Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Global vs. Local Models for Cross-project Defect
Prediction

A Replication Study

Steffen Herbold - Alexander Trautsch -
Jens Grabowski

Received: date / Accepted: date

Abstract Although researchers invested significant effort, the performance
of defect prediction in a cross-project setting, i.e., with data that does not
come from the same project, is still unsatisfactory. A recent proposal for the
improvement of defect prediction is using local models. With local models,
the available data is first clustered into homogeneous regions and afterwards
separate classifiers are trained for each homogeneous region. Since the main
problem of cross-project defect prediction is data heterogeneity, the idea of
local models is promising. Therefore, we perform a conceptual replication of
the previous studies on local models with a focus on cross-project defect pre-
diction. In a large case study, we evaluate the performance of local models and
investigate their advantages and drawbacks for cross-project predictions. To
this aim, we also compare the performance with a global model and a transfer
learning technique designed for cross-project defect predictions. Our findings
show that local models make only a minor difference in comparison to global
models and transfer learning for cross-project defect prediction. While these
results are negative, they provide valuable knowledge about the limitations of
local models and increase the validity of previously gained research results.

Keywords defect prediction - cross-project - local models

1 Introduction

The prediction of software defects with data that is not from the past of the
target project is an ongoing research issue in recent years. Within this arti-
cle, we differentiate between within-project defect prediction, where data from

Steffen Herbold, Alexander Trautsch, Jens Grabowski

Institute of Computer Science

University of Gottingen, Germany

E-mail: {herbold,graboswki}@cs.uni-goettingen.de, alexander.trautsch@stud.uni-
goettingen.de

2 Steffen Herbold et al.

the same project is used for prediction, mized cross-project defect prediction,
where data from old revisions of the same project is used together with data
from other projects, and strict cross-project defect prediction, where only data
from other projects is used. Since the first large study on this cross-project
defect prediction by Zimmermann et al (2009) showed that the expected suc-
cess, if you just select another project at random to predict the defects, is very
low!, a lot of research went into the improvement of this, e.g., through data
selection (Turhan et al, 2009; He et al, 2012, 2013; Herbold, 2013), data trans-
formation (Watanabe et al, 2008; Camargo Cruz and Ochimizu, 2009), and
weighting of the training data (Ma et al, 2012; Zhang et al, 2014). While all
of the above approaches have shown promise and improved the performance
of cross-project defect prediction, the achieved performance is still not on a
level that is sufficient for practice, especially the precision is still problematic.
As Tan et al (2015) point out, for defect predictions models to be accepted,
the developers need to be convinced of the results, partially by presenting the
precision of predictions. However, Rahman et al (2012) point out that the
overall performance might not be that bad when using cost saving instead of
traditional machine learning metrics for the evaluation of the performance.

Within this paper, we take a detailed look at local models for cross-project
defect prediction. Local models use all of the available data for training, but
internally separate the data into local groups and train a different model for
each group. This is in contrast to global models, that train a single classifier
based on all training data.

Local models were introduced by Menzies et al (2011, 2013) for effort and
defect prediction and are based on the idea that there might be homogeneous
regions in otherwise heterogeneous data. If this is true, it would be better to
first detect the homogeneous regions, and then train a local classifier for each
of these regions separately in a second step. In comparison, the traditional
approach is to train a global classifier on all training data. In their study,
Menzies et al showed that the precision of local models is higher than that of
global models. In a replication study (Bettenburg et al, 2012) and its extension
(Bettenburg et al, 2014), Bettenburg et al observed similar advantages for the
precision when it comes to gaining insights in the data used for training.
However, they also observed that these advantages may be due to overfitting
on the local region which could mean that global models perform better for
predictions. Their results are, therefore, partially contradicting the first study
by Menzies et al. In a third study by Scanniello et al (2013), the effect of
local models not on the precision, but rather on the error of the models is
investigated. In their study, they determine that the error of local models is
indeed lower than that of global models.

Due to the findings by the above studies, we think that local models should
be investigated in detail for cross-project defect prediction, i.e., defect predic-
tions where only data from a foreign project context is used for the prediction.

1 With the data used in the study and the success criterion of having both recall and
precision of at least 0.75 they achieved a success rate of about 3%.

Global vs. Local Models for Cross-project Defect Prediction 3

One of the major problems of cross-project defect prediction is the hetero-
geneity of the data which leads to a rather poor precision if it is not treated
(Turhan et al, 2009). Since local models are designed to deal with heterogene-
ity, they can potentially mitigate this problem and, thereby, increase prediction
performances of cross-project defect prediction.

However, when it comes to the application of local models to cross-project
defect prediction, we identified multiple aspects that have not yet been suffi-
ciently explored by the previous studies on local models. None of the previous
studies focuses on local models for strict cross-project defect prediction. Only
the studies by Menzies et al (2011, 2013) consider a setting with predictions
from multiple projects, but it is not a strict cross-project setting, as we dis-
cuss in the related work (see Section 2). The other studies do not evaluate
cross-project effects. Moreover, none of the previous studies compare local
models with other transfer learning techniques for cross-project defect pre-
diction. Transfer learning is a learning task where knowledge about the target
domain is used “to improve the learning of the target predictive function” Pan
and Yang (2010). To this aim, the model may transform the data (Watanabe
et al, 2008; Nam et al, 2013), work on a subset of the training data (Turhan
et al, 2009; He et al, 2013; Herbold, 2013), weight training instances differ-
ently (Ma et al, 2012) or otherwise use knowledge about the target project to
improve the prediction result. These issues are a threat to the validity in the
context of cross-project predictions.

Additionally, there is a general lack of external validity regarding the stud-
ies on local models. Two of the previous studies only look at rather small
data sets, with seven (Menzies et al, 2011, 2013), three (Bettenburg et al,
2012, 2014) projects for defect prediction, respectively. Only the study by
Scanniello et al (2013) uses a larger number with 29 projects. However, the
latter study focuses rather on the impact of using dependencies and differs
also significantly in the creation of the local models.

Siegmund et al (2015) recently determined that there seems to be a gen-
eral lack of replication studies that enhance the internal and external validity
of previous reseach results, even though the value of replication studies has
already been pointed out years ago (e.g., Shull et al, 2008; Kitchenham, 2008).
Therefore, the aim of this article is to improve the body of knowledge on local
models in the context of cross-project defect prediction and, moreover, increase
the general external validity of the results on local models through a replica-
tion study. Our replication study is an independent conceptual replication,
according to the classification of replication study types by Shull et al (2008).
We used the guidelines for replication studies proposed by Carver (2010) as
foundation for the reporting of our study.

Through our study, we try to answer the following four research questions:

RQ1: Is there a significant advantage in using local models instead of global
models for cross-project defect prediction?

RQ2: Is there a significant advantage of local models over transfer learning
techniques for cross-project defect prediction?

4 Steffen Herbold et al.

RQ3: Is there a significant advantage of normalizing data before the appli-
cation of local models to reduce scale effects?

RQ4: Is there a significant impact on the peformance of using strict cross-
project data in comparison to mixed conditions?

To answer our research questions, we analyze the effects of local models on
three different defect prediction data sets with a total of 79 distinct software
versions. Within our study, we apply two local models and compare the perfor-
mance with a global classifier that simply uses all available training data and
a transfer learning approach proposed by Turhan et al (2009) as that is often
used for baseline comparisons in cross-project defect prediction (e.g., He et al,
2013; Peters et al, 2015). Moreover, we evaluate the effects of normalization
(Han et al, 2011) on the local models to see if it helps to first remove scale
effects from the metrics before applying the clustering of the local models. Fi-
nally, we want to evaluate the difference between a strict cross-project setting
and a mixed cross-project setting.

The remainder of this paper is structured as follows. In Section 2, we discuss
related work on the usage of local models for defect prediction. Afterwards, in
Section 3, we take a general look at local models and their implementation.
Then, we proceed to the main contribution of our work, a case study on local
models in cross-project defect prediction in Section 4. In Section 5, we dis-
cuss the results of our replication study and compare them with the previous
results. Then, we summarize the lessons we learned from our case study and
answer our research questions based on our findings in Section 6. Afterwards,
we discuss the threats to the validity of our results in Section 7. Finally, we
conclude the paper and give an outlook on future work in Section 8.

2 Related Work

Within this section, we discuss related work. First, we discuss previous studies
on local models in detail. Then, we discuss related work on cross-project defect
prediction in general.

2.1 Local Models

The usage of local models in software defect prediction is a rather new ap-
proach. To the best of our knowledge, there are only three studies? up to date,
performed by Menzies et al (2011, 2013), Bettenburg et al (2012, 2014), and
Scanniello et al (2013). In the following, we discuss the three studies and em-
phasize the differences to our work. Moreover, we summarize the case studies
performed in the related work, including the key differences to our study in
Table 1. For the structure of this table, we took pattern from the guidelines

2 The studies by Menzies et al and Bettenburg et al were first published in an initial
version at a conference and then in greater detail in a journal publication, leading to five
publications for the three studies.

Global vs. Local Models for Cross-project Defect Prediction 5

for replication studies by Carver (2010), which defines the parameters that
should be compared.

The first study was performed by Menzies et al (2011) and extended in
Menzies et al (2013). In their paper, they first proposed the idea of using local
models. To this aim, they propose to apply the WHERE algorithm to the data
in order to create clusters. The WHERE algorithm first applies the Fastmap
algorithm (Faloutsos and Lin, 1995), to map the input data to two dimen-
sions. Afterwards, they apply QuadTree clustering (Schikuta and Schikuta,
1993) with an additional post-procedure to join small clusters to determine
local regions where the data is homogeneous. They then analyze the local
clusters with the WHICH algorithm (Huang et al, 2010) in order to extract
information. The authors noted an increase in precision of the local models in
comparison to the global models.

In their study, they considered seven data sets with defect data, and, ad-
ditionally, two data sets with effort data. They combine all defect data into
a single set which is then used as input for the WHERE algorithm. As the
authors state, “each cluster may now contain examples from multiple sources”
(Menzies et al, 2013). Due to the combination of data from multiple sources,
cross-project effects should be present in their evaluations. However, since data
from all projects may be within the clusters used for training data, this should
be seen as a mixture of cross-project and within-project prediction and not
strict cross-project predictions. In comparison, in our study we look at the
effect of local models in a strict cross-project defect prediction setting, where
the data from the target project cannot be part of the training of a predictor.
Additionally, we investigate a mixed cross-project setting, in which we allow
data from old versions of the same projects. Note, that this mixed setting is
different from the mixture between cross-project and within-project prediction
by Menzies at al., where even data from the same version could be used for
predictions. Moreover, our study uses data of 79 software versions. Further-
more, we do not only use the WHERE algorithm for clustering, but also the
EM clustering algorithm (Dempster et al, 1977) and investigate the effects of
normalization on the local models.

Bettenburg et al (2012) performed detailed studies regarding the internal
validity of local models that was further extended in Bettenburg et al (2014).
In comparison to Menzies et al., they did not use the WHERE algorithm
for clustering and WHICH algorithm for predictions. Instead, they used the
MCLUST (Fraley and Raftery, 1999) algorithm for clustering and linear re-
gression models as well as Multivariate Adaptive Regression Splines (MARS)
models for predictions. Moreover, they applied the k-means clustering algo-
rithm with different values for k and compared the results to those achieved
with MCLUST.

In their study, they determined that local models are better than global
models when used for gaining insights about the data under consideration as
they better fit the training data. They observe that this may lead to problems
when it comes to predictions. This effect is demonstrated by applying the
k-means algorithm with different values of k. They show that the prediction

6 Steffen Herbold et al.
Study Menzies et al (2011, 2013)
Research questions How good are global/local models suited to generate lessons
to minimize efforts and defects?
Data Seven defect prediction data sets and two effort prediction
data sets.
Design All data of the same type joined into one set, comparison

Result summary

of the results between global and local models. Usage of the
WHICH algorithm to infer rules.

Local models better suited for learning lessons and inferred
rules are more precise.

Differences in our | Focus on prediction models instead of rule inference; strict

study focus on the cross-project setting; different data; precision,
recall, F-measure and error instead of fit of rules.

Study Bettenburg et al (2012, 2014)

Research questions

Data

Design

Result summary

Is there an advantage of using local models over global mod-
els, with respect to goodness of fit?

Is there an advantage of using local models over global mod-
els, with respect to prediction performance?

What is the role of clustering of datasets when building local
models, as compared to randomly partitioning the data into
smaller chunks?

What is the impact of choice of clustering algorithm and pa-
rameters on the performance of the resulting local models?
For the same clustering method, modeling techniques, and
predicted outcome, how do different software engineering
metrics respond to local modeling?

What are the considerations in the use of local models over
global models for practitioners?

Three defect prediction data sets and two effort prediction
data sets.

10x10 cross-validation for each data set; comparison of the
results for different local models (impact of clustering) and
between the local and global model.

Local models have a better fit which leads to a better preci-
sion, but may not generalize well for predictions. The clus-
tering has a big impact on the outcomes.

Differences in our | Different focus (cross-project defect prediction); different

study data; precision, recall, F-measure and error, instead of model
fitting metrics.

Study Scanniello et al (2013)

Research Questions

Data
Design
Result summary

Differences in our
study

Table 1: Summary of the case studies performed in the related work including

Does the new clustering-based approach improve fault pre-
diction results compared with the baseline? (By new cluster-
ing approach the authors refer to the approach based on the
BorderFlow clustering algorithm.)

29 defect prediction data sets extendend with information
about the architecture of the software.

Leave-one-out cross-validation for each of the 29 data sets to
evaluate the difference of the error between the local model
and the global model.

The error of the local model is lower than of the global model.
Different focus (cross-project defect prediction); different
data; our study does not take architecture into account; eval-
uation of precision, recall, and F-measure in addition to the
error.

the key differences to our study.

Global vs. Local Models for Cross-project Defect Prediction 7

performance decreases with increasing k. From this, they conclude that careful
tuning of the local model is required for predictions and suggest the usage of
a clustering algorithm that does this automatically.

The study performed by Bettenburg et al (2012, 2014) was rather small
in terms of the data considered. They only used five software versions for
their evaluations: three with defect data and two with effort data. They note
that this is a major threat to the external validity of their results. Moreover,
they also only considered the within project-context and it remains unclear
how their findings translate to the cross-project context. As we stated above,
we use data from 79 software versions, explore the cross-project application
and apply with the WHERE and EM clustering two clustering algorithms that
both tune themselves automatically. The EM clustering algorithm is somewhat
similar to both MCLUST and k-means and could be seen as a middleground
between the two clustering algorithms. Additionally, we investigate the impact
of normalization on the local models.

Scanniello et al (2013) performed a third study using local models. Within
their work, they use a graph representation of the class dependencies in combi-
nation with the BorderFlow clustering algorithm (Ngomo, 2009) to determine
local regions. Due to the detailed knowledge about class dependencies they
also require access to the source code in order to create the clustering. For
predictions, they apply step-wise linear regression, a model similar to Betten-
burg et al (2012). Within their study, they observe that the error of the local
models is lower than that of global models. A strong point of their work is the
usage of data from 29 software versions in their study, which leads to a higher
external validaty of the results.

In comparison to our study, Scanniello et al. only evaluate the error of the
predictions. The error alone is problematic as a measure for defect prediction,
because the data sets are usually imbalanced and only optimizing for the error
often favors trivial classification models (Rahman et al, 2012). Therefore, we
take additional performance metrics into account, i.e., recall, precision, and
F-measure. Furthermore, the clustering approach applied by Scanniello et al.
requires access to the source code in order to create the dependencies between
classes. In comparison, the clustering approaches we apply can work with any
numerical data. While the amount of data used is already quite large with 29
data sets, they all come from the same source, whereas we use three different
data sources in our case study.

2.2 Cross-project Defect Prediction

Because the replication study targets local models in the context of cross-
project defect prediction, we also briefly discuss the related work from that
area. The body of work is mostly focused on transfer learning approaches,
i.e., approaches that try to manipulate the training based on the target prod-
uct in order to improve the result of the defect prediction. Watanabe et al
(2008) proposed to use a standardization technique based on the mean value

8 Steffen Herbold et al.

of the target product. A similar approach was proposed by Camargo Cruz
and Ochimizu (2009), but based on the median and power transformations.
Ma et al (2012) use the idea of data gravitation to weigth the training data
based on the similarity to the target product. Nam et al (2013) investitagated
min-max standardization as well as Z-score standardization. Zhang et al (2014,
2015) propose a transformation of the data based on clusters created using the
project context. A different venue of investigations is to only use a subset of
the training data. Turhan et al (2009) propose to use the k-nearest neighbor al-
gorithm to select software entities similar to the entities in the target product.
Jureczko and Madeyski (2010) proposed an approach based on self-organizig
maps to select appropriate software products that can be used as training
data. Similarly, Herbold (2013) proposed the k-nearest neighbor algorithm
and the EM clustering algorithm as candidates for the selection of appropriate
software products based on distributional characteristics of software metrics.
He et al (2013) propose to select appropriate software products based on the
separability in comparison to the target product. Moreover, He et al (2013)
propose to select a subset of the attributes used for classification based on the
same strategy, as well as to use product wise bagging. Another approach for
relevancy filtering based on the DBSCAN algorithm was proposed by Kawata
et al (2015) suggest to use the DBSCAN algorithm for relevancy filtering.
Amasaki et al (2015) also suggest to select a subset of the attributes based on
synonym pruning (Kocaguneli et al, 2013). For all of the above approaches,
the result of the training of a defect prediction model, depends on the target
product. This is a contrast to local models, which depend only on the training
data and are not adopted depending on the target product.

There are also proposals in the literature regarding the treatment of data
in general. Peters et al investigate the how data for cross-project predictions
can be shared privatly, in order to allow companies to share the proprietary
data. To this aim, they proposed CLIFF+MORPH (Peters et al, 2013) and
LACE2 (Peters et al, 2015). He et al (2014) and Nam and Kim (2015) started
a new venue of investagation where they try to combine data from different
sources with different metrics for the usage of cross-project predictions.

There are also some general studies on cross-project defect prediction. Zim-
mermann et al (2009) determined in a study with over 622 pair-wise cross-
project predictions, that only 21 results achieved their desired quality®. From
their results, they built a decision tree, that demonstrate that the results can
be greatly improved, if the correct product is selected for training in compar-
ison to picking training data at random. A similar study was performed by
He et al (2012), wo evaluated not pair-wise predictions, but combinations of
one, two, or three projects as training data. Through their study, they demon-
strated that distributional characteristics of metrics can be used as indicator
for the selection of training data. Premraj and Herzig (2011) evaluated the
usage of network metrics for cross-project defect prediction and found that
the results are not much improved.

3 recall, precision, and accuracy all at least 0.75.

Global vs. Local Models for Cross-project Defect Prediction 9

Global Model

(Training Data > Classifier

(a) Training of a global model. The data is directly used to create a classifier.

Global Model

Qnseen Instance > Classifier > Prediction

(b) Prediction with a global model. The single trained clusterer is directly used to make
the prediction.

Fig. 1: Training and prediction with global models.

3 Local Models

The general idea of local models is quite simple: find homogeneous regions
and train a classifier for each of these regions. Figure 1 visualizes how the
training (Figure 1(a)) and prediction (Figure 1(b)) with a global model looks
like. Figure 2 shows how the training (Figure 2(a)) and prediction (Figure
2(b)) with a local model look like in comparison. For the global model, the
training data is directly used to create a classifier, e.g., a Support Vector
Machine (SVM), a linear regression model, or a decision tree. This classifier is
then used to predict unseen data. In comparison, the first step for the training
of a local model is the creation of a cluster model with a clustering training
algorithm. The clustering training algorithm gets the training data without
the classification as input. From this, it creates a model that describes the
clusters within the data. The cluster model takes as input also the training
data and separates it into clusters according to the model. Then, for each of
the clusters, a local classifier is trained. For prediction, this means that first
the cluster model is used to determine to which cluster an unseen instance
belongs. Then, the local classifier belonging to the identified cluster is used
for the prediction on this instance. In this section, we summarize the steps for
training and prediction with local classifiers and note for each step possible
problems that need to be taken care of.

The main design decision of a local model is the method for determining
the homogeneous regions within the data. For this task, researchers have used
unsupervised clustering algorithms. In the past, the WHERE, MCLUST, k-
means, and BorderFlow algorithms were used (see Section 2). However, one
could potentially use also one of the many other clustering methods. In their
survey on clustering algorithms, Xu and Wunsch (2005) list over 30 different
methods for clustering. Bettenburg et al (2014) observed that the clustering
algorithm has an impact on the results achieved. The results from Bettenburg
et al suggest that a clustering algorithm that automatically determines the
clustering parameters, most importantly the number of clusters, should be

10 Steffen Herbold et al.

Training Data

Local Model

Cluster 1

Clustering Training
Algorithm

Y

Cluster
Model

(a) Training of a local model. The clusterer and the prediction models per cluster make up
the local model that can then be used for predictions.

‘ Unseen Instance ’—

Local Model

Cluster .
ceertme

Local
Classifer i

(b) Prediction with a local model. First, the clusterer is used to determine which concrete of
the n local classifiers is used by determining to which cluster ¢ € 1...n the unseen instance
belongs. Then, the prediction is made with the local classifier 7.

Fig. 2: Training and prediction with local models.

used. In our study, we decided to use the WHERE algorithm and the previously
not considered EM clustering algorithm (Dempster et al, 1977).

We choose the WHERE algorithm due to its efficiency and because it
has shown strong results in a previous study (Menzies et al, 2011, 2013).
However, we could not simply implement the algorithm as it was described by
Menzies et al, because we consider the cross-project setting. In this setting,
it must be possible to classify data from unknown sources, which may cause
problems, e.g., due to different value ranges. The QuadTree algorithm, which
is internally used by the WHERE algorithm, can only deal with data in the
range that was used during the training of the local model. Hence, we adapted
the QuadTree algorithm such that values outside the previously observed range
are interpreted as if they were at the closest boundary of the data seen during
the training. For example, if an instance in the test data has a value for some
metric myes; = 1000, but the highest observed value of of the metric m in the
training data is maxX¢rqiningdata(m) = 100, the original QuadTree algorithm
cannot classify the instance. To enable the QuadTree algorithm to cluster such
data, we treat the values out of range as if they have the maximal, respectively
minimal value, i.e., in our example we treat my.4; as if it would have the value
100, i.e., the highest value within the range of the training data.

As second algorithm, we choose the EM clustering algorithm. We choose
this algorithm for multiple reasons. First of all, it can determine the number

Global vs. Local Models for Cross-project Defect Prediction 11

of clusters through an internal cross-validation loop automatically. Moreover,
it is a good complement to the WHERE algorithm. The WHERE algorithm
simplifies the data structurally by reducing it to two dimensions, whereas the
EM algorithm clusters on the original dimensions. Furthermore, the FastMap
routine of the WHERE algorithm introduces a random component into the
clustering, whereas the EM algorithm is deterministic. However, these advan-
tages of the EM algorithm come at the cost of a much higher runtime. Finally,
the EM algorithm is similar to both the MCLUST algorithm and the k-means
algorithm used by Bettenburg et al (2012, 2014) and can be seen as the mid-
dleground between MCLUST and k-means.

Due to the automatic determination of the number of clusters by the EM
algorithm, we encountered problems due to very small clusters. Outliers in the
data were often assigned to their own cluster, which led to clusters with single
instances. The WHERE algorithm handles this problem naturally by merging
small clusters. We cannot do this with the EM algorithm. Instead, we have
to repeat the clustering, with fewer clusters allowed until all clusters have a
sufficient size. We defined two criteria for sufficient size:

— at least five instances within each cluster; and
— at least one instance of each class.

These requirements are choosen such that they enable the training of internal
classification models for the cluster. For example, the random forest imple-
mentation of Weka Hall et al (2009), requires at least five training instances
and breaks otherwise. Similarly, SVMs cannot work if they do not get at least
one instance of each class, because they find nothing to separate. Hence, if one
cluster does not meet the above criteria, we re-execute the clustering with ex-
actly one cluster less than currently computed allowed and thereby force the
algorithm to merge clusters. For example, if the EM algorithm calculates a
result with six clusters, where one cluster has only one instance, we re-execute
the clustering with a maximum number of five clusters allowed and check again
if the clusters meet our criteria.

4 Case Study

The main contribution of this paper is a case study that evaluates the perfor-
mance of local models for cross-project defect prediction. Our study follows the
guidelines for conducting case studies proposed by Runeson and Host (2009).

In order to answer our research questions, we formulate hypotheses, which
we evaluate according to the results of our case study. Since we are performing
a replication study, we have expectations on our results based on the previous
findings. For RQ1, we have to determine if there is a difference between local
and global models for cross-project defect prediction. To this aim, we analyze
the effect of local models on the metrics recall, precision, F-measure, error,
and Area Under the ROC Curve (AUC). From the findings of the previous
studies (Menzies et al, 2011, 2013; Bettenburg et al, 2012, 2014; Scanniello

12 Steffen Herbold et al.

et al, 2013), we believe that the precision of local models is higher than that
of global models, but at the cost of a lower recall. Bettenburg et al (2014)
observed that the gain in precision is for the most part offset by the loss in
recall. Therefore, we believe that the overall performance, if these two metrics
are used together, is similar for global and local models, which should be
reflected by similar values in the F-measure. Moreover, due to the findings
by Scanniello et al (2013), we believe that the error of local models is lower
than that of global models. Due the tradeoff between recall and precision, we
believe that local and global models perform similar in terms of AUC, same
as F-measure. From these conjectures, we formulate five hypotheses:

H1: Local models have a lower recall than global models.

H2: Local models have a higher precision than global models.

H3: Local models and global models perform similar in terms of the F-
measure.

H4: Local models have a lower error than global models.

H5: Local models and global models perform similar in terms of AUC.

Regarding RQ2, we have to evaluate the effects of local models in compar-
ison to transfer learning techniques. We find no reason to believe that there
will not also be a positive effect through local models. However, we have no ev-
idence that they will actually perform better than transfer learning techniques
when applied for cross-project defect prediction. To this aim, we compare the
local models against the k-nearest neighbor approach for selecting training
data by Turhan et al (2009). The approach works by selecting a subset of the
available training data as follows: for each instance of the target product, only
the k closest entities in the training data are kept, all other entities are re-
moved. This approach is a transfer learner because it select the training data
based on the target data, i.e., the knowledge about the target domain. We
choose the k-nearest neighbor approach because it is often used for compar-
isons in cross-project defect prediction studies (e.g., He et al, 2013; Peters et al,
2015). Therefore, we selected this approach as baseline comparison for trans-
fer learning techniques. The local models must be able to at least outperform
this technique, in order to be able to compete with the more recently proposed
state of the art in cross-project defect prediction. A complete comparison to all
proposed transfer learning techniques is out of scope of this paper. Our aim is
only to evaluate if local models can compete, in general, or if they are already
worse than this baseline. To this aim, we formulate the following hypothesis.

H6: Local models perform better than the k-nearest neighbor model by
Turhan et al (2009).

Regarding RQ3, we assume that normalizing the data, i.e., scaling the
metric values to the interval [0,1] will help with the local models. In other
experiments (e.g., Nam et al, 2013), positive effects due to normalization were
observed, however, not in conjunction with local models. Moreover, in a previ-
ous work, we observed that normalization can help with the reduction of scale
effects on distance-based clustering (Herbold, 2013). Therefore, we assume

Global vs. Local Models for Cross-project Defect Prediction 13

that this may also be the case for local models and formulate the following
hypothesis.

H7: Local models perform better if the data is normalized prior to the clus-
tering.

Regarding RQ4, we consider different data configurations for training:
strict cross-project data from the same project and mixed cross-project data
where we allow at least older version from the same project. Then, we compare
the performance of the classication models on the two data sets to evalute
the difference between the strict and the mixed setting. Because data from
previous versions should be similar to the target data, we believe that the
overall performance of the classification models is better with the mixed data.
To this aim, we formulate the following hypothesis.

HS8: Mixed cross-project data yields better results than strict cross-project
data.

In the following, we will describe the data we used, the experimental setup
of our case study, and our evaluation criteria before we summarize our results.

4.1 Data

We apply our experiments to three data sets from different sources. The first
data set we used was obtained from the tera-PROMISE? repository (Men-
zies et al, 2014) and contains defect data about 62 versions of 32 different
open-source projects donated by Jureczko and Madeyski (2010). The data
contains for each class of a version 20 static source code metrics, including the
popular Chidamber and Kemerer (CK) metrics for object-oriented software
(Chidamber and Kemerer, 1994), but also additional metrics, such as Lines
Of Code (LOC). The complete list of metrics can be found in the original
publication of the data set (Jureczko and Madeyski, 2010). Table 2 gives in-
formation about the number of classes of each project, including the number
of defect-prone classes and their percentage. For simplicity, we will refer to
this data set as JSTAT data from now on.

Table 2: Software products from the JSTAT data that are part of the study,
including their total number of classes and the number of defect-prone classes.

Product #Classes | #Defect-prone | % Defect-prone
ant 1.3 125 20 16%
ant 1.4 178 40 22%
ant 1.5 293 32 11%
ant 1.6 351 92 26%

Continued on next page

4 The tera-PROMISE repository is the successor of the PROMISE repository, which was
previously located at http://promisedata.googlecode.com.

14

Steffen Herbold et al.

Product #Classes | #Defect-prone | % Defect-prone
ant 1.7 745 166 22%
arc 234 27 12%
berek 43 16 37%
camel 1.0 339 11 4%
camel 1.2 608 216 36%
camel 1.4 872 145 17%
camel 1.6 965 188 19%
ckjm 10 5 50%
e-learning 64 5 8%
forrest 0.7 29 5 17%
ivy 1.1 111 63 57%
ivy 1.4 241 16 7%
ivy 2.0 352 40 1%
jedit 3.2 272 90 33%
jedit 4.0 306 75 25%
jedit 4.1 312 79 25%
jedit 4.2 367 48 13%
jedit 4.3 492 11 2%
kalkulator 27 6 22%
log4j 1.0 135 34 25%
log4j 1.1 109 37 34%
log4j 1.2 205 189 92%
lucene 2.0 195 91 47%
lucene 2.2 247 144 58%
lucene 2.4 340 203 60%
nieruchomosci 27 10 37%
pbeans 1 26 20 7%
pbeans 2 51 10 20%
pdftranslator 33 15 45%
poi 1.5 237 141 59%
poi 2.0 314 37 12%
poi 2.5 385 248 64%
poi 3.0 442 281 64%
redaktor 176 27 15%
serapion 45 9 20%
skarbonka 45 9 20%
sklebagd 20 12 60%
synapse 1.0 157 16 10%
synapse 1.1 222 60 27%
synapse 1.2 256 86 34%
systemdata 65 9 14%
szybkafucha 25 14 56%
termoproject 42 13 31%
tomcat 858 7 9%

Continued on next page

Global vs. Local Models for Cross-project Defect Prediction 15

Product #Classes | #Defect-prone | % Defect-prone
velocity 1.4 196 147 75%
velocity 1.5 214 142 66%
velocity 1.6 220 78 35%
workflow 39 20 51%
wspomaganiepi 18 12 67%
xalan 2.4 723 110 15%
xalan 2.5 803 387 48%
xalan 2.6 885 411 46%
xalan 2.7 909 898 99%
xerces initial 162 7 48%
xerces 1.2 440 71 16%
xerces 1.3 453 69 15%
xerces 1.4 588 437 74%
zuzel 29 13 45%
Total 17681 6062 34%

The second data set we used was also obtained from the tera-PROMISE
repository and is a the preprocessed version of the NASA MDP data set pro-
vided by Shepperd et al (2013) and contains data about 12 different projects.
The reason why we use the preprocessed version by Shepperd et al is that Gray
et al (2011) noted problems with the consistency of the originally published
data, which Shepperd et al tried to resolve with their further processing. The
projects in the data sets share 17 static source code metrics, mostly Halstead
metrics (Halstead, 1977), but also additional metrics, such as LOC and Cy-
clomatic Complexity (VG) (McCabe, 1976). Table 3 gives information about
the number of modules of each project, including the number of defect-prone
modules and their percentage. For simplicity, we will refer to this data set as
MDP data from now on.

The third data set is also publicly available online® and was donated by
D’Ambros et al (2010). It contains data about 5 different Java projects. The
data contains 31 metrics for each class of a project. The major difference
between this data set and the other two data sets is, that this data does not
only contain 17 static source code metrics, but also 14 process metrics that
measure changes in the classes, e.g., number of lines that have been changed
in a release. Table 4 gives information about the number of classes of each
project, including the number of defect-prone classes and their percentage.
For simplicity, we will refer to this data set as JPROC data from now on.

We do not merge the data from different data sets for three reasons. First,
we get three independent results for the comparisons between the classification
models which increases the validity of our results. Second, the common subset
of metrics between the data sets is very small. The only metric that is used

5 http://bug.inf.usi.ch/

16 Steffen Herbold et al.

in all three data sets is the cyclomatic complexity (McCabe, 1976). Third, we
think that the combination of data from different sources is a research topic
on its own (e.g. He et al, 2014; Nam and Kim, 2015), that we do not want to
mix with our investigation of local models for cross-project defect predictions.

In the following, we will refer to each version of a project in a data set
as a software product. For our experiments, we need to select target products
and appropriate available candidates for training data. As target product, we
select each software product once, i.e., we apply each experiment configuration
to the 62 products in the JSTAT data, the 12 products in the MDP data, and
the 5 products in the JPROC data. For the candidate data for the training we
differentiate between strict cross-project data and mized cross-project data.
Strict cross-project data does not contain any previous data about the project,
i.e., no old revisions of the same project. With mixed cross-project data, we
allow old revisions of the same project.

To setup the strict cross-project data, we follow the methodology proposed
by Herbold (2013). The candidates for the training data are based on the target
product. Only products from the same data set as the target product are used
as candidates, i.e., products from the JSTAT are not used to predict products
from the JPROC data and vice versa. This is due to the differences in the
metrics, as we discussed above. Moreover, the data often contains multiple
versions of the same product, e.g., the versions 1.3-1.7 of ant. For the strict
cross-project data, no other versions of the target product are allowed. Hence,
when we train a classification model for ant 1.5, the versions ant 1.3-1.4 and
1.6-1.7 are not part of the candidate training data.

For the mixed cross-project data, we only consider the JSTAT data, be-
cause most products in that data set have multiple revisions. We only select
those revisions as target product, for which a previous revision exists, i.e., for
ant we select the revisions 1.4-1.7 as target product. This leaves us with 31
out of the 62 products as target product. The candidates for the training data
are all other products from the JSTAT data, with the exception the the ver-
sions of the same project that are newer than the target product. This means
that for ant 1.5, the versions 1.3—1.4 of ant are part of the training data, but
not versions 1.6—-1.7. This selection for the training data is also the reasons
we restrict the target products to the 31 products as described above: for all
other, the results would be equal to the strict setting because the training data
would be exactly the same.

We took all data sets as is and did not perform any pre-processing or outlier
treatment.

Table 3: Software products from the MDP data that are part of the study,
including their total number of modules and the number of defect-prone mod-
ules.

Product ‘ #Modules ‘ #Defect-prone ‘ % Defect-prone
Continued on next page

Global vs. Local Models for Cross-project Defect Prediction 17

Product | #Modules | #Defect-prone | % Defect-prone
CM1 344 42 12%
JM1 9593 1759 18%
KC1 2096 325 16%
KC3 200 36 18%
MC1 9277 68 1%
MC2 127 44 35%
MW1 264 27 10%
PC1 759 61 8%
PC2 1585 16 1%
PC3 1125 140 12%
PC4 1399 178 13%
PC5 17001 503 3%
Total 43770 3199 ™%

Table 4: Software products from the JPROC data that are part of the study,
including their total number of classes and the number of defect-prone classes.

Product | #Classes | #Defect-prone | % Defect-prone
lucene 691 64 9%
pde 1497 209 14%
mylyn 1862 245 13%
eclipse 997 206 21%
equinox 324 129 40%
Total 5371 893 16%

4.2 Classification Models

Our experiments are designed to compare local models with global models
as well as transfer learning. Moreover, we want to evaluate if normalization
has an impact on the local models. Through normalization all metric data is
scaled to the interval [0, 1], which reduces the impact of differenct metric scales
and also harmonizes data between projects. In total, we consider six different
classification models. A classification model is the combination of training data
treatment (e.g., clustering for local models, data selection for transfer learning,
or simply using all data as is) with a classifier that is trained following the
data treatment (e.g., a SVM, C4.5 decision tree, or random forest).

1. N-WHERE: a local classifier that uses the WHERE algorithm for clustering
and normlizes all metric data, i.e., scales it to the interval [0,1] before
clustering;

18 Steffen Herbold et al.

Local Model

Cluster 1

= Algorithm

Cluster
Model

(a) Instantiation of the training of a local model.

Local Model

Cluster .

(b) Instantiation of the prediction with a local model.

Fig. 3: Instantiation of the training and prediction local model with the
WHERE/EM algorithm for the training of the clustering model and a SVMs
as internally used classifier.

2. WHERE: a local classifier that uses the WHERE algorithm for clustering;

3. N-EM: a local classifier that uses the EM algorithm for clustering and
normlizes all metric data, i.e., scales it to the interval [0, 1] before clustering;

4. EM: a local classifier that uses the EM algorithm for clustering;

5. GLOBAL: a normal classifier that builds a model on all training data;

6. KNN: a classifier trained with data selected with the k-nearest neighbor
approach proposed by Turhan et al (2009). We use k£ = 10, same as Turhan
et al (2009) in their study.

For all six models, we internally train a SVM with a Radial Basis Function
(RBF) kernel for classification (Schélkopf and Smola, 2002). SVMs were found
to be a very generic classifier that performs well in almost any setting (van
Gestel et al, 2004). Moreover, we found that in case bias treatment is performed
(see below), SVMs perform very well for defect prediction (Herbold, 2013).
Figure 3 shows the instantiation of the local models with the WHERE/EM
algorithm for clustering and the SVM for classification.

Since most of the data contains more non-defect-prone entities than defect-
prone entities, there might be a classification bias towards non-defect-prone
classifications. To handle this potential bias, we use undersampling (Drum-
mond and Holte, 2003). In case there are more non-defect-prone entities in
a data set, undersampling randomly draws from the non-defect-prone entites
to create a data set with the same number defect-prone and non-defect-prone

Global vs. Local Models for Cross-project Defect Prediction 19

entities. As a result of undersampling, all defect-prone and a subset of the non-
defect prone entities is contained in the data. We repeated the experiments 10
times and report only on the average values. The dependent variable of the
models is the indicator variable which indicates if a class/module contained a
defect, the independent variables are the software metrics.

4.3 Analysis Procedure

To evaluate our hypotheses, we train each of the six classification models (N-
WHERE, WHERE, N-EM, EM, GLOBAL, KNN) on each of the three data
sets (JSTAT, MDP, JPROC). This gives us a total of twelve defect classifica-
tion models.

To evaluate the classification models we use five performance metrics. The
first four metrics are recall®, precision, F-measure, and error. The metrics are
defined as

ip
recall = ———
tp+ fn

.. tp
precision = ————
tp+ fp

recall - precision
F-measure =2 -

recall + precision
fp+fn
tp+ fn+tn+ fp

error =

where tp, respectively, tn is the number of true positive, resp., negative predic-
tions, fp, resp., fn is the number of false positive, resp., negative predictions.
The recall measures how many of the existing defects are found. The precision
measures how many of the found results are actually defects. The F-measure
is the harmonic mean between precision and recall. The error measures the
overall rate of misclassifications. Additionally, we consider the Area Under the
ROC Curve (AUC). The ROC stands for receiver operating characteristic and
is the plot of the false positive rate (fpfﬁ) against the true positive rate (i.e.,
recall). AUC is distributed between zero and one. The higher the value, the
better the performance of a classifier. A value of value of 0.5 indicates that
the performance is roughly equal to random guessing.

We choose these measures because they are widely used in defect predic-
tion studies. We are aware that other metrics might also be well suited, e.g.,
G-measure, AIC, and more. However, we want to note that there is no agree-
ment within the community on the best metrics for the evaluation of defect
prediction results (Jiang et al, 2008).”

6 instead of recall, sometimes PD or tpr are used in the literature. PD stands for proba-

bility of defect and tpr for true positive rate.
7 This problem is still very relevant. For example, during the 37th International Confer-
ence on Software Engineering held in May 2015, there were five papers on defect prediction

20 Steffen Herbold et al.

To evaluate hypotheses H1-H7, we rank the classification models using the
Scott-Knott test (Scott and Knott, 1974; Jelihovschi et al, 2014). With this
test, we created ranked groups based on the significant differences between the
mean values of the respective performance metric achieved with the various
classification models. As threshold value for the significance of results, we use
p < 0.05, i.e., 95% confidence in the result. We then evaluate our hypotheses
H1, H2, H3, respectively, H4 by evaluating the rankings according to the
performance measures recall, precision, F-measure, respectively, error. For hy-
pothess H5-HT7 we consider the rankings according to all five performance
measures. Moreover, the consider the improvement ratio of AUC in order to
get a better view of the overall difference between local models, the GLOBAL
model, and the KNN model. The improvement ratio is defined as the

. alternative value
ir = ——— . (1)
ortginal value

For example, if the GLOBAL model achieves an AUC of 0.6 and the WHERE
model achieves an AUC of 0.7 the improvement ratio of WHERE in compar-

ison to GLOBAL is

0.7
7= — = 1.167. 2
ir= g (2)

To evaluate hypothesis H8, we consider the mean values for all five per-
formance measures and perform a Mann-Whitney-U test Mann and Whitney
(1947) to evaluate if the differences between the strict and the mixed cross-
project setting we observe are statistically significant. Same as for the Scott-
Knott test, we use a threshold of p < 0.05 for the significance. In case the
difference is statisically significant, we say that the data with the better mean
value wins. Otherwise we declare a draw between the strict and the mixed
setting.

The Scott-Knott test, respectively the Mann-Whitney-U test is applied to
rank, respectively compare all results achieved with a classification model on
a specific data set, e.g., all versions of JSTAT.

4.4 Results

The presentation of the results is split in two parts: first, we present the results
for our comparison of local model versus global models within a strict cross-
project defect prediction setting. Then, we compare the strict cross-project
setting to the mixed setting. We only report the most important numbers for
the evaluation of our results. The complete results are published online®. The
published results also contain information on how to replicate our case study

(Caglayan et al, 2015; Ghotra et al, 2015; Peters et al, 2015; Tan et al, 2015; Tantithamtha-
vorn et al, 2015). None of them used exactly the same performance measures.

8 Github: https://github.com/sherbold/replication-kit-emse-2016-1local-models/
tree/master/replication-kit
Zipped Archive: http://hdl.handle.net/21.11101/0000-0001-3C55-D

Global vs. Local Models for Cross-project Defect Prediction 21

with the CrossPare tool (Herbold, 2015) as well as additional performance
metrics we collected during the experiments.

4.4.1 Local vs. Global Models

The results of the comparison of the local and global models are summarized in
Table 5, Figure 4, and Figure 5. The subtables of Table 5 shows the mean values
achieved with the metric and the ranking we determined with the Scott-Knott
test. The subfigures of Figure 4 show box plots of the results. The subfigures
of Figure 5 show box plots of the improvement ratio of AUC of the models in
comparison to the GLOBAL and the KNN model.

For the recall, we observe that the GLOBAL model and the EM model
share the best average rankings with 1.66. EM ranks twice first and once
third, whereas global ranks only once first, and twice second. The other four
models share the same average ranking of 2.

For the precision, we observe that N-WHERE model has the best average
ranking with 1.33, ranking first twice and second once. The KNN model and
the EM model follow with an average ranking of 1.66, both having one first
and two second places.

For the F-measure, we observe that all models perform nearly the same,
i.e., there are no statistically significant different ranks. Only the N-WHERE
model is ranked second behind the others once for the MDP data set, due to
the extremly poor recall on that data. This leads to an average rank of 1 for
all models except N-WHERE and an average rank of 1.33 for the N-WHERE
model.

For the error, we observe that the N-WHERE and the EM model have best
average rank with 2. The N-WHERE model ranks fourth and last for JSTAT
data, on which the EM model ranks first. On the other hand, the N-WHERE
model ranks first on the MDP and JPROC data, where the EM model is
only ranked third, respectively second. The GLOBAL and KNN models follow
with an average rank of 2.33, the WHERE and N-EM model are last with an
average rank of 2.66.

For the AUC, we observe that the EM model is notably the best and
always ranks first. The GLOBAL models follows with an average rank of 1.33
and is only beaten by the EM model on the JSTAT data. Then WHERE,
N-EM, and KNN model follow with an average rank of 1.66. The N-WHERE
is on the (shared) last rank for all three data sets and has an average rank
of 2.33. Moreover, we should note that the all classification models are on the
same rank for the JPROC data set, i.e., there are no statistically significant
differences accourding to the Scott-Knott test. While none of the mean values
of AUC are very high, some are very close to 0.5, i.e., the performance of a
completely random model. The lowest mean is achieved by the N-WHERE
model on the JSTAT data with 0.511.

For all measures we observe that the mean values are well correlated by
the rankings according to the Scott-Knott test, that the mean values for clas-

22

Steffen Herbold et al.

Table 5: Results for the performance metrics. The tables contain the rankings
determined with the Scott-Knott test and the mean values of the performance

metrics.
(a) Results recall
N-WHERE | WHERE N-EM EM GLOBAL KNN
rnk/rec. rnk/rec. rnk/rec. rnk/rec. rnk/rec. rnk/rec.
JSTAT 1/ 0.969 3/0546 | 2 /0883 | 3/0.530 | 2/0.868 | 2/ 0.817
MDP 3/ 0.034 1/0930 | 2/0.706 | 1/0.870 | 2/0.721 | 2/ 0.668
JPROC 2 / 0.309 2 /0456 | 2 /0416 | 1/ 0.658 1/0.680 | 2/0.231
avg. rnk 2 2 2 1.66 1.66 2
(b) Results precision
N-WHERE | WHERE N-EM EM GLOBAL KNN
rnk/pre. rnk/pre. | rnk/pre. | rnk/pre. rnk/pre. rnk/pre.
JSTAT 2 / 0.355 2/0.407 | 2/0371 | 1 /0492 | 2/0.390 | 2/ 0.386
MDP 1/0.377 2/0.143 | 2/0.177 | 2/0.195 | 2 /0.221 | 2 /0.199
JPROC | 1/0479 | 2/0.301 | 2/0281 | 2/0318 | 2/0.325 | 1/0.642
avg. rnk 1.33 2 2 1.66 2 1.66
(c) Results F-measure
N-WHERE | WHERE N-EM EM GLOBAL KNN
rnk/F-m. rnk/F-m. | rnk/F-m. | rmmk/F-m. | rmk/F-m. | rnk/F-m.
JSTAT | 170475 | 1/0401 | 1 /0473 | 170442 | 1/0.4%86 | 1/0.460
MDP 2 / 0.059 1/0.231 1/0.273 1/ 0.299 1/0.314 1/0.230
JPROC | 1/0297 | 1/0.347 | 1/0.319 | 1/0.408 | 1/0.409 | 1/0.290
avg. rnk 1.33 1 1 1 1 1
(d) Results error
N-WHERE | WHERE N-EM EM GLOBAL KNN
rnk/err. rnk/err. | rnk/err. | rnk/err. rnk/err. rnk/err.
JSTAT | 4/0641 | 270453 | 370581 | 170360 | 3/0535 | 3/ 0543
MDP 1/0121 | 4/0713 | 3/0412 | 3/0.454 | 2/0.340 | 3/0.512
JPROC 1/0.211 2/0312|2/0315 | 2/0336 | 2/0343 | 1/0.178
avg. rnk 2 2.66 2.66 2 2.33 2.33
(e) Results AUC
N-WHERE | WHERE N-EM EM GLOBAL KNN
rnk/AUC | rnk/AUC | tmk/AUC | rnk/AUC | rnk/AUC | rmk/AUC
JSTAT 4 /0.511 2 / 0.565 3/ 0.538 1/0.635 2/ 0.576 2 / 0.550
MDP 2/0516 | 2/0566 | 1/0626 | 1/0678 | 1/0.680 | 2/0.557
JPROC 1/0.610 1/ 0.597 1/0.579 1 /0.658 1/0.667 1/ 0.596
avg. rnk 2.33 1.66 1.66 1 1.33 1.66

sification models on the same rank are similar to each other, and that there is
a gap between the mean values of the classification models on the next rank.

4.4.2 Strict vs. Mized Data

The results for the comparison between strict and mixed cross-project data
on the 31 versions of the JSTAT data for which we also have older versions in
the data are summarized in Table 6. The subtables show the mean values on

23

JPROC
JPROC
JPROC

1.00-
1.00-
0.75-
0.25-
1.00-

MDP
MDP
MDP

St

(a) Results recall
&
(c) Results F-measure

(b) Results precision

1.00-
0.75=
0.25-
1.00-
1.00-

JSTAT
JSTAT
JSTAT

1.00-

0.25-

Fig. 4: Boxplots of the performance metrics for each data set. The diamonds

Global vs. Local Models for Cross-project Defect Prediction
mark the mean values.

JPROC

g

0.75-
0.50 -
0.25-
0.00 -

&

ainseaw—4

MDP

0.75=

.50 =
0.25-
0.00-

=]
aunseaw-4

JSTAT

<P

+

JPROC

) o o

1.00-
0.75-
0.00-
1.00-
0.75-
2050~
0.25-

8}
<

o

(d) Results error
MDP
(e) Results AUC

0.50- e @ =

1.00-

0.75-

0.25-

1.00-

0.75-
8]

0.25-

=]
<

2

24

=

F

050~ ==

1.00-

1.00-

0.75-
3}

0.25-

=}
<

24 Steffen Herbold et al.

Fig. 5: Boxplots of the improvement ratio of the results in comparison to the
KNN and the GLOBAL model for AUC and for each data set. The diamonds
mark the mean values.

JSTAT MDP JPROC

(a) Improvement ratio of AUC in comparison to the GLOBAL model

JSTAT MDP JPROC
2.0- 20- 20-

o
-
4
—F—
_@__.
i
J@L
E
1+
@
}
=
:
+
4

05- 1 05- 0.5-

(b) Improvement ratio of AUC in comparison to the KNN model

the 31 products for both the strict and mixed data, as well as the p-value of
the Mann-Whitney-U test and the winner between the two data sets.

The results show that the recall of the strict setting is better than that of
the mixed setting. Only for the EM and the WHERE model, the results are a
draw, for the other four models the strict setting produces significantly better
results with a quite large gap of at least 0.215. For the precision, we observe
no significant difference between the strict and mixed data, although the mean
values for the mixed data are slightly higher than for the strict data. For the
F-measure, we also observe no significant differences, which is surprising due to
the quite large difference in the recall and the unsignificant differences in the
precision. However, the small and stastically insignifant higher mean precision
of the mixed data seems to be enough to offset the statistically significantly
higher recall, which leads to draws for the F-measure.

The error, we observe a completely different effect as for the recall. The
EM and WHERE model have draws again, but for the other four models the
mixed data is significantly better than the strict data. The same holds for the
AUC, except that the N-EM model also has a draw and only three models,
i.e., N-WHERE, GLOBAL, and KNN are significantly better on the mixed
data.

Global vs. Local Models for Cross-project Defect Prediction 25

Table 6: Results for the comparison between strict and mixed cross-project
predictions on the JSTAT data.

(a) Results recall

‘ strict ‘ mixed ‘ p-value win
N-WHERE | 0.951 | 0.702 | < 10~% | strict
WHERE 0.589 0.604 0.910 draw

N-EM 0.875 | 0.580 | <108 | strict
EM 0.550 | 0.541 0.768 draw
GLOBAL 0.854 | 0.545 | < 10~7 | strict
KNN 0.857 | 0.642 | < 10~% | strict

(b) Results precision

strict | mixed win
N-WHERE | 0.363 | 0.424 | 0.190 | draw
WHERE 0.409 | 0.424 | 0.878 | draw

N-EM 0.378 | 0.411 | 0.605 | draw
EM 0.463 | 0.471 1 draw
GLOBAL 0.396 | 0.489 | 0.160 | draw
KNN 0.397 | 0.463 | 0.245 | draw

(c¢) Results F-measure

strict | mixed win
N-WHERE | 0.472 | 0.489 | 0.625 | draw
WHERE 0.425 0.438 0.746 | draw

N-EM 0.472 | 0.413 | 0.363 | draw
EM 0.450 | 0.440 | 0.652 | draw
GLOBAL 0.484 | 0.453 | 0.675 | draw
KNN 0.483 | 0.471 | 0.889 | draw

(d) Results error
‘ strict ‘ mixed ‘ win ‘
N-WHERE | 0.636 | 0.413 < 10~% | mixed
WHERE 0.452 | 0.440 0.706 draw

N-EM 0.579 0.475 0.011 mixed
EM 0.376 | 0.374 0.838 draw
GLOBAL 0.537 | 0.389 | <! 0-3 | mixed
KNN 0.539 | 0.411 0.012 mixed
(e) Results AUC
‘ strict ‘ mixed ‘ win ‘

N-WHERE | 0.518 | 0.620 | < 10~® | mixed
WHERE 0.577 | 0.587 0.476 draw

N-EM 0.539 | 0.566 0.109 draw
EM 0.623 | 0.628 0.822 draw
GLOBAL 0.574 | 0.633 0.001 mixed
KNN 0.575 | 0.623 0.011 mixed

5 Discussion

In the following, we evaluate our research hypotheses with respect to the re-
sults of the case study. Afterwards, we compare our findings with the findings

26 Steffen Herbold et al.

of previous studies. Finally, we comment on the overall performance of all
classification models.

5.1 Hypotheses Evaluation
H1: Local models have a lower recall than global models.

Our results regarding the recall are inconclusive. The EM ranks first twice for
the MDP and JPROC data, but fails on the JSTAT data with the last place.
The GLOBAL model has the same shared rank of 1.66 and is outperformed
by the EM model on the MDP data, but clearly beats it on the JSTAT data.
Depending on the point of view, one might say that either the EM model is
better (higher ceiling) or the GLOBAL model (more consistency). When we
compare the local models to each other, the EM model is the clear winner,
followed by the N-EM model due to its consistency. The WHERE and N-
WHERE model behave erratically and should, therefore, not be selected if the
recall is important.

H2: Local models have a higher precision than global models.

Our results show only small differences in the precision. Especially the N-
WHERE model yields a consitently good precision. It is the only model that
achieves an average precision of at least 0.35 on all three data sets. The other
models are very similar to each other, with nearly no significant differences.
Hence, we conclude that the N-WHERE model is a good choice if a robust
but on average still rather low precision is important and that local models
thus can indeed have higher precision than global models, but if and only if
the correct clustering strategy is used.

H3: Local models and global models perform similar in terms of the F-measure

Our results show that there is almost no difference in the F-measure between
the global and the local models. The only outlier is the N-WHERE model for
the MDP data, which performs significantly worse on this data set due to an
extremely low recall. Due to these findings, we find strong support for this
hypothesis and conclude that the differences between local and global models
offset when recall and precision are both considered.

HY: Local models have a lower error than global models.

Our results regarding the recall are inconclusive. The GLOBAL model is out-
performed by one local model on each data set (EM and WHERE on JSTAT,
N-WHERE on MDP and JPROC), but ranks very consistently between the
local models. The average rankings of the N-WHERE and EM model are
slightly better than that of the GLOBAL model, but both are also clearly

Global vs. Local Models for Cross-project Defect Prediction 27

outperformed by the GLOBAL model once. Hence, our findings here are simi-
lar to the findings for the recall: the local models seem to have a higher ceiling
if they are used in the right circumstances, but the GLOBAL model is more
consistent.

H5: Local models and global models perform similar in in terms of AUC.

Our results regarding AUC clearly distintuish the EM model as the best over-
all model, through a consistent first rank. However, the EM model is followed
very closely by the GLOBAL model, which is only slightly worse on the JSTAT
data. The worst model is clearly the N-WHERE model. Not only does it have
the worst average rank, but it also has mean values very close to randomness
for the JSTAT and the MDP data. For AUC, we also considered the improve-
ment ratio of the local models in comparison to the GLOBAL model (see
Figure 5(a).) The improvement ratio supports the conclusions drawn based
on the mean values and Scott-Knott rankings. The EM model outperforms
the GLOBAL model on the JSTAT data, on the other data, the results are
quite similar. Hence, we cannot conclude that local models outperform global
models or vice versa. Instead, that the right local model (i.e., the EM model)
can beat the GLOBAL model, but more often than not the GLOBAL model
wins.

HG6: Local models perform better than the k-nearest neighbor model by Turhan
et al (2009).

Our results regarding this research question mimic the results for the compar-
ison between the GLOBAL and the local models model, because KNN and
GLOBAL perform rather similar for most metrics. Hence, the local models
sometimes have a higher ceiling than the KNN model, but the KNN model is
more robust. In total, at least the EM model seems to be consistently on par
or better than the KNN model, the difference between KNN and the other
local models seem to be completely dependent on the data the performance
metric that is used. For AUC, we also considered the improvement ratio of
the local models in comparison to the KNN model (see Figure 5(b)). The
improvement ratios support the conclusions drawn based on the mean values
and Scott-Knott rankings. The EM model outperforms the KNN model on all
three data set. The N-EM model also offers a slight advantage over the KNN
model on the MDP data, but not on the other data sets. Hence, we conclude
that we found one local model that outperforms the KNN model and for the
others it depends on the circumstances.

H7: Local models perform better if the data is normalized prior to the cluster-
mng.

Our results show that this depends on the clustering algorithm that is used
and the data under consideration. The N-WHERE model performs better than

28 Steffen Herbold et al.

the WHERE model on the MDP and JPROC data, but worse on the JSTAT
data. On the JSTAT data, it seems as if normalization actually leads to trivial
N-WHERE models, where almost everything is predicted defective, hence the
very high recall.

The EM model consistently outperforms the N-EM model. Here, normal-
ization seems to hinder the clustering. This effect can be explained because
EM internally works with probability distributions and the variance plays an
important role. By changing the metrics scales to the interval [0,1] through a
linear transformation, we change the relative variance in the data. The EM
clustering apparently works better, if no such changes are performed. Hence,
if normalization or some other form of data transformation is to be applied,
it should not change the relative variance within the scale.

Thus, our conclusion regarding this hypothesis that normalization can help
if applied judiciously, but one should check the potential consequences normal-
ization may have on the clustering first.

HS8: Mixed cross-project data yields better results than strict cross-project data.

The results show that this depends on the perfomance metric. On the one
hand, if one is interested in a high recall, strict cross-project data performs
better than mixed data. Previous research already indicated that cross-project
data allows a higher recall than within-project data (Herbold, 2013). On the
other hand, if the overall error or misclassification rate independent of the class
is important (i.e., independent of whether an entity is defect prone or not),
the mixed data seems to perform better as is shown by the better results in
terms of error and AUC. In terms of precision, and F-measure, the differences
between the strict and mixed data are not statistically significant.

5.2 Comparison with Previous Studies

In comparison to the study by Menuzies et al (2011, 2013), our results show no
big gain by using local models. This is likely caused by the different research
focus: we focus on prediction in the very difficult cross-project setting, whereas
Menzies at al focus on finding rules for known data to infer lessons about how
to prevent defect and decrease effort.

Considering the study of Bettenburg et al (2012, 2014), our results are
mostly in line with their findings or conjectures. From their results, they con-
cluded that “global models produce general trends” whereas “local models
produce too much insight”. Since the predictions are made on data from a
different context than the training data, the general trends from the global
models are almost as accurate as the better insights into local regions gained
through the local models. However, Bettenburg et al also note that “without
careful calibration of parameters, the resulting local models can be consider-
ably worse than their global model counterparts”. Since we did not apply any

Global vs. Local Models for Cross-project Defect Prediction 29

manual tuning, but only used clustering algorithms with automated parame-
ter selection, local models might still outperform global models. However, to
our mind, tuning on the local models would likely lead to overfitting, which is
especially problematic for cross-project defect prediction.

In comparison to Scanniello et al (2013), we did not observe a major ad-
vantage in the error of the local models over other models. However, this does
not mean that our results directly contradict those of by Scanniello et al First
of all, we did not take architectural factors into account, when we created the
local models. Hence, we cannot rule out that if we would have used architec-
tural features during the creation of our local model, that we would not have
seen the same reduction in error. However, the clustering approach based on
architectural dependencies cannot be applied in a cross project setting: there
are no architectural dependencies between the different contexts. A second
explanation for the difference in the results is that we used the cross-project
setting instead of cross-validation with data from the same project.

5.3 Insights Into the Local Models

While the main motivation for our work was the possible advancement of the
state of the art of cross-project defect prediction through local models, we
also gained some insights into the inner workings on local models which can
be useful for future applications.

The first interesesting aspect we observed is that local models can be com-
bined with other techniques, but it should be done judiciously as the combina-
tion of the local model with something else might actually be detrimental. This
is shown by the effect of normalization: it works quite well the the WHERE
model, but decreases the performance of the EM algorithm. For WHERE, only
the distances matter, which only change lineary with normalization, hence, the
relative distances are preserved. For EM on the other hand, the variance in
the data matters, which is changed by the normalization. Such effects are easy
to overlook, which is why we propose to always compare a local model with-
out modifications to a local model that is modified in some way with another
technique to determine if there is actually an advantage.

The second aspect is that we believe that neither of the EM nor the
WHERE model are close to where local models could be, if a good clusterer
can be found. We gained this intuition by the sometime huge performance
differences between the local models. If a clusterer could be found, that would
combine the best aspects of EM and WHERE, the performance would already
be much better. However, we believe that this is not simply done with the
choice of a correct clustering algorithm. Instead, the correct meta-data about
the entities must be determined in order to really create homogenuous clusters.
This problem is closely related to the problem of selecting training data for
cross-project defect predictions. We believe that a combination of the following
aspects is required to create a good local model.

30 Steffen Herbold et al.

— Static metrics: factors like the size and complexity of an entity are used in
all three data sets used in this study. Our results, as well as related work
on defect prediction (Menzies et al, 2008) indicate that these metrics are
useful, but not sufficient for good defect prediction models.

— Process metrics: the number of changes to an entity as it is part of the
JPROC data set. A recent study by Madeyski and Jureczko (2015) on
which metrics could be useful listed these metrics as likely candidates for
improvement, which is also supported by related work on within-project
defect prediction, e.g., Hassan (2009).

— Social metrics: factors like the number of different commiters metrics gained
through the analysis of developer social networks (Meneely et al, 2008). The
study by Madeyski and Jureczko (2015) also listed social metrics among
the likely candidates for model improvement.

— Entity context: a currently missed attribute in defect prediction is the type
of entity considered, e.g., if the entity is a data class, a user interface class
or a network connection handler. The structure and fault types associated
with these different contexts differ, hence, we believe that if it were possible
to include this information defect prediction models could be improved.

If all the information were available, it would be possible to create clusters
that really contain software entities from the same context, of the similar size,
developed by people with similar skills, and so on. Moreover, the additional
information could also be harnessed by the defect prediction model, which may
further improve the performance. However, for such local models clustering
might not even be the best approach. Instead, the idea by Zimmermann et al
(2009) to create an approprate decision tree that selects similar data could be
revisited, instead of for complete projects. However, due to the current lack
of a benchmark data set that contains all of the information, we could not
analyze if these aspects really effect defect prediction within this study.

5.4 Comments on the Overall Performance

Our biggest concern with the results of our case study is not regarding the
rather negative results regarding the advantages of local models, but the overall
performance of local models and the transfer learning. In Table 7 we compare
the results of the simple global model with the best result achieved with an
advanced technique, i.e., a local model or the KNN transfer learning algo-
rithm. We boldfaced the cases where the global model beats all competitors.
Additionally, Figure 5(a) shows the improvement ratio of AUC for all models
in comparison to the global model.

The comparison shows that the advanced techniques do not really offer a
major advantage over a simple global model. This is also already indicated by
the analysis of the research hypothesis. In the evaluation of the hypotheses we
basically determined that there is no major difference between global and local
models in terms of performance. There may be a small advantage in precision
for the local models, but other than that, the global models are quite robust.

Global vs. Local Models for Cross-project Defect Prediction 31

Table 7: Comparison between the results of the GLOBAL model with the best
other model.

JSTAT
recall precision F-measure error AUC
GLOBAL | 0.868 0.390 0.486 0.535 0.576
Best other | 0.969 0.492 0.475 0.360 0.635
(N-WHERE) (EM) (N-WHERE) (EM) (EM)
MDP
recall precision F-measure error AUC
GLOBAL | 0.721 0.221 0.314 0.340 0.680
Best other | 0.930 0.377 0.299 0.121 0.678
(WHERE) (N-WHERE) (EM) (N-WHERE) (EM)
JPROC
recall precision F-measure error AUC
Global 0.680 0.325 0.409 0.343 0.667
Best other | 0.658 0.642 0.408 0.211 0.658
(EM) (KNN) (EM) (N-WHERE) (EM)

Only H5 shows some advantage of in terms of AUC, but only for the EM
model and only on one data set. In terms of F-measure, the global model is
not beaten once. Through this analysis, we do not want to state that global
models are always better or equal to advanced techniques for cross-project
defect prediction. As we already said, we choose the KNN model, because it is
used as baseline comparison for cross-project defect prediction. Hence, there
are approaches that have beaten the KNN model in previous experiments.

However, we would like to make researchers aware that we could not find
statistically significant major differences that indicate that advanced tech-
niques are better within our study. Therefore, we would urge other researchers
to always use a global model as comparison in cross-project defect prediction
experiments in order to demonstrate the gain against this simple technique.

5.5 Other classifiers

While we only report on the results achieved with the SVM, we found sim-
ilar findings for other classifiers. We internally performed experiments with
logistic regression, random forests, Naive Bayes, and C4.5 decision trees. For
all of these classification models, we did not find an advantage for using local
models. Moreover, the performance in terms of the reported on performance
metrics was slightly worse than for the SVM for those models, including the
low AUC. Only the random forest achieved a similar performance. We included
the results for the random forest in the replication kit for comparison. Further
details on the experiments are not reported here, because the study is on local
vs. global and not on the performance of different classifiers.

32 Steffen Herbold et al.

6 Lessons Learned

When we look at the results of our case study, our findings are quite straightfor-
ward: while the local models are different from the global models, the evidence
suggests that they can perform similar to global models, but not actually beat
them consistently, even though they sometimes show better results for sin-
gle metrics. The EM model performs overall quite similar to the GLOBAL
model, with some differences where it is open to interpretation which one per-
forms better. The other three configurations of the local models perform for
the most part worse than the GLOBAL model. Moreover, we observe that
local models do not solve the problems with precision. The N-WHERE model
sometimes improves the precision, but has such big problems with the recall in
those instances, that this does not matter. Therefore, we came to the following
conclusion regarding RQ1:

Local models are not significantly different from global models in
terms of overall prediction performance for cross-project defect prediction.
Hence, we suggest carefull evaluation if the local models actually bring a
benefit in comparison to a global view in terms of prediction performance.

Regarding our second research question, we did not observe a big difference
between the KNN approach by Turhan et al (2009) and the local models either.
This means that local models might be able to compete with transfer learning,
but problably only if they are further adapted to the cross-project setting.
Therefore, we came to the following conclusion regarding RQ2:

Local models are comparable with the KNN transfer learner and may
be able to compete if they are tailored to the problem or combined with
transfer learning.

For our third research question, i.e., if normalization is helpful, our results
show that it can help, but one must be carefull with the effects it might have

on the clustering. Therefore, we came to the following conclusion regarding
RQ3:

Normalization should be applied judiciously and only after checking
if it might have adverse effects on the clustering algorithm. If there are
no adverse effects, normalization can improve the results, but this should
always be checked through a comparison with the results without normal-
ization.

While we only investigated normalization in our replication study, we be-
lieve that this lesson learned can be transfered to other data transformation
techniques, e.g., Z-score normalization (Kotsiantis et al, 2006).

Global vs. Local Models for Cross-project Defect Prediction 33

Regarding our fourth research question our findings are clear and it depends
on the performance metrics. Therefore, we came to the following conclusion
regarding RQ4:

The strict setting is better if recall is the most important performance
metrics, if the overall performance matters the mixed setting yields better
results.

However, our most important lesson learned from our study is that the
perfomance of nearly all models we used was quite similar. As we discussed in
Section 5.4, the global model is not outperformed. From this, we conclude the
following:

Global classification models based on all available data models are not
consistently beaten by advanced techniques and should, therefore, always
be used for baseline comparisons.

7 Threats to Validity

There are several threats to the validity of our case study results and our
drawn conclusions. In the following, we will list both the internal and external
factors we identified.

7.1 Internal Threats

The major source for threats for the internal validity of our case study are
the choice of the clustering algorithms. We did not perform any tuning of
the clustering algorithms or test other clustering algortihms. The WHERE
and EM clustering algorithms may not be very good choices for local models
and the detection of homogeneous regions. Our modification of the QuadTree
algorithm to work with data outside the observed range during training may
also lead to bad results.

We did not sample k& used for the KNN model, but reused the value k =
10 that was used by Turhan et al (2009). A bad choice of &k could lead to
unnecessarily bad results for the KNN model. However, Turhan et al (2009)
use the same MDP data we use in our study, therefore, we believe that at
least for this data, the choice of k is good, even though we did not sample
this. Furthermore, He et al (2013) and Peters et al (2015) both use subsets
of the JSTAT data we use, also with £ = 10 and did not note any problems
specific to this choice of k. Only for the JPROC data, the value of k = 10 was
not evaluated, yet.

Moreover, we only used the KNN model as an example for transfer learn-
ing in order to evaluate H6 and RQ2. This means we only compared the

34 Steffen Herbold et al.

local model to a rather simple transfer learning approach that is often used
as baseline. Other transfer learning approaches that have shown promise in
the cross-project defect prediction literature (e.g., Watanabe et al, 2008; Ca-
margo Cruz and Ochimizu, 2009; Ma et al, 2012; Herbold, 2013; He et al,
2013; Zhang et al, 2014) may outclass the local models. Hence, our results
show only that local models fulfill some mimimun criterion to be considered
for cross-project defect predictions.

7.2 Construct Validity

We identified two major threats to the construct validity of our results. The
first threat is the data that was used. Due to problems with the mining pro-
cedure used (Jureczko and Madeyski, 2010) or due to inconsistencies (Gray
et al, 2011), the data may be noisy and contain misclassifications or wrong
metric values. In order to mitigate the influence of this threat, we used the
preprocessed version of the NASA MDP data. Moreover, we internally evalu-
ated if the performance on the JSTAT changes if only products with at least
100 classes and at most 95% of the data classified the same way. This was done
to check if filtering the data such that small products and extremely unbal-
anced products are removed changes the results. The results on this subset of
41 products are contained in the replication kit. There is no major deviation
between the obtained results in terms of F-measure. The AUC on the smaller
subset is only mildly improved with the ceiling still being 0.64 and with no
improvement greater than 0.065. Moreover, this relatively low performance
is in line with other literature on cross-project defect prediction that uses at
least 40 products of the JURECZKO data (Amasaki et al, 2015; Kawata et al,
2015). Hence, we submit that the construct in itself is not responsible for the
low performance values.

The second threat is that the criteria recall, precision, F-measure, error,
and AUC which we used for the evaluation of the results might be unsuitable.
The best choice of evaluation criteria is still a topic of discussion within the
community. Different criteria may yield different results which could lead to a
difference in the interpretation of the performance, which in turn might affect
our conclusions.

7.3 External Threats

Our main concern regarding the external validity of our results is that the data
we used might not be representative for software in general. Although we used
a quite large corpus of data within this study, it were still only 79 software
products. Therefore, we cannot be sure if our results have any external validity.
The fact that other studies have found to some degree similar results does not
help here, as the data used in those studies was a subset of the data we used.
Hence, we cannot rule out that the effect is random and depends purely on
the data that was used.

Global vs. Local Models for Cross-project Defect Prediction 35

Furthermore, the data sets we chose only contain either closed source data
(MDP) or open source data (JSTAT, JPROC). Data that contains a mixture
of closed and open source may yield different results. Additionaly, our data
did not contain any social metrics or context factors. The inclusion of these
factors may change our results. Further studies with different data that covers
these aspects are required.

8 Conclusion

In this article, we performed a conceptual replication study on local models
with the focus on cross-project defect prediction. To this aim, we compared
four local models, two based on the WHERE clustering algorithm and two
based on the EM clustering algorithm with a global model and a transfer
learning technique for cross-project predictions based on the k-nearest neigh-
bor algorithm. For both the WHERE and EM clustering algoritm we con-
sidered one configuration with normalized data and one without. Within our
replication study, we used three data sets and a total of 79 different software
versions. Our results show no consistent and statistically significant difference
between local and global models. The same holds true for the comparison
between the local models and the transfer learning algorithm.

These results are somewhat disappointing, because local models showed
promise in previous studies where they were applied to gain insight or in a
within-project context. However, we could not find the same positive effects for
predictions. This is in line with the conjecture of Bettenburg et al (2014) that
local models may be problematic for predictions. This finding seems to hold
for the cross-project context. Moreover, our results show that normalization
can be helpful, but also detrimental to the performance of local models and
that this depends on the clustering.

Additionally, we compared a strict cross-project defect prediction setting,
without data from previous versions of the same project allowed, with a mixed
setting where such versions are allowed. Our results indicate and advantage
in recall for the strict setting, but better overall performance in the mixed
setting.

However, the most interesting finding, to our mind, is that the global mod-
els actually performed similar and very close to being the best among all six
models that we used. While we cannot state that they are the best approach,
this finding at least implies that they should always be used for comparisons
for the evaluation of any cross-project approach, regardless whether it is a
transfer learning technique, local models, or something else.

In the future, we plan to combine local models with transfer learning tech-
niques into local transfer learning models, i.e., models that first determine
homogeneous regions and then use transfer learning to further harmonize the
within-cluster data with a target product. Moreover, if we are able to extend
the available training data with meta information about the project and en-
tity context, this may allow us better clustering to determine homogeneous

36 Steffen Herbold et al.

regions. Furthermore, recent research result by Tantithamthavorn et al (2016)
suggest that careful tuning of classifiers may be used for the improvement
of cross-project results, which we will investigate for local models in the fu-
ture. Finally, we plan to further investigate how well global models compare
to other transfer learning techniques in order to evaluate the state-of-the-art
of cross-project defect predictions.

References

Amasaki S, Kawata K, Yokogawa T (2015) Improving cross-project defect
prediction methods with data simplification. In: 41st Euromicro Conference
on Software Engineering and Advanced Applications (SEAA)

Bettenburg N, Nagappan M, Hassan A (2012) Think locally, act globally:
Improving defect and effort prediction models. In: Proceedings of the 9th
IEEE Working Conference on Mining Software Repositories (MSR), IEEE
Computer Society

Bettenburg N, Nagappan M, Hassan A (2014) Towards improving statistical
modeling of software engineering data: think locally, act globally! Empirical
Software Engineering pp 1-42

Caglayan B, Turhan B, Bener A, Habayeb M, Miranskyy A, Cialini E (2015)
Merits of organizational metrics in defect prediction: An industrial repli-
cation. In: Proceedings of the 37th International Conference on Software
Engineering (ICSE)

Camargo Cruz AE, Ochimizu K (2009) Towards logistic regression models
for predicting fault-prone code across software projects. In: Proceedings of
the 3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM), IEEE Computer Society

Carver JC (2010) Towards reporting guidelines for experimental replications:
A proposal. In: Proceedings of the International Workshop on Replication
in Empirical Software Engineering

Chidamber S, Kemerer C (1994) A metrics suite for object oriented design.
IEEE Transactions on Software Engineering 20(6):476-493

D’Ambros M, Lanza M, Robbes R (2010) An Extensive Comparison of Bug
Prediction Approaches. In: Proceedings of the 7th IEEE Working Confer-
ence on Mining Software Repositories (MSR), IEEE Computer Society

Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from Incom-
plete Data via the EM Algorithm. J of the Royal Statistical Society Series
B (Methodological) 39(1):1-38

Drummond C, Holte RC (2003) C4.5, class imbalance, and cost sensitivity:
why under-sampling beats over-sampling. In: Workshop on Learning from
Imbalanced Datasets II

Faloutsos C, Lin KI (1995) FastMap: A Fast Algorithm for Indexing, Data-
mining and Visualization of Traditional and Multimedia Datasets. SIGMOD
Rec 24(2):163-174

Global vs. Local Models for Cross-project Defect Prediction 37

Fraley C, Raftery AE (1999) MCLUST: Software for Model-Based Cluster
Analysis. Journal of Classification 16(2):297-306

van Gestel T, Suykens J, Baesens B, Viaene S, Vanthienen J, Dedene G,
de Moor B, Vandewalle J (2004) Benchmarking Least Squares Support Vec-
tor Machine Classifiers. Machine Learning 54(1):5-32

Ghotra B, McIntosh S, Hassan AE (2015) Revisiting the Impact of Classi-
fication Techniques on the Performance of Defect Prediction Models. In:
Proceedings of the 37th International Conference on Software Engineering
(ICSE)

Gray D, Bowes D, Davey N, Sun Y, Christianson B (2011) The misuse of
the NASA metrics data program data sets for automated software defect
prediction. In: Proceedings of the 15th Annual Conference on Evaluation &
Assessment in Software Engineering (EASE), IET

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009)
The WEKA data mining software: an update. ACM SIGKDD Explorations
Newsletter 11(1):10-18

Halstead MH (1977) Elements of Software Science (Operating and Program-
ming Systems Series). Elsevier Science Inc.

Han J, Kamber M, Pei J (2011) Data Mining: Concepts and Techniques. Mor-
gan Kaufmann

Hassan A (2009) Predicting faults using the complexity of code changes. In:
Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference
on, pp 78-88, DOI 10.1109/ICSE.2009.5070510

He P, Li B, Ma Y (2014) Towards cross-project defect prediction with im-
balanced feature sets. CoRR abs/1411.4228, URL http://arxiv.org/abs/
1411.4228

He Z, Shu F, Yang Y, Li M, Wang Q (2012) An investigation on the feasibility
of cross-project defect prediction. Automated Software Engineering 19:167—
199

He Z, Peters F, Menzies T, Yang Y (2013) Learning from Open-Source
Projects: An Empirical Study on Defect Prediction. In: Proceedings of the
7th International Symposium on Empirical Software Engineering and Mea-
surement (ESEM)

Henderson-Sellers B (1996) Object-oriented Metrics; Measures of Complexity.
Prentice-Hall Inc.

Herbold S (2013) Training data selection for cross-project defect prediction.
In: Proceedings of the 9th International Conference on Predictive Models in
Software Engineering (PROMISE), ACM

Herbold S (2015) Crosspare: A tool for benchmarking cross-project defect
predictions. In: Proceedings of the 4th International Workshop on Software
Mining (SoftMine)

Huang L, Port D, Wang L, Xie T, Menzies T (2010) Text Mining in Supporting
Software Systems Risk Assurance. In: Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineering (ASE), ACM

Jelihovschi E, Faria J, Allaman I (2014) ScottKnott: a package for performing
the Scott-Knott clustering algorithm in R. TEMA (S~ao Carlos) 15:3 — 17

38 Steffen Herbold et al.

Jiang Y, Cukic B, Ma Y (2008) Techniques for evaluating fault prediction
models. Empirical Software Engineering 13(5):561-595

Jureczko M, Madeyski L (2010) Towards identifying software project clusters
with regard to defect prediction. In: Proceedings of the 6th International
Conference on Predictive Models in Software Engineering (PROMISE),
ACM

Kawata K, Amasaki S, Yokogawa T (2015) Improving relevancy filter methods
for cross-project defect prediction. In: 3rd International Conference on Ap-
plied Computing and Information Technology/2nd International Conference
on Computational Science and Intelligence (ACIT-CSI)
Kitchenham B (2008) The role of replications in empirical software engi-
neeringa word of warning. Empirical Software Engineering 13(2):219-221
Kocaguneli E, Menzies T, Keung J, Cok D, Madachy R (2013) Active learning
and effort estimation: Finding the essential content of software effort esti-
mation data. Software Engineering, IEEE Transactions on 39(8):1040-1053,
DOIT 10.1109/TSE.2012.88

Kotsiantis S, Kanellopoulos D, Pintelas P (2006) Data preprocessing for su-
pervised leaning. Int J of Comp Sci 1(2):111-117

Ma Y, Luo G, Zeng X, Chen A (2012) Transfer learning for cross-company
software defect prediction. Inf Software Technology 54(3):248 — 256

Madeyski L, Jureczko M (2015) Which process metrics can significantly im-
prove defect prediction models? an empirical study. Software Quality Jour-
nal 23(3):393-422, DOI 10.1007/s11219-014-9241-7, URL http://dx.doi.
org/10.1007/s11219-014-9241-7

Mann HB, Whitney DR (1947) On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. The Ann of Math Stat
18(1):pp. 50-60

McCabe TJ (1976) A complexity measure. IEEE Transactions on Software
Engineering 2(4):308-320

Meneely A, Williams L, Snipes W, Osborne J (2008) Predicting failures with
developer networks and social network analysis. In: Proceedings of the 16th
ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, ACM, New York, NY, USA, SIGSOFT ’08/FSE-16, pp 13-23, DOI
10.1145/1453101.1453106, URL http://doi.acm.org/10.1145/1453101.
1453106

Menzies T, Turhan B, Bener A, Gay G, Cukic B, Jiang Y (2008) Implications of
Ceiling Effects in Defect Predictors. In: Proceedings of the 4th International
Workshop on Predictor Models in Software Engineering (PROMISE), ACM

Menzies T, Butcher A, Marcus A, Zimmermann T, Cok D (2011) Local vs.
global models for effort estimation and defect prediction. In: Proceedings
of the 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE Computer Society

Menzies T, Butcher A, Cok D, Marcus A, Layman L, Shull F, Turhan B, Zim-
mermann T (2013) Local versus Global Lessons for Defect Prediction and
Effort Estimation. IEEE Transactions on Software Engineering 39(6):822—
834

Global vs. Local Models for Cross-project Defect Prediction 39

Menzies T, Pape C, Steele C (2014) tera-promise. http://openscience.us/
repo/

Nam J, Kim S (2015) Heterogeneous defect prediction. In: Proceedings of
the 10th Joint Meeting of the European Software Engineering Confer-
ence (ESEC) and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE), DOI 10.1145/2786805.2786814, URL http:
//doi.acm.org/10.1145/2786805.2786814

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. In: Proceedings of the
35th International Conference on Software Engineering (ICSE)

Ngomo AcN (2009) Low-Bias Extraction of Domain-Specific Concepts. Ph.D.
Thesis

Pan SJ, Yang Q (2010) A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering 22(10):1345-1359

Peters F, Menzies T, Gong L, Zhang H (2013) Balancing privacy and utility
in cross-company defect prediction. IEEE Transactions on Software Engi-
neering 39(8):1054-1068

Peters F, Menzies T, Layman L (2015) LACE2: Better Privacy-Preserving
Data Sharing for Cross Project Defect Prediction. In: Proceedings of the
37th International Conference on Software Engineering (ICSE)

Premraj R, Herzig K (2011) Network versus code metrics to predict defects:
A replication study. In: Proceedings of the International Symposium on
Empirical Software Engineering and Measurement (ESEM)

Rahman F, Posnett D, Devanbu P (2012) Recalling the “imprecision” of cross-
project defect prediction. In: Proceedings of the ACM SIGSOFT 20th In-
ternational Symposium on the Foundations of Software Engineering (FSE),
ACM

Runeson P, Hést M (2009) Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering 14(2):131—
164

Scanniello G, Gravino C, Marcus A, Menzies T (2013) Class level fault pre-
diction using software clustering. In: Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE
Computer Society

Schikuta E, Schikuta E (1993) Grid-Clustering: A Hierarchical Clustering
Method for Very Large Data Sets. In: Proceedings of the 15th International
Conference on Pattern Recognition

Schélkopf B, Smola AJ (2002) Learning with Kernels. MIT Press

Scott AJ, Knott M (1974) A cluster analysis method for grouping means in
the analysis of variance. Biometrics 30(3):pp. 507-512

Shepperd M, Song Q, Sun Z, Mair C (2013) Data Quality: Some Comments
on the NASA Software Defect Datasets. IEEE Transactions on Software
Engineering 39(9):1208-1215

Shull F, Carver J, Vegas S, Juristo N (2008) The role of replications in empir-
ical software engineering. Empirical Software Engineering 13(2):211-218

Siegmund J, Siegmund N, Apel S (2015) Views on Internal and External Va-
lidity in Empirical Software Engineering. In: 37th International Conference

40 Steffen Herbold et al.

on Software Engineering

Tan M, Tan L, Dara S, Mayeux C (2015) Online defect prediction for imbal-
anced data. In: Proceedings of the 37th International Conference on Software
Engineering (ICSE)

Tantithamthavorn C, MclIntosh S, Hassan AE, Thara A, Matsumoto Ki (2015)
The impact of mislabelling on the performance and interpretation of defect
prediction models. In: Proceedings of the 37th International Conference on
Software Engineering (ICSE)

Tantithamthavorn C, MclIntosh S, Hassan AE, Matsumoto K (2016) Auto-
mated parameter optimization of classification techniques for defect pre-
diction models. In: Proceedings of the 38th International Conference on
Software Engineering, ACM, DOI 10.1145/2884781.2884857

Turhan B, Menzies T, Bener A, Di Stefano J (2009) On the relative value
of cross-company and within-company data for defect prediction. Empirical
Software Engineering 14:540-578

Watanabe S, Kaiya H, Kaijiri K (2008) Adapting a fault prediction model to
allow inter language reuse. In: Proceedings of the 4th International Work-
shop on Predictor Models in Software Engineering (PROMISE), ACM

Xu R, Wunsch I D (2005) Survey of clustering algorithms. IEEE Transactions
on Neural Networks 16(3):645-678

Zhang F, Mockus A, Keivanloo I, Zou Y (2014) Towards Building a Universal
Defect Prediction Model. In: Proceedings of the 11th Working Conference
on Mining Software Repositories (MSR), ACM

Zhang F, Mockus A, Keivanloo I, Zou Y (2015) Towards building a uni-
versal defect prediction model with rank transformed predictors. Empiri-
cal Software Engineering pp 1-39, DOI 10.1007/s10664-015-9396-2, URL
http://dx.doi.org/10.1007/s10664-015-9396-2

Zimmermann T, Nagappan N, Gall H, Giger E, Murphy B (2009) Cross-project
defect prediction: a large scale experiment on data vs. domain vs. process.
In: Proceedings of the the 7th Joint Meeting European Software Engineering
Conference (ESEC) and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (FSE), ACM, pp 91-100

A Metrics

A.1 JSTAT Data

The following metrics are part of the JSTAT data:

— WMC: weighted method count, number of methods in a class

— DIT: depth of inheritance tree

— NOC: number of children

— CBO: coupling between objects, number of classes coupled to a class

— RFC: response for class, number of different methods that can be executed if the class
receives a message

— LCOM: lack of cohesion in methods, number of methods not related through the sharing
of some of the class fields

Global vs. Local Models for Cross-project Defect Prediction 41

LCOMS3: lack of cohesion in methods after Henderson-Sellers (1996)

NPM: number of public methods

DAM: data access metric, ratio of private (protected) attributes to total number of
attributes in the class

MOA: measure of aggregation, number of class fields whose types are user defined classes
MFA: measure of functional abstraction, ratio of the number of methods inherited by a
class to the total number of methods accessible by the member methods of the class
CAM: cohesion among methods of class, relatedness of methods based upon the param-
eter list of the methods

IC: inheritance coupling, number of parent classes to which the class is coupled

CBM: coupling between methods, number of new/redefined methods to which all the
inherited methods are coupled

AMC: average method complexity

Ca: afferent couplings

Ce: efferent couplings

CC: cyclomatic complexity

Max(CC): maximum cyclomatic complexity among methods

Avg(CCQC): average cyclomatic complexity among methods

For a detailed explanation see Jureczko and Madeyski (2010).

A.2 MDP Data

The following metrics are part of the MDP data. This is the common subset of metrics that
is obtained by all projects within the MDP data set:

LOC_TOTAL: total lines of code

LOC_EXECUTABLE: exectuable lines of code

LOC_COMMENTS: lines of comments

LOC_CODE_AND_COMMENT: lines with comments or code
NUM_UNIQUE_OPERATORS: number of unique operators
NUM_UNIQUE_OPERANDS: number of unique operands

NUM_OPERATORS: total number of operators

NUM_OPERANDS: total number of operands

HALSTEAD_VOLUME: Halstead volume (see Halstead (1977))
HALSTEAD_LENGTH: Halstead length (see Halstead (1977))
HALSTEAD_DIFFICULTY: Halstead difficulty (see Halstead (1977))
HALSTEAD_EFFORT: Halstead effort (see Halstead (1977))
HALSTEAD_ERROR_EST: Halstead Error, also known as Halstead Bug ((see Halstead
(1977)))

HALSTEAD_PROG_TIME: Halstead Pro

BRANCH_COUNT: Number of branches

CYCLOMATIC_.COMPLEXITY: Cyclomatic complexity (same as CC in the JSTAT
data)

DESIGN_COMPLEXITY:: design complexity

A.3 JPROC Data

The following metrics are part of the JPROC data:

CBO: coupling between objects

DIT: depth of inheritance tree

fanIn: number of other classes that reference the class
fanOut: number of other classes referenced by the class
LCOM: lack of cohesion in methods

NOC: number of children

RFC: response for class

42

Steffen Herbold et al.

WMC: weighted method count

NOA: number of attributes

NOAI: number of attributes inherited
LOC: lines of code

NOM: number of methods

NOMI: number of methods inherited
NOPRA: number of private attributes
NOPRM: number of private methods
NOPA: number of public attributes
NOPM: number of public methods
NR: number of revisions

NREF: number of times the file has been refactored
NAUTH: number of authors

LADD: sum of lines added
max(LADD): maximum lines added
avg(LADD): average lines added
LDEL: sum of lines removed
max(LDEL): maximum lines deleted
avg(LDEL): average lines deleted
CHURN: sum of code churn
max(CHURN): maximum code churn
avg(CHURN): average code churn
AGE: age of the file

WAGE: weighted age of the file

For a detailed explanation see D’Ambros et al (2010).

