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Abstract

The collective and coordinated usage of distributed re-
sources for problem solution within dynamic virtual orga-
nizations can be realized with the Grid computing technol-
ogy. For distributing and solving a task, a Grid application
involves a complex workflow of dividing a task into smaller
sub-tasks, scheduling and submitting jobs for solving those
sub-tasks, and eventually collecting and combining the re-
sults of the sub-tasks into a final result. The quality assur-
ance of Grid applications is a challenge due to the highly
distributed nature of the Grid environment in which the Grid
application is deployed. This paper investigates the appli-
cability of the Testing and Test Control Notation (TTCN-3)
for testing the workflows of distributed Grid applications.
To this aim, a case study has been created that consists
of a distributed Grid application which includes a typical
Grid application workflow; as the main contribution, this
case study contains a corresponding distributed TTCN-3
test suite that tests the correct execution of the Grid appli-
cation workflow. To demonstrate the adaptation of the ab-
stract TTCN-3 test suite to a specific Grid environment, cor-
responding reusable test adapters have been implemented
for the Grid middleware Globus Toolkit 4 (GT4). The real-
ized test system demonstrates that TTCN-3 is applicable for
testing the workflow of distributed Grid applications.

1. Introduction

In the last years, supercomputing experienced a change:
expensive super computer hardware is replaced by cheaper
distributed computer Grids. This trend has manifold rea-
sons: on the one hand, today’s demand for super comput-
ing resources grows faster than Moore’s law and can thus
only be satisfied using distributed computing; on the other
hand processor cycles from idling computers can be cost-
efficiently scavenged using Grid technology. Finally, Grid
computing offers the promise to make computing, as well

as, access to data and remote equipment as easy as the use
of electricity from the electrical power grid. Like in many
other domains, this trend is accompanied with the problem
that the corresponding software becomes more complex and
their development more error-prone. Surprisingly, quality
assurance for Grid computing software is not very mature
and only a few proprietary test approaches exist. This paper
investigates the applicability of the standardized Testing and
Test Control Notation (TTCN-3) for testing in Grid envi-
ronments. While testing of Grid middleware is comparable
to message-based protocol testing using the Conformance
Testing Methodology and Framework (CTMF) standard, we
focus on functional testing of distributed Grid applications
that make use of higher-level communication mechanisms.

This paper is structured as follows: In Section 2, we give
an overview about the foundations of Grid computing, con-
formance testing, and TTCN-3. Afterwards, in Section 3,
we describe the Grid application used in this paper. In Sec-
tion 4, we focus on the TTCN-3 case study that is used to
test the Grid application introduced in Section 3. In Sec-
tion 5, we provide a comparison with related work. Finally,
we conclude with a summary and outlook in Section 6.

2. Foundations

In the following, we provide a brief overview on Grid
computing, on the Conformance Testing Methodology and
Framework (CTMF) that we adopt for distributed functional
testing, and on the test language TTCN-3 that we apply for
the specification and implementation of our tests.

2.1. Grid computing

For performing resource intensive and complex tasks,
a Grid computing environment provides an efficient shar-
ing and management of computing resources [2], which
are not administered centrally, in order to achieve a non-
trivial quality of service [6]. To overcome the high de-
gree of heterogeneity of the underlying resources, a Grid
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computing environment uses open, standard, general pur-
pose protocols and interfaces as middleware. Particularly,
a standardization of Grid computing allows a dynamic ne-
gotiation and management of shared resources between any
interested parties of a virtual organization [6].

The architecture of a Grid system can be described in
terms of layers as depicted in Figure 1. The lowest layer,
the Fabric layer, provides a basis as a common interface for
all kinds of physical devices or resources that can include
computers, networks, and storage systems [5, 8].

The Connectivity layer is located above the Fabric layer
and defines the core communication and authentication pro-
tocols, which are required by the Grid. The delegation of
authorizations and methods for a single sign-on are essen-
tial for this layer [5, 8].

In the Resource layer, which is above the Connectivity
layer, the common access to several resources is organized
in order to enable secure initiation, monitoring, and control
of resource-sharing operations, such as assignment or reser-
vation [5, 8].

The role of the Collective layer that is above the Re-
source layer is the coordination between different resources.
Responsibilities of the Collective layer include directory
and brokering services for discovery, allocation, monitor-
ing, and diagnostic of resources [5, 8].

At the top of any Grid system is the Application layer
with the user applications. These make use of the services
provided by the lower layers that allow to access resources
transparently [8].

The algorithm of an application that is supposed to run
in a Grid computing environment should be parallelizable to
tap the full potential of the advantages of Grid computing,
i.e., the main task is divided into smaller sub-tasks in order
to allow parallel computation. Hence, a Grid application is
partitioned into independently running sub-applications.

The usual approach for creating a Grid application is to
solve each sub-task by a sub-application, i.e., an executable
program. A node of the Grid, on which that sub-application
is installed, may then execute that sub-application as a job.
It is very common that an already existing command-line
application shall be integrated into a Grid (“gridification”).
As long as the already existing command-line application
can be requested by the appropriate parameters to solve not
the whole problem, but only a part of the problem, this
command-line application can be integrated without any
changes as sub-application. Since the existing command-
line applications write in most cases their output into a file,
this file can than be transferred via a network file transfer
service between the different nodes of the Grid as required.

To control the workflow of dividing a task into smaller
sub-tasks, scheduling and submitting jobs for solving those
sub-tasks, monitoring the execution of the jobs, and even-
tually collecting and combining the results of the sub-tasks

Figure 1. Layered Grid architecture mapped
with the Internet protocol architecture [8]

into a final result, a separate application management is re-
quired. This application management provides an interface
to the Grid user and thus hides the complexity of the under-
lying Grid technology.

It depends on the services that are actually provided by
the layers of a Grid middleware implementation, which of
the above steps actually need to be implemented by the
application management or whether the application man-
agement may delegate them to a lower layer. If, for ex-
ample, a Grid environment offers a full-fledged Collective
layer, the application management may rely on workflow
management services from that layer. If, for example, a
Grid environment offers only minimal services in its lay-
ers and thus lacks scheduling, software discovery and bro-
kering services, the application management may even be
responsible for assigning and submitting its jobs to appro-
priate nodes of the Grid.

The application management and the related sub-
applications form a massively distributed application.
While the Grid middleware itself may use fine-grained
message- or procedure-based communication mechanisms,
a Grid application uses coarse-grained communication
mechanisms, namely remote job submission and remote file
transfer. Thus it is investigated in the remainder of this pa-
per whether known distributed testing methods and tech-
nologies apply for testing Grid applications as well.

In the case that the sub-applications of a Grid application
are existing command-line applications, it can be assumed
that these applications are already adequately tested. How-
ever, the application management of a Grid application has
usually been developed from scratch and thus requires thor-
ough testing.

2.2. Conformance Testing Methodology and
Framework

For the functional black-box testing of distributed
Grid applications, we adopt concepts of the international
ISO/IEC multipart standard 9646 OSI Conformance Testing
Methodology and Framework (CTMF) [13]. CTMF defines
a comprehensive procedure for the conformance testing of
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Open Systems Interconnection (OSI) protocol implementa-
tions. The entire standard consists of seven parts and covers
the following aspects: concepts (Part 1), test suite specifi-
cation and test system architectures (Part 2), test notation
(Part 3), test realization (Part 4), means of testing, and or-
ganizational aspects (parts 5–7).

Even though CTMF provides concepts and means that
are specific to OSI protocol testing, CTMF has been suc-
cessfully applied for testing other kinds of distributed sys-
tems like for example, ISDN- and GSM-based systems.
Thus, we decided to adopt concepts from CTMF as well
for functional testing of distributed Grid applications. How-
ever, only the test suite production procedures and test ar-
chitecture from Part 2 of CTMF were applicable for our
work, because the other parts were too OSI or conformance
testing specific.

The CTMF procedure for producing test suites starts
with the identification of the requirements to be tested. The
requirements are used to define test groups necessary to
achieve an appropriate coverage of the requirements. The
objective of each test group is described by means of an in-
formal test objective. For each test group, a set of test pur-
poses is developed. A test purpose is an informal or semi-
formal description of a test case. Afterwards, an appropriate
test architecture is selected and for each test purpose, a test
case is implemented by means of a test language.

The CTMF test methods are abstract, i.e., implemen-
tation independent, test architectures. They define Imple-
mentation Under Test (IUT), System Under Test (SUT), the
Points of Control and Observation (PCOs) that are needed
to control and observe the SUT, and the connections be-
tween these constituents.

Figure 2 presents the CTMF Multi-party test method,
which we used to test the application management. The
IUT is controlled and observed by one Upper Tester (UT)
and several Lower Testers (LTs). The underlying service
and the IUT constitute the SUT. CTMF assumes a layered
architecture: the LTs communicate with the IUT by using an
underlying communication service. It is assumed that this
service provider has already been adequately tested. Con-
ceptually, the UT plays the role of a service user of the IUT
and LTs play the role of peer entities that realize together
with the IUT the service used by the UT. The PCOs are the
standardized interfaces used by UT and LTs to communi-
cate with the SUT. UT and LTs communicate by means of
Test Coordination Procedures (TCPs). To avoid probe ef-
fects, the underlying communication service should not be
used for the implementation of the TCPs.

For the functional testing of Grid applications, we fol-
lowed Part 2 of CTMF to produce test suites and adapted
the standardized test methods to the Grid requirements. As
part of this adaption, we do not distinguish between UT and
LT, but use the more general term test component instead.

Figure 2. CTMF Multi-party test method

2.3. TTCN-3

The Testing and Test Control Notation (TTCN-3) [4, 11]
is a test specification and test implementation language
standardized by the European Telecommunications Stan-
dards Institute (ETSI) and the International Telecommuni-
cation Union (ITU). While TTCN-3 has its roots in func-
tional black-box testing of telecommunication systems, it
is nowadays also used in other domains such as Internet
protocols, automotive, aerospace, or service-oriented archi-
tectures. TTCN-3 can be used not only for specifying and
implementing functional tests, but also for scalability, ro-
bustness, or stress tests.

The TTCN-3 language has the look and feel of a typical
general purpose programming language, i.e., it is based on
a textual syntax. Most of the concepts of general purpose
programming languages can be found in TTCN-3 as well,
e.g. data types, variables, functions, parameters, loops, con-
ditional statements, and import mechanisms. In addition,
test related concepts are available to ease the specification
of test suites.

TTCN-3 supports distributed testing through the notion
of test components: in addition to the Main Test Compo-
nent (MTC), Parallel Test Components (PTCs) can be cre-
ated dynamically. Each test component runs concurrently
and may therefore execute test behavior in parallel to other
test components. Test components can be connected to each
other or to the SUT via ports. These concepts allow to cre-
ate powerful distributed test architectures, for example in-
stantiations of the CTMF test methods.

For the communication between test components and
with the SUT, operation such as send and receive (TTCN-3
keywords are printed in bold typeface) can be used to trans-
fer messages via ports. The values of these message are
specified using templates. TTCN-3 templates may involve
wildcards and thus provide a powerful matching mechanism
to check whether expected test data has been received or
not.

Further concepts that ease test specification are: test ver-
dict handling, logging, timers, and defaults. Defaults are
typically used for specifying alternative behavior that deals
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with unexpected events. Since a receive operation blocks
until it observes a message that matches the specified tem-
plate, defaults can be activated to catch, e.g. the expiration
of a timer or any unexpected message.

To allow the automated execution of TTCN-3 test suites,
TTCN-3 tools can be used to compile TTCN-3 test specifi-
cations into executable tests. However, TTCN-3 test spec-
ifications use abstract communication mechanisms. Thus,
to make TTCN-3 test specifications executable, an adap-
tation layer is required. Hence, a System Adapter (SA)
entity that implements operations of the TTCN-3 Runtime
Interface (TRI) [4] and a Coding/Decoding (CD) entity
that implements operations of the TTCN-3 Control Inter-
face (TCI) [4, 18] must be additionally realized.

For those ports that are mapped to PCOs, the SA realizes
send and receive operations by using the communication
mechanisms of the SUT, e.g. sockets. The CD is responsi-
ble for the translation between the abstract TTCN-3 values
and the concrete bit-level data encoding used by the SUT.

Using TTCN-3 has several advantages in comparison to
proprietary test languages or low-level test implementation.
The high abstraction level speeds up test development. Fur-
thermore, the re-usability is higher, because both, the ab-
stract TTCN-3 test specifications and the adapters, can be
re-used independently from each other. Finally, due to the
fact that TTCN-3 is standardized and various TTCN-3 tools
are available, a vendor dependence is avoided.

3. Grid application

For investigating the applicability of TTCN-3 for test-
ing the workflow of Grid applications, we developed a Grid
application that consists of an application management and
corresponding calculation sub-applications.

The application that is transferred into a Grid applica-
tion solves the task of calculating the Mandelbrot set [15]
or a subset, respectively. This task is parallelizable, be-
cause each element of the Mandelbrot set can be calcu-
lated independently from each other. A corresponding non-
interactive Mandelbrot set Calculation Application has been
implemented: it uses command-line parameters that specify
as input the subset of the Mandelbrot set that shall be cal-
culated and provides as output a file that contains a color
graphic of the calculated Mandelbrot subset.

For the gridification of this application, an Application
Management and the actual Calculation Application have
to be integrated into the Grid environment. To ensure that
we are able to investigate also the case, where a Grid envi-
ronment does not provide services of the higher Grid layers,
the Application Management realizes on its own services of
the Collective layer such as job scheduling and assigning
jobs to the nodes of the Grid.

Grid Middleware: Globus Toolkit 4 (GT4), Network File System (NFS)

Application
Management

Calculation
Application

Calculation
Application … Calculation

Application

User 
interaction

Master node Node 1 Node 2 Node n…

Figure 3. Application integration into the Grid
environment

3.1. The Grid environment

The Grid environment that has been applied for hosting
the implemented Grid application is the Instant-Grid [12]
environment that is a project funded by the e-Science Ini-
tiative from the German Federal Ministry of Education and
Research. Instant-Grid provides a complete computer Grid
environment based on a Knoppix [14] Linux live CD-ROM,
which includes all required services for establishing a Grid
with Intel x86 computers. It includes an automated con-
figuration mechanism that deploys without any user inter-
action Instant-Grid on computers that share a Local Area
Network (LAN).

Instant-Grid uses the software services and libraries
offered by the Globus Toolkit 4 (GT4) Grid middle-
ware [7, 10] that is developed by the Globus Alliance. GT4
implements the Resource and Connectivity layers of the
Grid protocol architecture. The higher Collective and Ap-
plication layers are not provided by GT4, but by Instant-
Grid and its user applications.

Additional to these services, Instant-Grid offers a Net-
work File System (NFS) for collective data access by all
nodes of the Grid. Alternatively, it is possible to use the
GT4 GridFTP service for data transfer.

3.2. Integration into the Grid

The integration of the Mandelbrot set Calculation Appli-
cation and its Application Management into Instant-Grid is
depicted in Figure 3. It has been integrated as a Grid ap-
plication into the Instant-Grid CD-ROM in order to make it
available on the file system of each Grid node.

After the user has sent a request, the Application Man-
agement divides this request into sub-tasks and submits
them as jobs to GT4 in order to execute the Calculation Ap-
plication on an idle node. For the submission of a job, the
GT4 service globusrun-ws is used. This call requires as
parameters the name of a node, the name of the executable
to be started, its file system location, and command-line pa-
rameters.
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7. compose job result

6. submit compose job

1. start calculation

2. submit job

3. submit job

4. job result

5. job result

Master node Node 1 Node 2

8. composed result

Figure 4. Grid application scenario

When a Calculation Application sub-task finishes, it cre-
ates a result file in the NFS. Once all Calculation Appli-
cation sub-tasks are completed, the Application Manage-
ment initiates on one node of the Grid the submission of
a final job for the composition of the other sub-task’s re-
sults. This final composition sub-task uses the NFS to read
in the graphic files created by the other sub-tasks and to
write back the composed result graphic files. The composed
result is read by the Application Management via NFS and
presented to the user through a web interface.

The above interactions are visualized by the sequence
diagram in Figure 4. In this Grid application scenario, the
Grid computing environment consists of a Master node, on
which the Application Management is running, and two fur-
ther nodes, on which the sub-tasks are executed. In this
scenario, the user starts the calculation through the web in-
terface of the Application Management (Message 1). The
Application Management splits this request into two calcu-
lation sub-tasks: the first task is submitted to Node 1 and the
second to Node 2 (messages 2 and 3). After their comple-
tion (messages 4 and 5), the final job that composes both re-
sults is assigned to Node 1 (Message 6) and its output (Mes-
sage 7) is presented to the user via a web interface by the
Application Management on the Master node (Message 8).

The Application Management contains its own sched-
uler, which ensures that on each node only one job is run-
ning at the same time. A sophisticated synchronization of
the tasks is not required in that case, since every task is in-
dependent from each other. The only restriction is that the
final compose job has to be executed after all the other sub-
tasks have been finished, because it is dependent on the re-
sult of all previous jobs.

4. TTCN-3 Grid application testing case study

To investigate the applicability of TTCN-3 for test-
ing Grid applications, the previously described Mandelbrot
Grid application is used. Our testing approach follows the
CTMF, i.e., we start with creating test purposes, we use the
Local and Multi-party test methods as test architectures, we
assume that the underlying layers (such as the GT4 Grid
middleware) have already been tested and can thus be re-
garded as correct, and we perform only functional black-
box tests, but no non-functional tests.

The Mandelbrot Grid application consists of two dif-
ferent types of items that need to be tested: the sub-
applications, such as the non-interactive command line Cal-
culation Application, and the Application Management that
is responsible for the correct workflow. As discussed in Sec-
tion 2.1, it can be assumed that the Calculation Application
is already adequately tested. Therefore, we focus on testing
the Application Management and refer the reader to further
work [17] where we describe how we test the Calculation
Application using an adaptation of the Local test method of
CTMF.

The descriptions of a related test purpose, test architec-
ture and distributed test behavior, TTCN-3 test specifica-
tion, test adapters, and test execution are provided in the
following subsections.

4.1. Test purpose

The test purpose that is pursued in the following is to
assess the correctness of the workflow that is created by the
SUT, i.e., the Application Management. We refer to this test
purpose as Testing the Application Management (TAM).
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Figure 5. Test purpose TAM illustrated as a
sequence diagram

For testing the correctness of the workflow, the job submis-
sion order and the parameters that are passed to the jobs by
the SUT have to be checked.

The message exchange of the TAM test purpose is based
on the Grid application scenario in Figure 4. In addition to
messages that relate to the actual job submission, the test
purpose includes also the start of the calculation via the
Web-based user interface as an initial stimulus and the pre-
sentation of the final composed result to the user.

The corresponding graphical representation of the TAM
test purpose is depicted in the sequence diagram in Figure 5.
Initially, the test system sends a message for stimulating the
SUT (Message 1). This stimulus includes the data that is
supposed to be entered by the user. The SUT uses this data
in order to determine the parameters for the sub-tasks. After
this determination, the SUT assigns the tasks to the nodes of
the Grid by submitting jobs via the Grid middleware. The
test system has to observe these job submissions (includ-
ing their parameters) to decide whether the SUT divided the
overall task correctly into sub-tasks (Message 2). Since the
SUT expects that each job returns a file as result, the test
system has to provide them to the SUT (Message 3). The
number of jobs that are submitted by the SUT depends on
the parameters that are passed in the stimulating start cal-
culation message. Hence, the sequence diagram for the test
purpose TAM contains a loop that iterates until the expected
number of job submissions has been observed by the test
system. After the correct number of calculation sub-tasks
has been performed, it has to be tested if the final compo-
sition job has been submitted with the correct parameters
(Message 4). Afterwards, the test system provides the over-
all result as file to the SUT (Message 5). Finally, it is tested
that the SUT forwards this composed result correctly to the
user interface (Message 6).

Figure 6. Test architecture for test purpose
TAM

4.2. Test architecture and distribution of
test behavior

To turn the TAM test purpose into a test case, a suitable
test architecture needs to be selected and the test behavior
needs to be assigned to the different test components of the
test architecture. Because the job submissions that are per-
formed by the SUT may result in the execution of processes
on nodes that are distributed throughout the Grid, the Multi-
party test method of CTMF is a suitable test architecture.
Thus, the SUT comprises not only the Application Man-
agement that is actually the IUT but also the lower layers of
the Grid middleware.

Figure 6 shows the test architecture that is used for test-
ing the TAM test purpose. This figure is related to Figure 3
and shows the integration of the test system into the Grid en-
vironment: the human user is substituted by the Main Test
Component (MTC), i.e., the MTC stimulates the IUT via
an HTTP-based interface and observes the final composed
result. For observing that the IUT submits jobs correctly to
the nodes of the Grid environment, a Parallel Test Compo-
nent (PTC) is required on each node. These PTCs serve as
stubs for the Calculation Application and are thus able to
intercept the parameters of the job submission. Since these
PTCs replace the Calculation Application, they must also
be able to provide a file as job result. The same considera-
tions apply for the final compose job sub-application that is
replaced as well by a stub.

It is not possible to predict to which node the scheduler
inside the IUT submits a job. This may depend on the cur-
rent load in the Grid and on differing computing power of
the nodes. Hence, in every test run, different nodes may be
selected by the IUT. Therefore, a PTC cannot decide using
its local knowledge only, whether observed job submissions
are part of a correct workflow or not. Instead, global knowl-
edge is required to be able to decide whether for each sub-
task a corresponding job has been submitted. To this aim,
each PTC forwards the observed job submission parameters
to the MTC, thus providing the MTC with global knowledge
that is required to set a test verdict. To support these test co-
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Listing 1. Excerpt of the TTCN-3 test behavior
for test purpose TAM

1 ...
2 // send the stimulus
3 pt http .send(a httpStimulus(HORIZONTAL, VERTICAL, v workingpath));
4
5 // check received job parameters messages
6 while( i<HORIZONTAL∗VERTICAL) {
7 pt PTCParameters.receive(
8 a Reaction( ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?))
9 −> value v Parameters {

10 v check := false ;
11 for ( j :=0; j<HORIZONTAL∗VERTICAL; j:=j+1) {
12 // check if the received message is in the array
13 if (v Parameters == JobArray[j]) {
14 log( ”matched ReactionType”);
15 checkArray[j] := true ;
16 v check := true ;
17 i := i+1;
18 }
19 }
20 // if the message does not match, testcase failed
21 if (v check == false) {
22 log( ”mismatch”);
23 setverdict ( fail );
24 }
25 }
26 }
27 ...

ordination procedures between the PTCs and the MTC, the
test architecture provides also the corresponding communi-
cation channels (“test infrastructure” in Figure 6).

4.3. TTCN-3 test specification

The actual test suite for testing the Grid application is
specified using TTCN-3. It contains definitions of types,
test data templates, several test components as well as test
behavior. The behavior of a TTCN-3 test case for the test
purpose TAM is described in the following. The test case
itself is parameterized to support a stimulation of the IUT
with different job sizes and to be able to specify the number
of nodes in the Grid environment, i.e. how many test com-
ponents are to be created in order to observe all relevant
nodes of the Grid.

The MTC is responsible for dynamically creating the
PTCs of the distributed test architecture, connecting the test
components to each other, and starting the behavior on the
several PTCs. Afterwards, the actual behavior that relates
to the test purpose TAM is performed. Listing 1 shows the
corresponding excerpt of the test case that runs on the MTC.

First, the MTC sends the stimulus to the SUT (Line 3
in Listing 1). This corresponds to Message 1 in Figure 5.
The data used for the stimulation is specified by the pa-
rameterized TTCN-3 template a httpStimulus (Line 3 in
Listing 1). It includes the desired resolution of the final
output graphic and the file system working path, where the
IUT places the output graphic. According to the applica-
tion’s specification, the desired resolution of the final out-

put graphic influences directly the number of jobs that are
submitted by the IUT. The actual parameter values for the
parameterized template are based on test case parameters
and can thus be easily changed to obtain test cases with dif-
ferent test data.

The while loop in lines 6 to 26 is used collect the ob-
served job parameter values that are forwarded by the PTCs
to the MTC. Since the order, in which the forwarded jobs
submission messages are received, cannot be predicted, a
sort of tally sheet is used. All the expected job parameters
are predefined and stored in the array JobArray – the pre-
definition of this array is not shown in the excerpt. Once an
arbitrary job submission message is received (the ? wild-
cards in the template used in lines 7–8 matches any job
submission message), the contained jobs parameters are re-
trieved and stored into the variable v Parameters (Line 9).
The for loop in lines 11–19 checks whether the received job
parameters correspond to one of the predefined job param-
eters from JobArray. If true, this is marked in the Boolean
array checkArray (Line 15). If false, the for loop will even-
tually terminate unsuccessfully and the test verdict will be
set to fail (Line 23). Subsequently (not shown in the ex-
cerpt anymore), it is checked that no further job submissions
are received and that all jobs in the checkArray have been
marked, i.e., all of the expected job submissions have been
observed. All of the above described test behavior relates to
how the MTC implements the test coordination procedures
that are associated to Message 2 in Figure 5.

Since a distributed test architecture is used, the PTCs ex-
ecute behavior as well: once a Calculation Application job
submission is observed at a PTC (Message 2 in Figure 5),
the job parameters are forwarded to the MTC as part of
the associated test coordination procedures. After a con-
figurable amount of time, the PTC creates a graphic file as
result (Message 3 in Figure 5).

The remainder of the TTCN-3 test case contains behav-
ior that relates to messages 4–6 of the test purpose depicted
in Figure 5. Furthermore, to prevent blocking in the case
that no message arrive and to be able to detect when un-
expected messages are observed, the TTCN-3 concept of
defaults is used: such a default is activated at the beginning
of the test case and a timer is started. In case that the default
catches a timeout or a wrong message, the fail test verdict
is automatically set by the behavior of the default.

4.4. Adaptation layer

The TTCN-3 test suite that has been described in the pre-
vious subsection, abstracts from implementation details of
the Grid middleware. Hence, to allow an automated execu-
tion of the abstract TTCN-3 test suite, an adaptation layer is
required. This adaptation layer consists of the Coding/De-
coding (CD) and the System Adapter (SA) entities. The CD
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translates between the concrete data representation of the
Grid environment and the abstract TTCN-3 data types and
values. The SA maps the TTCN-3 send and receive opera-
tions to concrete operations of the Grid environment. In our
case study, the adaptation has been realized for the Instant-
Grid environment, e.g. by mapping send and receive to the
creation of result files in the NFS or the observation of job
submissions via GT4 respectively.

Figure 7 illustrates how the PTCs, their SAs, and the
Grid environment interact: to be able to intercept a GT4
job submission (i.e., a call to a command-line executable by
the SUT), the command-line executable is replaced by an
executable stub that forwards its command-line parameters
via a socket to the SA. The PTC is then able to retrieve this
message from the SA via a receive operation. For creating a
file with the resulting graphic, the PTC sends a message to a
certain port. Inside the SA, this port has been implemented
to write a file to the NFS.

All other adapters, e.g. those for the communication be-
tween MTC and PTCs are provided by the TTCN-3 test
infrastructure. In our case study, we use the TTCN-3 de-
velopment environment TTworkbench and the distributed
test execution management TTmex from Testing Technolo-
gies [19]. TTmex uses CORBA [16] for the communication
between distributed test components; hence the test infras-
tructure does not influence the Grid middleware.

4.5. Test execution

With the help of a TTCN-3 runtime environment, the
TTCN-3 test suite can be executed. An example trace of
the execution of the TAM test case is depicted in Figure 8.
The test case has been parameterized to start two PTCs in
addition to the MTC. The MTC runs on the Master node
to observe and control the IUT, whereas each of the PTCs
that observes the submission of jobs is running on a differ-
ent node in the Grid. The assignment of MTC and PTCs
to Grid nodes can be configured via TTmex that we used

in our case study. In addition to the three instance axes for
MTC, PTC 1, and PTC 2, the test trace in Figure 8 con-
tains one instance axis that represents the whole SUT, i.e.,
the IUT and the underlying Grid environment.

In the example trace, the initial stimulus that is sent by
the MTC to the SUT via the pt http port (Message 1 in Fig-
ure 8) leads to the submissions of two jobs. From the trace,
it can be seen that the SUT submits one job to the node, on
which PTC 1 is running (Message 2), and one job to the
node, on which PTC 2 is running (Message 3). The pa-
rameters that are observed by the PTCs are then forwarded
to the MTC (messages 4 and 6). After a configurable time,
each PTC that serves as stub for the Calculation Applica-
tion, creates via its pt Image port a graphic file as a result
that is consumed by the SUT (messages 5 and 7). After-
wards, the SUT submits the final job to a node in order to
compose a final result from all sub-results. This is observed
by a PTC (Message 8) and subsequently forwarded to the
MTC (Message 9). After a predefined time, this PTC cre-
ates the composed result file via its pt Image port (Mes-
sage 10). This file is consumed by the SUT. Finally, the
MTC observes the presentation of the composed result im-
age (Message 11). Since all the observations that were made
by the MTC where correct, the MTC sets the verdict pass.

5. Comparison with related work

Our case study has demonstrated that TTCN-3 is very
well applicable for testing distributed Grid applications. In
particular the concepts that TTCN-3 provides for distributed
testing facilitate the testing of the workflow created by an
Application Management. We are aware of two works that
can be related to application testing in Grid environments:

Duarte et al. describe an approach for Multi-Environment
Software Testing on the Grid [3]. They developed and ap-
plied the tool GridUnit for controlling and monitoring exe-
cution of tests on several nodes of a Grid. The tests that are
executed on each node are implemented using the JUnit [9]
Java-based test framework.

The Centre for Development of Advanced Computing
(C-DAC) provides C-DAC Grid Computing Test Suites and
Grid Probes [1]. These test suites have the objective to
check basic capabilities of the Grid middleware itself, e.g.
remote job submission, validation of proxy or mutual au-
thentication in a Grid environment that is based on GT4.
These test suites are implemented in various general pur-
pose programming languages such as C or Java.

In comparison to our TTCN-3 approach, the JUnit-based
approach of Duarte et al. does not support a communica-
tion between the test components that run on the different
nodes of a Grid. Therefore, a synchronization between dif-
ferent test components is not possible or requires a propri-
etary communication mechanism.

8



11. composed_result

pt_Image

4. received_job_data
pt_PTCPara pt_PTCPara

pt_Image pt_Image
5. job_result

pt_SUTPara
3. submit_job

pt_SUTPara

pt_SUTPara pt_SUTPara
2. submit_job

1. start_calculation
pt_httppt_http

pt_PTCPara

7. job_result

MTC SUT PTC 1 PTC 2

pt_Image

pt_PTCPara

pt_ImageAnwser pt_ImageAnwser

pass

6. received_job_data

pt_SUTfinalPara pt_SUTfinalPara
8. submit_compose_job

9. received_compose_job_data
pt_PTCfinalPara pt_PTCfinalPara

pt_Image pt_Image
10. compose_job_result

Figure 8. Test trace

The approach from C-DAC is intended only for testing
the Grid middleware itself and involves to some extent dis-
tributed testing. Parts of the test suite implementations may
thus also serve as example how to test Grid applications in
a distributed manner.

Both related works have in common that they directly
implement test suites using general purpose programming
languages. Therefore, they lack the advantages that are
provided by the standardized test specification and test im-
plementation language TTCN-3. Due to the abstraction of
TTCN-3, the re-usability is increased: the same TTCN-3
test suite (or parts of it) can be re-used in different Grid mid-
dleware, by simply exchanging the underlying adapters. On
the other hand, the adapters can be re-used for different test
suites that are executed on the same Grid middleware. Fur-
thermore, the high-level concepts that are part of TTCN-3
increase the test development efficiency, since the existing
TTCN-3 tools take charge of low-level details, e.g. the in-
frastructure for the communication between the distributed
test components.

Standardization also started to study testing needs
for Grid infrastructure. For this, European Commu-
nity/European Free Trade Association funding was given to

the ETSI Technical Committee (TC) Grid to establish a Spe-
cialists Task Force (STF) to study interoperability of Grid
solutions. The STF started its work in October 2007. In
a first step, the state of the art for Grid interoperability is
studied and interoperability gaps are identified. In subse-
quent steps, proposals to close the identified interoperabil-
ity gaps will be developed. This includes a roadmap for
planning and coordinating standardization work on interop-
erability testing at ETSI, the study of methods and tools for
Grid interoperability testing and the organization of interop-
erability events to test the interoperability of Grid solutions.

Our research group participates in this STF. The case
study presented in this paper shows the applicability of the
standardized test language TTCN-3 for Grid testing. It
therefore can be regarded as a first step towards testing stan-
dards for Grid applications.

6. Summary and outlook

We presented a case study for the application of the
standardized test specification and test implementation lan-
guage TTCN-3 for the specification and automated execu-
tion of test cases for Grid applications. We described in de-
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tail a test case for assessing the functional correctness of the
workflow of a Grid application that makes use communica-
tion mechanisms like remote job submission and file trans-
fer. Grid applications are highly distributed; hence a cor-
responding test requires also a distributed test system. Our
case study demonstrates that the distributed test concepts of
TTCN-3 and the remote communication mechanisms that
are provided by a TTCN-3 runtime environment facilitate
very well the distributed testing in Grid environments.

Related Grid testing approaches are not based on
TTCN-3, but are implemented in a low-level general pur-
pose programming language, such as the C language. A
TTCN-3-based approach has the advantage of a higher ab-
straction. This abstraction leverages the re-usability, e.g.
the adaptation layer can be re-used for different test suites
and by simply changing the adaptation layer, the same test
suite can be executed on different Grid middlewares. Addi-
tionally, the abstract level of TTCN-3 increases the test de-
velopment efficiency, because the TTCN-3 tooling handles
most of the low-level details, such as the communication
between distributed test components.

In our case study, the test suite was executed in a Grid en-
vironment that spans a LAN. Future work will investigate
the scalability of our approach and the available TTCN-3
run-time environments to Grid environments that are glob-
ally distributed with full security in place. Furthermore,
we investigated only functional testing of Grid applications.
Additional scopes to cover include testing the Grid mid-
dleware itself and non-functional tests (e.g. performance or
stress tests) using TTCN-3. As part of our involvement in
the ETSI TC Grid, we will also study interoperability tests.
Finally, we intend to investigate the automatic generation of
test cases from formalized workflow descriptions that are
specified, e.g. with UML activity diagrams, Petri nets, or
the Business Process Execution Language (BPEL).
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