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Existing solutions for automatic scaling of appli-
cations in the cloud focus on the requirements of
web services. A number of application servers is
deployed, a load balancer is utilized to distribute
the requests to these application servers, and new
application servers are launched and configured
when the requests exceed a certain capacity. How-
ever, the requirements for scaling scientific appli-
cations in a cloud are different. Often, these appli-
cations are used by a single scientist and the com-
putational load is defined by the complexity of the
model to be computed rather than by the num-
ber of users. In this paper, we present an alterna-
tive approach to scale scientific applications in the
cloud. Hereby, the deployment scaling is driven by
a domain model defined by the scientist.

1 RESEARCH PROBLEM

Todays scientific research and simulations largely
depend on computing resources. While grid com-
puting offered the possibility to share and combine
large computing resources already in the past, cloud
computing offers more flexibility and automatic scal-
ing features when deploying distributed applications.
Large-scale international projects, e.g., Helix Nebula1

and the EGI Federated Cloud2 exist, that leverage the
usage of inter-connected clouds for the scientific com-
munity. While cloud computing has penetrated many
business domains, the adoption in the scientific com-
munity has not been that enthusiastic. Bunch at al.
(Bunch et al., 2012) identify three major reasons for
this observation:

1. Cloud systems are diverse and code written for

1Helix Nebula: http://www.helix-nebula.eu
2EGI Federated Cloud: https://www.egi.eu/

infrastructure/cloud/

one cloud platform can not easily be ported to an-
other platform (“vendor lock-in”).

2. Current cloud systems are designed for the execu-
tion of applications from the web service domain.

3. Using cloud computing requires user expertise,
rendering it inaccessible for non-computer scien-
tists.

The first issue has been addressed recently, by
introducing techniques known from Model-Driven
Development (MDD) to the design of cloud appli-
cations (see e.g. MODAClouds (Ardagna et al.,
2012)) and also by the proliferation of standards
like the Topology Orchestration and Specification
for Cloud Applications (TOSCA) (OASIS, 2013) for
Cloud Orchestration and the Open Cloud Computing
Interface (OCCI) (Nyren et al., 2011). The two later
points remain as open issues. To address these issues,
we introduce a framework that uses information from
the domain of the scientist to appropriately scale
scientific applications in cloud environments. By
leveraging the information encoded in the problem
definition to scale the infrastructure, we enable
scientists to focus on their domain rather than being
distracted by complicated cloud internals.

The remainder of this paper is structured as fol-
lows. Section 2 summarizes the research objectives
of this project. Section 3 introduces three applications
from different scientific domains that motivate our
research, while Section 4 summarizes the current
state of the art in modeling and deploying (scientific)
applications in cloud environments. In Section 5,
we discuss the requirements and restrictions that
are defined by our motivating applications on cloud
deployments and in Section 6, we introduce a frame-
work that aims to provide a foundation to solve the
research questions defined in Section 2. We comment
on drawbacks of the suggested solution in Section 7.
Section 8 defines the expected outcome and finally



in Section 9, we summarize the current state of our
research.

2 OUTLINE OF OBJECTIVES

To be able to fully leverage the benefits of cloud com-
puting in science, we identify the following research
questions:

RQ1: How can we shield the individual scientist
who is willing to deploy his application in a cloud
from complicated cloud internals?

RQ2: Which parameters from the domain model
of the scientist have an influence on the required
scale of the cloud infrastructure?

RQ3: How can these parameters be utilized to scale
the cloud infrastructure conveniently?

To answer these questions, we propose a framework
that uses models to deploy applications in cloud en-
vironments and utilizes information from the domain
of the scientist to appropriately scale the deployed in-
frastructure.

3 MOTIVATING EXAMPLE
APPLICATIONS

In the scope of our project, we target three different
scientific application that are candidates for being ex-
ecuted in a cloud environment. These applications
utilize different software stacks, which will be intro-
duced in the following.

3.1 Monte-Carlo Simulation and Data
Analysis in High Energy Physics

Experimental particle collision data collected by the
experiments at the Large Hadron Collider (LHC)3 at
CERN is produced at a data rate of ∼15 PB/year. To
establish a ground truth, particle collisions data in
the same order of magnitude is generated with help
of Monte-Carlo methods according to the standard
model and its variations. Currently, this data is stored
and analyzed with the help of a multi-tiered grid4,
which spawns the whole globe. However, due to the
update of the LHC in 2013, the data rate will increase

3The Large Hadron Collider: http://home.web.
cern.ch/topics/large-hadron-collider

4The Wordwide LHC Computing Grid: http://wlcg.
web.cern.ch/

dramatically. Hence, the high energy physics commu-
nity is searching for new computing models and ex-
tending the resources with cloud resources is a viable
option. Production of Monte-Carlo data by simulation
and also analysis of data can be easily parallelized
since each simulated event (a particle beam cross-
ing) can be simulated and analyzed independently.
Cloud computing is a valuable solution for scientist
conducting analysis on smaller filtered datasets (up
to a few TB in size). The parallel ROOT facility
(PROOF) (Ganis et al., 2008) is a commonly used
tool for conducting the analysis on computing clus-
ters built from commodity hardware. It is both par-
allelized (using multiple threads on multiple kernels)
and distributed (master/worker architecture).

3.2 Modeling and Optimization of
Public Transport Networks

LinTim5 is a software framework, developed by
the optimization working group at the University of
Göttingen. It aims to support the different planning
stages in public transport networks. Hereby, planning
and optimization of the networks is broken up into
five stages which are network design, line planning,
timetabling, vehicle scheduling, and delay manage-
ment. Each stage involves modeling the problem as
an optimization problem which is then either solved
by a heuristic or by third-party solvers. LinTim sup-
ports the solvers Xpress6, Gurobi7, and Cplex8. It is
used to steer the execution of the solving steps and
feeding the output data from one step into the other.
LinTim itself is implemented to run on a single-core
machine. The external mathematical solvers are op-
timized for multi-core machines. The runtime of a
solving step is largely influenced by the complexity
of the optimization problem.

3.3 Material Science

OpenFOAM9 is a software toolbox, which was pri-
marily created for numerically solving systems of par-
tial differential equations (PDEs) of continuum me-
chanics problems on a predefined geometry and do-
main. Its inter-process communication is based on
Open MPI10. Thereby, solving the system of PDEs,

5LinTim: http://lintim.math.uni-goettingen.de
6FICO Express Optimization: http://www.fico.com/

en/products/fico-xpress-optimization-suite
7Gurobi: http://www.gurobi.com/
8Cplex: http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer/
9OpenFOAM: http://www.openfoam.org/

10OpenMPI: http://www.open-mpi.org/



typically involves the following steps: definition of
the PDEs, definition of the geometry of the domain,
definition of a mesh that covers that domain and de-
composition of the domain for parallel computation.
Different solvers can be utilized to then numerically
solve the PDEs, including finite volume methods and
finite elements methods.

4 STATE OF THE ART

In the following, we shortly sketch the state of the art
in modeling, deployment, configuration management,
and automatic scaling of cloud applications.

4.1 Cloud Application Modeling

MODAClouds (Ardagna et al., 2012) targets cloud-
provider independent development of cloud applica-
tions. Thereby, it supports the design, implemen-
tation and deployment of software with a cloud-
provider independent modeling approach. The ap-
plication model undergoes different modeling refine-
ment steps, starting with a Cloud-Enabled Computa-
tion Independent Model (CIM), which identifies the
basic components of a system, to a Cloud-Provider
Independent Model (CPIM), which incorporates gen-
eral cloud concepts like elements from Software-as-
a-Service (SaaS), Platform-as-a-Service (PaaS), and
Infrastructure-as-a-Service (IaaS) and finalizing with
the Cloud-Provider Specific Model (CPSM), which
includes the information on how to deploy the appli-
cation on a specific cloud.

4.2 Automated Scaling in the Cloud

In general, there is a differentiation between vertical
scaling, i.e., the resizing of virtual machines or con-
tainers and horizontal scaling, i.e., the multiplication
of virtual machines or containers (compare, e.g., (Ra-
jan et al., 2013)). Horizontal scaling of web-services
is commonly implemented with the help of a load bal-
ancer, which distributes the load on the existing appli-
cation servers. If an application needs to be scaled, is
triggered by so called user-defined rules, which de-
fine actions, e.g., the launch of an additional applica-
tion server in case a certain condition is met, e.g., the
number of user requests exceeds a certain threshold.

4.3 Cloud Deployments and Cloud
Orchestration

Cloud orchestration frameworks, such as Ama-
zon CloudFormation11, OpenStack Heat12, and
Cloudify13 utilize reusable templates that model the
infrastructure and the component structure required
by a cloud application and enable their orchestrated
and reproducible launch. TOSCA (OASIS, 2013)
aims to provide a standardized template format for
orchestration. Cloudify is set to fully adopt the
standard in future versions and there are ongoing
implementation efforts to build a translator to convert
TOSCA to the Heat Orchestration Template (HOT)
format. Scalability is supported by defining policies
that trigger a user-defined action, when a certain
condition is met. Cloudinit.d (Bresnahan et al.,
2011) is a tool to support the orchestrated launch,
configuration and monitoring of services in an IaaS
cloud. Thereby, it differentiates between different
run-levels of the required services, where the levels
define the dependencies of services to each other:
services on the same run-level have no dependencies,
while there might be dependencies between services
running in different run-levels. The deployment
and configuration of the Virtual Machines (VMs)
is steered by three user defined scripts, which is
submitted to the VMs at launch time: The startup
script, which is run at start-up to install the necessary
software packages and the required configuration,
the test script, which is used to test the system after
configuration and the termination script, which runs,
when a service is shut down. In the startup script
the user is free to also use Configuration Manage-
ment tools like Puppet14, Chef15 or Ansible16 (see
Section 4.4). To offer scientific software frameworks
in the cloud, Bunch et al. (Bunch et al., 2012)
introduce a domain-specific language called Neptune.
In contrast to Cloudinit.d, Neptune is specialized
to steer the deployment of specific software frame-
works on top of the PaaS framework AppScale17.
Thereby, it supports the utilization of different
High Performance Computing (HPC) software
packets for distributed computation that are often
used in science, including MPI, X10 and MapReduce.

11Amazon CloudFormation http://aws.amazon.com/
cloudformation/

12OpenStack Heat: https://wiki.openstack.org/
wiki/

13Cloudify: http://getcloudify.org/
14Puppet: http://puppetlabs.com/
15Chef: https://www.chef.io/chef/
16Ansible: http://www.ansible.com/home
17AppScale: http://www.appscale.com



4.4 Configuration Management

While configuration management tools like Puppet,
Chef, and Ansible are not cloud deployment specific,
they are often used to manage large scale deploy-
ments on cloud platforms. For this purpose, they
use declarative text-based languages to define the de-
sired configuration of a (distributed) set of physical
or virtual hosts. This includes, but is not limited to
installed software, permissions, and network config-
urations. These descriptions are then used to auto-
matically enforce and keep the hosts in the desired
state. Hereby operating-system specific details, like
the utilized packet manager are transparent to the user.
Wettinger et al. (Wettinger et al., 2013) define dif-
ferent approaches to integrate Configuration Manage-
ment with Cloud Orchestration.

5 DISCUSSION

While the applications represent heterogeneous ap-
proaches from different scientific domains, they share
common key characteristics, which are given below:

C1: A fixed set of existing frameworks is used to
evaluate or execute input models from the distinct
scientific domain.

C2: These frameworks are highly specialized and en-
code a high amount of domain knowledge.

C3: The frameworks are not built for being executed
on a scalable computing infrastructure.

C4: The utilized frameworks are responsible for dis-
tributing the computational load.

C5: The computational load to be handled largely de-
pends on the input model provided to the frame-
work.

When moving scientific applications to cloud envi-
ronments, these characteristics have to be taken into
account. While cloud computing offers great flexibil-
ity, when creating computing infrastructures, it poses
the question on how these infrastructures need to be
scaled to fit the computational demand. The charac-
teristics of the frameworks described above restrict
the solution space for this problem: C1 defines the
software configuration of the cloud infrastructure, C2
renders it often impossible to switch to a framework
which is optimized for being executed in a cloud en-
vironment, C3 does not allow the cloud environment
to scale driven by the framework, and C4 restricts

the infrastructure deployment to a certain architec-
ture. While C1-C4 enforce a certain structure on the
deployed compute infrastructure, C5 defines the com-
putational load on this infrastructure and so it should
present a main source for defining its scale. In addi-
tion to the requirements introduced by the character-
istics defined above, another set of requirements is de-
fined by the scientist. This might include limitations
on the overall runtime in case a certain deadline needs
to be met or a certain number of backups of the out-
put data needed to be kept for reliability. Given the
characteristics above, we hence identify three main
sources that define the requirements on an optimal de-
ployment selection:

S1: the domain model to be computed,

S2: the scientific computation framework, which is
utilized,

S3: the scientist.

A framework for automatic scalability of scientific
cloud applications needs to be able to leverage re-
quirements from all three sources. In the next section,
we will introduce a framework that allows to deploy
and scale the application according to these observa-
tions.

6 METHODOLOGY

Figure 1 depicts the overall framework which is used
to address the research questions defined in Section 2.
To leverage the full flexibility of cloud computing, the
framework builds on IaaS. The components shaded
in grey are already existing and the research in this
project is focused on the white components.
In the following, we discuss the different components
and their interaction. Thereby, we exemplify the steps
with help of the example application from material
science defined in Section 3.3.

6.1 Domain Models

Domain models appear in very different formats. Of-
ten only a limited set of parameters defined in the do-
main model have an impact on the computational de-
mand e.g., the selection of a certain solving strategy
might require a certain amount of RAM in the infras-
tructure.
In OpenFOAM the domain model is defined with the
help of a dictionary file that defines the geometry, a
file that defines the boundary and initial conditions of
the system of PDEs, and a properties file that defines
the physical properties such as the system of PDEs to
be solved. An additional file is used to decompose
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Figure 1: A framework for adapting scientific application
deployments according to domain model demands.

the domain into subdomains for parallel execution.
The number of subdomains thereby should match the
number of processors available in the infrastructure.
While in traditional compute infrastructures, this is
determined by the number of available cores, in cloud
environments it should be defined according to the do-
main model.

6.2 Scientific Computation Frameworks

In our example, OpenFOAM represents the scientific
computation framework (SCF). The SCF is the most
restrictive component for the cloud deployment. It
encodes how the computational load is distributed on
the underlying infrastructure. As described in Sec-
tion 3, OpenFOAM is parallelized using Open MPI,
hence it requires an MPI cluster to run and distribute
the computational load.

6.3 Abstract/Concrete Deployment
Model

The deployment of the SCF is modeled with help
of standardized modeling languages. Using models
for describing a cloud application has the advantage
that the description of the application deployment be-
comes cloud-provider agnostic and hence avoids ven-
dor lock-in. It enhances comprehensibility by in-
creased abstraction, and it fosters re-usability, since
a cloud-provider agnostic model can be (semi-) au-
tomatically transformed to suit the requirements of
a certain cloud-provider. By using models, we ad-
dress RQ1.

The aforementioned TOSCA standard allows to de-
fine input parameters for application models. These
parameters can include the virtual machine type to use
or the number of instances of a certain type to launch.
We call a model with unset parameters abstract and
a model with instantiated parameters concrete. The
transformation from an abstract model into a concrete
model is called instantiation. For each domain model
it must be evaluated which domain model parameters
have an influence on the performance in the cloud,
and these parameters then need to be mapped to and
reflected by the input parameters of the abstract de-
ployment model.
The optimal setting for the parameters needed for the
instantiation is determined by three sources: the sci-
entist, an evaluator and a monitor.

6.4 Evaluator/Monitor

To find suitable parameters settings for the require-
ments of a specific domain model, different strategies
are possible. Hereby, we distinguish between static
evaluation, whereby the applications is not executed
in the cloud, and dynamic evaluation, whereby the ap-
plications are executed and monitored. Static evalua-
tions are implemented with help of a domain specific
model evaluator. This evaluator transforms values of
parameters of interest of the domain model into suit-
able settings of parameters for the concrete deploy-
ment model. The evaluator is domain specific and the
parameters of interest in the domain model need to be
carefully selected (RQ2). Static evaluations are done
before the application is deployed on the cloud infras-
tructure. The concept of the evaluator addresses RQ3.
Dynamic evaluations can be done by manual obser-
vation of the application execution in the cloud, or
automatically with help of a monitor. According to
the outcome of the deployment evaluation, the pa-
rameters that have been used for the initial deploy-
ment are readjusted and a new instantiation of the
abstract deployment model is initiated. Hereby, ei-
ther a new concrete deployment model is created and
deployed or the existing concrete deployment model
is readjusted. The second approach is similar to the
Models@Runtime approach, suggested by Ferry et al.
(Ferry et al., 2014).

6.5 Deployment

The deployments of the applications are fully auto-
mated to avoid manual interaction with the cloud and
enable transparent application deployment for the sci-
entist. A cloud orchestration framework is used for
the orchestrated launch of the infrastructure and a



configuration management tool is utilized to automat-
ically configure the launched infrastructure.

7 LIMITATIONS OF OUR
APPROACH

While the proposed framework offers the methodol-
ogy to adapt application deployments to the needs of a
specific domain model, it has one limitation: Domain
models have very heterogeneous formats and the re-
lation between a domain model and the deployment
model has to be defined manually for each scientific
computation framework to enable automatic scaling.
Hence a domain specific evaluator needs to be imple-
mented for each domain. Once this mapping is done,
our framework enables the scientist to focus on the de-
velopment of the domain model for his problem def-
inition and is freed from deploying the applications
accordingly.

8 EXPECTED OUTCOME

We expect the following outcome of this research
project:

• Contributions to the state of the art in modeling of
scientific applications for the cloud,

• a novel method to leverage domain model infor-
mation of the scientist to scale scientific applica-
tions in the cloud,

• a prototypical implementation of the proposed
framework to demonstrate its feasibility.

9 STATE OF THE RESEARCH

In this paper, we proposed a framework for automat-
ically scaling scientific applications in a cloud. We
argue, that the traditional way of scaling applications
in cloud environments does not suit the frameworks
for scientific computation, since it does not take the
scientific domain into account. By evaluating the do-
main models defined by the scientist and mapping cer-
tain key characteristics of this model to the deploy-
ment model, we are able to shield the scientist from
complex cloud internals.
In the first phase of this project, we were setting up an
infrastructure, to support the different steps defined by
our framework. We deployed the example application
defined in Section 3 in a prototypical IaaS cloud based

on OpenStack18. A modified version of Cloudify was
used for the orchestrated deployment of the applica-
tions, whereby the application models are based on
Cloudify’s current support for TOSCA. The configu-
ration of the cloud applications was automated with
help of the configuration management tool Ansible.
Unfortunately, it became clear that current implemen-
tations of the TOSCA language are very limited when
it comes to defining and launching scalable compo-
nents. If TOSCA is able to properly support the scala-
bility demands, defined in our framework is currently
under evaluation.
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