
Transparent Model-Driven Provisioning of
Computing Resources for Numerically Intensive

Simulations

Fabian Korte1, Alexander Bufe2, Christian Köhler3,
Gunther Brenner2, Jens Grabowski1, and Philipp Wieder3

1 University of Goettingen, Institute of Computer Science
37077 Goettingen, Germany

2 Clausthal University of Technology, Institute of Applied Mechanics
38678 Clausthal-Zellerfeld, Germany

3 Gesellschaft fuer wissenschaftliche Datenverarbeitung mbH Goettingen (GWDG)
37077 Goettingen, Germany

Abstract. Many simulations require large amounts of computing power
to be executed. Traditionally, the computing power is provided by large
high performance computing clusters that are solely built for this pur-
pose. However, modern data centers do not only provide access to these
high performance computing systems, but also offer other types of com-
puting resources e.g., cloud systems, grid systems, or access to specialized
computing resources, such as clusters equipped with accelerator hard-
ware. Hence, the researcher is confronted with the choice of picking a
suitable computing resource type for his simulation and acquiring the
knowledge on how to access and manage his simulation on the resource
type of choice. This is a time consuming and cumbersome process and
could greatly benefit from supportive tooling. In this paper, we intro-
duce a framework that allows to describe the simulation application in
a resource-independent manner. It furthermore helps to select a suitable
resource type according to the requirements of the simulation applica-
tion and to automatically provision the required computing resources.
We demonstrate the feasibility of the approach by providing a case study
from the area of fluid mechanics.

1 Introduction

Scientific simulations are often computation intensive and time consuming and
can highly profit from choosing a suitable computing resource type and scale.
However, choosing the right computing resource and an appropriate scale is not
a trivial task, especially in modern computing centers that offer access to a het-
erogeneous infrastructure including cloud services, high performance computing
clusters and clusters with specialized accelerators (e.g., GPU cards). All of these
different resource types have their own technical peculiarities and require the
user of the simulation application (the simulation scientist), to invest time to

learn when and how to use them. It might even be necessary to switch the re-
source type and scale during the lifetime of a simulation, e.g., when transitioning
from testing simulation code to running parameter studies, or when the prob-
lem size increases and suddenly requires more computing resources. To overcome
this burden, we develop a transparent integration mechanism for heterogeneous
computing resources. The goal is to semi-automatically deploy and execute sim-
ulation applications on the most suitable resource type. To achieve this goal, we
model the simulation application structure and behaviour in a resource-agnostic
way and provide model transformators that automatically transform the abstract
simulation application model into resource-specific models. In this paper, we in-
troduce a conceptual framework that implements the concept of model-driven
provisioning of computing resources for simulation application and provide a
case study on the application of the framework by modeling and deploying a
simulation from fluid mechanics.
The specific problems addressed in this work are:

P1 Developing and/or using a simulation application and making that applica-
tion run on various resource types are in principle orthogonal tasks. However
both of these tasks are handled by the simulation scientist in practice.

P2 The technical details which need to be learned in order to deploy the same
application on heterogeneous infrastructures burden the simulation scientist
with a significant investment of time that would be better spent on the
application or its use case itself.

P3 Even once several resource types have been shown to be compatible with a
certain application, choosing the optimal compute resource for a given job in
terms of hardware equipment and available software packages remains highly
non-straightforward.

The remainder of this paper is structured as follows: In Section 2, we introduce
the simulation application that serves as a use case in scope of this work. Af-
ter that, we discuss the conceptual framework, we propose to homogenize the
utilization of the heterogenous infrastructure in Section 3, followed by a short
introduction to the modeling language Topology and Orchestration Specification
for Cloud Applications (TOSCA), which we use as a basis for building the mod-
els in scope of the framework in Section 4. In Section 5, we discuss the modeling
of the use case application with help of the framework, followed by a discussion
of our findings and the limitations of the approach in Section 6. Finally, we pro-
vide an overview of related work in Section 7 and draw our conclusions and give
an outlook on future work in Section 8.

2 Use Case

As an exemplary use case, the simulation of the flow in porous media with the
Lattice-Boltzmann method (LBM) was chosen. LBM originates from Boltzmann’s
kinetic molecular dynamics and may be understood as a discretization in space
and time of the velocity-discrete Boltzmann equation. Its main advantages are

the inherent parallelism which leads to great performance on many architectures
and easy handling of complex geometries.
Particle filled beds are of great technical importance e.g., in catalysator packings.
Thus, the knowledge of the pressure drops in such packings is crucial. Confining
walls can have a significant influence on the pressure drop and therefore the
pressure drop as a function of the sphere diameter to wall distance ratio is sys-
tematically studied. A high number of packings is created using an algorithm
and a scale-resolving simulation of the flow in the packing with LBM is per-
formed (Figure 1). In previous work, measured and simulated pressure drops in
slit-type milli-channels with different packings were compared. Very good agree-
ment between measured and simulated pressure drops was achieved [8].
This use case can be seen as a typical parameter study which are common in
engineering. The same program is plurally started with different parameters (in
this case sphere diameter to wall distance ratio). The computational cost of a
single program run is relatively low and the high effort is mainly caused by the
multiple execution. The demands on the infrastructure are therefore different
from a single large simulation like an aerodynamic simulation with a great num-
ber of mesh cells and more complex domain boundaries, where the simulation
is distributed over many nodes which must be synchronized after every time
step and thus has higher demands on the network connection. A more involved
simulation may therefore necessitate the switch to a different infrastructure.
To shield the simulator from the manual adaptation of the provided resources to
the different simulation types, we build an infrastructure that helps to provision
resources of the correct type and scale transparently.

Fig. 1. Exemplary packings of spheres between two plates with a sphere diameter to
wall distance ratio of 4, 6 and 10.

3 Model-Driven Resource Provisioning

In our work, we use a formal model of the simulation application topology and its
behaviour to automatically provision suitable computing resources. The overall
workflow that is implemented by our infrastructure is depicted in Figure 2. To

HPC + GPUHPCCloud

Scientist

Grid

Step 1: select application model

Step 2: set parameters

Distribution Controller

Step 3: passed to

Step 6: deploys application on suitable resource type

Platform Independent

Models (PIMs) stored

in model respository

Step 4: selects suitable

resource type

Step 5: transforms

model into resource

specific model (PSM)

Resource Layer

Step 7: execute simulations

Step 8: terminate environment

Fig. 2. Workflow for model-driven resource provisioning for simulation applications.

distinguish the models used on the different layers we orientate on the notations
introduced with the Model Driven Architecture (MDA) [15], developed by the
Object Management Group (OMG).
A Platform Independent Model (PIM) encodes the structure and behaviour of
the simulation application in a target resource independent way and is stored
in a model repository. The simulator is then able to select (Step 1) and adapt
(Step 2) the existing models from the repository. The selected and instantiated
model is then passed to a Distribution Controller (Step 3) that evaluates the
parameters of the model and selects the suitable target infrastructure accord-
ingly (Step 4) and finally transforms the selected model into a Platform Specific
Model (PSM) that matches the requirements of the targeted infrastructure (Step
5). In the next step, the resource provisioning and the automated deployment of
the simulation application on the targeted resource is triggered (Step 6). After
that, the simulator is given access to the provided resource via a Command Line
Interface (CLI) and can execute his simulations accordingly (Step 7). When all
simulation runs are done, the simulator can collect the output data and triggers
the cleanup and termination of the provided infrastructure (Step 8).
Different resource-specific formats for defining the simulation application for the
different target infrastructures exist. We adopt the Topology and Orchestration
Specification for Cloud Applications (TOSCA) [12] which is currently developed
by a large technical consortium and allows to define the topology and the be-
haviour of cloud applications in a provider-agnostic way.
To build a format for describing the PIM, we extend TOSCA to not only be able
to capture cloud-specific information, but also the information that is necessary
to deploy the application on the other targeted resources, like classical HPC

or HPC+GPU setups. We first concentrate on utilizing the IBM Load Sharing
Facility (LSF) [9], i.e. generating jobscripts ready for submission. For a given
simulation application, this entails taking into account parameters that are fixed
upon deployment, for instance the infrastructure model for the compute cluster,
as well as parameters that may vary between execution steps like differing mesh
resolutions or choices of which data to operate on.
The model-driven approach is also employed to describe the infrastructure on
which the simulation application will be deployed and executed. Keeping the
application and infrastructure models up to date regarding evolving software
versions, for example of the Load Scheduler, is as important as making them
available to the simulation scientist in the first place. We therefore intend the
repository to be maintained independently for the application and infrastructure
models. This way, a PIM of the Load Scheduler is combined with information
about a specific cluster setup by its administrator to yield a PSM for the users.
The result is combined with the PIM for the simulation application, which can
in turn be maintained by its developers. Our approach exemplifies a separation
of concerns of the knowledge about the specific compute cluster and about the
simulation application from the technical details regarding the transformation of
their respective models in the Distribution Controller. Consequently, each type
of model can be developed by the group of people best equipped to do so, which
is a core tenet of MDA.
In summary, the MDA approach addresses the previously stated problems in the
following ways:

S1 Separation of concerns is an integral part of MDA - in the case at hand
this approach translates to models concerning the simulation application
and those describing the various resource types being designed by the appli-
cation developers/users and compute resource administrators respectively,
each contributing their domain-specific knowledge, instead of both sides be-
ing handled by the simulation scientist as outlined in (P1).

S2 If a convention for describing the interface between applications and resource
types is defined and adhered to by the designers of both types of models,
the time-investment for making a new resource type elegible for automatic
deployment has to be made only once instead of once per application, thereby
addressing (P2).

S3 Given the model for a specific intended application run and several resource
models, programmatically determining the resulting valid combinations can
lead to a more well-informed manual decision by the simulation scientist (cf.
(P3)) and ideally to an automated resource choice.

4 Application Modeling with TOSCA

The Topology and Orchestration Specification for Cloud Applications (TOSCA)
is a standard which is currently developed by the Organization for the Advance-
ment of Structured Information Standards (OASIS). Its goal is to standardize a

template format to describe cloud applications in a portable and reusable man-
ner, such that they can be deployed to TOSCA-compliant clouds of different
cloud providers. While the targeted resource type for TOSCA are cloud envi-
ronments, the defined modeling concepts are not resource type specific and we
utilize the concepts defined by TOSCA to model simulation applications in a
resource type independent way. According to the specification [12], TOSCA is
“a language to describe service components and their relationships using a ser-
vice topology, and it provides for describing the management procedures that
create or modify services using orchestration processes.” Therefore, it is able to
describe both the service structure as well as the processes that can be executed
on this structure.

ServiceTemplate

BoundaryDefinitions

TopologyTemplate

EntityType

name: String

PropertiesDefinition

element: String [0..*]
type: String [0..*]

0..1

CapabilityType

RequirementType

GroupTypeNodeType

RelationshipType

EntityTemplate

name: String [0..1]

ArtifactType

Capability

Properties

element: String [1..*]
value: String [1..*]

ArtifactTemplate

0..*
validMember

validSourceType

validTargetType

1

type

RelationshipTemplate

GroupTemplateNodeTemplate

target

source

0..*

0..*

0..1

member

CapabilityDefinition

RequirementDefinition

templates

types

type

0..*

0..*

0..*

Requirement

type

derivedFrom

1

Fig. 3. A simplified subset of the TOSCA metamodel.

A simplified subset of the TOSCA metamodel is depicted in Figure 3. A
ServiceTemplate captures the structure and also the life cycle operations of
the application. For the sake of brevity, we omit the modeling elements that are
used to define the life cycle operations, because they are not relevant for the
current status of our work. As part of ServiceTemplates, TopologyTemplates
can be defined. TopologyTemplates contain EntityTemplates, which can be
NodeTemplates that define e.g., the virtual machines or application compo-
nents, RelationshipTemplates that encode the relationships between the Node-

Templates, e.g., that a certain application component is deployed on a certain
virtual machine, or GroupTemplates4 that allow to group a number of Node-
Templates, which e.g., should be scaled together. Additionally, TOSCA de-
fines the EntityTemplates Capability, Requirement and ArtifactTemplate.
Capabilities are used to define that a NodeTemplate has a certain ability,
e.g., providing a container for running applications, and Requirements are used
to define that a certain NodeTemplate requires a certain Capability of an-
other NodeTemplate. The aforementioned RelationshipTemplates are used to
connect the Requirement of one NodeTemplate with a matching Capability

of another NodeTemplate. The ArtifactTemplate is used to model all kinds
of artifacts, such as source code, or binaries. All EntityTemplates can have
Properties, e.g., an IP address for a virtual machine, and a certain type that
references a corresponding EntityType. The EntityType defines the allowed
Properties through PropertyDefintions, and the allowed Capabilities and
Requirements through Capability- and RequirementDefinitions respectively.
Besides this abstract metamodel, the TOSCA [12] specification defines normative
types that should be supported by each TOSCA conformant cloud orchestra-
tor. These normative types include e.g., base types for cloud services and virtual
machines. More details on the model elements can be found in the TOSCA
specifications [12, 13].

5 Evaluation

In the following, we demonstrate how the defined framework can be used to
model our use case application from fluid mechanics and provision resources on
two different target platforms, namely an High Performance Computing (HPC)
system and an Infrastructure as a Service (IaaS) cloud. Therefore, we present
and discuss the models in the provisioning process for the different target re-
sources. To foster comprehensibility, we slightly modified the models and omit
some technical details.

5.1 Utilized Tooling

The Eclipse Modeling Framework (EMF) defines a common standard for struc-
tured data models, which conform to metamodels specified in the Ecore for-
mat [19]. We automatically converted the XML Schema Definition (XSD)-based
TOSCA specification to such a metamodel using the EMF tools, and parsed the
normative type definitions specified in YAML Aint Markup Language (YAML)
manually. Once the complete TOSCA metamodel was available in the Ecore
format, we were able to edit the application and resource models, verify them
against the constraints imposed by the respective metamodel, and persist them

4 At the time of this writing, two versions of the TOSCA standard exist, a formalized
version [12] in XML and a simplified rendering in YAML [13]. GroupTemplates and
GroupTypes are currently part of the TOSCA YAML rendering, but not part of the
TOSCA XML specification.

using the XML Metadata Interchange (XMI) format.
With the help of the domain-specific languages provided by the Eclipse Epsilon
project [20], Model-to-Model (M2M) and Model-to-Text (M2T) transformations
can be performed using various modeling techniques, in particular EMF. For ex-
ample, we implemented M2M transformations with the Epsilon Transformation
Language (ETL) in order to obtain the PSM for a concrete setup from the PIM
of the respective resource type, modeling an IaaS cloud standard or an HPC
batch system. Using the resulting model, the application PIM is transformed to
the PSM for deployment in a similar fashion. M2T transformations, on the other
hand, are realized using the Epsilon Generation Language (EGL), a template-
based format that is suitable for amend generic IaaS deployment scripts or HPC
jobscripts with the data of the deployment model.
While the metamodels, models and transformations can be implemented and
debugged in the Eclipse workbench for development purposes, in order to en-
able the user to focus on application deployment, we implement a command-line
interface which handles model transformations and template rendering as a stan-
dalone application.

5.2 Model of the fluid mechanics application

In Figure 4 the application model for Adaptive Mesh Refinement in Object-
oriented C++ (AMROC) [4], the fluid solver framework our simulation use case
is based on, is depicted. The software uses the parallelization standard Message
Passing Interface (MPI).

Type definitions: The central node type AMROCNType is equipped with three re-
quirement definitions: MPIClusterRDef models the fact that an MPI cluster is
necessary to run the software and allows specifying the necessary number of
nodes and the required MPI version via the properties of the corresponding
capability type MPIClusterCType, the requirement definition PackageRDef de-
fines the requirement for a specific mpi implementation given by the respective
capability type PackageCType, and finally HostRDef addresses the hardware
requirements imposed on the involved compute nodes, namely the amount of
memory and CPU cores, which constitute the properties of its respective capa-
bility type HostCType. In addition, an artifact type AnsibleRoleAType enables
the application model to provide scripts for the configuration management tool
Ansible5.

Templates: The requirements of a concrete simulation application based on AM-
ROC are modeled by a corresponding node template AMROCNTemplate to which
instances of the requirement definitions are assigned, providing values for the
properties specified by MPIClusterCType, PackageCType, and HostCType. Fi-
nally, AMROCCode references the provided configuration management script.

5 https://www.ansible.com/

AMROCNType: NodeType

uses

MPIClusterCType: CapabilityType

mpi-version: string
nodes: integer

HostCType: CapabilityType

cores: integer
ram: integer

AMROCNTemplate: NodeTemplate

type = AMROCNType

mpi: Requirement

nodes = 4
mpi-version = "mpi-3.1"

host: Requirement

type = HostRType

cores = 20
ram = 64396

AMROCCode: Artifact

type = AnsibeRoleAType

AnsibleRoleAType: ArtifactType

accelerator: string

type

MPIClusterRDef: RequirementDefinition

MPIClusterRType: RequirementType

mpi-version: string
nodes: integer

requiredCapabilityType

HostRDef: RequirementDefinition

HostRType: RequirementType

cores: integer
ram: integer

accelerator: string

type

requiredCapabilityType

PackageRDef: RequirementDefinition

PackageRType: RequirementType

name: string
version: string

type

requiredCapabilityType

PackageCType: CapabilityType

name: string
version: string

RunsOnMPIClusterRType: RelationshipType

mpipackage: Requirement

name = "Intel MPI Library"
version = "2017 Update 2"

type: MPIClusterRType type = PackageRType

DependsOnPackageRType: RelationshipType

Fig. 4. Platform independent model of the fluid mechanics application.

5.3 Model of batch target system

Our model of an HPC cluster using the Load Sharing Facility (LSF) as the batch
system is shown in Figure 5. Again, the graphical representation is separated for
type and template definitions: While the types section is specific only to the
batch system, the templates represent parts of the Scientific Compute Cluster
configuration as it is hosted at the Gesellschaft für wissenschaftliche Datenver-
arbeitung mbH Göttingen (GWDG).

HPCNodeNType: NodeType

HostCDef: CapabilityDefinition

type = HostCType

PackageCDef: CapabilityDefinition

type = PackageCType

uses

GWDGScientificComputeCluster:
GroupTemplate

type = HPCClusterGType

mpi: Capability

type = MPIClusterCType
nodes = 4
mpi-version = "mpi-3.1"

mpipackage: Capability

capability = PackageCType

name = "Intel MPI Library"
version = "2017 Update 2"

gwdd001: NodeTemplate

type = HPCComputeNType

dge001: NodeTemplate

type = HPCComputeNType

mpi: GroupTemplate

type = HPCQueueGType

mpi2: GroupTemplate

type = HPCNodeGroupGType

host: Capability

type = HostCType

cores = 20
ram = 64

host: Capability

type = HostCType

gpu: GroupTemplate

type = HPCQueueGType

gpuDlt: GroupTemplate

type = HPCNodeGroupGType

cores = 24
ram = 128
accelerator = "nVidia GForce GTX 1080

host: Capability

type = HostCType

cores = 24
ram = 128842
accelerator = "nVidia GeForce GTX 1080"

member

member

member

host: Capability

type = HostCType

cores = 20
ram = 64396

member

...

...

...

...

dge015: NodeTemplate

type = HPCNodeNType

gwdd168: NodeTemplate

type = HPCNodeNType

member
member

HPCClusterGType: GroupType

HPCQueueGType: GroupType

member

HPCNodeGroupGType: GroupType

member

member
member

MPIClusterCDef: CapabilityDefinition

type = MPIClusterCType

AMROCNTemplate: NodeTemplate

type = AMROCNType

mpi: Requirement

nodes = 4
mpi-version = "mpi-3.1"

host: Requirement

type = HostRType

cores = 20
ram = 64396

mpipackage: Requirement

name = "Intel MPI Library"
version = "2017 Update 2"

type: MPIClusterRType type = PackageRType

:RunsOnMPIClusterRType

:DependsOnPackageRType

SubmitsToQueueRType: RelationshipType

includedhost: Capability

type = HostCType

cores = 20
ram = 64396

:SubmitsToQueueRType

IncludedHostCDef: CapabilityDefinition

type = HostCType

Fig. 5. Provisioning and deployment model for the HPC target resource type.

Type definitions (LSF cluster): The group type HPCClusterGType serves as a
root element providing the capability PackageCDef, which exposes preinstalled
software packages, usually made available in the form of environment mod-
ules. These are specified using the properties of the corresponding capability
type PackageCType. The compute nodes in an LSF cluster, which are modeled
by HPCNodeNType, are organized in a tree-like structure of host groups mod-
eled by group elements HPCNodeGType. A capability definition HostCDef of type
HostCType (cf. Figure 4) is used to define each node’s hardware specifications.
For the available job submission queues of type HPCQueueGType further capabili-
ties are generated dynamically: IncludedHostCDef, which is of the same capabil-
ity type used for individual hosts, allows the Distribution Controller to match the
application model’s requirements for HostCType against the configured queues
directly. MPIClusterCDef marks the queue as suitable for submitting MPI jobs
(cf. Figure 4 for the definition of MPIClusterCType).
The relationship type SubmitsToQueueRType is used for choosing one of the
queues during deployment of the application. Finally, the queue references one
or more host groups as members.

Templates (GWDG Scientific Compute Cluster): The central group type HPC-

ClusterGType is instantiated as the group template GWDGScientificCompute-

Cluster. The capability type PackageCType is used to specify the available MPI
library version by its instance mpipackage.
Two representative examples, the mpi and gpu queues are given as group in-
stances of HPCQueueGType, along with representatively chosen host groups as
members of type HPCNodeGType. Their members are in turn models of the avail-
able compute nodes, specified by a node template of type HPCNodeNType each.
The hardware capabilities of these nodes, namely the number of cores, amount of
installed memory and type of eventually installed GPU accelerator are described
by capability assignments of type HostCType.

AMROC deployment on the batch system: As an example, the model elements
relevant for deploying the AMROC application and submitting a job to the mpi
queue are shown as well: An instance AMROCNTemplate of AMROCNType provides
concrete values for its associated requirements, which are matched to the globally
defined mpipackage as well as the queue-specific capabilities includedhost and
mpi via the respectively suitable relationship.

5.4 Model of IaaS cloud target system

Figure 6 depicts the model for the IaaS cloud system. One fundamental difference
to the batch system is that compute nodes can be created and configured on
demand according to simulation application requirements, including the (virtual)
hardware, the installed software and the operating system on the compute nodes.

Type definitions (Cloud orchestration): The type definitions depicted in the up-
per part of the figure orientate on the TOSCA types that are defined and utilized

uses

floatingip: NodeTemplate

type = FloatingIP

ip = 192.168.0.1

nfsstorage: NodeTemplate

type = VolumeNType

size = 1000

mpiworker: NodeTemplate

type = ApplicationNType

roles = [mpi, nfsclient]

mpihost: NodeTemplate

type = ServerNType

image = ...
flavor = ...

:ContainedInRType

gatewayhost: NodeTemplate

type = ServerNType

image = m1.medium
flavor = Ubuntu16.04

:DependsOnRType

:ContainedInRType

:ConnectedToRType

:ConnectedToRType scalinggroup: GroupTemplate

type = MPIScalingGroupGType

instances = ...

member

member

hostconfig: Capability

type = HostCType

cores = 20
ram = 64396

host: Capability

type = HostCType

cores = 4
ram = 8196

customizedMPICluster: NodeTemplate

type = MPIClusterGType

mpipackage: Capability

type = PackageCType

name = "Intel MPI Library"
version = "2017 Update 2"

member member

AMROCNTemplate: NodeTemplate

type = AMROCNType

mpi: Requirement

nodes = 4
mpi-version = "mpi-3.1"

host: Requirement

type = HostRType

cores = 20
ram = 64396

mpipackage: Requirement

name = "Intel MPI Library"
version = "2017 Update 2"

type: MPIClusterRType type = PackageRType

mpiconfig: Capability

type = MPIClusterCType

nodes = 4
mpi-version = "mpi-3.1"

:DependsOnPackageRType

:DeployedOnScalingGroupRType
:RunsOnMPIClusterRType

ConnectedToRType: RelationshipType

OfferedHostConfig: CapabilityDefinition

type = HostCType

MPIClusterCDef: CapabilityDefinition

type = MPIClusterCType

PackageCDef: CapabilityDefinition

type = PackageCType

0 *

VolumeNType: NodeType

size: integer

1 *

FloatingIPNType: NodeType

ip: string

ContainedInRType: RelationshipType

MPIScalingGroupGType: GroupType

instances: integer

DependsOnRType: RelationshipType

ApplicationNType: NodeType

roles: list

DeployedOnScalingGroupRType: RelationshipType

MPIClusterGType: GroupType

member

member

member

ServerNType: NodeType

flavor: string
image: string

gateway: NodeTemplate

type = ApplicationNType

roles = [mpi, nfsserver]

Fig. 6. Provisioning and deployment for the IaaS target resource type.

by the TOSCA-compliant cloud orchestrator Cloudify6 for modeling cloud re-
sources of an OpenStack7 cloud. The group type MPIClusterGType serves as
a root element providing the capability PackageCDef, which exposes software
packages for which installation scripts are available and which can therefore be
installed on demand. The node type ServerNType abstracts the notion of a Vir-
tual Machine (VM) that can be started in the IaaS cloud. Its properties flavor
and image encode the hardware configuration and the operating system respec-
tively. The node type VolumeNType models an external block-storage device that
can be attached to a running VM and the node type FloatingIPNType allows to
define a publicly reachable IP address for a VM. Finally, ApplicationNType is a
node type used to model an application that should be installed on the deployed
virtual machine, in the case of the prototypical implementation via Ansible roles
referenced by its property roles.
The group type ScalingGroupGType allows to group templates of the type
ServerNType and ApplicationNType to be scaled together. Moreover, it is used
to define the virtual hardware configuration of the contained VMs via its ca-
pability definition OfferedHostConfig of type HostCType. The fact that the
group is configured as an MPI cluster is captured by defining the capability
MPIClusterCDef (cf. Figure 4 for the definitions of both capability types). This
capability is also the target of the relationship DeployedOnScalingGroup used
for application deployment.
Three additional relationship types ConnectedToRType, ContainedInRType and
DependsOnRType are defined that have the following semantics: ConnectedTo-
RType expresses a connection between two entity types, ContainedInRType ex-
presses the fact that an entitiy type is part of another entity type and the
relationship type DependsOnRType expresses a general dependency between two
entity types.

Templates (MPI cluster infrastructure): The group type MPIClusterGType is in-
stantiated as the node template customizedMPICluster, whose PackageCType

instance mpipackage specifies the MPI version that can be installed.
The node template gatewayhost models a VM that is reachable from outside
the cloud via an assigned IP-address, modeled by the node template floatingip,
while the node template gateway models its software configuration. The gateway-
host is connected to an Network File System (NFS)-storage volume, modeled
by the node template nfsstorage that is shared among the MPI-enabled worker
nodes. The MPI worker nodes are modeled by the node template mpihost and
its assigned software configurations mpiworker. The node templates mpihost

and mpiworker are members of a group template scalinggroup: According to
the number of compute nodes that are required by the simulation application
(cf. Figure 4)), the property instances is used to replicate the node templates
given by the property members and all relationships connecting them. In this
way, we are able to scale the number of compute nodes according to the resource

6 http://cloudify.co
7 http://www.openstack.org

demand of the application. The capabilities mpiconfig and hostconfig assignet
to scalinggroup provide concrete values for the available MPI version and the
virtual hardware specifications respectively.

AMROC deployment in the cloud: As in the aforementioned case of the batch
system, the deployment model adds the instance AMROCNTemplate of AMROCNType
providing concrete values for the associated hardware and MPI requirements
which are connected to the infrastructure model’s capabilities by relationships.

6 Discussion

Our approach applies the MDA solution strategies to the problems outlined
above as follows:

(P1,S1) We were able to construct the application model for AMROC in a
resource-independent way, while on the other hand the models describing
an IaaS cloud and an HPC cluster using LSF are focused on the logic of
the respective resource types only. These examples indicate that modeling
anything but the application itself can in principle be removed from the
scope of the simulation scientist.

(P2,S2) Exposing both the requirements of the simulation application and the
capabilities of both resource types considered here by referring to a common
set of capability types makes application and resource models respectively
interchangeable.

(P3,S3) The existence of a particular Capability within a given resource model
as well as the concrete values of its properties enable an automatic choice of
a suitable compute resource.

6.1 Limitations

Currently, we focus on the provisioning and deployment of the resources for the
simulation application, and especially do not consider the following points:

• We assume the compiled simulation to be able to run on all eligible resource
types. However, incorporating the build process as part of the model trans-
formation would enable the same application to be automatically deployed
to all hardware architectures it compiled for.

• Platform-dependent code modifications are currently out of scope, therefore
only the simulation code as whole is part of the application model. Exam-
ples would be the configuration of load-balancing schemes in a parallelization
workload, moving parts of a calculation to an accelerator depending on its
availability or even generating the simulation code from a model of the un-
derlying algorithm (cf. [14]).

• In the present work, the automated choice of a compute resource is based
solely on the data found in a corresponding resource model. Including the
results from monitoring previous jobs, in particular in the form of job chains
composed of comparable workloads such as parameter studies, would enable
us to adjust the parameters of subsequent deployments more precisely.

• The scope of our architecture is currently restricted to handling a single ap-
plication run. In practice, a combination of multiple jobs, such as the cleaning
of input data, choosing the next simulation step based on the data of the pre-
vious one and reduction of the results, compose the entire workflow that is
ultimately of interest. A model of this high-level view of the simulation needs
to include the results of the present work as a combinable unit. Vukojevic-
Haupt et al. [22] describe an approach for the provisioning of a cloud-based
middleware intended to particularly handle simulation workflows.

• We do not consider data management tasks associated with the application
run at this point, such as copying data back and forth between the simulation
scientist’s system and the compute resource or persisting and sharing the
results using independent research data management infrastructures.

7 Related Work

Different projects address specifically the use of models or Domain-Specific Lan-
guages (DSLs) to target the execution of scientific software in a cloud environ-
ment, e.g., Bunch et al. [3] define a DSL for the management of HPC applications
in the cloud, and Qashsa et al. [16] utilize TOSCA to model scientific workflows
for the cloud. Furthermore research has been conducted to provide scientific ap-
plications as services in a cloud environment, e.g., Vukojevic-Haupt et al. [21]
define a middleware to deploy scientific applications as services, and Limmer et
al. [10] utilize the cloud-standard Open Cloud Computing Interface (OCCI) [11]
to steer simulation applications in the cloud. Similar to the problem of heteroge-
neous resource types, is the problem of vendor-specific Application Programming
Interfaces (APIs) and the service heterogeneity of different cloud providers, be-
cause this makes it infeasible to switch between the offerings. Ardagna et al. [1]
propose the use of MDA to model cloud applications in a cloud-provider indepen-
dent fashion, and Quinton et al. [17] provide a platform to select and configure
a specific cloud-offering based on models. Further approaches aiming to provide
provider-agnostic frameworks for cloud-based applications [5, 7] and to improve
cloud interoperability by combining existing applications using TOSCA [18] ex-
ist, but none of the aforementioned solutions discuss the problem of addressing
different types of target resources outside the realm of cloud providers. The OC-
CIware project [23] showed that also the cloud standard OCCI can be used to
model and manage all kinds of resources, but the standard does not provide
the functionality to define requirements and capabilities as needed for our ar-
chitecture, and the automated mapping to a specific infrastructure type is not
addressed.
Flissi et al. [6] developed a model-driven method to deploy distributed systems
on Grids. In contrast to our work, they do not consider the automated mapping
to a specific resource and also do not face the problem with dynamically adapt-
able resource target types, such as cloud systems. Ober et al. [14] discuss the
use of model-driven engineering techniques for the development of HPC appli-
cations and Arkin et al. [2] provide a model-driven method to map algorithms

to a certain parallel computing platforms, such as MPI or OpenMP. In contrast
to our work, both works directly consider the developed code, whereby we focus
on the provisioning of the computing resources.

8 Conclusions and Outlook

We develop an architecture which provides a transparent resource provisioning
mechanism for simulation applications for heterogeneous computing infrastruc-
tures, which are today’s reality and in many data centers. The goal is to shield
the simulation scientist from complicated infrastructure internals. In this paper,
we presented the initial architecture, which orientates on the MDA and demon-
strated its feasibility with the help of a LBM simulation from fluid mechanics.
Future work includes the adaptation of the strict resource requirements modeled
on a per-host basis in our approach to a more flexible format that allows the
Distribution Controller to split, for example, the same total amount of CPU
cores and memory in different ways according to the available hardware. An-
other possible extension of the architecture consists of logging and analyzing
the achieved application performance in order to improve the choices made in
following iterations of deploying the same application.

Acknowledgements

We thank the Simulationswissenschaftliches Zentrum Clausthal-Göttingen (SWZ)
for financial support.

References

1. Ardagna, D., Nitto, E.D., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria,
F., Casale, G., Matthews, P., Nechifor, C.S., Petcu, D., Gericke, A., Sheri-
dan, C.: Modaclouds: A model-driven approach for the design and execu-
tion of applications on multiple clouds. In: 2012 4th International Workshop
on Modeling in Software Engineering (MISE). pp. 50–56. IEEE (June 2012).
https://doi.org/10.1109/MISE.2012.6226014

2. Arkın, E., Tekinerdogan, B., İmre, K.M.: Model-driven approach for supporting the
mapping of parallel algorithms to parallel computing platforms. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) Model-Driven Engineering Lan-
guages and Systems. pp. 757–773. Springer (2013). https://doi.org/10.1007/978-3-
642-41533-3 46

3. Bunch, C., Chohan, N., Krintz, C., Shams, K.: Neptune: A domain specific lan-
guage for deploying hpc software on cloud platforms. In: Proceedings of the 2nd
International Workshop on Scientific Cloud Computing. pp. 59–68. ScienceCloud
’11, ACM (2011). https://doi.org/10.1145/1996109.1996120

4. Deiterding, R.: AMROC - Adaptive Mesh Refine-
ment in Object-oriented C++ (2017), Available Online:
http://www.vtf.website/asc/wiki/bin/view/Amroc/WebHome, Last Retrieved:
08.11.2017

5. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-
ing a mosaic of clouds. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro,
M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander, M.
(eds.) Euro-Par 2010 Parallel Processing Workshops. pp. 571–578. Springer (2011).
https://doi.org/10.1007/978-3-642-21878-1 70

6. Flissi, A., Dubus, J., Dolet, N., Merle, P.: Deploying on the grid with
deployware. In: 2008 Eighth IEEE International Symposium on Clus-
ter Computing and the Grid (CCGRID). pp. 177–184. IEEE (2008).
https://doi.org/10.1109/CCGRID.2008.59

7. Guilln, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented framework
for developing cross cloud migratable software. Journal of Systems and Software
86(9), 2294 – 2308 (2013). https://doi.org/10.1016/j.jss.2012.12.033

8. Hofmann, S., Bufe, A., Brenner, G., Turek, T.: Pressure drop study on packings
of differently shaped particles in milli-structured channels. Chemical Engineering
Science 155, 376–385 (2016). https://doi.org/10.1016/j.ces.2016.08.011

9. IBM Corporation: Introduction to IBM Platform LSF, Available Online:
https://www.ibm.com/support/knowledgecenter/SSETD4 9.1.2/lsf foundations/
lsf introduction to.html, Last Retrieved: 08.11.2017

10. Limmer, S., Srba, M., Fey, D.: Performance investigation and tuning in the inter-
operable cloud4e platform. In: Euro-Par 2014: Parallel Processing Workshops. pp.
85–96. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-14313-2 8

11. Nyrén, R., Edmonds, A., Papaspyrou, A., Metsch, T., Parák, B.: Open
Cloud Computing Interface - Core (September 2016), [Available Online:
http://ogf.org/documents/GFD.221.pdf]

12. OASIS: Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) 1.0 (November 2013), Available Online: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, Last Retrieved:
08.11.2017

13. OASIS: TOSCA Simple Profile in YAML Version 1.1 (August 2016),
Available Online: http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-
YAML/v1.1/csprd01/TOSCA-Simple-Profile-YAML-v1.1-csprd01.html, Last
Retrieved: 08.11.2017

14. Ober, I., Palyart, M., Bruel, J.M., Lugato, D.: On the use of models for high-
performance scientific computing applications: an experience report. Software &
Systems Modeling 17(1), 319–342 (Feb 2018). https://doi.org/10.1007/s10270-016-
0518-0

15. Object Management Group: Model Driven Architecture, Available Online:
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf, Last Retrieved: 08.11.2017

16. Qasha, R., Cala, J., Watson, P.: Towards automated workflow deployment in the
cloud using tosca. In: 2015 IEEE 8th International Conference on Cloud Comput-
ing. pp. 1037–1040. IEEE (2015). https://doi.org/10.1109/CLOUD.2015.146

17. Quinton, C., Romero, D., Duchien, L.: Saloon: a platform for selecting and config-
uring cloud environments. Software: Practice and Experience 46(1), 55–78 (2016).
https://doi.org/10.1002/spe.2311

18. Soldani, J., Binz, T., Breitenbcher, U., Leymann, F., Brogi, A.: Toscamart: A
method for adapting and reusing cloud applications. Journal of Systems and Soft-
ware 113, 395 – 406 (2016). https://doi.org/10.1016/j.jss.2015.12.025

19. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0. Addison-Wesley Professional, 2nd edn. (2009)

20. The Eclipse Foundation: Epsilon, Available Online: https://eclipse.org/epsilon/,
Last Retrieved: 08.11.2017

21. Vukojevic-Haupt, K., Haupt, F., Leymann, F.: On-demand provisioning of work-
flow middleware and services into the cloud: an overview. Computing 99(2), 147–
162 (Feb 2017). https://doi.org/10.1007/s00607-016-0521-x

22. Vukojevic-Haupt, K., Haupt, F., Leymann, F., Reinfurt, L.: Bootstrap-
ping complex workflow middleware systems into the cloud. In: 2015 IEEE
11th International Conference on e-Science. pp. 126–135. IEEE (2015).
https://doi.org/10.1109/eScience.2015.69

23. Zalila, F., Challita, S., Merle, P.: A model-driven tool chain for occi. In: Panetto,
H., Debruyne, C., Gaaloul, W., Papazoglou, M., Paschke, A., Ardagna, C.A.,
Meersman, R. (eds.) On the Move to Meaningful Internet Systems. OTM 2017
Conferences. pp. 389–409. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69462-7 26

