving
such a message, the guard variable v check is reset to false (line 17). The for loop
in lines 18 to 26 compares the received message with the messages stored in the array
JobArray. If the received message stored in the variable v Parameters matches with
one of these messages (line 20), the message related to the iterator j is marked for later
evaluations in the array checkArray (line 22). Additionally, the guard variable v check
is set to true (line 23). After the iteration through all expected messages, the guard
variable v check has to be evaluated (lines 28-33). If this variable was not set to true,
the received message does not match any expected message. Since other messages than
the messages stored in the array JobArray are not expected at this time, the verdict
is set to fail in this case (line 31). Therefore, the while loop is stopped through
increasing the iterator i to the maximum HORIZONTAL*VERTICAL (line 32). The variable
v overall check is also set to false (line 30) in order to jump over the final evaluations.
Because the altstep v receiveAny is not required anymore, it is deactivated in line 38.

The final evaluations are required when the previous while loop has been passed as
expected. In lines 41 to 52, the port pt PTCParameter is observed in order to ensure
that no further messages are received after passing the while loop. If a message is being
received within the timeout, the verdict is set to fail. If no message has been received,
the evaluation can be continued.

Afterwards, in lines 55 to 64, it is checked through the evaluation of the array
checkArray if every expected message has been received. If each entry of the array is
set to true, the check is passed and the number of expected messages has been received.
If at least one entry with false is detected, the verdict is set to fail.

At last, it is checked if the final image has been composed (lines 67-81). The
evaluation is done by the function checkImage(MTCTimer, pt ImageAnswer), which
compares an image specification, received within the MTCTimer timeout, with the
expected specification. This function is dependent on the module parameter COLORED.

Recapitulatory, test case tc TAM checks if the parameters of the tasks have been
determined by the SUT as expected. It observes if these tasks are submitted to the
nodes and executed on them as expected. This observation includes the check whether
the correct number of tasks have been called and whether the final task delivers an
expected output.
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6.5 Adaptation layer

To make the TTCN-3 the test cases tc TAG and tc TAM executable, certain entities of
the adaptation layer have to be implemented. The adaptation layer includes the entities
SA, PA and CD that are further explained in Section 4.3. The interactions between
the entities CD, TE, SA, PA and SUT are described related to test case tc TAG in
Subsection 6.5.1. Afterwards, the test adapters of the test cases tc TAG and tc TAM are
explained. Details about the adjustments of the SA entity and of the CD entity are given
in Subsection 6.5.2 and in Subsection 6.5.3, respectively.

6.5.1 Interactions between the entities

In the SA, the interactions between the TE and the SUT are realized as depicted in the
sequence diagram in Figure 6.10. This figure shows a simplified view of the operation
invocations that are involved when test case tc TAG is executed.

Before executing test case tc TAG, the test system has to be initialized. This
initialization phase includes invoking the TRI operations triResetSA and triResetPA
(interactions 1 and 2 in Figure 6.10), which are provided by the SA and PA entity,
respectively. After these entities have indicated their successful initialization, the TE
starts executing the control part of the test suite that includes a call of test case
tc TAG. The TE invokes the operation triExecuteTestcase (interaction 3) in order
to inform the SA that a new test case will be started. This allows the SA to initialize
communication facilities for test case tc TAG [40].

The communication channels towards the SUT have to be established. The TE
invokes the triMap (interaction 4) operation that needs to be implemented in the SA.
A correct completion of the triMap operation enables a test component to communicate
with the SUT. TTCN-3 makes no assumptions about the communication with the SUT.
Therefore, it is necessary to develop concrete operations in order to interact with the
SUT by abstract TRI operations [40].

After the communication towards the SUT has been prepared, the communication has
to be handled. A received message has to be encoded from structured TTCN-3 values
into a form that is accepted by the SUT. The counterpart is the decode operation, where
messages received from the SUT are decoded into structured TTCN-3 values. TTCN-3
does not make any assumption on how messages are en- or decoded. Therefore, a concrete
encoding has to be developed [40].

Encoding and decoding services are provided by the CD entity, which is
attached to the TE via TCI. The operations tciEncode and tciDecode need to be
implemented by the CD entity. The tciEncode (interaction 5) operation encodes
a requested TTCN-3 message value following the encoding rules and returns it to
the TE as a binary string. The tciEncode invocation also includes information
about the sending test component and the information from which Test System
Interface (TSI) port the message has been sent. The encoded message is further
passed to the SA via the triSend (interaction 6) operation. After invoking
this operation, the SA has to make sure that the message will be transmitted
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5. tciEncode

4. triMap

3. triExecuteTestCase

6. triSend

8. triStartTimer

1. triResetSA

2. triResetPA

11. tciDecode

12. triStopTimer

13. triUnmap

CD TE SA PA

7. (encoded) GT4 call

SUT

10. triEnqueueMessage
9. response

Figure 6.10: Interactions of test system entities while executing test case tc TAG

to the SUT. The encoded message is the call of the GT4 execution service
(interaction 7) [40].

After sending this message, a timer is started through the invocation of the
triStartTimer (interaction 8) operation that is implemented in the PA via the TRI.
The triStartTimer operation provides timer functionalities, which can be adjusted
by the test developer. The PA is generally implemented by the test tool vendor.
Therefore, common timers are integrated in the TTworkbench. The call of the operation
triStartTimer consists of the timer duration and a timer handle that is used to identify
the timer in further communications between TE and PA [40].

After the timer has been started, test case tc TAG inside the TE continues with the
evaluation of the alt construct. This construct includes different alternatives in order
to handle different possible reactions of the SUT. The TE checks if a message has been
received or a timeout has been reached. If neither any of the alternatives matches, the
TE blocks the execution until a condition of a alternative is fulfilled [40].
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If the message that has been sent is accepted by the SUT, typically, a response is
sent by the SUT and received by the SA (interaction 9). The SA forwards this encoded
message via the TRI to the responsible test component inside the TE by invoking the
operation triEnqueueMsg (interaction 10). The message will be enqueued in the queue
of the related port of the responsible test component. Because a message has arrived,
the alt statement is evaluated inside the TE, whereas the first alternative calls for a
matching attempt in order to compare the received message with an expected message.
For this comparison, the received message has to be decoded into a structured TTCN-3
value. Therefore, the operation tciDecode (interaction 11), which is provided via the
TCI by the CD entity, is invoked by the TE. In order to decode the message, the TE
has to specify the assumed type of the message. This decoding hypothesis is used within
the CD to select a decoding mechanism. After successful decoding, the CD provides the
decoded message to the TE. If the message matches with the first alternative, the timer
will be stopped by calling the operation triStopTimer (interaction 12) implemented in
the PA via the TRI. After stopping the timer successfully, the ports are unmapped by
the invocation of the operation triUnmap (interaction 13), which is the counterpart of
the operation triMap on the TRI level [40].

6.5.2 System adapters

The SA includes the triMap and triSend operations. These operations are implemented
in Java. For both developed test cases, excerpts of these Java methods are described in
the following.

The SA can establish a connection to the SUT for the referenced TSI port in the
triMap method. This method had to be overwritten for test case tc TAM as it is shown
in Listing 6.13. The two parameters of the triMap method are the IDs of the ports that
have to be mapped (line 1). The parameter compPortId is a port reference to a test
component port and the parameter tsiPortId is a port reference to a system interface
port. Each of the two ports has to be registered to the other. This is done by using the
default implementation of triMap from the interface TriCommunicationSA implemented
by the tool vendor. This default implementation can be called from the provided
base TestAdapter by using the handle CsaDef (line 3). Whether this registration was
successful or not is returned in a status code (line 26).

Before the triMap method of the SA for test case tc TAM returns this status, certain
activities are realized depending on the ports that have to be mapped. A activity is
initialized, respectively, when the port pt ImageAnswer or the port pt SUTParameters
is going to be registered (lines 5-24). For both ports, a thread for the possible reception
of messages from the SUT is started with different preferences (lines 18-23).

In case that port pt ImageAnswer is going to be mapped, an image path and name is
specified (line 9). This is the expected name of the final composed image. The started
thread is responsible to check if this image has been created. If this is the case, a received
message is enqueued to the port pt ImageAnswer using the method triEnqueueMsg,
which finally enqueues a message in the message queue of the appropriate component.

If the triMap method is called with a compPortId related to the port
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1 public TriStatus triMap ( f ina l TriPortId compPortId , f ina l TriPortId t s iPo r t I d ) {
2 . . . // v a r i a b l e s d e f i n i t i o n
3 f ina l TriStatus mapStatus = CsaDef . triMap ( compPortId , t s iPo r t I d ) ;
4 // s t a r t a p p l i c a b l e thread when ce r t a in por t s are mapped
5 i f ( compPortId . getPortName ( ) == "pt_SUTParameters" | |
6 compPortId . getPortName ( ) == "pt_ImageAnswer" ) {
7 i f ( compPortId . getPortName ( ) == "pt_ImageAnswer" ) {
8 // f i n a l image
9 image = "/var/www/grid -mandelbrot/result/mandelbrot.png" ;

10 socketPort = 0 ;
11 } else i f ( compPortId . getPortName ( ) == "pt_SUTParameters" ){
12 // por t f o r socke t connect ion to s tub
13 image = null ;
14 socketPort = 4444 ;
15 } else {
16 . . . // error hand l ing
17 }
18 Runnable runnable = new ResponseLi s tener ( compPortId , t s iPor t Id , Cte ,
19 image , socketPort ) ;
20 // Create the thread supp l y ing i t wi th the runnable o b j e c t
21 Thread l i s t e n e r = new Thread ( runnable ) ;
22 // S ta r t the thread
23 l i s t e n e r . s t a r t ( ) ;
24 }
25 . . .
26 return new TriStatusImpl ( ) ;
27 }

Listing 6.13: The triMap method of the SA required for tc TAM

pt SUTParameters, a port for a socket connection is defined (line 14). The invoked thread
handles a socket connection through this port to the stub that replaces the executable
on each PTC. It typically receives a message with the parameters of the tasks that have
been called on the nodes. Therefore, this thread is started on each PTC. A received
message is enqueued to the port pt SUTParameters using the method triEnqueueMsg.

An excerpt of the SA required for test case tc TAG, which includes the implementation
of the triSend operation, is depicted in Listing 6.14. The method triSend overwrites the
general triSend method that is implemented by the tool vendor and can send messages
to the SUT. The parameters of this method include the componentId that is the identifier
of the sending test component (line 1), the tsiPortId that is the identifier of the TSI port
via which the message is sent to the SA (line 2), the sutAddress that is the destination
address within the SUT (line 3) and the message that is the encoded message that has
to be sent (line 4).

In line 6, a local map is initialized with the hash map that has been set up in
the TriMessage encode(Value) method in the CD entity. The defined map includes
fragments of the TTCN-3 message that has been sent as a stimulus through the
ATS. Therefore, these fragments are extracted after line 8. Exemplified in line 9, the
identification number is extracted from this map.
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1 public TriStatus t r iSend ( f ina l TriComponentId componentId ,
2 f ina l TriPortId t s iPor t Id ,
3 TriAddress sutAddress ,
4 f ina l TriMessage message ) {
5
6 Map<Str ing , Value> localMap = new HashMap<Str ing , Value>(GridCodec .myMap) ;
7
8 // bu i l d command fo r the g l o b a l t o o l k i t
9 f ina l St r ing i d e n t i f i c a t i o n = new St r ing (

10 localMap . get ( "identification" ) . t oS t r i ng ( ) . r ep l a c e ( "\"" , "" ) ) ;
11 . . .
12 // bu i l d whole command
13 St r ing command = "/usr/bin/sudo -u knoppix " +
14 "/usr/local/globus -4.0.3/ bin/globusrun -ws -submit " +
15 "-o " + path + host + ".epr " +
16 "-b " +
17 "-F https ://" + host + ":8443/ wsrf/services/ManagedJobFactoryService " +
18 "-c " + appBuild ;
19
20 // c a l l the command
21 try {
22 Runtime . getRuntime ( ) . exec (command ) ;
23 } catch ( IOException e ) {
24 . . .
25 }
26 . . . // rece iverThread d e f i n i t i o n shown in L i s t i n g 6.15
27
28 // s t a r t Thread fo r r e v e i v i n g messages from the SUT
29 rece ive rThread . s t a r t ( ) ;
30
31 return new TriStatusImpl ( ) ;
32 }

Listing 6.14: Excerpt of the SA required for tc TAG

The command for calling the GT4 execution service is built from the message
extracted by the encoder of the CD entity. The command consists of the service
name globusrun-ws with its options including the variables that have been determined
from the encoded message (lines 13-18). The variables include the host, on which the
application has to be executed and the application name with its location and parameters.
These parameters are specified in the ATS and encoded through the CD entity. After
the command globusrun-ws with its given configurations that are specified in the GT4
documentation has been called (line 22), a thread for receiving possible responses from
the SUT is defined and started in line 29. A status that this method was completed
successfully is returned in line 31.

The thread receiverThread mentioned above is shown in Listing 6.15. It checks
for messages from the SUT in order to forward them to the TE. In lines 4 and 5 the
output image is specified through the variable extractions from the map defined above.
The thread polls for the output image of the submitted task in a frequent interval of
sleep time (lines 6-8). If the output image has been created, its MD5 checksum is
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1 // crea t e p o l l i n g Thread u n t i l output crea ted
2 Thread rece ive rThread = new Thread ( ) {
3 public void run ( ) {
4 f ina l St r ing f i l e S t r i n g = path + i d e n t i f i c a t i o n + ".png" ;
5 f ina l F i l e f i l e = new F i l e ( f i l e S t r i n g ) ;
6 while ( ! f i l e . e x i s t s ( ) ) {
7 Thread . s l e e p ( s l e ep t ime ) ;
8 }
9 // f i l e has been created , means program i s terminated

10 i f ( f i l e . e x i s t s ( ) ) {
11 . . .
12 // generate a message from the SUT output
13 i f ( execType . equa l s ( "hash" ) ) {
14 // ge t the MD5 checksum of the image
15 St r ing Hash = MD5. asHex (MD5. getHash (new F i l e ( f i l e S t r i n g ) ) ) ;
16 St r ing Rece ived messages = i d e n t i f i c a t i o n + " " + Hash ;
17 byte [ ] Byte response = Rece ived messages . getBytes ( ) ;
18 // crea t e new message f o r response to TTCN−3
19 TriMessage response = new TriMessageImpl ( Byte response ) ;
20 // method enqueueMsg d e f i n i t i o n shown in L i s t i n g ??
21 enqueueMsg ( t s iPor t Id , new TriAddressImpl (new byte [ ] { } ) ,
22 componentId , re sponse ) ;
23 } else { // by te
24 . . .
25 }
26 . . .
27 }
28 }
29 } ;

Listing 6.15: Thread definition for receiving messages from the SUT required for tc TAG

determined (line 15). This hash sum and the identification are integrated in the response
message (lines 16-19). The creation of the output image is seen as a message from the
SUT and, therefore, decoded by the decode method of the CD entity. This decoded
message is enqueued via TRI to the responsible port of the related test component by
invoking the method enqueueMsg (line 21).

The method triSend of the SA required for test case tc TAM is partly shown in
Listing 6.16. The concept of handling encoded messages with a hash map is adapted
from the SA used in test case tc TAG (lines 6, 9, 10) as described previously.

In the triSend method, it is distinguished between the types that have been handled
by the GridCodec class, which corresponds to the CD entity. This differentiation is
required, because dependent on the determined type a specific handling has to be started.
In case the type StimulusType is determined, a thread is defined (lines 13-37) and
started (line 38). This thread is responsible for permanently reloading an URL, which
is specified in the encoded message in order to send stimuli to the SUT. The thread
reloads the URL until the file finished has been created by the SUT as described in
the specification in Section 5.4. In lines from 20 to 24, the URL is specified with the
entries of the encoded message. The protocol, host, file and the CGI variables that are
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1 public TriStatus t r iSend ( f ina l TriComponentId componentId ,
2 f ina l TriPortId t s iPor t Id ,
3 f ina l TriAddress sutAddress ,
4 f ina l TriMessage message ) {
5
6 Map<Str ing , Value> localMap = new HashMap<Str ing , Value>(GridCodec . RequestMap ) ;
7
8 i f ( GridCodec . Type . equa l s ( "DistMandelbrot.StimulusType" ) ) {
9 f ina l St r ing p ro to co l = new St r ing ( localMap . get

10 ( "protocol" ) . t oS t r i ng ( ) . r ep l a c e ( "\"" , "" ) ) ;
11 . . . // other e x t r a c t i on s
12
13 Thread reloadWebsiteThread = new Thread ( ) {
14 public void run ( ) {
15 f ina l St r ing f i l e S t r i n g = workingpath + "finished" ;
16 f ina l F i l e f i n i s h e d = new F i l e ( f i l e S t r i n g ) ;
17 while ( ! f i n i s h e d . e x i s t s ( ) ) {
18 try {
19 try {
20 // Construct data to s e t the PHP va r i a b l e s
21 St r ing data = URLEncoder . encode ( ResolutionXKey ,
22 "UTF -8" ) + "=" +
23 URLEncoder . encode ( ResolutionXValue , "UTF -8" ) ;
24 . . . // add f u r t h e r data , u r l d e f i n i t i o n
25 URLConnection conn = ur l . openConnection ( ) ;
26 . . . // i n i t
27 BufferedReader rd = new BufferedReader (
28 new InputStreamReader ( conn . getInputStream ( ) ) ) ;
29 // read the web page
30 while ( rd . readLine ( ) != null ) {}
31 . . .
32 } . . . // error hand l ing
33 Thread . s l e e p ( r e l o a d i n t e r v a l ) ;
34 } . . . // error hand l ing
35 }
36 }
37 } ;
38 reloadWebsiteThread . s t a r t ( ) ;
39 } else i f ( GridCodec . Type . equa l s ( "DistMandelbrot.ImageType" ) ) {
40 . . . // hand l ing i s shown in L i s t i n g 6.17
41 } . . . // error hand l ing
42 return new TriStatusImpl ( ) ;
43 }

Listing 6.16: The triSend method of the SA required for tc TAM (part one)

specified in the ATS are integrated into the URL. This URL connection is opened with
the help of the provided Java class URLConnection (lines 25, 26). The object rd of type
BufferedReader reads the stream of the conn object in order to load the specified URL
as a webpage (lines 27-30). A reload is done in an interval of time interval (line 33)
in order to simulate a web browser. The else branch in this method is taken, when the
type name is equal to ImageType. The implementation of the else branch is shown in
Listing 6.17 and described in the following.
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1 public TriStatus t r iSend ( . . . ) {
2
3 Map<Str ing , Value> localMap = new HashMap<Str ing , Value>(GridCodec . RequestMap ) ;
4
5 i f ( GridCodec . Type . equa l s ( "DistMandelbrot.StimulusType" ) ) {
6 . . . // hand l ing i s shwon in L i s t i n g 6.16
7 } else i f ( GridCodec . Type . equa l s ( "DistMandelbrot.ImageType" ) ) {
8 // crea t e the reques t ed image
9 f ina l St r ing o u t pu t f i l e = new St r ing ( localMap . get (

10 "outputfile" ) . t oS t r i ng ( ) . r ep l a c e ( "\"" , "" ) ) ;
11 . . . // f u r t h e r message e x t r a c t i on s
12 try {
13 Color c o l o r = new Color ( red , green , b lue ) ;
14 BufferedImage img = new BufferedImage ( width , height ,
15 BufferedImage .TYPE INT RGB) ;
16 for ( int i =0; i<width ; i++) {
17 for ( int j =0; j<he ight ; j++) {
18 img . setRGB( i , j , c o l o r . getRGB ( ) ) ;
19 }
20 }
21 . . . // other image con f i gu ra t i on s
22 ImageIO . wr i t e ( img , "png" , new F i l e ( o u t p u t f i l e ) ) ;
23 } . . . // error hand l ing
24 } . . . // error hand l ing
25 return new TriStatusImpl ( ) ;
26 }

Listing 6.17: The triSend method of the SA required for tc TAM (part two)

Inside this else branch, the entries of the encoded message are extracted (lines 9-11).
These entries represent an image specification. The color, the resolution, the file name
and its directory are extracted from the encoded message. An image related to this
specification is created in lines 12 to 22 in order to feign an image creation for the IUT.

6.5.3 Coding and Decoding

A message that is supposed to be sent to the SUT has to be encoded. The encode
method, implemented in Java, of the CD entity required for test case tc TAG is shown in
Listing 6.18. A HashMap is declared (line 5) in order to store the values of the TTCN-3
message. The values are extracted from the passed parameter value and inserted into

1 @Override
2 public TriMessage encode ( f ina l Value value ) {
3
4 // crea t e a t a b l e mapping to save va lue s
5 myMap = new HashMap<Str ing , Value >() ;
6 RecordValue v = ( RecordValue ) va lue ;
7
8 // s t o r e va lue s
9 myMap. put ( "identification" , v . g e tF i e l d ( "identification" ) ) ;

10 . . .
11 }

Listing 6.18: The encode method of the CD entity required for tc TAG
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the hash map. As an example of the extraction, the content of identification that is
related to the equally named TTCN-3 variable is stored in the HashMap myMap in line 9,
whereas the TTCN-3 variable identification is the key of its stored content in this
HashMap. The final encoding is done in the triSend method, where the command for
the GT4 is built by retrieving the values, which have been stored in the hash map by the
encode method.

The encode method required for test case tc TAM is shown in Listing 6.19. The
encoding scheme is the same as in the method encode of the CD of test case tc TAG. A
hash map is initialized (line 3) in order to store the encoded values of messages dependent
on the TTCN-3 types defined in the ATS. This method distinguishes between the types
StimulusType (line 7), ImageType (line 10), ImageAnswerType (line 13) and any other
types (line 15).

1 public TriMessage encode ( f ina l Value value ) {
2 // crea t e a t a b l e mapping to s t o r e va lue s
3 RequestMap = new HashMap<Str ing , Value >() ;
4 RecordValue v = ( RecordValue ) va lue ;
5
6 Type = value . getType ( ) . t oS t r i ng ( ) ;
7 i f (Type . equa l s ( "DistMandelbrot.StimulusType" ) ) {
8 RequestMap . put ( "protocol" , v . g e tF i e l d ( "protocol" ) ) ;
9 . . . // f u r t h e r inpu t s

10 } else i f (Type . equa l s ( "DistMandelbrot.ImageType" ) ){
11 RequestMap . put ( "outputfile" , v . g e tF i e l d ( "outputfile" ) ) ;
12 . . . // f u r t h e r inpu t s
13 } else i f (Type . equa l s ( "DistMandelbrot.ImageAnswerType" ) ){
14 RequestMap . put ( "Checksum" , v . g e tF i e l d ( "Checksum" ) ) ;
15 } else {
16 RequestMap . put ( "application" , v . g e tF i e l d ( "application" ) ) ;
17 }
18 . . .
19 }

Listing 6.19: The encode method of CD entity required for tc TAM

A message that is supposed to be enqueued to a test component has to be
decoded. The decode method of the CD entity of test case tc TAG is shown
in Listing 6.20. In line 3 the byte message of type byte[] is defined and
assigned to the encoded message, i.e., the received message. If the type delivered
by the parameter matches the GridAnswerType (line 4), which is part of the
decoding hypothesis, the message can be decoded. If the execType equals the
hash option, the related structured TTCN-3 value will be built, by invoking
the method createGridAnswerType(RecordValue, byte[]) (line 8), which sets the
fields of the TTCN-3 value. The returned decoded message will be passed to
the TE.
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1 @Override
2 public Value decode ( f ina l TriMessage message , f ina l Type type ) {
3 byte [ ] byte message = message . getEncodedMessage ( ) ;
4 i f ( type . t oS t r i ng ( ) . equa l s ( "ClientTester.GridAnswerType" ) ) {
5 . . .
6 i f ( execType . equa l s ( "hash" ) ) {
7 RecordValue GridAnswerType = ( RecordValue ) type . newInstance ( ) ;
8 return createGridAnswerType (GridAnswerType , byte message ) ;
9 } else {

10 . . .
11 }
12 } else {
13 return null ;
14 }
15 }

Listing 6.20: The decode method of the CD entity required for tc TAG

The method createGridAnswerType(RecordValue, byte[]) is depicted in
Listing 6.21. It builds structured TTCN-3 values from the transmitted byte message
through the decoding hypothesis. A part of the decoding hypothesis is initialized with
defining the string array String[] GridAnswerTypeArray = {"identification",
"Checksum" };, which represents the TTCN-3 entry names of the TTCN-3 record type
GridAnswerType. The other variables defined in lines from 3 to 8 are used for temporary
storage or iteration purposes.

1 private RecordValue createGridAnswerType ( RecordValue GridAnswerType ,
2 byte [ ] byte message ) {
3 Value value message = null ;
4 int dataLength = byte message . l ength ;
5 St r ing [ ] GridAnswerTypeArray = { "identification" , "Checksum" } ;
6 S t r ing msg = new St r ing ( byte message , 0 , dataLength ) ;
7 S t r ing tempMsg = null ;
8 I n t eg e r tempInteger ;
9

10 for ( S t r ing s : GridAnswerTypeArray ) {
11 i f ( ! s . equa l s ( "Checksum" ) ) {
12 tempMsg = msg . sub s t r i ng (0 , msg . indexOf ( " " ) ) ;
13 tempInteger = In t eg e r . valueOf ( tempMsg ) ;
14 va lue message =
15 new de . t u b e r l i n . c s . uebb . muttcn . runtime . Int ( rb , tempInteger ) ;
16 } else { // l a s t entry o f the array
17 tempMsg = msg ;
18 value message = new CharStr ing ( rb , tempMsg ) ;
19 }
20 s e tF i e l d (GridAnswerType , s , va lue message ) ;
21 msg = msg . sub s t r i ng ( (msg . indexOf ( " " )+1) , msg . l ength ( ) ) ;
22 }
23 return GridAnswerType ;
24 }

Listing 6.21: The createGridAnswerType method of the CD entity required for tc TAG
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In the for loop in lines 10 to 22 the string array is iterated in order to build the
TTCN-3 record type GridAnswerType and cover each of its entries. The received byte[]
message is converted into String (line 6) and divided with help of the whitespace
separator (lines 21) into the entries of the TTCN-3 record type GridAnswerType.
The determined values of the entries are transformed into Value type messages
(lines 13 and 17). These values stored in the variable value message are set with
its belonging value types that are assigned to the iterator s and their TTCN-3 record
type GridAnswerType in line 20 in order to build the TTCN-3 record type structure
GridAnswerType. This created structure is an understandable message for the TE and is
later enqueued to the appropriate component. If the method has been executed correctly,
this message includes the expected identification number and the expected determined
hash sum of the output image.

The decode method of the CD entity of test case tc TAM is shown in Listing 6.22.
The decoding has to follow two different decoding hypotheses. It has to be distinguished
between the TTCN-3 types ReactionType and ImageAnswerType that are the expected
types of possible responses from the SUT. The responses have to be decoded into TTCN-3
structured types. The methods createReactionType and createImageAnswerType
follow the same concepts as the createGridAnswerType method that is explained in
the previous paragraph.

1 public Value decode ( f ina l TriMessage message , f ina l Type type ) {
2 byte [ ] byte message = message . getEncodedMessage ( ) ;
3 b i tpo s = 0 ;
4
5 i f ( type . t oS t r i ng ( ) . equa l s ( "DistMandelbrot.ReactionType" ) ) {
6 RecordValue ReactionType = ( RecordValue ) type . newInstance ( ) ;
7 return createReact ionType ( ReactionType , byte message ) ;
8 } else i f ( type . t oS t r i ng ( ) . equa l s ( "DistMandelbrot.ImageAnswerType" ) ) {
9 RecordValue ImageAnswerType = ( RecordValue ) type . newInstance ( ) ;

10 return createImageAnswerType ( ImageAnswerType , byte message ) ;
11 } else {
12 return null ;
13 }
14 }

Listing 6.22: The decode method of the CD entity required for tc TAM

6.6 Test execution

TTCN-3 test cases are executed with the help of TTworkbench Enterprise. After
specifying the test preferences and compiling the ATS, a Campaign Loader File (CLF)
is built by TTworkbench. The CLF is based on the eXtensible and Markup Language
(XML) and depicted in Listing 6.23 for test case tc TAG.

The CLF file is required by the TTworkbench execution environment TTman in order
to execute test cases. It includes preferences of the test suite, specifies the location of the
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1 <?xml version="1.0" encoding="UTF -8"?>
2 < !DOCTYPE campaignloader PUBLIC " -//TESTING TECH//DTD MLF //1.7" "mlf.dtd">
3 <campaignloader>
4 <campaign Name="ClientTester" Control="false">
5 <t e s t adapt e r Name="GridAdapter" F i l e="lib/adapter.jar" />
6 <module Name="ClientTester" F i l e="ClientTester.jar" Package="generated_ttcn" />
7 <parameter Name="HOST" Module="ClientTester">
8 <d e s c r i p t i o n>Host on which the app l i c a t i o n runs</ d e s c r i p t i o n>
9 <type>cha r s t r i n g</ type>

10 <value>
11 < ! [CDATA[
12 <Va lu e s : c ha r s t r i n g type=”cha r s t r i n g ” xmlns:Values=”Values . xsd”>
13 <Values :va lue>bombay</Values :va lue>
14 </Va lue s : cha r s t r i ng >
15 ] ]>
16 </ value>
17 <default>
18 < ! [CDATA[
19 <Va lu e s : c ha r s t r i n g type=”cha r s t r i n g ” xmlns:Values=”Values . xsd”>
20 <Values :va lue>bombay</Values :va lue>
21 </Va lue s : cha r s t r i ng >
22 ] ]>
23 </default>
24 </parameter>
25 . . . < !−− more module paramters d e s c r i p t i o n s −−>
26 <t e s t c a s e
27 Name="tc_TAG"

28 Module="ClientTester"

29 Re t r i e s="0" Runs="1"

30 ActionOnFail="continue"

31 S e l e c t i o n="true"

32 Verd ict="none">
33 <d e s c r i p t i o n></ d e s c r i p t i o n>
34 </ t e s t c a s e>
35 . . . < !−− more t e s t case d e s c r i p t i on s −−>
36 </campaign>
37 </ campaignloader>

Listing 6.23: An XML based Campaign Loader File required for execution of test case tc TAG

SA and signifies module parameters. A brief explanation of important tags of this XML
file is given in the following.

The campaign name is shown in the campaign tag in line 4, which is in this case also
the main module name. The main module name is also given in the module tag, which
also includes the name of the TE that is for this test suite the file ClientTester.jar
as it is shown in line 6. The class name, location and file name of the SA is given by
the testadapter tag in line 5. Afterwards, the module parameter with its defined type,
default value and description as mentioned previously in Listing 6.1 is described between
the parameter tag in lines 7 to 24. If more module parameters are defined in the test
suite, additional parameter tags are added by the TTworkbench compilation process.
After the module parameter description, the description of the test cases follows. Test
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case tc TAG is referenced between the testcase tag in lines 26 to 34. If more test cases
are defined in the test suite, additional testcase tags are added by the TTworkbench
compilation process.

During and after the execution, a graphical and textual logging for the test case run
is provided by the execution environment. The graphical logging consists of a sequence
diagram of test case tc TAG and is depicted in Figure 6.11.

As defined in the TTCN-3 specifications explained above, two test components are
involved in test case tc TAG. The communication between the MTC and the system
component is shown in the graphical logging provided by TTworkbench. A message
of type GridType is sent from the MTC port pt mtc to the system port pt system.
This message is the stimulus of the SUT. Afterwards, the timer with a timeout of 200
seconds is started. Within the timer duration, a message is received by the pt mtc port
from the pt system port, whereas the message is matched with an expected message,
i.e., in this case with a predefined template. The message matches a template of type
GridAnswerType and, therefore, the timer is stopped after 29.578 seconds. Since the

Figure 6.11: Test execution of test case tc TAG - Graphical logging
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message matches, the local verdict of this component is set to pass and the global verdict
of the test case is set to pass as well.

The sequence diagram of this test case has similarities to the sequence diagram
illustrated in Figure 6.1. Therefore, the behavior of the SUT was expected.

Figure 6.12 shows the textual logging of the execution of test case tc TAG. The content
is the same as in the graphical logging. First of all, the MTC and the system component
are created. After the test case behavior is started, the port pt mtc of the MTC is
mapped with the port pt system of the system. After the MTC sent a message, a timer
is started. Within the timeout, a message is received by the MTC. The message matches
with the expected result. Therefore, the verdict of this component is set to pass after
the timer is stopped. The test case terminates and the global verdict is evaluated as
pass as well.

The expected and actual output data of test case tc TAG can be compared in the
test data view that is depicted in Figure 6.13. The actual identification number and the
actual MD5 checksum match with the expected data of the TTCN-3 template.

Figure 6.12: Test execution of test case tc TAG - Textual logging
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Figure 6.13: Test execution of test case tc TAG - Test data view

In the following, the execution of the distributed test case tc TAM is described. Before
this test case can be started, the test infrastructure has to be initialized. Therefore, a
CORBA based TTmex daemon has to be started on each node that is registered in the
Grid. The test engineer has to determine a master node, to which the other nodes are
going to connect. In this test environment, the master node is the one on which the IUT
runs. On this node, the TTmex master daemon has to be started as shown in Figure 6.14.

Figure 6.14: Start of the master daemon in order to provide a test infrastructure for test case tc TAM
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The master daemon starts the CORBA naming service and the TTmex session
manager. Since the test Grid contains three nodes, for the test execution the TTmex
master daemon and two TTmex client daemons have to be started. The client daemons
connect the master daemon during their starting process. According to adequate
configurations as described in the TTmex User’s Guide [15], the daemons interact via
the CORBA platform.

The distributed test execution in TTmex requires certain configurations. These
include three configuration files, which are described in the following. One of them is the
Container Configuration File (CCF) that is depicted in Listing 6.24. This file is written
in XML format and determines the hosts, on which a container has to be created. In
addition, the container names and the sources that have to be deployed to this container
are defined.

1 <?xml version="1.0" encoding="UTF -8"?>
2 <conta inerLoader . . .>
3 <c o n t a i n e r l i s t>
4 <conta ine r>
5 <IP>172 . 2 4 . 1 27 . 1</IP>
6 <name>alpha1</name>
7 <deploy name="ttcn3/DistMandelbrot.jar" />
8 <deploy name="lib/TA.jar" />
9 </ conta ine r>

10 <conta ine r>
11 <IP>172 . 24 . 127 . 252</IP>
12 <name>alpha3</name>
13 <deploy name="ttcn3/DistMandelbrot.jar" />
14 <deploy name="lib/TA.jar" />
15 </ conta ine r>
16 <conta ine r>
17 <IP>172 . 24 . 127 . 253</IP>
18 <name>alpha2</name>
19 <deploy name="ttcn3/DistMandelbrot.jar" />
20 <deploy name="lib/TA.jar" />
21 </ conta ine r>
22 </ c o n t a i n e r l i s t>
23 </ conta inerLoader>

Listing 6.24: DistMandelbrot.ccf required for the distributed execution of test case tc TAM

Since the Grid contains three nodes, three one containers, one for each of them, are
described with its attributes between the tags container in the CCF. The container
specification includes the IP address of the node using the IP tag (lines 5, 11 and 17),
the name of the node in the test execution using the (name tag in lines 6, 12 and 18) and
the compiled ETS using the (deploy tags). In this example, the same data is deployed
in each container.

The Test Component Distribution Language (TCDL) file, which is written in XML,
is also required for the configuration of distributed tests. The TCDL allows to specify
how the components are distributed over the known containers. This distribution file
contains information about the component description, the component assembly, the
component mapping rules and the component distribution algorithms. The TCDL file
for executing test case tc TAM is shown in Listing 6.25. A TCDL file always starts
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with the componentassembly tag (line 2). Within the partition tag, a component
of a specified type (between the component selector tag) can be deployed to the
containers that are specified inside the container tag (lines 10 and 18-20). For this
deployment, the distribution algorithm round-robin, specified inside the homes tag
(lines 9 and 17), is used. This means in this case, that a component of type MTCType
and of PTCType is deployed in container alpha1 and one component of type PTCType
is deployed, respectively, in container alpha2 and in container alpha3. The collector is
a special type of partition and is called when no selector from the previous partitions
matches. The collector contains the container alpha1 (lines 23-25).

1 <?xml version="1.0" encoding="UTF -8"?>
2 <componentassembly . . . >
3 <d e s c r i p t i o n>Grid computing t e s t</ d e s c r i p t i o n>
4 <s p e c i a l conta ine r="alpha1" />
5 <pa r t i t i o n>
6 <component se l e c to r s>
7 <componenttype>MTCType</componenttype>
8 </ component se l e c to r s>
9 <homes d i s t r i b u t i o n="round -robin">

10 <conta ine r id="alpha1" />
11 </homes>
12 </ p a r t i t i o n>
13 <pa r t i t i o n>
14 <component se l e c to r s>
15 <componenttype>PTCType</componenttype>
16 </ component se l e c to r s>
17 <homes d i s t r i b u t i o n="round -robin">
18 <conta ine r id="alpha1" />
19 <conta ine r id="alpha2" />
20 <conta ine r id="alpha3" />
21 </homes>
22 </ p a r t i t i o n>
23 <c o l l e c t o r>
24 <conta ine r id="alpha1" />
25 </ c o l l e c t o r>
26 </componentassembly>

Listing 6.25: DistMandelbrot.tcdl required for the distributed execution of test case tc TAM

The third configuration file for distributed testing with TTmex is the mex script that
contains commands supported by the TTmex Console. This script creates and configures
the TTmex session for a test case that runs in a distributed manner. The mex script used
for test case tc TAM is depicted in Listing 6.26. First, a variable for storing the session ID
is declared (line 2). Afterwards, a session and all participating hosts are created with the
command make (line 5), which uses the description given in the file DistMandelbrot.ccf
as explained above. The configuration of the distribution rules is done by the command
config with the descriptions that are given in the file DistMandelbrot.tcdl. The
ETS that is specified in the CLF file is loaded into the specific containers (lines 11-13).
Afterwards, a variable for storing the verdict is declared (line 16) and test case tc TAM
is started with the command starttc (line 19). The wait command waits until the
termination of test case tc TAM (line 22) in order to collect the final verdict. This verdict
is displayed to the test engineer with the echo command (line 25). The test log is
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retrieved with the command log and saved in the file exec tc TAM.tlz (line 28). This
file contains the graphical and the textual log, as explained further in the following. The
session variable is killed (line 31) and the defined variables are released (line 34). The
script ends with the command exit.

1 # s t o r e the s e s s i o n ID
2 var $ s e s i d
3
4 # cr ea t e a new s e s s i o n
5 make −c c f DistMandelbrot . c c f −v $ s e s i d
6
7 # con f i gu r e the new s e s s i o n ( s e t the deployment r u l e s )
8 c on f i g −s $ s e s i d −t c d l DistMandelbrot . t c d l
9

10 # load the t e s t modules and module parameters as s p e c i f i e d in c l f f i l e
11 load −s $ s e s i d −c alpha1 − c l f t tcn3 /DistMandelbrot . c l f
12 load −s $ s e s i d −c alpha2 − c l f t tcn3 /DistMandelbrot . c l f
13 load −s $ s e s i d −c alpha3 − c l f t tcn3 /DistMandelbrot . c l f
14
15 # s t o r e the v e rd i c t
16 var $ v e rd i c t
17
18 # s t a r t s the s e s s i o n
19 s t a r t t c −s $ s e s i d tc TAM
20
21 # wait u n t i l the execut ion te rminate s
22 wait −s $ s e s i d −v $ v e rd i c t
23
24 # show t e s t c a s e v e rd i c t
25 echo t e s t c a s e : tc TAM −v $ v e rd i c t
26
27 # r e t r i e v e l og
28 log −s $ s e s i d −o exec tc TAM . t l z
29
30 # k i l l s e s s i o n
31 k i l l −s $ s e s i d
32
33 # r e l e a s e used v a r i a b l e s
34 r e l e a s e $ s e s i d $ v e rd i c t
35
36 # ex i t s c r i p t
37 e x i t

Listing 6.26: The mex script of the TTmex functionality used for the distributed execution of test case
tc TAM

The mex script is executed by the TTmex environment. Before executing, this
environment has to connect to the previously started master daemon. The master
daemon monitoring during the execution of test case tc TAM is depicted in Figure 6.15.
As explained before, first a session and then a container is created. The same is
done by the other daemons. Afterwards, the ImageAnswer thread is started inside
the TRI. Then, the main thread that waits for the final result polls for the output file
Mandelbrot.png. Afterwards, the thread for the socket connection is started in order to
wait for a connection and messages from the stub. Then, the reloadWebsiteThread is
started in order to send the stimulus to the SUT. After the website has been loaded, a
message is received by the socket connection thread that enqueues the received message
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to the appropriate test component. The socket connection thread continues waiting for
a possible recurrent socket connection by the stub. The website is loaded again and the
test system still waits for the final output. The feigned image for the IUT has been
created as it is shown in the last line of Figure 6.15.

Figure 6.15: TTmex master daemon monitoring during the execution of test case tc TAM

After the execution is terminated, the log file can be evaluated by the test engineer.
The log file includes the graphical and the textual logging. An excerpt of the graphical
logging provided by the TTworkbench is shown in Figures 6.16 and 6.17. Seven test
component instances are depicted in this sequence diagram. The MTC instance that is
included in container alpha1 is represented by the first lifeline of the sequence diagram.
On each node, a system component is instantiated. The second lifeline represents the
instance of the system component of container alpha3, the third represents alpha2 and
the fourth alpha1. Additionally, on each node, a PTC instance is started and shown in
the lifelines five to seven. The names of the related containers are shown in the first line.
Each PTC interacts with its instance of the system component that is instantiated by its
belonging container.

The depicted behavior is as follows: First of all, the PTCTimer is started with a
timeout of 50 seconds on each PTC. After the timers have been started, the stimulus
of type StimulusType is sent by the pt http port from the MTC to the related system
component instance of container alpha1. After the IUT is stimulated, the PTC instance
of container alpha1 receives a message from its system component instance by its port
pt SUTParameters. The received message matches the type ReactionType. Therefore,
its PTCTimer is stopped and the message is forwarded for further evaluation via the
port pt PTCParameters to the MTC. After the PTCApplicationTimer is started, the
MTC confirms the type ReactionType of the received message and compares it with
the expected messages. After the PTCApplicationTimer is timed out as intended, the
image specification is sent as type ImageType to the belonging system component by the
PTC in order to create a feigned image. The same interactions take place by the PTC
instances of container alpha2 and container alpha3. These interactions occur repeatedly
and are indicated by the dashed lifelines.
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Figure 6.16: Test execution of test casetc TAM - Graphical logging (part 1)
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Figure 6.17: Test execution of test casetc TAM - Graphical logging (part 2)
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After the expected number of messages has been received by the MTC, the timer
WaitForCompletionTimer is started with a timeout of 40 seconds in order to wait for
unexpected messages (Figure 6.17). Afterwards, it is checked by the MTC if the correct
number of messages has been received. Within the timeout of WaitForCompletionTimer,
a message with an image specification is received by the MTC port pt ImageAnswer from
the pt ImageAnswer port of the system component. This message matches the type
ImageAnwserType. Therefore, the verdict is set to pass. Because no other verdict than
this has been set, the verdict of this executed test case is pass.

The TTworkbench also provides a textual logging. Since the logged information
includes the same events that are shown in the graphical logging, the textual logging
of this test case execution is not further discussed.
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This chapter summarizes the results, gives an overview of work related to this thesis and
provides an outlook. The results are reviewed and discussed in Section 7.1. An overview
of work related to this thesis is briefly depicted in Section 7.2. Furthermore, possible
prospects are discussed in Section 7.3.

7.1 Summary and discussion

A realization of test cases for Grid computing is essential in order to assure the quality of
a Grid computing environment. Testing can raise the user satisfaction with a Grid
computing environment or an used Grid application. In this thesis, possibilities of
testing an application that runs in a Grid environment using TTCN-3 have been shown,
investigated and realized. A Grid example application and its management have been
specified and implemented in order to create test items in a Grid computing environment.
This application and its management have been analyzed in order to derive test purposes.
These test purposes have been realized with test cases in order to evaluate if tests that
are using TTCN-3 are applicable to test an application that runs in a Grid environment.

The test case specifications related to these test purposes have been implemented
in TTCN-3, while the test harnesses have been implemented in Java. The execution
of both test cases demonstrated that TTCN-3 is applicable to test Grid applications.
However, the success has to be discussed in relationship to the efforts of specifying and
implementing the test cases, the usefulness of the results from the test executions and
the reusability of the test cases and harnesses themselves.

In the following, the efforts for implementing and reusing the test environment
for a Grid application using TTCN-3 are discussed. For this case study, the efforts
of implementing the test harnesses were in the same order of magnitude as for the
implementation of the ATS. The implementation of the tests implemented in the case
study of this thesis are a base for future developments of tests in a Grid environment.
The test cases of this case study have been implemented generically and abstract in
order to allow a reuse for similar test environments. The TTCN-3 modules and the test
adapters can be reused dependent on the used Grid environment. Therefore, the efforts
of adjusting the TTCN-3 test cases and their test adapters differ:

1. when the used Grid middleware changes and

2. when new test cases have to be implemented.

If another Grid middleware than Globus Toolkit 4 is used, the test cases remain
unchanged. The efforts have to be invested in the adjustments of the test adapters.
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The test adapters have to be changed in order to communicate with the new Grid
middleware. That means, for different Grid infrastructures and different Grid application
management interfaces the test environment has to be adjusted completely. The TTCN-3
test environment as implemented in the case study of this thesis is preferable applicable
for managements, which are realized as web interfaces that run in a Grid computing
based on Globus Toolkit 4.

In case a Grid computing environment is used that is based on GT4 but new test cases
have to be added, the test adapters can be reused. The implementation of new TTCN-3
test cases are built on the realized test adapter. The realization of these TTCN-3 test
cases take the main efforts compared with a minimal effort of adjusting the test adapters.

Much effort was taken to built the Grid environment for the Grid application that
had been tested. Grid middlewares, like the Globus Toolkit, normally require a time
intensive configuration. Instant-Grid that was used for the case study of this thesis is a
Grid environment based on a Linux Live CD that provides an automatic configuration
of the Globus Toolkit. Therefore, the effort for these Grid middleware configurations
were not so high in the case study. But as the Instant-Grid is integrated in a Live CD
image, it is hard to change the distributed test environment or the Grid application.
After required configurations, the Live CD image has to be remastered and re-installed
in order to be effective. These steps are very time consuming, but may be reduced when
using a permanent Grid installation.

7.2 Related work

Testing a Grid environment includes testing of each layer in the Grid architecture.
Several Grid initiatives test their computer Grid middleware parallel to their
computer Grid middleware developments. The “National Science Foundation
(NSF) Middleware Initiative (NMI) Build and Test Lab” provides a distributed,
multi-platform framework with automated software building and testing
capabilities for a variety of Grid computing projects. This framework is called
Metronome [47].

Interesting test environments are provided by the Centre for Development
of Advanced Computing (C-DAC). Several test software products are included
in the C-DAC Grid Computing Test Suites and Grid Probes that provide for
example the “Grid Software-Enabling Applications for Grid Computing Using
Globus and C-Language” software. This tool is command-line based and has the
objective to check basic Grid capabilities, e.g. remote job submission, validation
of proxy or mutual authentication in a Grid environment that is based on
GT [52].

The multi-platform and open source software “eInfrastructure for Testing,
Integration and Configuration of Software” (ETICS) provides a service to manage
complexity and improve the quality of software. This service allows an
automation of testing software through using cutting edge Grid software and best
practices [48].
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Testing Grid computing software is still a challenge in the Grid computing
enhancement. Suggestions of strategies for the realization of Grid computing test
environments are given in [28]. This include discussions about fundamental test
strategies and their realization.

7.3 Outlook

This thesis discussed testing strategies with the scope of testing a Grid computing
application using TTCN-3. Additional scopes to cover include testing the Grid
middleware itself, realizing performance, stress, end-to-end (response time, auditing,
accounting) and usability tests using TTCN-3. The tests have to be performed for all
Grid provided services and their combinations, on as many platforms as possible, with full
security in place and with the use of meaningful test configurations and topologies. These
functionalities can additionally be integrated into the testbed infrastructure created in
the case study of this thesis.

Different approaches of realizations of Grid application managements should also
be covered by TTCN-3 test solutions. For example, Grid application managements
are increasingly realized with the usage of Unified Modeling Language (UML) based
workflows, which are required for the determination of the tasks and their synchronized
distribution. A realization of interactions between different Grid environments is
currently in development, in order to allow global Grid computing. Testing the
communication between these Grid environments seems to be worthwhile as well.
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API . . . . . . . . . . . . . . . . . . Application Programming Interface
ATM . . . . . . . . . . . . . . . . . Asynchronous Transfer Mode
ATS . . . . . . . . . . . . . . . . . . Abstract Test Suite
ATSI . . . . . . . . . . . . . . . . . Abstract Test System Interface
BMFT . . . . . . . . . . . . . . . . Bundesministerium für Forschung und Technologie
C-DAC . . . . . . . . . . . . . . . Centre for Development of Advanced Computing
CA . . . . . . . . . . . . . . . . . . . Certificate Authority
CAS . . . . . . . . . . . . . . . . . . Community Authorization Service
CCF . . . . . . . . . . . . . . . . . . Container Configuration File
CD . . . . . . . . . . . . . . . . . . . Codec
CD-ROM . . . . . . . . . . . . . Compact Disc Read-Only Memory
CGI . . . . . . . . . . . . . . . . . . Common Gateway Interface
CH . . . . . . . . . . . . . . . . . . . Component Handler
CLF . . . . . . . . . . . . . . . . . . Campaign Loader File
CORBA . . . . . . . . . . . . . . Common Object Request Broker Architecture
DHCP . . . . . . . . . . . . . . . . Dynamic Host Configuration Protocol
DRS . . . . . . . . . . . . . . . . . . Data Replication Service
EGEE . . . . . . . . . . . . . . . . Enabling Grids for E-sciencE
ETICS . . . . . . . . . . . . . . . . eInfrastructure for Testing, Integration and Configuration of Software
ETS . . . . . . . . . . . . . . . . . . Executable Test Suite
FIFO . . . . . . . . . . . . . . . . . First In First Out
FIRST . . . . . . . . . . . . . . . . Fraunhofer Institut Rechnerarchitektur und Softwaretechnik
FIZ . . . . . . . . . . . . . . . . . . . Fachinformationszentrum
FTP . . . . . . . . . . . . . . . . . . File Transfer Protocol
GNU . . . . . . . . . . . . . . . . . GNU’s Not Unix
GRAM . . . . . . . . . . . . . . . Grid Resource Allocation and Management
GRIP . . . . . . . . . . . . . . . . . Grid Interoperability Project
GSI . . . . . . . . . . . . . . . . . . . Grid Security Infrastructure
GSM . . . . . . . . . . . . . . . . . Global System for Mobile communications
GT . . . . . . . . . . . . . . . . . . . Globus Toolkit
GT4 . . . . . . . . . . . . . . . . . . Globus Toolkit version 4
GWDG . . . . . . . . . . . . . . . Gesellschaft für Wissenschaftliche Datenverarbeitung mbH Göttingen
GWES . . . . . . . . . . . . . . . . Grid Workflow Execution Service
HTTP . . . . . . . . . . . . . . . . Hypertext Transfer Protocol
IEC . . . . . . . . . . . . . . . . . . International Electrotechnical Commission
IO . . . . . . . . . . . . . . . . . . . . Input/Output System
IP . . . . . . . . . . . . . . . . . . . . Internet Protocol
IPv6 . . . . . . . . . . . . . . . . . . Internet Protocol version 6
ISDN . . . . . . . . . . . . . . . . . Integrated Services Digital Network
ISO . . . . . . . . . . . . . . . . . . . International Organization for Standardization
IUT . . . . . . . . . . . . . . . . . . Implementation Under Test
MD5 . . . . . . . . . . . . . . . . . . Message-Digest Algorithm 5
MDS4 . . . . . . . . . . . . . . . . Monitoring- and Discovery System
MTC . . . . . . . . . . . . . . . . . Main Test Component
NFS . . . . . . . . . . . . . . . . . . Network File System
NMI . . . . . . . . . . . . . . . . . . NSF Middleware Initiative
NPACI . . . . . . . . . . . . . . . National Partnership for Advanced Computational Infrastructure
NSF . . . . . . . . . . . . . . . . . . National Science Foundation
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NTCP . . . . . . . . . . . . . . . . NEESgrid Teleoperations Control Protocol
OGSA . . . . . . . . . . . . . . . . Open Grid Service Architecture
OGSA-DAI . . . . . . . . . . . Open Grid Service Architecture Data Access and Integration
OS . . . . . . . . . . . . . . . . . . . Operating System
PA . . . . . . . . . . . . . . . . . . . Platform Adapter
PHP4 . . . . . . . . . . . . . . . . . Hypertext Preprocessor version 4, previously: Personal Home Page
PoC . . . . . . . . . . . . . . . . . . Point of Control
PoO . . . . . . . . . . . . . . . . . . Point of Observation
PTC . . . . . . . . . . . . . . . . . . Parallel Test Component
PXE . . . . . . . . . . . . . . . . . . Preboot Execution Environment
RFT . . . . . . . . . . . . . . . . . . Reliable File Transfer
RGB . . . . . . . . . . . . . . . . . . Red Green Blue
RLS . . . . . . . . . . . . . . . . . . Replica Location Service
RTSI . . . . . . . . . . . . . . . . . Real Test System Interface
SA . . . . . . . . . . . . . . . . . . . . System Adapter
SIP . . . . . . . . . . . . . . . . . . . Session Initiation Protocol
SOAP . . . . . . . . . . . . . . . . Simple Object Access Protocol
SQA . . . . . . . . . . . . . . . . . . Software Quality Assurance
SQL . . . . . . . . . . . . . . . . . . Structured Query Language
SUT . . . . . . . . . . . . . . . . . . System Under Test
TAG . . . . . . . . . . . . . . . . . . Testing the Application executed on a Grid node
TAM . . . . . . . . . . . . . . . . . Testing the Application Management
TC . . . . . . . . . . . . . . . . . . . Test Component
TCDL . . . . . . . . . . . . . . . . Test Component Distribution Language
TCI . . . . . . . . . . . . . . . . . . TTCN-3 Control Interface
TCP . . . . . . . . . . . . . . . . . . Transmission Control Protocol
TE . . . . . . . . . . . . . . . . . . . TTCN-3 Executable
TFTP . . . . . . . . . . . . . . . . Trivial File Transfer Protocol
TL . . . . . . . . . . . . . . . . . . . Test Logging
TM . . . . . . . . . . . . . . . . . . . Test Management
TMC . . . . . . . . . . . . . . . . . Test Management and Control
TRI . . . . . . . . . . . . . . . . . . TTCN-3 Runtime Interface
TSI . . . . . . . . . . . . . . . . . . . Test System Interface
TTCN-3 . . . . . . . . . . . . . . Testing and Test Control Notation Version 3
UML . . . . . . . . . . . . . . . . . Unified Modeling Language
UMTS . . . . . . . . . . . . . . . . Universal Mobile Telecommunications System
URL . . . . . . . . . . . . . . . . . . Uniform Resource Locator
VO . . . . . . . . . . . . . . . . . . . Virtual Organization
WS . . . . . . . . . . . . . . . . . . . Web Service
WS-I . . . . . . . . . . . . . . . . . Web Service Interoperability
XIO . . . . . . . . . . . . . . . . . . eXtensible and Input/Output System
XML . . . . . . . . . . . . . . . . . eXtensible and Markup Language
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[84] Métodos y Tecnoloǵıa. [Online; http://www.mtp.es/productos.php?id=1 fetched on 06/14/07].

99

http://legion.virginia.edu/
http://www.onestoptesting.com/
http://www.onestoptesting.com/
http://www.grid.lrz.de/de/mware/globus/GT4InstallGuide1-0.html
http://www.network.com/
http://www.sun.com/service/sungrid/index.jsp
http://www.sun.com/service/sungrid/index.jsp
http://www.nordugrid.org/
http://npacigrid.npaci.edu/
http://aus-vo.org/
http://www.openmolgrid.org
http://www.ourgrid.org/
http://www.openttcn.com/Sections/Products/OpenTTCN3
http://www.povray.org/
http://www.grid-interoperability.org/
http://eu-datagrid.web.cern.ch
http://seti.alien.de
http://www.telelogic.com/products/tau/tester/index.cfm
http://www.gridbus.org/
http://www.unicore.eu/
http://en.wikipedia.org/wiki/Electric_power_transmission
http://en.wikipedia.org/wiki/Electric_power_transmission
http://www.mtp.es/productos.php?id=1


Standards

[85] European Telecommunications Standards Institute (ETSI). European Standard (ES) 201 873-1
V3.2.1 (2007-02): The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language. 2007.

[86] European Telecommunications Standards Institute (ETSI). European Standard (ES) 201 873-2
V3.2.1 (2007-02): The Testing and Test Control Notation version 3; Part 2: TTCN-3 Tabular
presentation Format (TFT). 2007.

[87] European Telecommunications Standards Institute (ETSI). European Standard (ES) 201 873-3
V3.2.1 (2007-02): The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical
presentation Format (GFT). 2007.

[88] European Telecommunications Standards Institute (ETSI). European Standard (ES) 201 873-4
V3.2.1 (2007-02): The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational
Semantics. 2007.

[89] European Telecommunications Standards Institute (ETSI). European Standard (ES) 201 873-5
V3.2.1 (2007-02): The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime
Interface (TRI). 2007.

[90] European Telecommunications Standards Institute (ETSI). European Standard (ES) 201 873-6
V3.2.1 (2007-02): The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control
Interface (TCI). 2007.

[91] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. 1990.

100


	master3.pdf
	List of Figures
	Listings
	Introduction
	Scope of this thesis
	Structure of this thesis

	Grid computing
	The history of Grid computing
	The basics of Grid computing
	Grid systems
	Grid architecture
	Globus Toolkit
	Architecture
	Alternative Grid middleware systems

	Instant-Grid
	Architecture
	Alternative Grid environments

	Gridification of an application

	Software testing
	Testing fundamentals
	Dynamic Testing
	The fundamental test process

	Testing and Test Control Notation Version 3 (TTCN-3)
	Concepts
	Basic elements
	Test system architecture
	TTCN-3 based test development process
	Distributed testing
	Tools

	A Grid application
	Description of the application
	Integration into the Grid
	Realization of the application management
	Technical specification

	Grid application testing
	Determination of test items
	Test purposes
	Test architectures and behaviors
	TTCN-3 specification
	TTCN-3 data definitions
	TTCN-3 behavior definitions

	Adaptation layer
	Interactions between the entities
	System adapters
	Coding and Decoding

	Test execution

	Conclusion
	Summary and discussion
	Related work
	Outlook

	Acronyms
	Bibliography
	Internet references
	Standards

	empty.pdf
	List of Figures
	Listings
	Introduction
	Scope of this thesis
	Structure of this thesis

	Grid computing
	The history of Grid computing
	The basics of Grid computing
	Grid systems
	Grid architecture
	Globus Toolkit
	Architecture
	Alternative Grid middleware systems

	Instant-Grid
	Architecture
	Alternative Grid environments

	Gridification of an application

	Software testing
	Testing fundamentals
	Dynamic Testing
	The fundamental test process

	Testing and Test Control Notation Version 3 (TTCN-3)
	Concepts
	Basic elements
	Test system architecture
	TTCN-3 based test development process
	Distributed testing
	Tools

	A Grid application
	Description of the application
	Integration into the Grid
	Realization of the application management
	Technical specification

	Grid application testing
	Determination of test items
	Test purposes
	Test architectures and behaviors
	TTCN-3 specification
	TTCN-3 data definitions
	TTCN-3 behavior definitions

	Adaptation layer
	Interactions between the entities
	System adapters
	Coding and Decoding

	Test execution

	Conclusion
	Summary and discussion
	Related work
	Outlook

	Acronyms
	Bibliography
	Internet references
	Standards




