IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Comments on ScottKnottESD in response to
“An Empirical Comparison of Model Validation
Techniques for Defect Prediction Models”

Steffen Herbold

Abstract—In this article, we discuss the ScottKnottESD test, which was proposed in a recent paper “An Empirical Comparison
of Model Validation Techniques for Defect Prediction Models” that was published in this journal. We discuss the implications
and the empirical impact of the proposed normality correction of ScottKnottESD and come to the conclusion that this correction
does not necessarily lead to the fulfillment of the assumptions of the original Scott-Knott test and may cause problems with the

statistical analysis.

1 INTRODUCTION

N the article “An Empirical Comparison of Model

Validation Techniques for Defect Prediction Mod-
els” by Tantithamthavorn et al. [1], the authors
propose Scott-Knott Effect Size Difference (Scot-
tKnottESD) as an extension of the Scott-Knott test [2].
Within this response to the article, we want to com-
ment on this extension and the implications of using
ScottKnottESD, as well as on problems that may occur,
and give recommendations for using ScottKnottESD.

To this aim, we first summarize the original Scott-
Knott test in Section 2 and ScottKnottESD in Section 3.
Then, we discuss the implications of the proposed
normality correction in Section 4. In Section 5, we
proceed to show a small experiment that exemplifies
the discussed implications and highlights the impact
both on real, as well as on artificial data. Afterwards,
we give recommendations on the future use of Scot-
tKnottESD in Section 6. In Section 7, we summarize
the feedback from Tantithamthavorn et al. which we
got when we contacted them. Finally, we conclude our
article in Section 8.

2 SUMMARY OF THE SCOTT-KNOTT TEST

The Scott-Knott test [2] is a statistical procedure for
the clustering of siginificantly different results as out-
come of an Analysis of Variance (ANOVA) test [3].
ANOVA determines if there are statistically signifi-
cant differences between groups of populations. As a
corollary, the three requirements of ANOVA must be
fulfilled if one wants to use the Scott-Knott test.

1) Normality: the residuals of the dependent vari-
ables must be normally distributed.
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2) Homoscedasticity: the variance of all dependent

variables must be the same.

3) Independence of observations: all observations

must be independent of each other.

If ANOVA finds a significant difference between
the populations, Scott-Knott uses a cluster analysis
method to first determine two groups of popula-
tions, such that the within group sum of squares of
both groups is minimized. This procedure is recur-
sively repeated until the groups are homogeneous,
i.e., ANOVA does not detect significantly different
populations within a resulting group. For the pur-
pose of our discussion of Scott-Knott in this article,
three aspects are relevant: the normality assump-
tion of ANOVA, the homoscedasticity assumption of
ANOVA, and the cluster analysis based on minimiz-
ing the within group sum of squares.

3 MODIFICATIONS BY SCOTTKNOTTESD

ScottKnottESD is identical to the normal Scott-Knott
test, except for two changes.

1) Normality correction: prior to the application of
the Scott-Knott test, Tantithamthavorn et al. pro-
pose a log-transformation of the data, such that
' =log(x + 1).

2) Effect size correction: after the application of the
Scott-Knott test, Cohen’s d [4] is used to merge
clusters where the effect size is negligible, i.e.,
d<0.2.

The rationale behind the first modification is to
treat a potential skewness in the variable distribution
with the purpose to fulfill the normality assumption.
The rationale behind the second modification is that
groups of populations with a negligible difference in
effect sizes should not be in different clusters, even if
the difference is statistically significant. The authors
published their implementation as the package Scot-
tKnottESD v1.1 on CRAN [5].
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4 IMPLICATIONS OF SCOTTKNOTTESD

From our point of view, the idea to use Cohen’s d is
very good and can help to improve the interpretation
of results by merging clusters and, thereby, achieving
a clearer grouping. Therefore, we will not go into
greater detail regarding this adoption, as we fully
agree with Tantithamthavorn et al. that this change
is valuable.

The normality correction, on the other hand has
several implications of, the impact of which cannot
be predicted in general. Therefore, we want to take
a closer look at the rationale for the normality cor-
rection and the implications on the various steps of
ScottKnottESD.

4.1 Rationale behind the normality correction
The authors state that the log-transformation treat-
ment is “a commonly-used transformation technique
in software engineering research” based on [6], [7].
We agree that the list of articles, where such a log-
transformation is used, is actually quite long. More-
over, the use of log-transformations to deal with
skewed features is not limited to defect prediction,
but also used for other tasks, e.g., for the anal-
ysis of globally distributed software development
teams [8] and for expertise modeling [9]. Addition-
ally, log-transformations are also used for other soft-
ware engineering models to deal with multiplica-
tive relationships, e.g., when calibrating COCOMO
II models [10]. However, to the best of our knowl-
edge, no article on defect prediction applied the
log-transformation to performance measures. Instead,
the log-transformation is applied to the features be-
fore using them for machine learning. As a case
in point, Tantithamthavorn et al. themselves use the
log-transformation for features that way in the same
article where ScottKnottESD is proposed [1].

From our point of view, the application of log-
transformation to performance metrics is fundamen-
tally different from the application to features. For
features, the goal is to reduce the skewness, as many
machine learning algorithms favor data with less
skewness. In the end, one is not interested in the
feature, but how the feature helps to predict the out-
come. Thus, even if the skewness is not bad or fully
treated using the transformation, this only results in a
different prediction model that will be evaluated. The
evaluation itself is not affected.

However, when performance metrics are trans-
formed, this directly impacts the evaluation of results.
Basically, the statistical tests do not evaluate, e.g.,
AUC anymore, but log(AUC + 1). This has several
implications on a procedure like Scott-Knott.

Relationship of data with and without log transformation in the interval [0,1]
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Fig. 1. Change in values due to log-transformation.

4.2 Implications of the normality correction on
ANOVA

The first are the implications for ANOVA. The authors
state in the paper that ScottKnottESD “makes no
assumptions about the underlying distribution” [1].
They argue that this is achieved by the log-
transformation, which they refer to as normality cor-
rection in this context. However, a log-transformation
does not guarantee normality. If data is already nor-
mally distributed or if the skewness is not exponential
of a normal distribution, the log-transformation will
not help with the fulfillment of the normality assump-
tion. In case the data is already normally distributed,
the log-transformation may actually change the data
distribution such that it is no longer normal.

Moreover, the log-transformation also impacts the
variance of the data, and therefore, the homoscedas-
ticity assumption of ANOVA. Figure 1 shows how the
values of a performance measure change due to the
log-transformation, assuming that the possible values
of the performance measure are in the interval [0, 1].
The relative distances between the values decrease
with growing performance values. Thus, the variance
between these high values of a measure will change
differently under the transformation than the variance
between lower values of a performance measure. How
this effects the homoscedasticity is not explored by
Tantithamthavorn et al.

4.3 Implications of the normality correction on
the cluster analysis

The cluster analysis is similarly affected by the log-
transformation. Because the relative distances be-
tween performance metrics change, the within group
sum of squares is also different than without the
transformation. Basically, it means that the clusters are
not created over the performance metrics, but instead
over the log-transformation of the performance met-
rics. Consequently, the groups may be different with
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or without the log-transformation. Hence, it is unclear
if the groupings hold for the actual values of the per-
formance metrics, or only for the log-transformations.

4.4 Implications of the normality correction on
the effect size correction

The implications on the effect size correction are
basically the same as on the cluster analysis. Cohen’s
d uses both the difference between the mean values,
as well as the difference between the standard devi-
ations. Both are changed due to the effect of the log-
transformation on the relative distances between the
results. Specifically, the differences decrease after the
log-transformation reducing the effect size, especially
for larger performance values. Thus, Cohen’s d may
yield a negligible effect size for the log-transformed
values, but a larger and not negligible effect size for
the actual values of the performance metrics. In this
case, clusters which are actually statistically signifi-
cantly different with a non-negligible effect size my
still be merged.

5 EXPERIMENTS ON THE IMPACT OF THE
NORMALITY CORRECTION

We performed some experiments to evaluate whether
the implications discussed above are of practical rele-
vance. The complete experiment results are available
online and are fully reproducible [11].

5.1

To see if and how the normality correction impacts
defect prediction results, we simply took existing
defect prediction data we had available from previous
experiments. In particular, we took the performance
values of 62 cross-project predictions we made with
data collected by Jureczko and Madeyski [12]. The
62 products are all not proprietary products from the
data set. The predictions are strict cross-project predic-
tions without any transfer learning technique applied.
The data was generated as part of a benchmark on
cross-project defect prediction [13] and represents the
results for the baseline configuration ALL. As clas-
sifiers we used Naive Bayes (NB) and C4.5 decision
trees (DT). As performance metrics we considered
AUC and F-measure. For all statistical tests, we use
the significance level of o = 0.95, i.e, results are
significant if the p — value < 0.05.

Please note, that the focus of this article is solely
on the impact of the normality correction on the
evaluation of prediction results. The actual values
of the performance metrics, i.e., whether the results
are good or bad, are irrelevant for this article and,
therefore, not discussed. Similarly, we do not discuss
if NB and DT are good choices for algorithms, and if
the way the training data is selected is a good strategy.

Impact on real defect prediction results

3
AUC F-measure
NB DT NB DT
No log-transformation 0.0098 0.9609 | 0.0299 0.7824
With log-transformation | 0.0009 0.7215 | 0.1263  0.5531
TABLE 1

p — values of the Shapiro Wilk test for normality.

AUC F-measure
NB DT NB DT
No log-transformation 0.0129  0.0097 | 0.0242 0.0181
p — value 0.5993 0.4747
With log-transformation | 0.0047  0.0039 | 0.0144  0.0098
p — value 0.9022 0.2364
TABLE 2

Variances of the data and p — values of Levene’s test
for variance homogeneity.

5.1.1 Impact on the normality assumption

To test for normality of the data, we used the Shapiro-
Wilk test [14]. The null hypotheses of the test is that
the data is normally distributed. The null hypothesis
is rejected if p—wvalue < 0.05. Table 1 shows the results
of the test. The results with the DT are both normally
distributed, for NB both results are not normally
distributed. The log-transformation does not solve
the problems with the normality assumption. While
the result of NB with F-measure is now normally
distributed, the results with NB and AUC are still not
normally distributed. The p — value was actually re-
duced, meaning the results are even more significantly
non-normal. Similarly, the p—value for the results with
the DT were also reduced, indicating that while the
data is still normally distributed, it was better before
the log-transformation.

5.1.2 Impact on the homoscedasticity

To test for homoscedasticity we use Levene’s test for
variance homogeneity [15]. The null hypothesis of
the test is that the variances of two populations are
the same. Levene’s test does not require the data to
be normally distributed. Other tests, e.g., the F-test
or Bartelett’s test [16] require normally distributed
data and cannot be applied here (see Section 5.1.1).
Table 2 shows the variances of the results and the
results of Levene’s test with and without the log-
transformation. For both AUC and F-measure, the
p — values change drastically. For AUC, the p — value
is increased, for F-measure it is decreased. In both
cases Levene’s test yields the same results, i.e., the
null hypothesis is still not rejected.

5.1.3

Finally, we took a look at the impact of the log-
transformation on the values of Cohen’s d, which is
used for the effect size correction. Table 3 shows the
effect sizes with and without the log-transformation.

Impact on the effect size
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AUC F-measure

NB vs DT | NB vs DT
No log-transformation 1.1223 0.6311
With log-transformation | 1.0931 0.6488

TABLE 3
Effect sizes measured with Cohen’s d.

The value of Cohen’s d changes slightly. Similar to
the impact on the p — values of Levene’s test, the
changes are not consistent. For AUC, Cohen’s d is
slightly reduced, for F-measure the value is slightly
increased.

5.2 Do the differences matter?

We use sample data to show that the different implica-
tions of the log-transformation may all lead to actual
problems. Our example with real data above already
shows that the log-transformation does not ensure
normality. To show that it can actually break existing
normality, we randomly sampled 100 instances from
a normal distribution with x = 0.5, and ¢ = 0.3. We
repeated this 100 times. Using the Shapiro-Wilk test,
we determined that

e in 37 cases, the data was normally distributed
with and without the log-transformation;

o in 2 cases the data was not normally distributed
with and without the log-transformation;

e in 2 cases the data was normally distributed
with the log-transformation, but not without the
transformation; and

e in 59 cases the data was normally distributed
without the log-transformation, but not with the
transformation.

For this example, the log-transformation had a neg-
ative effect for 59% of the repetitions and a positive
effect for only 2% of the repetitions.

To show that the differences we observed with
Levene’s test and with Cohen’s d matter, we use the
sample data shown in Table 4. To demonstrate the
problem with the variance, we use large and small.
Both samples have the exact same variance, as small
is created by subtracting 0.3 from large. Consequently,
the p — value of Levene’s test when comparing large
and small is 1, i.e., as far as possible from rejecting
the null hypothesis of variance homogeneity as possi-
ble. However, if the log-transformations of large and
small are used instead, the p — value of Levene’s test
is 0.0282, i.e., the null hypothesis is rejected and we
determine that the variances are not equal. Thus, due
to the log-transformation, this condition of ANOVA is
actually broken. This can happen, because the relative
distances between the values change due to the log-
transformation, as we discussed in Section 4.2.

As for Cohen’s d, we consider what happens be-
tween large and large2. If we apply Cohen’s d to
compare large and large2 directly, we get an effect

size of 0.2007, i.e., barely non-negligible. With the log-
transformation, this changes to an effect size of 0.1996,
i.e., negligible. Consequently, the large and large2
would be merged by the effect size correction with
log-transformation and not merged without the log-
transformation. Basically, ScottKnottESD determines
them as significantly different in the log-space, but
not significantly different based on their actual values.
This is problematic, as the actual aim is to evaluate
and compare differences between the performance
metrics, not their logarithms, as they would be dif-
ferent performance metrics with different meanings.

Finally, we wanted to explore if the implications
that the log-transformation can change the cluster
analysis of Scott-Knott itself are valid. To this aim,
we generated three normally distributed samples with
100 instances, where p; = 0.5, ps = 0.6, ps = 0.625,
and 0 = 02 = o3 = 0.1. We then applied the
Scott-Knott test to the data with and without log-
transformation. We repeated this 100 times. In two
cases, the clustering with the log-transformation was
different, thus with that kind of data the statistical
analysis would yield wrong conclusions 2% of the
time.

5.3 Further implications

All of the above is discussed in relation to perfor-
mance metrics whose values are distributed in the
interval [0, 1]. Once we leave that interval, the conse-
quences usually get stronger. For example, the values
of the performance metric Matthews Correlation Co-
efficient (MCC) are distributed in the interval [—1, 1].
Thus, a non-defined value for log(0) is possible for
MCC. Moreover, in the interval [0,1] the impact on
the skewness of the log-transformation is rather small.
Outside of that interval the effects are more drastic,
as our plot of the data between [—0.999, 1] in Figure 2
shows. However, we believe that our discussion above
is sufficient for the conclusions we draw from our
analysis.

6 RECOMMENDATIONS FOR THE FUTURE
USE OF SCOTTKNOTTESD

From our findings and subsequent discussion, our
recommendation for the future use of ScottKnottESD
is the following:

o Use the effect size correction to only consider
clusters as different where the effect size suggests
so0.

o Make sure that your data fulfills the assumptions
of ANOVA without any transformation.

o If the assumptions are not fulfilled, we suggest
to switch to a different statistical test, where the
assumptions are fulfilled.

In case the usage of ScottKnottESD is strongly
desired, for example because the clear clustering of
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Sample name | R command
large

large2 xlarge-0.01
small xlarge-0.3

rep(c(0.95,0.97,0.94,0.96,0.84,0.86,0.86,0.95),40)

TABLE 4
Artificial samples to demonstrate the impact of the log-transformation. While the actual values are constructed,
large and large2 could be the results of a very well performing model, small of an average model.

Relationship of data with and without log transformation in the interval [-0.999,1]
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Fig. 2. Change in values due to log-transformation for
MCC.

results allows good intepretations of findings, we
suggest to define a meaningful transformation of the
performance metric and make sure that after the
transformation the assumptions are fulfilled. Most im-
portantly, this transformation should make sense for
the actual analysis that is done as part of the research
performed. For example, if accuracy is transformed
using the logarithm, this means that differences for
low values of accuracy get a higher weigth than
differences for high values of accuracy due to the
skew treatment. In this case, researchers must ask if
this makes sense for the intended analysis.

We would also like to note that the problem of non-
normal data is very common, not only in computer
science, but also in other disciplines, e.g., biomedicine
and psychology [17]. Osborne [18] provides a good
overview on what should be considered if data shall
be transformed to achieve normality. For example, Os-
borne states that not only log-transformations should
be considered, but also square root for counts and
arcsine-root for proportions.

Finally, we conclude our recommendations with a
cautionary note from Hopkins [19] regarding transfor-
mations. “With log and other non-linear transformations,
the back-transformed mean of the transformed variable
will never be the same as the mean of the original raw
variable. Log transformation yields the so-called geometric
mean of the variable, which isn’t easily interpreted. Rank
transformation yields the median, or the middle value,
which at least means something you can understand. The

square-root and arcsine-root transformations for counts and
proportions yield goodness-knows-what.”

7 FEEDBACK FROM TANTITHAMTHAVORN
ET AL.

We send the draft of this response together with
the reproducible results [11] to Tantithamthavorn et
al. to get their feedback regarding this comment.
As a result, Tantithamthavorn et al. double checked
their results again. They found that the values in
their experiments were roughly normally distributed.
Moreover, the results did not change, when they did
not use the log-transformation.

Tantithamthavorn et al. followed our recommen-
dations for the modification of ScottKnottESD we
proposed in Section 6: they removed the log-
transformation and added a new function to check
if the assumptions of ANOVA are met, using the
same statistical tests we used in this comment. These
changes resulted in version v1.2.2 of the R package
which was released on May 5th, 2017 and is available
archived on Zenodo [20].

8 CONCLUSION

Our results show that the impact of the log-
transformation cannot be predicted. One cannot
be sure if normality is achieved by the log-
transformation. Moreover, the log-transformation may
have a negative impact on various aspects of the Scott-
Knott test, as well as the effect size correction of
ScottKnottESD. In case assumptions of ANOVA are
not met, we suggest using statistical tests where the
assumptions are fulfilled, e.g., non-parametric tests
like the Friedman test [21] with post-hoc Nemenyi
test [22] as proposed by Demsar [23].
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