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Abstract—Unit testing is an essential practice in Extreme
Programming (XP) and Test-driven Development (TDD) and used
in many software lifecycle models. Additionally, a lot of literature
deals with this topic. Therefore, it can be expected that it is
widely used among developers. Despite its importance, there is
no empirical study which investigates, whether unit tests are used
by developers in real life projects at all.

This paper presents such a study, where we collected and
analyzed data from over 70K revisions of 10 different Python
projects. Based on two different definitions of unit testing, we
calculated the actual number of unit tests and compared it with
the expected number (as inferred from the intentions of the
developers), had a look at the mocking behavior of developers,
and at the evolution of the number of unit tests.

Our main findings show, (i) that developers believe that they
are developing more unit tests than they actually do, (ii) most
projects have a very small amount of unit tests, (iii) developers
make use of mocks, but these do not have a significant influence
on the number of unit tests, (iv) four different patterns for the
evolution of the number of unit tests could be detected, and (v)
the used unit test definition has an influence on the results.

I. INTRODUCTION

Unit testing is an important development practice in, e.g.,
Extreme Programming (XP) [1] and Test-driven Development
(TDD) [2]. Furthermore, unit testing is an essential phase in
many software lifecycle models, e.g., in the V-model according
to Boehm [3]. In this model, the component (or unit) test is
the first test level, which verifies each software component [4].

It is believed, that unit testing is widely used because of
its advantages: unit tests are easily automatable [2], they can
serve as a source of documentation [5], help people to get into
the project, and problems that are detected with a unit test can
be directly traced back to the source [4].

Furthermore, a lot of scientific literature, which is focused
on unit testing exists, e.g., on finding links between the test
code and the code that is tested [6], [7], how to use mock
objects [8], finding test smells [9], [10], [11], proposing test
refactorings [10], [11], detecting test refactorings [10], [11],
visualizing test executions [12], test case minimization [13],
[14], and test generation [15], [16], [17].

Even though we know about the importance of unit testing,
we do not know whether unit tests are used by developers at
all. Additionally, we do not know if developers use mocks
to isolate the units they are testing. There is no empirical
study which investigates, whether unit tests are used in real
life projects. Hence, within this paper we present the results
of a study on unit testing conducted on 10 open source
software projects developed in Python. We decided on Python,
as it gains more and more popularity in the development of
software [18]. As basis for our study, we use the unit test
definitions of the International Software Testing Qualification
Board (ISTQB) [19] and the Institute of Electrical and Elec-
tronics Engineers (IEEE) [20]. To steer our research, we refine
our goal into four different Research Questions (RQs):

RQ1: Are developers categorizing their tests into unit and
non-unit tests correctly (using the IEEE and ISTQB
definitions as basis)?

RQ2: How many tests in the examined projects can be
categorized as unit tests?

RQ3: Do developers use mocks and how are they mocking?
Does it influence the number of unit tests?

RQ4: How does the number of unit tests evolve over time?

In a practical context, the answers to these questions provide
us with the opportunity to gain a deeper understanding of the
current practice of testing in the real world. Furthermore, these
answers could help to raise the sensitivity of practitioners and
academia regarding the topic of unit testing, which could result
in an improved education in the field of software testing and
a higher quality of software.

In this paper we perform an exploratory study, in which
we investigate the usage of unit tests in 10 open source
software projects. Furthermore, we evaluate our findings with
an statistically significant sample and give answers to all four
RQs. Additionally, we provide a replication kit [21], including
all data and implementations to ease replication and extension.

The remainder of this paper is structured as follows. In
Section II the foundations for this paper are presented. Then,
in Section III, we describe our study design, including the
studied projects, the data collection and data analysis process,978-1-5090-6031-3/17 $31.00 ©2017 IEEE



our validation procedures, as well as our replication kit. The
results of the study are reported in Section IV. For each RQ,
the results are described separately. In Section V, we highlight
different threats to validity of our study. Then, in Section VI,
we compare our work with related work in this field. Finally,
we conclude and describe future work in Section VII.

II. BACKGROUND

This section presents the unit testing terminology, which is
used along this paper. We present two definitions of units and
unit testing, which are often used in the literature: one from the
ISTQB [19], as well as one from the IEEE [20]. Moreover, we
compare them with each other and highlight differences. As
we are categorizing tests into unit and non-unit tests based on
their imports, we explain the import system of Python in more
detail. Finally, we apply the unit test definitions to Python.

A. Unit Testing

Different definitions of units and unit testing exist in the
literature. In this paper, we focus on the definitions of unit
and unit testing found in the ISTQB glossary [19] and in the
IEEE 24765:2010 standard [20]. The ISTQB defines a unit as
follows [19]:

Definition 1 (ISTQB Unit): A minimal software item that
can be tested in isolation.

The term “minimal software item” is not further defined.
Therefore, we define “minimal software item” as the smallest
compilable unit, as this is the smallest software item that can
work independently (e.g., a class in Java). Furthermore, this
definition is used in other publications (e.g., [22]). Definition 1
highlights that it should be possible to test the unit in isolation.
This can be accomplished by using mocks [8] for the unit’s
dependencies, that should not be tested. The unit under test
then utilizes the mocks functionality as if it was the real
dependency. The IEEE defines a unit as follows [20]:

Definition 2 (IEEE Unit):
1) a separately testable element specified in the design

of a computer software component.
2) a logically separable part of a computer program.
3) a software component that is not subdivided into

other components.
4) a quantity adopted as a standard of measurement.

In the ISTQB definition the term unit has two synonyms:
module and component, whereas the IEEE states that the
relationship between the terms “module”, “component”, and
“unit” is not yet standardized [20]. Definition 2 directly states,
that a unit can not be subdivided into other components. This
is similar to the “minimal software item” in Definition 1.
Therefore, both definitions define a unit as a software item,
that can not be further subdivided. Furthermore, the item must
be logically separable from the program, as an isolation can
not be achieved otherwise.

For our purpose, we also need to define unit testing. Based
on the definitions of units, both the ISTQB and IEEE define
unit testing as follows:

Definition 3 (ISTQB Unit Testing): The testing of indi-
vidual software components.

Definition 4 (IEEE Unit Test):
1) testing of individual routines and modules by the

developer or an independent tester.
2) a test of individual programs or modules in order

to ensure that there are no analysis or programming
errors.

3) test of individual hardware or software units or
groups of related units

Hence, for the ISTQB a unit test only considers a single
minimal software item, while the IEEE definition allows
testing of groups of related units. Note, that if a test is a unit
test in respect to the ISTQB definition it is also a unit test in
terms of the IEEE definition.

The testing is done by implementing tests. Tests are de-
fined as “A set of one or more test cases.” [23], whereas a
test case is “A set of input values, execution preconditions,
expected results and execution postconditions, developed for
a particular objective or test condition, such as to exercise a
particular program path or to verify compliance with a specific
requirement.” [24]. The definitions of the IEEE are similar to
the ones cited here.

In the following, we will use the term “ISTQB unit test” for
a test that is a unit test in respect to Definition 3 and “IEEE
unit test” for a test that is a unit test in terms of Definition 4.

B. Python Import System

Python has a very flexible import system. Different import
statements can result in the same import behavior. In Python
it is even possible to perform imports in functions [25].

Python has the concept of packages, which helps to organize
modules and provides a naming hierarchy. Packages can be
seen as directories on the file system, whereas modules are the
files within these directories [25]. Furthermore, it is possible
that a package has several sub-packages. Another important
aspect are the init .py files. A directory is only recognized
as package, if such a file is placed in it. Then, if a module
of the package is imported, the init .py file (which can
contain code, further imports, etc.) is implicitly executed.
Figure 1 shows an example structure of a project.

If locations.py imports the module download.py the
init .py files of the packages pip and commands

are implicitly executed. Therefore, the imported mod-
ules are: pip/commands/download.py, pip/ init .py, and
pip/commands/ init .py.

C. Unit Testing in Python

To address our RQs stated in Section I, we need to apply
Definitions 1-4 to Python projects. There is no standard, which



pip/
init .py

commands/
init .py

download.py
location/

init .py
locations.py

Fig. 1. Example project structure, showing packages and its modules.

regulates how Python projects should be structured. Most
projects have a separated test folder, but this is not compulsory.
In Python, the smallest compileable unit is a module. It can
be logically separated from the program and contains all the
logic needed for one part of the program [26]. Classes cannot
be seen as units, as a program in Python can be written
completely without any class, which is, e.g., different to Java.

In Python, tests are subdivided into different modules that
can contain multiple test cases. If we take the definitions above
into account, an ISTQB unit test in Python tests only one
module. As in Python related modules are put into the same
package, a test is an IEEE unit test, if it tests one module or
a group of modules, which originate from the same package.
Note, that ISTQB unit tests are a subset of IEEE unit tests.

III. EMPIRICAL STUDY DESIGN

This section describes the study design in more detail. We
have taken the guidelines by Runeson et al. [27] as a basis
for the reporting of our case study. They proposed to divide
the reporting of the case study design into five different parts:
research questions, case and subject selection, data collection
procedures, analysis procedures, and validation procedures.
We have exchanged the subsection regarding the RQs (as
these were stated in Section I, which also describes the case
selection), with a subsection describing our replication kit, as
we believe that replicating research is essential and especially
important to empirical software engineering research [28],
[29].

Figure 2 gives an overview of our approach. The data
collection process comprises of two steps: first (Step 1), the
whole revision history of the project is collected from its git
repository and stored in a MongoDB [30]. In Step 2 each
revision of the project is processed. For each revision, all
test imports are detected, as well as mock usage and mocked
imports. The data is then linked to the data of Step 1 and
stored in the same MongoDB.

The data analysis process is divided into two steps: first
the collected data is read from the MongoDB. Now each test
of each revision of the project is put into different categories
(Step 3). Afterwards, a Comma-Separated Values (CSV) file
is generated for the project, where the number of category
members for each revision is listed. As second analysis step
(Step 4), the CSV file is read and an analysis in respect to
the different RQs formulated in Section I is performed. More
details regarding the different steps of our approach are given
in the following subsections.

Git Repository

Collect revision history

MongoDB

1

2

Test Imports /
Mock Usage & Imports

Categorize Tests

Analysis

3

4

Data Collection Data Analysis

Revision

CSV

Fig. 2. Overview of our approach, which can be separated into data collection
and data analysis. Rectangles depict processes (steps), whereas parallelograms
depict in- and output data.

A. Studied Projects

We selected our studied projects randomly from GitHub [31]
via the explore function and from a list of Python projects
located at GitHub [32]. We defined the following inclusion
criteria to which the projects must comply, as the executed
analysis would be futile or not possible otherwise.

• The project shall have tests.
• The project shall be written in Python.
• The project shall have more than 200 revisions.
• The tests of the projects shall be separated in unit and

other tests (e.g., located in different folders).
Furthermore, to reduce the domain bias, we selected projects

from different application areas (e.g., machine learning, pack-
age managers, testing). Additionally, we have also included
projects that are mainly industrial driven (i.e., aws-cli, nupic,
and ansible) to extend our focus. Table I reports the chosen
projects together with several project related characteristics.
We excluded 2,808 revisions, which were not done on the main
branch of the projects, i.e., the master branch1. The reason for
this is that we want to reduce the noise in the data, which stale
branches introduce.

Furthermore, Table I reports the number of tests for each
project. This number is calculated by summing up the number
of tests of each revision.

The number of file changes represent how often files were
changed in the project, which is an indicator for the activity
and size of the project. The data time span shows the dates
of the first and last revision, which were analyzed. Further-
more, Table I highlights the main application field in which
the project is used. Additionally, it lists if the projects are
completely community-driven or if there is industrial support
of the project. This is important to get a better understanding of
these projects, as open source does not necessarily mean that
there is no company supporting the project. This can also have
an impact on the results, as a company might enforce certain
standards or a strict software development process [33].

B. Data Collection

In the following, we explain the two data collection steps
of our approach in more detail. For each of the data collection
steps, we answer the questions: what data is collected, why

1Please note, that the project ansible does not have a branch called “master”.
But the main working branch for this project is the “devel” branch. Hence,
we have chosen this branch as the main branch for ansible.



TABLE I
OVERVIEW OF THE ANALYZED PROJECT DATA.

Project #Revisions #Tests #File Changes Data Time Span Application Field Main Project Driver
ansible [34] 19,992 396,857 49,514 2012-02 - 2016-07 DevOps Ansible Inc.
aws-cli [35] 3,958 476,644 42,042 2012-11 - 2016-07 Cloud Computing Amazon Web Services Inc.
nose [36] 1004 75,087 3726 2006-12 - 2016-03 Testing Community
nose2 [37] 784 29,294 2,764 2010-08 - 2016-06 Testing Community
nupic [38] 5,825 549,029 346,371 2013-04 - 2016-07 Machine Learning Numenta
pip [39] 4,745 161,506 16,661 2008-10 - 2016-07 Package Manager Community
robotframework [40] 11,083 823,056 39,150 2008-05 - 2016-07 Testing Community
scikit-learn [41] 20,969 2,025,313 105,271 2010-01 - 2016-07 Machine Learning Community
vcrpy [42] 657 12,520 1,503 2012-05 - 2016-07 Virtual Reality Community
warehouse [43] 1,937 87,926 6,872 2015-01 - 2016-07 Package Manager Community
Overall: 70,953 4,637,232 613,874 2006-12 - 2016-07 6 different fields 3 industrial, 7 community

(for which purpose), and how. We used the new version of our
SmartSHARK platform [44] for the data collection.
Step 1: Collect revision history

What? First, we collect the whole revision history of a
project, including all commits, branches, file changes, and
differences between file versions. Out of this data, we can
reconstruct the whole project structure at each revision.

Why? This step provides us with the needed meta-data from
the project for the next steps and is used in Step 3 to determine,
which tests are categorized as unit test by the developers.

How? We use our tool called vcsSHARK [45]. The vcs-
SHARK is using the official git library [46] to parse all
commits of a project. The data that are gathered in this process
is transformed and a model is built from it. This model is then
stored via the mongoengine [47] document-object mapper in
a MongoDB.
Step 2: Collect test imports and mocked imports for each
revision

What? In this step, we collect all imports for each test state.
Furthermore, we collect data about the mock usage of a test
state and its mocked imports.

Why? As noted in Section II-C, in Python a module is
considered a unit. Therefore, we need to collect information
about the module imports of a test. The rationale behind this
is that all modules, which are tested, must be imported by
the test. Therefore, if a test has only one import it can be
considered as an ISTQB unit test. Otherwise, if all imports of
a test belong to the same package, it can be classified as an
IEEE unit test.

Furthermore, we need to collect data about the mock usage
in tests and identify mocked imports to analyze, if mocks are
used by developers and if the usage of mocks has an influence
on the categorization stated above.

How?
To perform the data collection in this step, we use our tool

called testImpSHARK [48]. It first checks out a given revision
to analyze it2. Then, it runs its test detection procedure, which
detects Python files that have test in their file name. Finally,
it tries to detect the imports and runs through the following
steps for each detected test:

2The testImpSHARK can analyze projects that are compatible to both major
versions of Python (2.7, 3.5).

1) detection of mock usage via regular expressions (used
on source code): check if a test uses mocks by detecting
if a module with the word mock in it is imported (e.g.,
the python standard mocking library [49]).

2) detection of mocked imports via regular expressions
(used on source code): if a test uses mocks, the program
detects the mocked imports by checking which class
or function is mocked and looks up the corresponding
module. We classify an import as mocked, if at least one
function, class, or method of this import is mocked. The
used regular expressions are reported in Table II.

3) get direct imports: the program detects all direct imports
of the test using the modulegraph [50] library.

4) get all imports recursively: the program detects all
imports recursively using the modulefinder [51] module
of the Python standard library.

5) get mock-cutoff imports: the program detects all imports
recursively, where modules that are mocked, and their
imports, are not considered any further.

At each step, we filter out imports, that are not part of the
project, e.g. standard libraries, as we only want to analyze the
projects contents. Finally, a model of the data is built and the
newly collected data is linked with the data acquired in Step 1
and stored in the same MongoDB.

C. Data Analysis

In the following, the two data analysis steps, which corre-
spond to Step 3 and Step 4 of our approach (see: Figure 2), are
explained in more detail. For each of the data analysis steps,
we answer the questions: what is done in the analysis, why,
and how.
Step 3: Categorize Tests

What? We use the data collected in Step 1 and Step 2 by
accessing the MongoDB. In this step, we put all tests (with at
least one import) of all revisions of the project into different
categories. The rows of the resulting CSV file are then the
counts of the number tests in each category for each revision.

Why? The categorization of the tests is done, as this infor-
mation is needed to answer the RQs formulated in Section I.

The reason for the creation of a CSV file is two-fold: first,
we want to summarize the category counts on revision level
and not on, e.g., project level, as we have a more detailed



TABLE II
REGULAR EXPRESSIONS USED TO DETECT MOCKS.

Regular Expression Description
\s*(?:@patch\.object|patch\.object)\s*\(\s*([\w\.]*)\s*\, Detect mocked classes
\s*(?:@patch|mock\.patch|patch)\s*\(\s*(?:\’|\")\s*([\w\.]*) Detect mocked functions/methods

view on the data this way and we are able to detect changes
of the counts over time. Second, the resulting CSV file can be
analyzed by a number of tools (e.g., R or Python).

How? For the categorization of the tests, we first analyze
all tests of the project, that were collected by our tool (see:
Section III-B). Note, that we skip tests, where the number
of imports is 0. This can happen, as our tool may find tests,
which are not real tests (e.g., they just contain data for the
test) or when the data collection tool has thrown an error (see:
Section V). The following steps are executed for each detected
test:

1) discard imports: a filter is applied to the collected
imports of the test, i.e., the direct imports, recursively
collected imports, mocked imports, and mock-cutoff im-
ports. The filter discards imports, which contain only data
or configurations for the test, e.g., database models, con-
figurations, init .py files, or other tests. Furthermore,
we assume that everything which is inside the test folder
is test data (e.g., a test class from which all others inherit)
or other tests. These imports are discarded. This filter
ensures, that we do not categorize tests as non-unit tests,
because they are importing modules, which do not contain
any testable logic (e.g., configurations). The remaining
imports are used for the categorization.
The filter criteria was determined by analyzing the mod-
ules of the projects and their contents and tested with
manually-curated data samples.

2) test categorization: after the filter is applied, we put
the tests into one (or more) categories. We have created
categories for tests that are ISTQB unit tests (istqb),
IEEE unit tests (ieee), and developer unit tests (dev). We
define the term “developer unit test” as a test, where the
developers think it is a unit test. Furthermore, there are
categories to analyze the mocking behavior of developers:
“WM” (istqbWM, ieeeWM) for tests, which are ISTQB
or IEEE unit tests, if we exclude the mocked imports and
“MC” (istqbMC, ieeeMC) for tests, which are ISTQB
or IEEE unit tests, if we only use the mock-cutoff
imports defined in Section III-B. The rationale behind
these mocking categories is that we want to implement
a pessimistic view on mocking (WM categories) and an
optimistic view (MC categories). Pessimistic means that
we assume that only the mocked imports are marked as
mocked, but not their imports. Optimistic means that we
assume, that the developer took care of all the imports of
the module, that is mocked in the test, i.e., these imports
should not be taken into account for the categorization.

After the categorization of all tests for the processed revi-
sion, the number of tests in these categories are calculated and

TABLE III
DESCRIPTION OF THE DIFFERENT CATEGORIES USED IN THE

CATEGORIZATION STEP.

Category Included Tests
all Tests that have at least one dependency.
dev Tests that are developer unit tests. This is de-

termined by looking at the path of the test. If
the path contains folders like “utest” or “unit”
we assume that the developer classified this
test as unit test. The project scikit-learn is one
special case, as the unit tests are “located in
test subdirectories”[52], as stated in the official
contribution guide [52].

istqb Tests that are ISTQB unit tests, i.e., they only
import one module.

ieee Tests that are IEEE unit tests, i.e., all imports of
the test belong to the same package.

istqbD Intersection of the categories istqb and dev.
ieeeD Intersection of the categories ieee and dev.
istqbWM Tests that are ISTQB unit tests, if we exclude

mocked imports.
ieeeWM Tests that are IEEE unit tests, if we exclude

mocked imports.
istqbMC Tests that are ISTQB unit tests, if we only

include mock-cutoff imports (see: Section III-B).
ieeeMC Tests that are IEEE unit tests, if we only include

mock-cutoff imports (see: Section III-B).

a row in the CSV file is created.
Step 4: Analysis

What? In this step, the projects are further analyzed. The
analysis is done for each RQ separately.

Why? Out of the information we gain during the analysis,
we construct the answers for our RQs formulated in Section I.

How? In the following, the “how?” is answered for each
RQ individually.

For answering RQ1, we go through all projects (CSV-
files). Only revisions, where the count for the category dev
is greater than 0 are taken into account, i.e., at least one test
is categorized as unit test by the developers. To answer RQ1,
we need to assess, if there is a difference between the number
of developer unit tests and the number of ISTQB/IEEE unit
tests as determined by our tool in Step 3. For this, we are
calculating the mean difference between the categories dev &
istqbD, as well as dev & ieeeD over all revisions. Note, that
we are using the categories istqbD and ieeeD, as we want
to know how many of the tests in the category dev are real
unit tests. The resulting mean differences then show how many
tests are wrongly categorized by the developers on average per
revision. Furthermore, we check for how many revisions the
expected number of unit tests (as inferred from the developers’
point of view) matches the actual number of unit tests (using
Definition 3 and 4) and for how many it deviates for ≤ 1 and



≤ 5 tests. Furthermore, we create a boxplot of the different
categories over all analyzed revisions to visualize the data.

Instead of focusing on revisions, where we have data about
the developer’s categorization of the test, we look at all
revisions of the projects that have tests to answer RQ2.
Therefore, we calculate the mean percentages to summarize
how many tests (of all tests in the project) are put into the
categories ieee or istqb and can therefore be seen as unit tests.

To answer RQ3, we first determine the usage of mocks in
the different tests. Afterwards, we separate the tests into tests,
that use MagicMocks (mocks, that are dynamically created and
do not mock any import [49]) and tests that mock imports
(non-MagicMocks). Then, we are calculating the average
percentage of tests over all revisions, that use MagicMocks
or non-MagicMocks. To check if non-MagicMocks have an
influence on the categorization of tests, we create a subset
of the data, where we only consider revisions, where at least
one test is mocking an import. Furthermore, we calculate the
differences between the categories istqb & istqbWM, istqb &
istqbMC, ieee & ieeeWM, and ieee & ieeeMC. Hence, we can
determine if there is a difference in the number of unit tests
at a revision if we consider mocks in our analysis.

To visualize the evolutionary trend for RQ4, we analyze
all revisions of the projects and visualize the counts for the
categories all, dev, ieee, and istqb. This way, we can see if the
number of unit tests are increasing, decreasing, or if another
pattern can be identified. As we are including the dev category,
we can also see how the number of unit tests is evolving over
time in the eyes of the developers.

D. Validation Procedures

The first quality control mechanism that we employed to
ensure the validity of our data collection data is the testing of
our programs. We wrote tests for each program and checked
them with manually-curated samples of the data to ensure that
they are working as expected.

Furthermore, to ensure that our categorization and filtering
is working correctly, we manually examined a data sample
of tests, which were used for the analysis. For this we used
a technique called stratified sampling [53]. Hence, we break
our tests into groups (called strata) and select a random sample
from each of these groups. This way, we ensure that we have
a more balanced sample, than just drawing our tests randomly
from the whole population.

We decided to use three stratas: tests which were categorized
as 1) ieee, 2) istqb, and 3) nothing of both. We did not use
all categories, as the resulting sample would be too large
for a manual analysis. To apply stratified sampling, we first
need to calculate the sample size for each of the stratas. We
decided to use a confidence interval of length 10% within a
95% confidence level, taking into account our large population
size. Hence, the sample size for each strata is calculated as
follows [53]:

sample size =
x

1 + x−1
#tests in strata

with

x =
Z2 ∗ p ∗ (1− p)

0.12

Z = 1.96 for 95% conf. level

p = 0.5 for population with unknown variability

Then, we check the correctness of all randomly drawn tests
by manually categorizing it and comparing this categorization
with the one that was automatically calculated.

The calculated sample size for our staratas are: 97 (ieee),
96 (istqb), and 97 (nothing of both). Hence, we manually
validated 290 tests. From these, 277 were correct in terms of
their categorization. Therefore, 95,52% of the sampled tests
were correct. As we are using a confidence interval of length
10%, we can conclude with a confidence of 95%, that at
least 85,52% of all tests are correctly categorized. The most
common reason for the misscategorization was filtering out
the unit under test.

E. Replication Kit

All the data used in our study are publicly available.
Furthermore, we provide all the implementations that we have
used to extract and analyze the data. Moreover, we provide the
implementations that we have used to create the different plots
in this paper. The replication kit can be found online [21]. We
erased the collection where the developer names and email
addresses are stored to comply with data privacy regulations.

IV. STUDY RESULTS

In this Section, we present the results and provide answers
for each RQ separately. We also discuss further findings in
Section IV-E.

A. RQ1: Are developers categorizing their tests into unit and
non-unit tests correctly (using the IEEE and ISTQB definitions
as basis)?

Figure 3 shows boxplots for all examined projects. For each
project, three different boxes are plotted for the categories dev,
istqbD, and ieeeD. They show different distribution character-
istics like the median, lower quartile, or upper quartile of the
category for the corresponding project. The dev box of the
project aws-cli has the highest median. Hence, the developers
of this project believe that a revision in their project has about
100 unit tests. But the real value of ISTQB/IEEE unit tests
is at about 5 unit tests per revision. The same trend can be
observed for other projects.

Table IV shows the mean difference of the number of tests in
the categories dev & istqbD and dev & ieeeD over all revisions.
Furthermore, it depicts the mean percentage of unit tests per
revisions that are developer unit test and ISTQB/IEEE unit
tests. The calculated difference is low for each project with one
exception, which is the project aws-cli. Hence, in this project
there are more developer unit tests, which are also IEEE unit
tests than developer unit tests which are also ISTQB unit tests.
The calculated percentages highlight that just a small fraction
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Fig. 3. Boxplot of the categories dev, istqbD, and ieeeD for the different projects.

TABLE IV
MEAN DIFFERENCE OF THE NUMBER OF TESTS IN THE CATEGORIES dev &

istqbD AND dev & ieeeD OVER ALL REVISIONS. istqbD% AND ieeeD%
DEPICTS THE MEAN PERCENTAGE OF UNIT TESTS PER REVISION THAT ARE

DEVELOPER UNIT TESTS AND ISTQB/IEEE UNIT TESTS.

Mean Difference Percentages
Projects dev&istqbD dev&ieeeD istqbD% ieeeD%
ansible 23.08 21.43 4.48% 20.61%
aws-cli 88.29 41.57 3.19% 60.16%
nose 36.81 36.81 0% 0%
nose2 20.32 17.50 5.73% 22.88%
nupic 46.20 40.37 22.04% 31.41%
pip 15.17 15.17 0% 0%
robotframework 66.15 66.15 0% 0%
scikit-learn 63.30 63.16 0.14% 2.56%
vcrpy 7.22 7.71 0% 9.86%
warehouse 36.77 34.88 25.49% 29.45%

or even none of the developer unit tests are also actual unit
tests in respect to the IEEE/ISTQB definitions.

To quantify our results, Table V reports for how many
revisions the number of developer unit tests and ISTQB/IEEE
unit tests match (=0). Furthermore, it shows for how many
revisions these numbers deviate for less than one test (≤1) and
less than five tests (≤5). Note, that the higher these numbers
are, the better it is as there is less deviation from the actual
number of unit tests. Table V also highlights, the number of
revisions that are analyzed for each project. It shows, that the
number of developer unit tests deviates (for most revisions)
for more than 5 tests from the number of ISTQB/IEEE unit
tests.

The tables IV and V show a trend, which is confirmed by
the boxplot in Figure 3. This leads to the following answer
for our RQ1:

Answer to RQ1: Our results show that the developers of
the projects which we have examined, are not categoriz-
ing their tests correctly. The results highlight that there is
a large deviation between the number of developer unit
tests and the number of real unit tests (ISTQB/IEEE unit
tests). Furthermore, the results show that it matters which
unit test definition is used in this case.

B. RQ2: How many tests in the examined Projects can be
categorized as Unit Tests?

Table VI reports the average percentage of ISTQB/IEEE
unit tests in one revisions. The table shows, that there is a
large variance between the projects in terms of their number
of unit tests. Pip, e.g., does not have any ISTQB unit tests,
whereas a revision in the project warehouse has about 26.35%
ISTQB unit tests. The highest value has the project aws-cli
with 68,30% of IEEE unit tests on average. This table leads
to the following answer for RQ2:

Answer to RQ2: The number of tests that can be
categorized as unit tests depends on the project and on the
unit test definition used. The values are ranging from 0%
to 68.30%. The average percentage of IEEE unit tests
in a revision is higher for all projects, as ISTQB unit
tests are a subset of IEEE unit tests (see: Section II).
One exception is the project robotframework, where both
values are the same.

C. RQ3: Do developers use Mocks and how are they mocking?
Does it influence the Number of Unit Tests?

Table VII reports the average percentage of tests in a revi-
sion that use MagicMocks and non-MagicMocks. This table
shows, that the mock usage of developers differs from project
to project. Warehouse, e.g., does not use any mocks, whereas
aws-cli makes heavy use of MagicMocks. Furthermore, the
percentage of tests that use MagicMocks in a revision is higher
than the percentage of non-MagicMocks for each project.

To investigate whether non-MagicMocks have an influence
on the number of unit tests in a revision, we investigated how
this number changes if we take mocks into account for the
categorization of the tests. For this, we had a look at the mean
differences between the percentages of tests of the categories
istqb & istqbWM, istqb & istqbMC, ieee & ieeeWM, and ieee
& ieeeMC. From the results we generated Table VIII, which
reports how the number of unit tests are changing, if we take
mocks into account. This table highlights, that the number
of ISTQB/IEEE unit tests are decreasing, when we exclude
mocked imports (WM categories) or use our mock-cutoff (MC
categories, see: Section III-B). E.g., for the project nupic the
average number of unit tests is decreasing by over 20%. Hence,



TABLE V
NUMBER OF REVISIONS, WHERE THE DEVELOPERS CLASSIFICATION FIT OR DEVIATES FROM THE CALCULATED VALUE USING DEFINITION 3 AND 4. THE

NUMBERS IN BRACKETS DEPICT THE PERCENTAGES OF REVISIONS THAT HAVE THE DEPICTED DEVIATION IN THEIR NUMBER OF UNIT TESTS. THE
HIGHER THESE NUMBERS, THE BETTER.

#Revisions, with different deviations
Project #Revisions =0 (istqb) =0 (ieee) ≤1 (istqb) ≤1 (ieee) ≤5 (istqb) ≤5 (ieee)
ansible 10,988 0 0 0 0 95 (0.86%) 3,403 (30.97%)
aws-cli 3,916 0 363 (9.27%) 0 398 (10.16%) 10 (0.26%) 423 (10.80%)
nose 1,003 0 0 0 0 0 0
nose2 684 11 (1.61%) 16 (2.34%) 25 (3.65%) 25 (3.65%) 25 (3.65%) 55 (8.04%)
nupic 5,822 0 0 0 0 9 (0.15%) 9 (0.15%)
pip 2,848 0 0 0 0 1 (0.04%) 1 (0.04%)
robotframework 11,000 0 0 0 0 0 0
scikit-learn 20,539 0 36 (0.18%) 49 (0.24%) 484 (2.36%) 1,195 (5.82%) 1,440 (7.01%)
vcrpy 558 0 55 (9.86%) 29 (5.20%) 55 (9.86%) 174 (31.18%) 174 (31.18%)
warehouse 1,569 0 0 0 0 2 (0.13%) 8 (0.51%)

TABLE VI
AVERAGE PERCENTAGE OF UNIT TESTS IN ONE REVISION USING

DEFINITION 3 (ISTQB) AND 4 (IEEE).

Projects istqb % ieee %
ansible 3.25% 22.27%
aws-cli 2.61% 68.30%
nose 0.04% 0.04%
nose2 6.36% 24.78%
nupic 20.52% 28.03%
pip 0.00% 6.71%
robotframework 0.01% 0.01%
scikit-learn 0.84% 3.91%
vcrpy 0.00% 20.41%
warehouse 26.35% 30.69%

TABLE VII
AVERAGE PERCENTAGE OF TESTS THAT USE MAGICMOCKS AND THAT

MOCK IMPORTS.

Project Use MagicMocks % non-MagicMocks %
ansible 21.07% 7.47%
aws-cli 89.23% 10.21%
nose 14.11% 0%
nose2 0.19% 0%
nupic 12.43% 7.99%
pip 26.97% 14.16%
robotframework 0.0003% 0%
scikit-learn 0.66% 0%
vcrpy 49.26% 6.42%
warehouse 0% 0%

over 20% of ISTQB/IEEE unit tests are no longer recognized
as unit tests, if we take mocks into account.

Upon further investigation we found, that tests often mock
parts of the unit under test (e.g., functions), which is treated
by us as if the whole module is mocked. Therefore, a test
previously correctly recognized as unit test is not categorized
as unit test anymore, as the only import (the unit under test)
is marked as mocked. As we are operating on module level to
differentiate unit and non-unit tests from each other, we are not
taking functions into account. Hence, we can not automatically
detect the tests, which are mocking parts of their unit under
test.

TABLE VIII
MEAN DIFFERENCES BETWEEN THE PERCENTAGES OF TESTS OF THE

CATEGORIES istqb & istqbWM (ISTQBWM), istqb & istqbMC (ISTQBMC),
ieee & ieeeWM (IEEEWM), AND ieee & ieeeMC (IEEEMC). PROJECTS
THAT ARE NOT LISTED HERE DO NOT USE ANY NON-MAGICMOCKS.

Project istqbWM ieeeWM istqbMC ieeeMC
ansible -4.30% -5.00% -3.28% -3.82%
aws-cli ±0% -2.49% +1.11% -62.22%
nupic -20.52% -28.03% -20.52% -28.03%
pip ±0% +0.35% ±0% -4.13%
vcrpy ±0% ±0% ±0% ±0%

Answer to RQ3: Our findings show that the mock usage
depends on the project. There are projects, which heavily
use mocks, but also projects that do not use mocks at
all. But, MagicMocks are more often used, than non-
MagicMocks. Surprisingly, we get less unit tests in most
cases, if we exclude mocked imports or use our mock-
cutoff.

D. RQ4: How does the Number of Unit Tests evolve over
Time?

Table IX reports different patterns regarding the evolution of
the number of ISTQB/IEEE unit tests. The first pattern that can
be seen is an increase of unit tests in the beginning and then a
stagnation at some point. For the project aws-cli, this behavior
is only visible for ISTQB unit tests. The second observable
pattern is a raise of unit tests in the beginning and a drop
afterwards. For the project nose the number of unit tests is
raising just the first few revisions and then dropping low. This
is different for the project nose2, where the raise and the drop
in unit tests is time-shifted for ISTQB and IEEE unit tests.
Another pattern that we observe is, that the number of unit
tests is constantly raising. The only project where this pattern
is found is aws-cli, if we look at the evolution of the number
of IEEE unit tests. Furthermore, another observable pattern
is, that the number of unit tests is constantly low, which is
the case for the project robotframework and pip (for ISTQB
unit tests). For the project ansible, there is no clear pattern
detectable.



TABLE IX
DETECTED PATTERNS FOR THE EVOLUTION OF THE NUMBER OF UNIT

TESTS FOR THE EXAMINED PROJECTS.

Pattern Projects
beginning raising→ stagna-
tion

warehouse, nupic, aws-cli (istqb)

beginning raising → drop vcrpy, nose, scikit-learn, nose2, pip
(ieee)

constantly raising aws-cli (ieee)
constantly low pip (istqb), robotframework
no clear pattern ansible
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Fig. 4. Evolution of the number of tests in the categories all, dev, ieee, and
istqb for the project nupic.

The evolution of the number of unit tests for the project
nupic is shown in Figure 4. We can not show all graphs for all
projects here, because of the space limitations. Nevertheless,
all implementations to create these graphs are available in the
replication kit (see: Section III-E). Figure 4 displays the counts
of the categories all, dev, ieee, and istqb for the project nupic
over time. We see a raise in the number of unit tests for this
project till revision ∼1,800. Then the number stagnates and
begins to raise with revision ∼2,500. Furthermore, we see a
large drop at revision ∼5,000, as well as some smaller drops
at different revisions. We checked these drops manually and
found, that these are “wrongly placed” commits. Meaning, that
a developer committed an older version of the project at this
point in time. These drops do not influence our results for the
other RQs, as we only look at differences between the counts
of categories and the time of the revision do not influence
these.

For most of the projects, the number of unit tests is rising
in the beginning, which can be explained by the size of
the project: in the beginning, few files are present in the
project and therefore, a test is not able to have a lot of
dependencies/imports. But the more complex a project grows,
the more files are created and therefore the dependencies
between these files are raising. The observed patterns lead to
the following answer to our RQ4:

Answer to RQ4: We detected four different patterns for
the examined projects as described in Table IX. For one
project, no clear pattern was observable. We have seen
that the evolution of the number of unit tests depends on

the definition of unit testing used for two of the projects.

E. Further Findings

During the validation of our approach, we found that some
developer unit tests, have only one direct import (i.e., the
test directly imports only one other module). Hence, we
hypothesize that developers do not look at the imports of
the directly imported modules. Therefore, developers think
that they are developing a unit test, but in fact several other
modules are imported through this module. We did not look
deeper into this hypothesis, but will do in future work.

V. THREATS TO VALIDITY

In this section, we want to discuss the threats to validity re-
garding our empirical study. We discuss the external, internal,
and construct validity of our study.

External Validity. Threats to the external validity are
concerned with the ability to generalize the results. In our
study, we only had a look at Python projects. The results could
be different for, e.g., Java projects. Although we have chosen
projects, which have a wide variety in their characteristics
(e.g., number of revisions, application field, industrial or
community driven), the results can vary if other projects are
chosen. Replication of this work using other Python projects
(and projects using other programming languages) is required
in order to reach a more general conclusion.

Internal Validity. Threats to the internal validity are con-
cerned with the ability to draw conclusions from the relation
between causes and effects. We are studying a manual clas-
sification of tests by developers in RQ1. There might be, by
the nature of it, some misclassifications made by them.

Construct Validity. Construct threats to validity are con-
cerned with the degree to which our analysis really analyses
what we are claiming it does. We developed different tools
for the data extraction and analysis process. We carefully
tested our tools via written tests, which can be looked up
in the corresponding repositories or the replication kit, and
with manually-curated samples of the data. Furthermore, we
validated our analysis with a sample (see: Section III-D).
Nevertheless, defects in our programs can still exist, which
can have an influence on our results.

Furthermore, with our data collection tools, we were not
able to check if an imported module is really used in the test.
This can be the case, if an import is not removed in a newer
version where it is not needed anymore. Nevertheless, we did
not see this problem occurring in our sample.

Although, we have tested our regular expressions carefully
and with manually-curated samples, they can match wrongly
or not at all. The same applies to our created filter. Addition-
ally, we focused on detecting mocks using the official mock
library of Python [49]. If other mock libraries are used, we
are not able to reliably detect mocks. Nevertheless, none of
the projects used other mocking frameworks in our sample.

Furthermore, the modulefinder [51] module of the Python
standard library has several shortcomings. First, if the import
path is too long, it will throw an exception. Moreover, if there



are syntax errors in the files, the modulefinder module is not
able to parse it and therefore it will throw an exception. From
the 4,637,232 tests we used in our analysis, an exception was
thrown for 202,587, which results in 4,37% of erroneous tests.
Note that erroneous tests do not have any imports stored in
the database and are therefore excluded from the analysis.

VI. RELATED WORK

In this section, we compare our study to prior work in the
field of exploratory unit testing studies.

In the short paper of van Geet et al. [54] the authors
determine the adequacy of tests as documentation. They use
a dynamic analysis approach to trace the execution of JUnit
test cases. Hence, they recorded which method is executed
by the test cases. They collected data from three different
versions of ant [55]. Their results show, that the number of
methods, which are executed by a test case is on average
215. Furthermore, they calculated the method coverage and
total number of methods, test methods, and method calls and
compared it for each of the three ant versions they analyzed.
They concluded, that the developers of ant follow a integration
testing, instead of a unit testing strategy. Therefore, following
van Geet et al., the tests are “less suitable for documentation
purpose” [54].

Our work does have a different focus than the work of
van Geet et al. [54]. Whereas van Geet et al. focus on the
question, if unit tests can be used as documentation, we focus
on the question if there are any unit tests at all in a project.
Additionally, we consider the developer’s classifications of a
test and the usage of mocks and its influence in our analysis.
Furthermore, their data basis is small in comparison to ours,
as they collected data from three versions of one project,
whereas our data basis consists of 10 different projects and
their whole revision history. Additionally, van Geet et al. [54]
use a dynamic analysis approach in their study, which is
different to our static analysis approach. Finally, they focus
on projects written in Java, which is in contrast to our work,
as we focus on projects written in Python.

Another paper in the field of exploratory unit testing studies
is the paper by Gälli et al. [56]. They provide a taxonomy
of unit tests with different categories based on one individ-
ually classified project, which is tested via a semi-automatic
approach that classifies the unit tests of the test project into
the different categories of their schema dynamically. It is not
clear, if they used only one revision of these projects or the
whole history. Moreover, Gälli et al. [56] do not state after
which criteria or definition they classify tests as unit tests.
Their semi-automatic approach reached a recall of 52% and a
precision of 89% for the one category they had a look at.

Their work focuses on projects written in Smalltalk [57],
whereas our focus lies on projects written in Python. Further-
more, the focus of the paper by Gälli et al. [56] is different to
ours, as they want to provide a taxonomy of unit tests, whereas
our focus lies on if there exist any unit tests in the projects.

Runeson [58] investigates the unit testing practices of practi-
tioners in his paper. He surveyed 32 participants of 19 different

companies. The survey was organized in two phases: in the
first phase the 17 participants held a focus group discussion.
In the second phase, the results of these discussions were used
as the basis for a questionnaire, which was completed by 15
participants. The analysis of the questionnaire and the discus-
sions were done with the goal to find out what practitioners
refer to, when they talk about unit testing. The reporting of the
results is structured according to Zachman’s framework [59].
Runeson reports for each of the frameworks categories (except
“Where?”) definitions, strengths, and problems that developers
see or use. His conclusion is that companies must define what
unit testing means for them, as an unclear definition runs the
risk of inconsistent (or bad) testing.

In contrast to our study, Runeson did not analyze the code,
which the developers wrote, but surveyed them to get their
thoughts about unit testing. Therefore, the focus of both studies
is differently, but both studies refer to the same problems.

Besides the mentioned related work, there are a lot of
other publications focusing on establishing traceability links
between unit tests and units under test, e.g., [6], [7]. Neverthe-
less, they do not focus on the question, if developers write unit
tests in real world projects, but on linking test cases with code
that is tested to improve the productivity of developers. To the
best of our knowledge, no previous research has empirically
studied, if developers write unit tests in real world projects.

VII. CONCLUSION AND FUTURE WORK

In this paper, we reported an empirical study conducted
on 10 open source projects aimed at investigating how (and
whether) developers use unit tests in real world projects. In
particular, we investigated: the developers categorization of
their own tests, the number of unit tests, if mocks are used
and their influence on the results, the evolution of the number
of unit tests, and whether the definition of unit testing that is
used influences the results.

We mined the complete revision history of the 10 projects
and detected and categorized all tests at each of the 70,953
analyzed revisions. This data was further analyzed in respect
to our RQs mentioned above. Our results show: (i) developers
believe that they are developing unit tests, but in fact they are
developing fewer than they think, (ii) in most projects, there
is just a small amount of unit tests, but this depends largely
on the project, (iii) developers use mocks often, but it does
not have a significant influence on the number of unit tests,
(iv) four different patterns were detected of how the number
of unit tests evolve over time in the examined projects, but
for one project no pattern could be observed, (v) the used unit
test definition has an influence on the results.

For future work, we are extending our tool so that it
can also analyze other programming languages (e.g., Java).
Additionally, we plan to have a look at other test types
(integration/system tests) to see how they are used in real life
projects. Furthermore, we plan to involve the developers of the
projects and conduct a survey, as we believe that this could
help us to understand what open-source developers really think
about unit testing.
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