
Georg-August-Universität

Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BM-2007-36

Masterarbeit

im Studiengang Angewandte Informatik

An XML-based Approach for Software Analysis

Applied to Detect Bad Smells in TTCN-3 Test Suites

Jens M. Nödler

Institut für Informatik

Softwaretechnik für Verteilte Systeme

Bachelor- und Masterarbeiten

des Zentrums für Informatik
an der Georg-August-Universität Göttingen

26.10.2007

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen

Deutschland

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 26.10.2007

Master’s Thesis

An XML-based Approach for Software Analysis

Applied to Detect Bad Smells in TTCN-3 Test Suites

Jens M. Nödler

2007-10-26

Supervised by Dr. Helmut Neukirchen

Co-supervised by Prof. Dr. Jens Grabowski
Software Engineering for Distributed Systems Group

Institute for Computer Science
University of Göttingen, Germany

To everybody who contributed to this thesis,
supported my work, and shared time with me.

I appreciate it.

Abstract

This thesis presents an XML-based approach for software analysis. Pat-
terns in software artefacts which should be found by the analysis are de-
scribed using the declarative XML query language XQuery. Implementation
and design of a software analysis framework are presented. The design of
the framework allows patterns to be described in a generic, abstract, and
reusable way. The framework is customised for the detection of places in
source codes which should be refactored, so-called bad smells. As a case
study, the framework is used to detect bad smells in test suites written in
the testing language TTCN-3.

Zusammenfassung

Diese Arbeit präsentiert einen XML-basierten Ansatz zur Software-Analyse.
Software-Muster, die von der Analyse gefunden werden sollen, sind mittels
der deklarativen XML-Abfragesprache XQuery beschrieben. Das Design des
implementierten Software-Analyse-Frameworks ermöglichen eine generische,
abstrakte und wiederverwendbare Musterbeschreibung. Das Framework ist
angepasst für die Erkennung von Stellen in Software-Quelltexten, die mit-
tels Refactoring überarbeitet werden sollten. Diese Stellen werden als

”
Bad

Smells“ bezeichnet. Als Fallbeispiel wird das Framework benutzt, um sol-
che

”
Bad Smells“ in Testfällen zu finden, die in der Test-Sprache TTCN-3

beschrieben sind.

Contents

1 Introduction 1

1.1 Structure of this Thesis . 2

2 Foundations 3

2.1 Patterns in Software Artefacts 3

2.2 TTCN-3 Testing Language 7

2.3 XML Technologies . 13

2.4 Representations of Software Artefacts 21

3 Related Work 34

3.1 Source Code Metrics . 34

3.2 Regular Expressions . 35

3.3 Logic Programming . 37

3.4 Domain-Specific Languages 38

3.5 XML-based Approaches . 41

3.6 Other Common Approaches 45

3.7 Summary and Discussion . 47

4 Requirements and Design 49

4.1 Requirements for a Software Analysis Framework 49

4.2 Design: A Layered and Extensible Architecture 53

4.3 XML for the Representation of Software Artefacts 55

4.4 XQuery for the Facade Layer and Pattern Description 56

4.5 Discussion of this Approach 62

5 Implementation and Test 64
5.1 Underlying Software Technologies 64
5.2 Alliances of Java and XQuery 67
5.3 Conversion of TTCN-3 Source Code to XML 68
5.4 XQuery Facade Layer for TTCN-3 71
5.5 XQuery Pattern Description of Bad Smells 74
5.6 Integration into TRex . 79
5.7 User-Defined Queries . 85
5.8 Tests for the Implementation 90
5.9 Discussion . 91

6 Application and Extension 93
6.1 Detection of Bad Smells in TTCN-3 Test Suites 93
6.2 Extension of the Framework to New Analysis Targets 96
6.3 Extension of the Framework to New Types of Patterns 97

7 Summary and Outlook 100

Abbreviations and Acronyms 103

Bibliography 119

A XQuery Source Codes 120
A.1 XQuery Facade Functions . 120
A.2 Generic Smell Detection Functions 126
A.3 Smell Detection Functions for TTCN-3 127

B Contents of the CD-ROM 131

Chapter 1

Introduction

Software is continuously changing as the customer’s requirements are grow-
ing and varying. This makes software more complex and can lead to so-called
software ageing. The cost of maintaining and enhancing existing software is
a deciding factor in a software’s lifetime [MMFA04]. About 50% of the soft-
ware developer’s time is consumed by browsing and comprehending existing
source code [vMV95]. Maintenance activities took over 60% of all software
development costs in the last three decades [Pre05]. These numbers re-
veal the importance and usefulness of analysis technologies as the starting
point for the enhancement of software quality, reusability, and maintainabil-
ity [EKW99].

Software analysis can be seen as the counterpart of software engineering.
While the latter describes processes for the development of new software, the
analysis is an elementary part in examining and understanding existing soft-
ware. The analysis of software concerns internal properties like source code
and external properties like runtime behaviour. Software can be analysed
regarding different qualities like functionality, reliability, and maintainability
for instance [ISO04]. The analysis of internal structures of software is not
restricted to reverse engineering or reengineering and can be used amongst
others for the following tasks: conformance checking regarding coding styles,
extraction of software facts, calculation of source code metrics, control and
data flow analysis, and detection of source code anomalies and security-
related bugs [Som04, Chap. 22].

Refactoring enhances the internal structure of source code without chang-
ing the observable behaviour. The purpose is to increase the software’s main-
tainability and comprehensibility. Refactoring started as a manual process
separated from the actual software development. Nowadays refactoring is
widely adopted, automated, and tightly integrated with the software devel-
opment [Fow99, Chap. 14]. Still it is up to the developer’s experience and
intuition to know where to apply refactorings. Locations in the source code
which should be refactored are called bad smells. Hence, deploying software

1

analysis for the automated detection of bad smells is the next consequent
step towards higher software quality.

Bad smells can be understood as patterns in source code. Describing
patterns using a declarative language provides good readability, reusability,
and extensibility. Hence, the main goal of this thesis is to develop a declar-
ative way for the description of patterns like bad smells. The XML query
language XQuery provides a declarative syntax and is used for the descrip-
tion of software patterns. Therefore, software that is to be analysed, needs
to be represented using XML.

The usage of XML and XQuery is bundled in a software analysis frame-
work developed as a part of this thesis. The framework provides the possi-
bility to describe patterns in a generic and reusable way. This is achieved
by abstracting from the underlying source code and using XQuery for the
pattern description and detection. The framework’s design allows arbitrary
kinds of analyses: pattern-based detection of anomalies such as bad smells
and interactive source code queries for instance.

An application of the framework is the detection of bad smells in TTCN-3
source code. The testing language TTCN-3 is a standardised language for
the implementation of test suites for black-box testing. The syntax of the
TTCN-3 core notation is very close to those of other common programming
languages. Hence, bad smells can also occur in TTCN-3 test suites. The
framework is integrated in the TTCN-3 tool TRex which already has refac-
toring capabilities. The automated smell detection helps bridging the gap
towards a smoother refactoring process.

1.1 Structure of this Thesis

This thesis is structured in seven chapters. Following to this introduction,
chapter 2 provides foundations which reoccur throughout this thesis. This
includes patterns in software artefacts like bad smells, an introduction to
the testing language TTCN-3, a preface to XML and related technologies,
and an excursion concerning the representation of software artefacts. Re-
lated work regarding strategies for the detection of software patterns like
bad smells is discussed in chapter 3. As a part of this thesis, a software anal-
ysis framework is developed whose requirements and design are presented in
chapter 4. In the subsequent chapter 5, the implementation of the XML-
based analysis framework and its adaption for the detection of bad smells in
TTCN-3 test suites is discussed in depth. The penultimate chapter 6 shows
applications of the framework and discusses the extension and customisation
of the framework to new fields of application. Finally, chapter 7 provides a
summary of this thesis and an outlook towards future work.

2

Chapter 2

Foundations

This chapter introduces foundations which occur throughout this thesis. Sec-
tion 2.1 gives an overview of different terms related to patterns in software
artefacts. The main topic of this thesis is software analysis which is applied
to the testing language TTCN-3. The language is introduced in section 2.2
by describing its features and syntax. Section 2.3 gives an introduction to
the Extensible Markup Language (XML) and the XML-related technologies
XPath and XQuery. These XML technologies are used as the backbone of
the software analysis. As the representation of software is elementary for the
analysis of software, different representation formats for software artefacts
are introduced in section 2.4. Readers who are already familiar with the
presented foundations may skip single sections or the complete chapter 2.

2.1 Patterns in Software Artefacts

This section introduces terms describing patterns in software artefacts. As
these terms do not only apply to patterns which are restricted to the source
code level but also apply to the architectural level of software, the all-
embracing term software artefacts is used for both levels. No strict defi-
nition is available for most of the terms to be introduced. Therefore, they
are explained on a descriptive level and differentiations between them are
made. By contrast, a few terms are defined by the International Software
Testing Qualification Board (ISTQB) in the Standard glossary of terms used
in Software Testing [Int06] and are used in this thesis wherever applicable.

Patterns were first used by the architect Christopher Alexander [AIS+77]
in the late 70s as a formal way of documenting successful solutions to prob-
lems regarding urban planning and building architecture. They provide
high-level architectural descriptions in a generic and reuseable way instead
of addressing individual cases on a low level. Each pattern consists of four
essential elements: a unique name to establish a common vocabulary, a con-
text in which the pattern might be applied, a description of the problem
that the pattern is capable to solve, and the description how to solve this

3

problem. These four elements apply to all kinds of patterns, not only to
those for buildings, as described by Alexander.

In the mid 90s the term design patterns was coined by a group of four
researchers called “The Gang of Four” [GHJV95] in the field of software
architecture. Instead of talking about patterns in buildings and towns as
Alexander did, they used the term design patterns to describe reuseable el-
ements of object-oriented software. As the term design in design pattern
states, they provide solutions on an architectural level. The design patterns
were identified by their common usage to solve recurring problems. A de-
sign pattern catalogue, introduced in [GHJV95], uses a detailed format to
describe each design pattern including motivation, applicability, graphical
representation, implementation, examples, and related patterns. The pat-
terns of the catalogue are grouped by their main purpose: creational patterns
(like Singleton and Factory Method), structural patterns (like Adapter and
Facade), and behavioural patterns (like Iterator and Observer).

The idea of patterns was widely adopted and is nowadays used in many
more topics than the design of object-oriented software. The term bug pat-
terns for example is at least used twice: to describe recurring relationships
between signalled errors and underlying bugs in programs regarding debug-
ging [All02] and also as “error-prone coding practices that arise from the
use of erroneous design patterns, misunderstanding of language semantics,
or simple and common mistakes” [HP04]. Test patterns [Mes07] provide
common solutions for problems in nearly all phases of the test process. For
example, the patterns Mock Object and Fresh Fixture. Patterns are however
not limited to the technical level and can also be used at the organisational
and management level [CH04] for instance.

Anti-patterns [BMMM98] are the counterpart of patterns and describe
commonly occurring solutions to problems leading to negative consequences.
The idea of anti-patterns (which are sometimes also called pitfalls) is to show
how not to solve a problem. Like patterns, anti-patterns are not limited to
the design of software: design anti-patterns are just one category of anti-
patterns. Others are project management, programming, methodological,
and organisational anti-patterns. The programming anti-pattern Spaghetti
Code for example describes a program with a software structure that lacks
clarity and is therefore hard to maintain and extend because of its complex-
ity [MG05].

Design defects are related to design patterns. While design patterns
propose proven solutions to recurring design problems in object-oriented
architectures, design defects describe occurring errors in the design of soft-
ware [GAA01, MG05]. These errors might originate from the absence or the
wrong usage of design patterns, which is “the most common mistake in using
design patterns” [BMMM98, page 8].

Once a design defect, design anti-pattern or programming anti-pattern
is identified, a method called refactoring can be applied to transform the

4

software towards the usage of design patterns [Ker05]. Refactoring is defined
by Fowler as “a change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing its observable
behavior” [Fow99]. Analogous to the mentioned catalogue of design patterns,
Fowler created a refactoring catalogue consisting of seven categories where
each refactoring is presented using a unique name, summary, motivation,
mechanics, and examples. Common refactorings are Rename, Encapsulate
Field, and Extract Method.

Bad smells are “certain structures in the code that suggest (sometimes
they scream for) the possibility of refactoring” [Fow99, Chap. 3]. According
to this definition, bad smells are located at the source code level and are
therefore often called code smells. The term refactoring opportunities is also
used as a synonym for bad smells. Since the term bad smells was introduced,
different other kinds of smells were identified: project smells [AMS02] (that
relate to project management anti-patterns), architectural and design smells
(that are located at the design level and relate to design defects), and test
smells identified by Meszaros [Mes07]. According to Meszaros, three kinds
of test smells can be found: smells related to the source code level of tests,
behavioural smells that affect the outcome of a test execution, and project
smells as indicators of the overall health of a test project which do not involve
looking at test code or execution of tests.

The original list of bad smells was presented by Fowler and Beck [Fow99,
Chap. 3] additionally to the refactoring catalogue in the same book. Each
smell consists of a unique name, a textual description and proposed refactor-
ings to remove the smell. The list of smells is less well structured compared to
the catalogues of design patterns and refactorings where each pattern/refac-
toring follows a strict format. Another drawback of the list of bad smells is
the missing topical grouping into categories like the design patterns/refac-
torings catalogues. The reasons to remove bad smells (as well as design/pro-
gramming anti-patterns and design defects) by refactoring are various. The
most import reasons are: improve the design of software, make software
easier to understand, find bugs, and to programme more efficiently [Fow99,
Chap. 2]. Altogether, this helps to reduce the maintenance costs and to
deliver faster and more reliable software.

Exemplary, the common smells Duplicated Code and Long Parameter
List are presented in a summarised way as they appeared in the original list
of bad smells [Fow99, Chap. 3]:

• Duplicated Code is the self-describing name for the same code structure
found in more than one places. Fowler’s advice is to unify the places
where the duplicates occur, depending on the their relation to each
other. “The simplest duplicated code problem is when you have the
same expression in two methods of the same class” [Fow99, page 63].
The recommended refactoring in this case is Extract Method whereas

5

Extract Class is recommended if the duplicated code occurs in different
classes.

• The smell Long Parameter List applies to methods that have many
(for example more than six) parameters. In object-oriented systems
long parameter lists should be avoided and instead the method’s class
should provide most of the required data. Fowler suggests to apply the
refactoring Introduce Parameter Object to use one object as parameter
that contains all required data or Replace Parameter with Method to let
the called method collect the required data itself by calling all necessary
methods.

Software metrics are strongly related to bad smells as they can be used to
assess the quality of code according to the ISO/IEC 9126 standard [ISO04].
The ISTQB defines metrics as an overloaded term: “a measurement scale and
the method used for measurement” [Int06]. In addition to this definition, the
measurement scale must be refined to suit the requirements of software met-
rics. Hence, the scale must be at least an interval, better a ratio or absolute
scale to be able to compare and rank the values of the scale [Pan03]. Apply-
ing this definition to the metric Lines of Code means that the method used
for the measurement is counting all non-empty lines of the source code. The
scale of the measurement is the result of the method used for the measure-
ment. In this case the absolute scale would be the number of lines of code,
allowing it to compare the results of this metric applied to different entities.

Another definition of metrics originates from Fenton and Pfleeger [FP97]
whereby software metrics embraces all activities which involve software mea-
surement. This definition is much wider compared to the one of the ISTQB
and includes measures for properties and attributes of entities like processes,
resources, and products. Furthermore, it can be distinguished between ex-
ternal and internal attributes, whereat external attributes can be measured
only with respect to other entities in their environment. Internal attributes
can be measured by examining the products, processes, or resources them-
selves, and can be separated from their environments. An internal attribute
is the concept of internal quality of the ISO/IEC 9126 standard [ISO04]. An
example for an internal attribute is the size of the source code of a product
as it can be measured in isolation. In contrast, productivity is an external
attribute of an entity. For the measurement of the external attributes of a
product, execution of the product is required, whereas for measuring internal
attributes, static code analysis is sufficient in most cases [ZNG+06].

Regardless of their definitions, metrics can be grouped into two cate-
gories: size metrics (like Program Volume [Hal77]) are based on the number
of occurrences of certain language constructs and structural metrics (like
McCabe’s Cyclomatic Number [McC76]) are calculated with respect to the
structural layout of a program, for instance its branching characteristics.

6

Bad smells and metrics are related to the source code level while de-
sign anti-patterns and especially design defects cover defects on an archi-
tectural level. Design patterns, refactorings, and bad smells refer to the
object-oriented programming in general and in particular to the program-
ming language Java. This means using terms such as class and method in
the context of Java and describing patterns that apply to features specific
to Java. However, most of the underlying ideas can be applied for other
programming languages as well—even procedural and functional ones.

2.2 TTCN-3 Testing Language

This section introduces the testing language TTCN-3 by describing its fea-
tures and syntax—exemplified by a test case written in TTCN-3. After-
wards, in section 2.2.2 the TTCN-3 Code Smell Catalogue is presented which
is an adaption of the list of bad smells for TTCN-3.

2.2.1 The TTCN-3 Core Language

TTCN-3 is a standardised language for the specification and implementa-
tion of test suites for black-box testing. The acronym stands for Testing and
Test Control Notation Version 3. TTCN-3 is widely used for the testing of
the implementations of telecommunication and Internet protocols. TTCN-3
test suites reflect the requirements a System Under Test (SUT) has to ful-
fil. Hence, the test execution is the verification of the SUT [Som04]. The
TTCN-3 standard [ETS07a] is maintained by the European Telecommunica-
tions Standards Institute (ETSI) and the first edition of the standard was
published in May 2001 [ETS01]. It is also approved by the ITU Telecom-
munication Standardization Sector (ITU-T) [IT06a] as part of the Z-series,
which is a collection of standards about languages and general software as-
pects for telecommunication systems.

“TTCN-3’s main feature is the separation of concern between Abstract
Test Suites and the Adapter Layer, which allows full portability of test suites
and thus make them independent of any platform implementation.”1 For
instance, a TTCN-3 test suite for a specific protocol can be used to test
different implementations without the need to change the test suite itself—
only the adaptor layer might need an update. Hence, test suites written in
TTCN-3 provide a high level of reusability. This adaptor layer is called Real
Test System Interface and is located between the TTCN-3 test system and
the SUT as illustrated in figure 2.1. Other major capabilities of TTCN-3 are
the support of different presentation formats, dynamic concurrent test config-
urations, operations for synchronous and asynchronous communications, and
data and signature templates with powerful matching mechanisms [IT06b].

1http://www.site.uottawa.ca/~bernard/ttcn3_in_a_nutshell.html

7

http://www.site.uottawa.ca/~bernard/ttcn3_in_a_nutshell.html

The latest edition of the TTCN-3 standard is “Edition 3 Version 2”
(v3.2.1) published in February 2007, which consists of 10 documents whereat
the first one specifies the core notation [ETS07a] of the language—a tex-
tual syntax similar to other procedural programming languages but aware
of test-specific extensions [WDT+05, Chap. 1]. The remaining documents
describe two alternative presentation formats of TTCN-3 (Tabular Presen-
tation Format [ETS07b] and Graphical Presentation Format [ETS07c]), the
operational semantics of TTCN-3, components to connect the test suite to
the SUT, components to control and log the test execution, several language
bindings, and data exchange mappings. Altogether, TTCN-3 is more than
just a language for the specification of test cases—it is a framework support-
ing a broad range of the testing process. Every time TTCN-3 is mentioned in
this thesis, the core language of TTCN-3 [ETS07a] is meant—not TTCN-3
as a testing framework—because the software analysis is applied to the core
language.

Therefore a closer look at the TTCN-3 core language is required. The
building blocks of TTCN-3 are modules, which contain all TTCN-3 code and
consist of a definition and a control part whereat both are optional. Mod-
ules may import definitions from other modules and can be parametrised
to provide more flexibility. Declarations such as data structures and func-
tions are made within the definition part—the control part in turn specifies
in which order, under which preconditions, and with which parameters test
cases are executed [WDT+05, Chap. 3]. The term test suite is synonymous
with a complete TTCN-3 module containing test cases and a control part.
The body of a simple TTCN-3 module as shown in listing 2.1 consists of a
declaration (line 2) and an empty control part only containing a comment
(line 3).

1 module MyModule {
2 const integer c_integer := 23;
3 control { /* [...] */ }
4 }

Listing 2.1: The body of a TTCN-3 module

TTCN-3 is a typed language with a large number of built-in types namely
integer, float, boolean, different string types and a verdict type which reflects
the result of a test case. Allowed verdict values are pass, fail, inconc, none,
and error. Common programming constructs such as conditions and loops
are also supported as specialised language constructs related to testing such
as timers, default behaviour, and alternative behaviour based on the reac-
tions of the SUT [ETS07a].

The communication inside the TTCN-3 test system and the communi-
cation with the SUT is abstracted by user-defined ports. They facilitate
communication between test components and the SUT and also among the

8

test components itself. Figure 2.1 illustrates that a test suite consists of at
least one Main Test Component (MTC) and optionally additional Parallel
Test Components (PTC). Ports are used for the communication between
MTC and PTCs and for the communication between MTC/PTCs and the
SUT. The operations on ports provide message-based and procedure-based
communication capabilities.

TTCN-3 Test System

Main Test Component (MTC)

Parallel Test Component (PTC)

Parallel Test Component (PTC)

Abstract Test System Interface

Real Test System Interface

System Under Test (SUT)

Figure 2.1: Overview of the TTCN-3 architecture: ports are used for the
communication between test components and the SUT

For instance, the system under test is an Hypertext Transfer Protocol
(HTTP) server. An according module must be defined which comprises the
port definitions for sending and receiving requests and responses as shown in
listing 2.2 in lines 2 and 3. These ports must be assigned to a component that
reflects the interface of an HTTP client (lines 5–8) as the test suite plays the
role of the client. Indeed, these abstract ports need to be mapped to the real
interfaces of the SUT what invokes the adaption layer of TTCN-3. This layer
is not described in detail here, as it is not relevant for the understanding of
the TTCN-3 core language.

1 module HTTP {
2 type port PortTypeOutput message { out charstring }
3 type port PortTypeInput message { in charstring }
4
5 type component HTTPClientComponentType {
6 port PortTypeInput InputPort;
7 port PortTypeOutput OutputPort;
8 }

Listing 2.2: HTTP module, part 1: definition of ports and a component

Templates are a special kind of data structure providing parametrisation
and matching mechanisms for specifying test data to be sent or received over

9

test ports. Templates are used to either transmit a set of distinct values
or to test whether a set of received values matches the template specifica-
tion [WDT+05, Chap. 10].

Dynamic test behaviour is expressed using test cases. TTCN-3 state-
ments include powerful behavioural description mechanisms: functions and
testcases are used to specify and structure test behaviour, to define default
behaviour and to structure modules. The alt statement denotes branching of
test behaviour due to the reception and handling of communication and/or
timer events and/or the termination of parallel test components. Each alt
statement consists of at least one branch including a condition and an action
to be executed. Branches may be extracted into own function-like statements
(called altstep) for their reuse or the activation of an altstep as a default be-
haviour in an alt statement [ETS07a].

In the next step the TTCN-3 module HTTP from listing 2.2 is extended to
test an HTTP request/response cycle. Therefore a template that matches
a response is defined in line 9 of listing 2.3 using a regular expression pat-
tern. A test case should test the SUT which is abstracted using components.
Therefore the test case HTTPHeadRequest is defined to run on the HTTP client
component (line 11) as defined in listing 2.2. That allows to access the ports
of this component and to send an HTTP request through the output port to
the server (line 14). The following alt statement consists of three steps that
cover different possible responses of the server. In the first case (lines 17–19)
an HTTP response that matches the template HTTPResponse is received via
the input port and the test verdict is set to pass. The other steps cover
potential error conditions. The second alternative step (lines 20–22) sets the
verdict to fail if a response is received that does not match the template
HTTPResponse. The third altstep is triggered if no response at all is received
within 5 seconds (lines 23–25) based on the timer that was started (in line 13)
right before the request was send.

2.2.2 The TTCN-3 Code Smell Catalogue

The TTCN-3 Code Smell Catalogue is the first approach to adopt the bad
smells of Fowler [Fow99] for the core language of TTCN-3. It was first
presented in the master’s thesis of Bisanz [Bis06] and is now maintained by
the Software Engineering for Distributed Systems Group at the University
of Göttingen [NB07, NZG08].

The catalogue for TTCN-3 differs in many points from the original list
of bad smells:

• The catalogue contains not only bad smells that can be found in (more
or less) any programming language but also additionally smells that
only apply to TTCN-3.

• Even though removing bad smells by refactoring the source code means
by definition to preserve the behaviour of the program, the catalogue

10

9 template charstring HTTPResponse := pattern "HTTP/1.1 \d\d\d *";
10
11 testcase HTTPHeadRequest() runs on HTTPClientComponentType {
12 timer t;
13 t.start(5.0);
14 OutputPort.send("HEAD /index.html HTTP/1.1");
15
16 alt {
17 [] InputPort.receive(HTTPResponse) {
18 setverdict(pass);
19 }
20 [] InputPort.receive {
21 setverdict(fail);
22 }
23 [] t.timeout {
24 setverdict(fail);
25 }
26 }
27 }
28 }

Listing 2.3: HTTP module, part 2: testing a request/response cycle

contains some smells that cannot be removed without changing the
observable behaviour.

• The bad smells of the catalogue are grouped in ten different categories
to add structure and clarity. The following categories contain general
as well as TTCN-3-specific smells: Duplicated Code, References, Pa-
rameters, Complexity, Coding Standards, Data Flow Anomalies, and
Miscellaneous. Additionally, these categories only contain smells re-
lated to TTCN-3: Default Anomalies, Test Behaviour, and Test Con-
figuration.

• Each bad smell follows a strict format describing the smell in depth:
Name, Derived from, Description, Motivation, Options (optional), Re-
lated action(s), and Example.

• Following the categorisation of test smells by Meszaros [Mes07] the
code smell catalogue contains source code smells and behaviour smells.

As one goal of this thesis is to detect the bad smells of this catalogue in
TTCN-3 test suites, two smell examples are quoted [Bis06]:

Name: Singular Template Reference

Derived from: [Zei06] (Motivation for Inline Template)

Description: A template definition is referenced only once.

Motivation: If a template definition is referenced only once, it can be in-
lined without duplicating code. This can improve readability if the

11

template definition is not too complex; in case of a very complex tem-
plate a separate template definition can still be preferable.

Related action(s): Inline Template

Example: In listing 2.4, assume the only reference to the template named
exampleTemplate (lines 1–5) is the one in test case exampleTestCase (line 9).
In this case, the template could be inlined to reduce code length and
improve readability.

1 template MyMessageType exampleTemplate := {
2 field1 := omit,
3 field2 := "foo",
4 field3 := true
5 }
6
7 testcase exampleTestCase() runs on ExampleComponent {
8 // ...
9 pt.send(exampleTemplate);

10 // ...
11 }

Listing 2.4: The bad smell Singular Template Reference

Name: Long Parameter List

Derived from: [Fow99] (Long Parameter List)

Description: High number of formal parameters.

Motivation: Long parameter lists are hard to read and should be avoided.
Although this smell is more relevant for object-oriented languages (be-
cause method parameters can be replaced by attributes within a class),
a group of single parameters can be replaced by a record type param-
eter. If the calling behavioural entity (function, test case or altstep)
gets a parameter by calling another function or altstep and does not
need the parameter by itself, Replace Parameter with Function can be
applied.

Related action(s): Replace Parameter with Function or Introduce Record
Type Parameter

Example: Listing 2.5 contains the signature of a function with six integer
parameters (line 2). Instead a set or record type could be used.

12

1 function f1(integer i1, integer i2, integer i3,
2 integer i4, integer i5, integer i6) {
3 // some behaviour...
4 }

Listing 2.5: The bad smell Long Parameter List

2.3 XML Technologies

This section introduces the Extensible Markup Language (XML) and the
XML query languages XPath and XQuery. All technologies are used for the
software analysis framework presented in chapter 5: XML as representation
format for TTCN-3 source code and XPath/XQuery to analyse the XML-
encoded TTCN-3 source code for specific characteristics and patterns.

2.3.1 Extensible Markup Language

The “Extensible Markup Language (XML) is a simple, very flexible text for-
mat [. . .] playing an increasingly important role in the exchange of a wide
variety of data on the Web and elsewhere.”2 XML is a free, platform inde-
pendent, open standard [BSMY+06] provided by the World Wide Web Con-
sortium (W3C) and a subset of the Standard Generalized Markup Language
(SGML, ISO 8879). As the name Extensible Markup Language already
implies, the language addresses the markup of data by adding structural
information to it. XML is extensible because it does not provide a set of
predefined markup tags as HTML [JRH99] or LATEX. In contrast, XML is a
meta markup language that defines a syntax to create new domain-specific
markup languages [Har01, Chap. 1]. To illustrate the XML syntax an ex-
ample of a new defined language is given in listing 2.6 that structures a few
seasons, episodes, and titles of the TV sitcom “The Simpsons” as an XML
document.

1 <?xml version="1.0" encoding="UTF8"?>
2 <simpsons>
3 <season number="1">
4 <episode number="1" title="Simpsons Roasting on an Open Fire"/>
5 <episode number="2" title="Bart the Genius"/>
6 <! [...] >
7 </season>
8 <season number="19">
9 <episode number="401" title="He Loves to Fly and He D’oh’s"/>

10 <episode number="402" title="The Homer of Seville"/>
11 <! [...] >
12 </season>
13 </simpsons>

Listing 2.6: XML example: “The Simpsons” seasons and episodes

2http://www.w3.org/XML/

13

http://www.w3.org/XML/

Listing 2.6 illustrates the most important properties of an XML docu-
ment. First of all it should be human readable and self describing—but that
is up to the author of the XML language. According to the XML specification
each document consists of an optional prolog (line 1, also called “XML dec-
laration”) and exactly one root element (in the example simpsons, line 2–13).
The logical structure is based on elements whereas each element has a start
tag (like <simpsons>, line 2) and end tag (like </simpsons>, line 13). Each
element may contain content between its start and end tag (for instance
the content “D’oh!” of an element homer: <homer>D’oh!</homer>), attributes
(like the number, and title attributes in the example), an arbitrary num-
ber of nested elements or may be empty (for example <nocontent/>). XML
comments (lines 6 and 11) start with the character sequence <! and end
with >.

An XML document following these rules is called “well-formed”. This
is the minimal requirement for a document to be referred to as XML docu-
ment at all [BSMY+06, Section 2.1]. More sophisticated XML documents are
called “valid” if they have an associated Document Type Definition (DTD)
and if the document complies with the constraints expressed in the DTD. The
property“valid” includes the property“well-formed”[BSMY+06, Section 2.8].
DTDs define the structure of an XML document in terms of production rules
similar to the Backus–Naur Form (BNF). DTDs are an integral part of the
XML specifications [BSMY+06, BYC+06] and can be inlined in the XML
document or included from another file. Adding the Document Type Dec-
laration statement <!DOCTYPE simpsons SYSTEM "simpsons.dtd"> to the example
behind the XML prolog would include the DTD shown in listing 2.7.

1 <!ELEMENT simpsons (season*)>
2 <!ELEMENT season (episode*)>
3 <!ELEMENT episode EMPTY>
4 <!ATTLIST season number CDATA #REQUIRED>
5 <!ATTLIST episode
6 number CDATA #REQUIRED
7 title CDATA #REQUIRED>

Listing 2.7: Document Type Definition for the Simpsons example

The first three lines of the DTD define the allowed elements, their rela-
tion among each other, and the frequency they may occur. The root element
simpsons may contain zero or more season elements (line 1), which may con-
tain any number of episode elements (line 2). The episode element itself is an
empty element (line 3) that must contain two attributes named number and
title (lines 5–7). Line 4 specifies an obligatory attribute number for all season
elements. Using a validating XML processor—a software that is capable of
checking an XML document against its DTD—permits to find missing or
needless elements and attributes and to ensure that the document is valid.

14

With the knowledge of DTDs in mind an XML document is said to
be an instance of a DTD [Har01, Chap. 8]. Hence, the recommended way
to create new XML languages is by designing the Document Type Defini-
tion first—comparable to relational databases where the entity-relationship
model must be set up first [Teo98, Chap. 2]. Instead of DTDs, that are part
of the XML specifications [BSMY+06, BYC+06], more powerful and expres-
sive approaches such as XML Schema [WF04] or RELAX NG [CM01] can
be used for modelling and validating XML languages.

If an XML document makes use of more than one XML language defi-
nition, name collisions might occur as different languages may use elements
with the same name for instance. Additionally, the problem of recognising
which elements belong to which XML language emerge in such XML docu-
ments. To avoid these problems, XML namespaces [LTBH06] can be used
to provide uniquely named elements and attributes. Each XML element is
bound to a unique identifier—its XML namespace. The result is an expanded
name which consists of the namespace name and the local name (like the
element name). This allows to identify each node and avoids name collisions
as XML names only need to be unique it their own namespace.

Currently two versions of XML co-exist: XML version 1.0 [BSMY+06]
and version 1.1 [BYC+06]. Although the latter seems to supersede the first
version, the usage of XML 1.0 is still recommended, because it serves most
use cases [HM04, Chap. 2] and the tool support for XML 1.0 is considerable
better than for version 1.1. The main difference between both specifications
is that the “overall philosophy of names [of elements, attributes etc.] has
changed since XML 1.0. Whereas XML 1.0 provided a rigid definition of
names, wherein everything that was not permitted was forbidden, XML 1.1
names are designed so that everything that is not forbidden (for a specific
reason) is permitted” [BYC+06]. Names in XML 1.0 are only allowed to used
characters defined by the Unicode 2.0 standard [Con96]. But as Unicode is
being enhanced to version 5.0 [Con06] and beyond, it would have required
new versions of XML everytime new characters were included in the Unicode
standard—or to allow all characters, as done in version 1.1. For reasons
of clarity: this only effects XML names and not the content of an XML
document. Hence, it is possible to use Unicode 5.0 characters for the content
of an XML 1.0 document but not for its names.

2.3.2 XML Path Language

The main purpose of the XML Path Language (XPath) [DC99, CBF+07] is to
navigate through the tree structure of an XML document, to address certain
nodes and to select parts of the document using a simple declarative syntax.
For example, the path expression //season would evaluate to a sequence con-
taining all season elements (including their child elements) from the XML
document shown in listing 2.6. The expression //episode[@number > 400]

15

would return a sequence of all episode elements with an attribute named
number containing a value larger than 400.

Two versions of the XPath standard have been released as recommenda-
tions by the W3C: XPath 1.0 [DC99] in 1999 and XPath 2.0 [CBF+07] in
2007. Even though both version’s main purpose stays the same, they differ
significantly from each other. Version 1.0 was defined to “provide a common
syntax and semantics for functionality shared between XSL Transforma-
tions (XSLT) [Cla99] and XPointer [DMJ01]” [DC99, Har01]. XPath 2.0 in
turn is designed to be embedded in host languages like XSLT 2.0 [Kay07]
and XQuery 1.0 [RSF+07]. In contrast to the specification of XPath 1.0,
that includes not only the syntax and semantics of the language but also
the data model, built-in library functions, and operators, XPath 2.0 is de-
fined in a set of specialised specifications. The main document is called
“XML Path Language (XPath) 2.0” [CBF+07] and mostly describes the con-
cepts and syntax of XPath, meanwhile the semantics, data model, built-in
functions and operators are shared with XQuery 1.0 and therefore specified
in combined recommendations: “XQuery 1.0 and XPath 2.0 Formal Seman-
tics”[MRS+07], “XQuery 1.0 and XPath 2.0 Data Model (XDM)” [WMN+07]
and “XQuery 1.0 and XPath 2.0 Functions and Operators” [MWM07].

Compared to its successor, XPath 1.0 is a simple “one-line language” be-
ing less expressive and flexible as it is mainly capable of path expressions
(//season for instance) whereas XPath 2.0 supports more sophisticated ex-
pressions like conditional and loop constructs. Hence, XPath 2.0 is a superset
of XPath 1.0 including more language expressions and a lot of more built-
in functions. Additionally, XPath 2.0 supports a richer set of data types,
to take advantage of type information when documents are validated using
XML Schema. From here on, the term XPath always refers to version 2.0.

The XPath data model [WMN+07] features two elementary properties
making the handling of nodes more efficient. The first is called document
order, which is defined as the order of all nodes in which they appear in
the XML document. When nodes are selected from the document, they are
output in the document order by default. The document order also allows
to compare the position of nodes in a before/behind relation. The second
elementary property is called node identity, which assigns a unique identity
to each node what allows to differentiate between comparing nodes based on
their value and their identity.

As the name XPath already indicates, path expressions are elementary
constructs of the language. A path expression can be used to locate nodes
within XML trees and consists of a series of one or more steps, separated by
/ or //, and optionally beginning with / or //. Steps are defined as axis steps
or filter expressions. Axis steps define the direction of movement in the tree
and filter expressions test if a selected node holds a specified condition. An
axis step returns all nodes that are reachable from the context node via a
specified axis and that fulfil the filter expression [HM04].

16

Axis Meaning

child:: Children of the context node.
descendant:: All children of the context node.
attribute:: Attributes of the context node.
self:: The context node itself.
descendantorself:: The context node and its descendants.
followingsibling:: All siblings of the context node that follow it.
following:: All nodes that follow the context node in the doc-

ument.
parent:: The parent of the context node.
ancestor:: All ancestors of the context node.
ancestororself:: The context node and all its ancestors.
precedingsibling:: All the siblings of the context node that precede it.
preceding:: All nodes that precede the context node in the doc-

ument.

Table 2.1: All axes provided by XPath and their meanings

XPath supports different forward and backward axes which reflect the
direction of movement in the document order of the XML tree. Forward
means nodes after or beneath the current context node; backward means
nodes before or above the current context node [Bru04, Chap. 3]. Because
the axes are important for XPath all axes and their meanings are presented
in table 2.1.

For the most frequently used axes an abbreviated syntax is defined:
descendantorself:: is shortened to “//”, parent:: to “..”, self:: to “.”,
attribute:: to “@”, and child:: can be omitted completely. Using the ab-
breviated syntax—which is favoured in this thesis wherever possible—means
writing episode/@number instead of child::episode/attribute::number for exam-
ple.

Looking again at the example //episode[@number > 400] that was already
given at the introduction to XPath, it is now possible to disassemble the
path expression step by step. Path expressions are evaluated from the left
to the right side: the slashes // traverse the descendant-or-self axis of the
XML tree (listing 2.6) starting from the root node, searching element nodes
named episode, and selecting each as the current context node. A filter
expression [condition] is now applied to the context node and the attribute
axis is inspected for an attribute named number holding a value larger than
400. If this condition is true, the context node is included in the resulting
sequence. All matching nodes are returned in document order as shown in
listing 2.8.

Note that the result of an XPath expression is not needed to be well-
formed or valid XML nor XML at all—it is just a sequence of items. An
item is either an atomic value (of a primitive simple type defined by the

17

1 <episode number="401" title="He Loves to Fly and He D’oh’s"/>
2 <episode number="402" title="The Homer of Seville"/>

Listing 2.8: Result of the XPath expression //episode[@number > 400]

XPath data model) or a node [WMN+07]. Conforming with the XPath data
model, seven nodes types are differentiated. The most important ones are:
document nodes, element nodes, attribute nodes, text nodes, and comment
nodes. An XPath result example is the sequence (23, "foo", <bar/>) which
contains two atomic values and one element node. Another example is the
path expression //episode/@title which returns a sequence of all title at-
tribute nodes of episode elements.

Beside path expressions, sequence expressions are relevant for XPath.
First of all, to construct a new sequence a pair of parentheses (· · ·) is used to
surround all elements of a sequence. The elements themselves are delimited
by commas. For example, the sequence of the first seven Fibonacci numbers
(0, 1, 1, 2, 3, 5, 8) or the sequence of all Simpsons season and episode
numbers (//season/@number, //episode/@number).

As already seen in the example above, filter expressions can be applied
to any sequence to cherry-pick the desired nodes. The most simple filter
expression uses the position of a node in its sequence. Hence, (//episode)[2]
returns the second episode element node (whereas the filter expression [2]

is an abbreviation of [position() = 2]). To get the last element of a se-
quence the function last() needs to be called. For instance, the filter ex-
pression [last() 1] returns the penultimate element of the context se-
quence. It is also possible to evaluate the content of the context node (or
its descendant respectively its ancestor) in a filter expression. For example,
(1 to 100)[. mod 5 eq 0] lists all integers from 1 to 100 that are divisible
by 5 without remainder based on the context node’s content. It is possible
to stack as many filters as required: (//episode)[2][@foo] would return the
second episode element if it would have an attribute called foo.

Using name tests and node type tests, XPath permits to select nodes by
their type and name. Using the wildcard * it is possible to select elements
and attributes regardless of their names. The path expression //@* selects all
attribute nodes for instance. The language provides three built-in operators
for combining sequences: union, intersect, and except. All these operators
eliminate duplicate nodes from their result sequences based on the node
identities. Additionally, XPath supports basic arithmetic expressions (+, , *,
div, and mod) and comparison expressions for values and nodes.

XPath shares predefined functions and operators with XQuery [MWM07].
They cover a wide area of application like numerics, strings, booleans, dates
and times, sequences, and casting. The specification [MWM07] defines 68 op-
erations and 122 functions. Function calls looks like this: data(//@number) to

18

get the value of all number attributes or doc("http://noedler.de/index.rss") to
load an XML document.

As mentioned before, XPath 2.0 supports more advanced constructs than
version 1.0 does, namely loop, conditional, and quantified expressions. Using
the for expression as shown in listing 2.9 allows to loop through the XML
tree in a more flexible way than using path expressions. The example returns
tuples of all Simpsons season numbers and their appropriate episode numbers
which would not have been possible using XPath 1.0.

1 for $s in //season,
2 $e in $s/episode
3 return (data($s/@number), data($e/@number))

Listing 2.9: XPath expression using the for construct

The conditional expression is an if-then-else construct that allows to re-
act appropriately based on values in the XML tree. Quantified expressions
support existential (keyword some) and universal (keyword every) quantifi-
cation whose result is true or false, which allows to check that a condition
is true/false for some or all nodes. The expression in listing 2.10 returns
true, because every episode element satisfies the condition to own a number

attribute whose value is larger than zero. Quantified expressions are often
used in conjunction with conditional expressions.

1 every $episode in //episode
2 satisfies $episode/@number > 0

Listing 2.10: XPath quantified expression

2.3.3 XML Query Language

The XML Query Language (XQuery) is described from a high-level view as
“a standardized language for combining documents, databases, Web pages,
and almost anything else. It is very widely implemented. It is powerful
and easy to learn.”3 The language is standardised by the W3C [RSF+07]
and its aim is to use the structure of XML intelligently to express queries
across all kinds of XML. It allows to select XML elements of interest, re-
organise and transform them, and return them in a user-defined order and
structure [Wal07, Chap. 1].

Seen from a technical point of view, XQuery is for XML what SQL is
for the relational databases. “XQuery will serve as a unifying interface for
access to XML data, much as SQL has done for relational data.”4 XQuery is
derived from an XML query language called Quilt, which borrowed features

3http://www.w3.org/XML/Query/
4http://electronics.ihs.com/news/w3cxmlapproves.htm

19

http://www.w3.org/XML/Query/
http://electronics.ihs.com/news/w3c-xml-approves.htm

from several other languages, including SQL, XQL, and XPath 1.0. In fact
XQuery 1.0 is an extension of XPath 2.0 or—defined vice versa—XPath is a
complete subset of XQuery [CBF+07].

XQuery (and therefore also XPath) is a functional and typed language,
which means it is built from expressions rather than statements. “Every
construct in the language [. . .] is an expression and expressions can be
composed arbitrarily. The result of one expression can be used as the input
to any other expression. [. . .] Another characteristic of a functional language
is that variables are always passed by value, and a variable’s value cannot
be modified through side effects” [MRS+07]. XQuery is a typed language,
because it is capable of importing types from an XML Schema definition and
use them to perform operations based on these types, such as early detection
of type errors.

The basic structure of many (but not all) queries is the FLWOR (pro-
nounced “flower”) expression which stands for the keywords for, let, where,
order by, and return used in the expression. FLWORs, unlike path expres-
sions, allow to manipulate, transform, and sort results. This is the main
difference and advantage of XQuery compared to XPath. The latter is only
capable of retrieving nodes from XML documents whereat XQuery allows to
rearrange nodes and to create new ones. The following listing 2.11 uses a
FLWOR expression to restructure the Simpsons XML tree (listing 2.6) and
to return a sequence (listing 2.12) containing all Simpsons episodes sorted
by their title.

1 for $episode in doc("simpsons.xml")//episode
2 let $title := data($episode/@title)
3 order by $title
4 return element simpsonsepisode { $title }

Listing 2.11: XQuery expression to restructure the Simpsons example

The query first iterates over all episode elements (line 1) of the input
XML document simpsons.xml and binds each element to a variable called
$episode, reads the data value of the title attribute of the current context
node $episode, binds the value to the variable $title (line 2), and returns
each title as the content of a new simpsonsepisode element (line 4) whereas
the result set is ordered by the title (line 3).

1 <simpsonsepisode>Bart the Genius</simpsonsepisode>
2 <simpsonsepisode>He Loves to Fly and He D’oh’s</simpsonsepisode>
3 <simpsonsepisode>Simpsons Roasting on an Open Fire</simpsonsepisode>
4 <simpsonsepisode>The Homer of Seville</simpsonsepisode>

Listing 2.12: Resulting sequence of query 2.11

XQuery is not a pure query language as it allows the definition of user-
defined function, which can also be called recursively [Wal07, Chap. 8]. Mod-

20

ules allow the grouping of functions in a reuseable way and the language itself
is proven to be Turing complete [Kep04].

The XQueryX 1.0 specification [MM07] provides an XML syntax for
XQuery. Converters such as XQ2XML [XQ206] permit to transform XQuery
to XQueryX and an XSLT stylesheet provided by the XQueryX 1.0 specifi-
cation can be used to transform XQueryX back to XQuery. XQueryX allows
to use the XML representation of an XQuery expression as input for XQuery
or XSLT to apply transformations and queries on itself.

One drawback of XQuery is the missing support for updating parts of an
XML document without re-generating the complete document. The W3C
has identified this problem and is working on a draft called “XQuery Update
Facility” [FRC06]. Another approach into this direction is the XML update
language XUpdate [XUp00].

2.4 Representations of Software Artefacts

Software needs to be represented in varying ways to fulfil different require-
ments. Software architects for example require a global view of all compo-
nents of a system to be able to design extensible and maintainable software.
Therefore they require software representations at an abstract level. In con-
trast, source code analysis tools need to investigate all details of a software
to find design flaws or potential bugs and require a software representation
that reflects the fully detailed source code.

This section introduces facilities for software representation such as meta-
models (section 2.4.1), the Unified Modeling Language (UML) (section 2.4.2),
XML-based formats (section 2.4.3), and other common approaches (sec-
tion 2.4.4) like intermediate formats and tree-based source code represen-
tations. For each representation format it is discussed whether it is capable
to serve as a high-level software representation and/or full detail software
representation format.

2.4.1 Metamodels

A model is an abstraction of the real world and the according metamodel is
the abstraction of its model. Metamodelling is the process of constructing
a collection of concepts within a certain domain, for example the software
domain in the field of computer science. Metamodels define languages for the
specification of models [Pen02]. Hence, metamodels are playing the same role
for models as—for example—grammars for programming languages. Vice
versa, a model is said to conform to its metamodel such as source code
conforms to the grammar of the language it is written in.

21

Metamodels use a four-layer metamodel architecture [Pen02] that can be
explained by the definition of an XML language using a DTD5 (see section 2.3
for details on XML and DTD):

Level M0 The User Object Layer defines specific subject domain informa-
tion such as the real world data to be described. In the case of a new
XML language this is the content that should be contained in the XML
documents.

Level M1 The Model Layer defines the language to use to describe a sub-
ject domain. For this example of an XML language, that means which
elements and attributes are required to model the content and at large
the complete XML document.

Level M2 The Metamodel Layer defines the language for specifying models.
In case of XML, using a DTD is one way to describe the model as the
DTD defines the logical structure of an XML document. Also XML
Schema and RELAX NG are located at the metamodel layer as they
can be used to describe models of XML documents.

Level M3 The Meta-Metamodel Layer defines the language for specifying
metamodels. For this XML example, that means this layer defines the
language a DTD is written in. In the case of XML Schema it is XML
again as XML Schema uses an XML syntax.

The advantage of this layered structure is—assuming that the meta-
metamodel is rich enough—the four-layer architecture can support and model
most, if not all kinds of information and meta-information imaginable.

These metamodelling foundations are provided by the Object Manage-
ment Group (OMG)6 because the OMG was in need of a metamodel archi-
tecture for the definition of the Unified Modeling Language (UML) [UML07].
The Meta-Object Facility (MOF) [MOF07] serves as the basis for UML and
makes use of the four-layer architecture discussed above. It is defined as a
closed metamodelling architecture as MOF defines a M3 model, which con-
forms to itself. The most prominent example of a M2 model is the UML
metamodel, the model that describes UML. Hence, models written in UML
are located at the M1 layer.

MOF and UML provide a “key foundation for OMG’s Model-Driven Ar-
chitecture (MDA), which unifies every step of development and integration
from business modeling, through architectural and application modeling, to
development, deployment, maintenance, and evolution.”7 Models expressed
in a well-defined notation are a cornerstone of systems for enterprise-scale so-

5http://www.devhood.com/tutorials/tutorial_details.aspx?tutorial_id=698
6http://www.omg.org
7http://www.uml.org

22

http://www.devhood.com/tutorials/tutorial_details.aspx?tutorial_id=698
http://www.omg.org
http://www.uml.org

lutions.8 The development of systems can be organised around a set of mod-
els, transformations between models, and derivations from models [ST03].

Metamodels are mainly used for the representation of software artefacts
at an architectural level. Different metamodel approaches for software rep-
resentation emerged and can be differentiated by their granularity of the
representation of the underlying software. Some, for instance the FAMIX
metamodel [TSDN00], concentrate on the most important object-oriented
entities (classes, attributes, and methods) and their relationships (access
and invocations). A metamodel with about the same degree of granular-
ity is presented by Guéhéneuc [Gué02] to display program architectures and
behavioural information. Limiting the granularity reduces the complexity
of the metamodel and provides a high-level view of the underlying software
with the restriction that the source code is not completely reflected by the
model. A more detailed approach for the representation of Java source code
is presented by van Emden and Moonen [vEM02]: the metamodel “contains
information regarding program entities like packages, classes, [. . .] methods,
constructors, static blocks, and fields. Furthermore, it describes the rela-
tions between these entities such as composition, inheritance, [and] method
calls” [vEM02].

But metamodels are not limited to the representation of software on a
high-level view, but can also be used to represent source code in depth. That
allows for example to apply refactorings at the model level as a model trans-
formation and to generate the refactored source code from the transformed
model [GEJ03]. The range of metamodels representing source code in depth
varies from ones that try to cover different object-oriented languages [GEJ03]
to specialised ones, like a metamodel for TTCN-3 [SD04].

2.4.2 Unified Modeling Language

The Unified Modeling Language (UML) is a standardised general-purpose
modelling language that includes a graphical notation. UML is used to
create an abstract model of a system, called UML model. The language is
specified by the Object Management Group (OMG) and the latest version
of UML is 2.1.1 [UML07]. UML provides a generic extension mechanism to
build UML models for particular domains called UML profiles that tailor
the language to specific areas.

As already described in section 2.4.1, UML is formally defined using a
Meta-Object Facility metamodel that defines all constructs of UML. The
metamodel itself is expressed in UML. This is an example of a metacircu-
lar definition as the language is defined in terms of itself. But things are
not completely circular, only a small subset of UML is used to define the
metamodel [QP06]. But these internals are only important to those who use

8http://www128.ibm.com/developerworks/rational/library/3100.html

23

http://www-128.ibm.com/developerworks/rational/library/3100.html

UML as a programming language, as it defines the abstract syntax of that
language [Fow03].

More important is the overall impact of UML in the field of software
engineering regarding modelling software. While analysis and design phases
are known by nearly all software development processes, using UML allows
to perform these phases on a unified basis. UML can be used in nearly all
phases of a software development process: use case and activity diagrams
in the analysis and requirements phase and class diagrams during the de-
sign phase are just a few possible applications [Fox06, Som04]. A couple
of development processes are based even completely on UML respectively
models, for example the model-driven development that is part of OMG’s
model-driven architecture. The extensive usage of models starts with the
automatic generation of source code stubs and can lead to the use of exe-
cutable models [MBMB02]. In most cases, UML is used for designing and
representing software on an architectural level and not as a representation
format for full detailed source code.

The development process is one part of a software engineering method.
Other parts are a common vocabulary and a set of guidelines. The vocab-
ulary is used to describe the process and the products created during the
application of the process. The part of all software engineering methods that
can be standardised is the vocabulary, often expressed in a notation. UML is
a common notation that may be applied to many different types of software
projects using different methods [Pen02].

After having a look at the definition and the possible applications of
UML, the different diagram types are briefly introduced. UML provides a
set of thirteen predefined types of diagrams for different purposes. They are
grouped into three categories9:

1. Structure diagrams represent static application structure and include
the class diagram, object diagram, component diagram, composite
structure diagram, package diagram, and deployment diagram.

2. Behaviour diagrams represent general types of behaviour and include
the use case diagram, activity diagram, and state machine diagram.

3. Interaction diagrams represent different aspects of interactions. They
are all derived from the more general behaviour diagram and include
the sequence diagram, communication diagram, timing diagram, and
interaction overview diagram.

To give an example of how UML looks, figure 2.2 shows a UML class
diagram containing two classes. Class Person is the base class containing the
attribute name and the according operation getName() to access the private
class attribute. The class Employee inherits from the base class Person and
adds the attribute salary and the according getter operation.

9http://www.omg.org/gettingstarted/what_is_uml.htm

24

http://www.omg.org/gettingstarted/what_is_uml.htm

Person

name : String

getName() : String

Employee

salary : int

getSalary() : int

Figure 2.2: UML class diagram: class Employee inherits from class Person

What makes UML special among other representation formats for soft-
ware artefacts (presented in this section) are two properties: First, UML is a
general-purpose modelling language that can be used for business modelling
and modelling of other non-software systems. But UML is mainly designed
for modelling software what makes it different from other representations
formats that are generic approaches reused for the representation of soft-
ware. Second, UML is a graphical approach. Even though it is important to
distinguish between the UML model and the set of diagrams as graphical rep-
resentations of the models, UML is mostly used on a graphical level. While
all other representation formats can also be visualised, the visualisation is
not an integral part of these formats.

2.4.3 XML-based Representations

The Extensible Markup Language (XML, see section 2.3 for details) is not
only used for exchanging structured information but serves also as a language
for representation formats. This section shows how XML is used to represent
software on an architectural level and also how to represent fully detailed
source code. The first part covers the standardised language XML Metadata
Interchange (XMI) that is mainly used for the representation of UML models
as XML, while the second part covers the usage of XML to encode source
code.

The reasons to use XML for the representation of software artefacts are
various: XML is a free and open standard that is platform-independent and
commonly used. But even more important is availability of a wide range
of XML processing languages such as XQuery and XSLT and XML-aware
tools.

2.4.3.1 XML Metadata Interchange

The XML Metadata Interchange (XMI) [XMI05] is an XML language stan-
dardised by the Object Management Group for serialising and exchanging

25

metadata information such as metamodels across platforms and systems.
The most common usage of XMI is as an exchange format for UML models
and metamodels, although XMI can also be used for serialisation of non-
UML models and metamodels. In general XMI can be used for any metadata
whose metamodel can be expressed using the Meta-Object Facility (MOF)
on the M3, M2, or M1 layer.

XMI bridges the gap between generic objects (for example models/meta-
models) and XML by defining a new domain-specific XML language to im-
prove the usage of XML for the interchange of objects [GDB02]. The flex-
ibility of XML allows to map objects to XML in nearly infinite possible
ways. XMI addresses this property of XML and acts as a gateway by defin-
ing standards how the mapping from an object to XML elements/attributes
should be done. XMI also defines the reverse mapping to restore the original
object from an XMI document. XMI specifies how to create XML Schema
and Document Type Definitions (DTD) from a model and vice versa how to
create a model from a given DTD or XML Schema [GDB02].

Listing 2.13 shows the XMI representation of the class Employee of the
UML class diagram shown in figure 2.2. It was created using the open-source
UML modelling tool ArgoUML 0.24 [Arg07] that uses XMI as its default se-
rialisation format for UML models. A lot of details (XMI elements and
attributes) are left out, to concentrate on the main structure of the XMI
document. Additionally, the values of the xmi.id and xmi.idref attributes
have been changed from automatically generated identifiers to better read-
able ones. The first part of this snippet of the XMI document represents
the class Employee (lines 1–7), its attribute salary, and operation getSalary

(lines 4 and 5). Line 2 references the generalisation of the class Employee

which is represented in the second parts of the XMI snippet (lines 8–15).
The inheritance relationship of the classes Employee and Person is expressed
as a child-parent relation in which the class Employee is the child (lines 9–11)
of the parent class Person (lines 12–14).

1 <UML:Class xmi.id=’ClassEmployee’ name=’Employee’ visibility=’public’>
2 <UML:Generalization xmi.idref=’GeneralizationPersonEmployee’/>
3 <UML:Classifier.feature>
4 <UML:Attribute name=’salary’ visibility=’private’/>
5 <UML:Operation name=’getSalary’ visibility=’public’/>
6 </UML:Classifier.feature>
7 </UML:Class>
8 <UML:Generalization xmi.id=’GeneralizationPersonEmployee’>
9 <UML:Generalization.child>

10 <UML:Class xmi.idref=’ClassEmployee’/>
11 </UML:Generalization.child>
12 <UML:Generalization.parent>
13 <UML:Class xmi.idref=’ClassPerson’/>
14 </UML:Generalization.parent>
15 </UML:Generalization>

Listing 2.13: XMI representation of the UML class diagram figure 2.2

26

Applications using XMI as their primary serialisation format are for ex-
ample the UML modelling tool ArgoUML [Arg07] as seen above and the
Eclipse Modeling Framework (EMF) [Ecl07b]. EMF extends the usage of
XMI by not only storing metamodels or models but also the data of these
models (the M0 layer in the four-layer metamodel architecture, see sec-
tion 2.4.1 for details) what is not covered by the XMI specification.

One often raised point of critique regarding XMI is that the XMI stan-
dard is not detailed enough and leaves to much space for implementation-
specific variations [AP05]. That causes problems when it comes to exchang-
ing metadata using XMI between products of different vendors. In practice
this means exchanging XMI files between UML modelling tools from different
vendors using XMI is rarely possible [AP05].

2.4.3.2 Encoding Source Code as XML

This section introduces the usage of XML for the fully detailed representation
of source code. As the software analysis of this thesis is XML-based, the two
most important varieties of XML representation formats are discussed in
depth in this section.

Even though a lot of approaches exist to encode source code as XML, two
basic concepts can be distinguished. The first concept maps all constructs of
the original programming language to according XML elements/attributes.
User-defined data such as variable names is stored as the content of these
XML elements/attributes. This approach is called representation concept as
it provides a new representation of the source code. The second concept is
called annotation concept as it literally marks-up the original source code
using XML elements without losing the original source code formatting.

In particular for the encoding of Java source code as XML a lot of ap-
proaches are available. Two of these approaches are presented in depth to
show the main differences between the representation and annotation con-
cept. The following listing 2.14 contains the original source code of a Java
class that will be encoded as XML.

1 public class Person {
2 private String name;
3 public String getName() {
4 return name;
5 }
6 }

Listing 2.14: Java source code to be encoded as XML

Listing 2.15 shows the encoded Java source code in an XML repre-
sentation called JavaML (Java Markup Language) that was developed by
Badros [Bad00]. It uses the representation concept to map all language
constructs of Java to XML elements. All constructs of the source code

27

are mapped to XML elements or attributes. For example, the source code
public class Person (listing 2.14, line 1) is mapped to the XML element class

(listing 2.15, line 1) with the attributes name="Person" and visibility="public".
Listing 2.15 is simplified by leaving out a few XML attributes for reasons
of clarity. JavaML typically encodes also information about the location of
each statement in the original source code (using line, end-line, column, and
end-column attributes), adds an identifier to each statement that allows to
reference it using the idref attribute, and is also capable of representing Java
comments.

1 <class name="Person" visibility="public">
2 <superclass name="Object"/>
3 <field name="name" visibility="private">
4 <type name="String"/>
5 </field>
6 <method name="getName" visibility="public">
7 <type name="String"/>
8 <formalarguments/>
9 <block>

10 <return><varref name="name"/></return>
11 </block>
12 </method>
13 </class>

Listing 2.15: JavaML representation of listing 2.14

An instance of the annotation concept is srcML (Source Code Markup
Language) [MCK02, MCK04] which allows to markup Java, C/C++, and
AspectJ source codes using XML. The following listing 2.16 contains the
result of the annotation of the example Java source code. All constructs
and also the formatting of the original source code are preserved and XML
elements are put around the Java constructs. In line 1 of listing 2.16 the
start of the Java class is marked-up using a class element, the visibility of
the class is marked-up with a specifier element and the name of the class
with a name element.

1 <class><specifier>public</specifier> class <name>Person</name> <block>{
2 <decl_stmt><decl><type>private <name>String</name></type> <name>name</

name></decl>;</decl_stmt>
3 <function><type>public <name>String</name></type> <name>getName</name><

parameter_list>()</parameter_list> <block>{
4 <return>return <expr><name>name</name></expr>;</return>
5 }</block></function>
6 }</block></class>

Listing 2.16: srcML representation of listing 2.14

As srcML preserves the formatting of the original source code, the re-
sulting XML looks not as structured as the JavaML representation in list-
ing 2.15. This might be seen as a drawback, but as most of the time the
XML data is processed by XML tools and not by humans, this formatting

28

issue does not matter. It is an advantage of the annotation concept that the
original source code can be recovered with small effort by removing all XML
elements. While it requires parsing the XML file and mapping it back to
source code when using representation concepts like JavaML. Because of the
additional effort, many instances of the representation concept do not sup-
port a regeneration of the original source code from the XML representation
at all.

One property is often missing in both concepts: the line numbers of
the original source code elements are often not mapped to the XML. That
makes it nearly impossible to reference from XML elements to the according
elements in the original source code. This feature is missing in srcML and
even though the original formatting of the source code is preserved, it is
impossible to reconstruct the exact position of an element (line number and
offset) in the original source code using standard XML technologies like
XQuery or XSLT. JavaML in contrast has an optimal support for this feature
encoding the starting and ending line and offset for each element of the source
as XML attributes.

While the users of JavaML cannot influence the granularity of the map-
ping to an XML document, srcML offers options to mark-up literals and
operators which are not be marked-up by default. Altogether, it can be as-
serted that the overall granularity of the resulting XML documents is higher
for representation concepts like JavaML than for annotation concepts like
srcML.

As mentioned at the beginning of this section, there are various ap-
proaches for the representation of Java source code as XML. Unfortunately,
most of them are named JavaML. JavaML by Badros [Bad00] presented in
detail above and is superseeded by an enhanced version JavaML 2.0 also
by Badros [ADB04]. JavaML by Mamas and Kontogiannis [MK00] follows
the representation concept and is very likewise compared to JavaML by
Badros. The separability of JavaML by McArthur, Mylopoulos, and Keith
Ng [MMN02] is the usage of a multi-weight parser which allows to remain
some syntactic constructs unparsed. This relates to the mark-up options of
srcML but based on the representation and not the annotation concept. The
Extensible Software Document Markup Language (XSDML) by Maruyama
and Yamamoto [MY04] is conceptually not bound to, but currently imple-
mented for Java. XSDML uses the annotation concept as srcML and is in
contrast to srcML capable to encode line and offset information. Also ad-
ditional semantical information such as fully-qualified names and references
can be encoded. These properties make XSDML an intersection of srcML
and JavaML.

Most XML formats for source code representation are often designed for
one programming language, like JavaML for Java. A few support multi-
ple source languages, like srcML (Java, C/C++, and AspectJ). Other ap-
proaches such as OOML (Object Oriented Markup Language) [MK00] use

29

a higher level of abstraction and allow to map different object-oriented lan-
guages to one XML representation. The Extensible Common Intermediate
Language (XCIL) [KBSD04] is also developed to provide a common seman-
tic representation that is independent of the target language. Therefore all
structural elements are based on corresponding UML definitions and are
mapped to XML. Because of that “XCIL and XMI are virtually identical
except with respect to their representation of elements from the action se-
mantics” [KBSD04].

Another approach to encode source code as XML—that relates to the
representation concept—is to map an abstract syntax tree (AST, see sec-
tion 2.4.4.3 for details) to XML [ZK01]. As ASTs mostly contain the line
numbers and offsets for all statements of the underlying programming lan-
guage, these information can be mapped to XML attributes. Only seman-
tically relevant parts of the source code (like statements and identifiers) are
represented in the AST. Comments and blank lines are not part of it and
can therefore not be mapped to the XML what prohibits reconstruction of
the original source code. An advantage of this approach is the very high
granularity of the AST and the resulting XML, allowing to perform detailed
analyses.

XML is not only used for the representation of static software artefacts
(like source code or architectural models) but also for the representation
of graphs like control flow and data flow graphs. One approach for the
representation of graphs as XML is presented by Al-Ekram and Konto-
giannis [AEK05]. They propose different XML formats for each kind of
graphs: Control Flow Graph Markup Language (CFGML), Program Depen-
dence Graph Markup Language (PDGML), and Call Graph Markup Lan-
guage (CGML). All of them are based on an intermediate XML format
called FactML that is used to unify different input formats like JavaML
and OOML.

A general approach for the representation of any kinds of graphs as XML
is the Graph Exchange Language (GXL) [HWS00] that is developed to en-
able interoperability between software reengineering tools and components.
The tool XOgastan [APMV03] permits to transform the AST created by the
C/C++ compilers of the GNU Compiler Collection (GCC) to a GXL docu-
ment. XOgastan also includes special features like the extraction of control
flow graphs. Hence, one application of GXL is the representation of ASTs
and control flow graphs. GXL is also used as backend for an “infrastructure
that supports interoperability among reverse engineering tools” [KMP07]
what is important as interoperability is a “contributing factor to the lack
of adoption of available [reengineering] infrastructures” [KMP07]. Using ap-
proaches like XML in general and GXL in particular, it is also possible to
encode dynamic software behaviour as traces of program executions [MW03].

30

2.4.4 Other Common Approaches

The representation of software artefacts is not limited to high-level formats
such as UML and metamodels or to XML-based formats which are described
in the preceding sections. Other common approaches for the representation
of software artefacts are presented in the following sections: the usage of
plain source code (section 2.4.4.1), intermediate formats (section 2.4.4.2),
and tree structures (section 2.4.4.3).

2.4.4.1 Plain Source Code

Source code is not directly executable—it always requires a compiler or at
least an interpreter to execute it. Therefore, source code is strictly spoken
nothing but the serialisation of software or a representation format. Hence,
the most obvious representation format for software is source code itself. To
differentiate between source code as a target of software analysis and source
code as representation format, the term plain source code is used for the
latter.

Plain source code can be used for similar purposes like other representa-
tion formats that are capable of reflecting source code in depth. Plain source
code is also used to query it for anomalies using regular expressions or other
lexical and syntactical approaches. See section 3.2 for details regarding this.

2.4.4.2 Intermediate Formats

Source code is not always directly compiled to executables or executed using
an interpreter. Intermediate formats are located between the source code
level and the actual execution of a program. One prominent example of an
intermediate format is the Java bytecode that is the result of the compilation
of Java source code. The Java bytecode (stored in class files) cannot be di-
rectly executed and needs to be executed by a Java Virtual Machine (JVM)
instead [LY99]. The same concept is used by Microsoft’s .NET platform
which is a pendant to the Java runtime environment. Microsoft’s interme-
diate format is called Common Intermediate Language (CIL) and fulfils the
same role as the Java bytecode: it is a platform-independent representation
format of the underlying source code that can be executed by any virtual
machine that is capable of the intermediate format.

Intermediate formats can serve as a basis for multiple programming lan-
guages. Tool vendors only need to build compilers that transform the partic-
ular programming language to the intermediate format instead of providing
more complex compilers that generates executables. Microsoft’s .NET plat-
form extensively uses this approach and transforms all .NET programming
languages (for instance C# and VB.NET) to the Common Intermediate
Language (CIL). As the specifications of CIL and of the Java bytecode are
publicly available, third-party programming languages are able to make use

31

of the intermediate formats and their runtime environments. For example,
IronPython10 allows Python code to run on the .NET platform and JRuby11

allows to run Ruby code using a JVM12. This property of intermediate for-
mats can be of interest regarding software analysis. As the intermediate
formats provide an abstraction from the underlying programming language
an analysis that is based on an intermediate format is not bound to a con-
crete language.

For example, the Byte Code Engineering Library (BCEL) [BCE06] allows
to access Java bytecode and acts as “a convenient possibility to analyze,
create, and manipulate (binary) Java class files [. . .]. Classes are represented
by [Java] objects which contain all the symbolic information of the given
class: methods, fields, and byte code instructions, in particular.” Using
BCEL, it becomes easily possible to use Java bytecode as a starting point
for the software analysis [HP04, MY04]. Particularly with regard to closed-
source software—where only the Java bytecode is available—the usage of
intermediate formats gets interesting.

2.4.4.3 Tree Structures

The structure of a programming language is predefined by its grammar that
defines the allowed language constructs and their combinations. The recog-
nition of the grammar in a piece of source code is called parsing. The result
of the parsing process is a Parse Tree which is a hierarchical representation
of the derivations of the source code from its grammar. An Abstract Syntax
Tree (AST) is a more economical representation of the source code, abstract-
ing out the redundant grammar productions of the parse tree. These are for
instance comments or grouping parentheses that are already expressed by the
tree structure. Parse trees and abstract syntax trees are the most important
tree-based data structures for the representation of source code. These trees
are integral parts of nearly all compilers and interpreters as intermediate
representations of the program. The trees are the abstraction of the source
code in terms of the language’s grammar and hence strongly dependent on
the underlying programming language. An example of an AST (encoded
using XML) is provided in listing 5.4.

The transformation process from the source code to an AST consists
mainly of a lexical, syntactical, and semantical analysis. In the first step,
the lexical analysis is performed and the source code is converted into a token
stream. Each token (also called symbol) represents a single expression of the
underlying grammar and gets classified (operators, identifiers, . . .). In the
second step the token stream is converted into a parse tree that represents

10http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
11http://jruby.codehaus.org
12http://www.roberttolksdorf.de/vmlanguages.html provides a list of about 200

different projects using Java bytecode respectively the JVM as their runtime environment.

32

http://www.codeplex.com/Wiki/View.aspx?ProjectName=IronPython
http://jruby.codehaus.org
http://www.robert-tolksdorf.de/vmlanguages.html

the structure of the program. During this convertion, the syntax of the pro-
gram gets validated and a differentiation between declarations, statements,
expressions, etc. is carried out. Finally, the parse tree is converted into an
AST that is a finite, labeled, and directed tree, where the interior nodes of
the tree represent the non-terminals and the leaves terminal symbols of the
grammar. During the semantical analysis a symbol table is created in which
each identifier of the source code is associated with information relating to
its declaration or appearance in the source, like its type and scope.

33

Chapter 3

Related Work

This chapter covers related work regarding software analysis in the area of
pattern detection in general and approaches specific to the detection of bad
smell in particular. Approaches based on source code metrics (section 3.1),
regular expressions (section 3.2), and logic programming (section 3.3) are
presented followed by domain-specific languages (section 3.4), XML-based
approaches (section 3.5), and other common approaches (section 3.6). Fi-
nally, a summary of this chapter is given and the results are discussed (sec-
tion 3.7).

Each of the sections is made up of a few representative approaches which
are presented by giving examples and discussing their properties for exam-
ple regarding matching power, robustness, reusability, and limitations. Their
technical realisations are not discussed in depth but mentioned briefly. The
main focus is set to the detection of patterns which can be discovered us-
ing static code analysis. This is done as the software analysis framework
presented and discussed in the chapters 4 and 5 is also focused on static
analysis.

3.1 Source Code Metrics

This section presents approaches for the detection of pattern using source
code metrics. (The terms bad smell and metric have been introduced in
section 2.1.) Even though metrics cover software measurement while bad
smells are related to the structure of source code, useful intersections between
both patterns exist and are described in the following. The result of a metric
is by default a descriptive value that should be linked to a boundary value
to become prescriptive [FY94]. Applying the metric Lines of Code to a Java
class can lead to a descriptive result of 1500 lines of code. If a Java class is
considered to be too long if it contains for example more than 1000 lines of
code, this boundary value is linked to the metric which can now be used to
find instances of too large classes.

34

The connection between metrics and bad smells is that a certain bound-
ary value can indicate the instances of bad smells. The example in the
preceding paragraph shows that the metric Lines of Code can be used to
find instances of the bad smell Large Class. Hence, metrics with a linked
boundary value might be seen as a subset of bad smells as they also allow
to detect structures in the code that should be refactored. The other way
around, also bad smells might be seen as a subset of metrics as the number
of found smells often equals the result of a metric.

An immense number of metric tools1 for all kinds of target languages
but without automatic smell detection is available. Only a small number of
approaches make use of source code metrics for the automatic detection of
bad smells [AK05, CMM04, SSL01]. But the scope of metrics regarding smell
detection is limited as they “do not comprise the full spectrum of possible
smell symptoms and still are uncertain” [WP05]. Hence, more advanced
approaches—like those discussed in the following sections—are required for
a powerful smell detection. These approaches are focused on the internal
structure of the source code and are not limited to the measurement results
of metrics.

3.2 Regular Expressions

Regular Expressions (RE) are expressions describing sets of strings and are
used for pattern matching. REs feature their own syntaxes to express the
patterns to match. The most known regular expression syntax is the one
of the programming language Perl [Per07]. The basic concepts of regu-
lar expressions—wildcards, alternation, grouping, quantification, and meta-
variables—are extended by Perl with character classes, modifiers, backrefer-
ences, and replacements amongst others.2 Perl-compatible regular expres-
sions are nowadays widely adopted and implemented by nearly all newswor-
thy programming languages like Java, Python, Ruby, and the .NET platform.

The term “regular expression” has different meanings for the theory of
formal languages and for pattern matching. Regarding formal languages, reg-
ular expressions describe the according language to the grammar the formal
language is based on. Most programming languages are based on context-free
grammars which are located at the type-2 level in the Chomsky–Schützen-
berger hierarchy [CS63]. Additionally to type-2 grammars, most definitions
of programming languages make use of static semantics which provide addi-
tional contextual constraints for the language. REs regarding pattern match-
ing are type-3 languages according the Chomsky–Schützenberger hierarchy
and therefore less expressive. Hence, the expressive power of regular expres-

1For example: http://metrics.sourceforge.net, http://www.clarkware.com/

software/JDepend.html, and http://www.mmsindia.com/jstyle.html
2http://search.cpan.org/dist/perl/pod/perlre.pod

35

http://metrics.sourceforge.net
http://www.clarkware.com/software/JDepend.html
http://www.clarkware.com/software/JDepend.html
http://www.mmsindia.com/jstyle.html
http://search.cpan.org/dist/perl/pod/perlre.pod

sions is not sufficient to match patterns of programming languages which are
based on type-2 grammars.

The query power of RE-based tools like grep or AWK and strict lexical ap-
proaches in general is too limited regarding the source code domain. “General
string-searching tools can handle only trivial queries in the context of source
code. Based on regular expressions, these tools do not exploit the rich syn-
tactic structure of the programming language” [BMG+94]. Therefore, the
core concepts regarding pattern matching of regular expressions have been
adopted by special-purpose languages which allow pattern detection in source
code of programming languages based on context-free grammars.

One of these languages is part of the source code search system SCRU-
PLE (Source Code Retrieval Using Pattern Languages) [PP94a]. Its pattern-
based query language can be used to specify complex structural patterns of
source code as it works on a syntactical instead of a lexical representation
of the source code. The pattern language provides flexibility regarding the
degree of precision to which a code structure is specified.

The query language is an extension of the programming language under
investigation—currently C. The extensions include regular expression-like
meta-variables which can be used as substitutes for syntactic entities in the
programming language. Such as statements (@), declarations ($d), expres-
sions (#), functions ($f), and variables ($v). The pattern-matching engine
of SCRUPLE searches the source code for fragments that match the pat-
terns. Listing 3.1 shows two examples of the pattern language. The pattern
in line 1 matches three if statements that follow one after another. The
pattern in line 2 finds all functions that have references to the identifier foo.

1 if @ #; if @ #; if @ #;
2 $t $f_x <foo> ($v*) { @* }

Listing 3.1: Example of the pattern-based query language of SCRUPLE

While the query language is quite powerful, it is specific to the underly-
ing programming language. There is no abstraction between queries and the
source code to query. Hence, applying existing patterns to a new program-
ming language requires additional effort.

Another language making use of the core concepts of regular expres-
sions is TAWK [AG06] which is based on the AWK language. TAWK uses a
language-independent pattern syntax which combines the lexical power of
AWK with matching support for abstract syntax trees. “Retargeting to a new
language requires [. . .] no special effort [. . .] to the pattern matcher itself,
since it is language independent” [AG06]. This paper also provides a com-
parison of different further lexical and syntactical languages and software
analysis systems like LSME (Lightweight Source Model Extractor) [MN95],

36

SCRUPLE [PP94a], and GENOA [Dev92] regarding their expressive power,
programming power, robustness, and speed.

3.3 Logic Programming

This sections covers approaches for the pattern detection that make use of
logic programming and Logic Meta-Programming (LMP). While the first is
the usage of logic programming languages (typically variants of Prolog) for
analysing and/or transforming software artefacts [AK07], LMP is a combi-
nation of logic programming and the analysis target itself. Both approaches
require fact-based representations of the underlying programming languages
to express analyses using logic rules and predicates. As this thesis attends
software analysis, the transformation capabilities of logic programming are
not taken into account.

An example for the usage of logic programming is JQuery—a query-based
browser for Java source code [Vol06]. Queries are formulated using a modified
version of the Prolog-like logic programming language TyRuBa [TyR06].
“A set of TyRuBa predicates and rules have been defined that make up the
JQuery query language. These predicates operate on a fact database that is
generated from [. . .] abstract syntax trees (for .java files) and parsing Java
bytecode (for .class files).”3

Listing 3.2 shows a query that makes use of the JQuery predicates to
find all public getter methods of all Java classes. First all classes are selected
and bound to the variable ?C, afterwards all methods of the current class are
bound to ?M. Finally, all methods whose name matches the regular expression
/^get/ and whose modifier is public are returned.

1 class(?C), method(?C, ?M), re_name(?M, /^get/), modifier(?M, public)

Listing 3.2: JQuery query to find all public Java getter methods

An approach for software analysis based on logic-meta programming is
the Generic Transformation Language (GenTL) [SAK07, Gen07]. Although
its name states that GenTL is a transformation language, it also provides
analysis capabilities. GenTL make use of logic-based programming and ex-
tends it by so called Concrete Syntax Patterns (CSP)4. CSPs are snippets of
the programming language to analyse which contain meta-variables. Those
meta-variable are logic predicates and act as placeholders for expressions
of the underlying programming language. Currently, GenTL is adapted for
Java but its core concepts are language-independent [AK07].

Listing 3.3 provides two GenTL examples. In line 1 a pattern is used to
find all if statements. The pattern in line 2 finds all classes and binds them

3http://jquery.cs.ubc.ca/documentation/overview.html
4https://sewiki.iai.unibonn.de/research/gentl/concepts/predicates

37

http://jquery.cs.ubc.ca/documentation/overview.html
https://sewiki.iai.uni-bonn.de/research/gentl/concepts/predicates

to the user-defined meta-variable ?allClasses. “Since CSPs match at the
AST level, matching is not restricted to lexical structures” [AK07]. Hence,
the pattern in line 1 matches also the source code if (done) return; which
does not include the curly braces of the pattern. As CSPs do not need
to specify all elements of the matched element, the pattern in line 2 also
matches abstract classes even though this keyword is not contained in the
pattern.

1 if (?expr) { ??statements }
2 ?allClasses is [[class ?classname { ??class_members }]]

Listing 3.3: Two GenTL examples: combination of logic predicates and
syntax patterns

The concept of LMP combines logic predicates with the syntax of the
analysis target. The resulting queries look much more like the analysis target
itself. Hence, they are easier to understand than pure logic-based queries like
those of JQuery. “Thus the concept of meta-variables is all that programmers
have to learn in addition to mastering the analysed language” [SAK07].

A lot more approaches than the presented ones are based on logic pro-
gramming: SOUL [TM03] is a variant of Prolog and used for the detection
of bad smells like Obsolete Parameter and Inappropriate Interfaces. AST-
LOG [Cre97] is a logic-based language for examining abstract syntax trees.
Even though ASTLOG is a Prolog variant, it avoids the overhead of translat-
ing the source code into the Prolog database and works directly on abstract
syntax trees. CodeQuest [HVdM06] combines the usage of logic program-
ming and database systems. This is done by mapping Datalog queries (also
a Prolog-like language) to SQL. A comprehensive overview of the available
logic-based approaches regarding source code analysis and transformation
(amongst others CodeQuest and JQuery) provides [KHR07].

3.4 Domain-Specific Languages

Domain-Specific Languages (DSL) are programming languages which per-
form specific kinds of tasks. In contrast to general-purpose programming
languages the scope of DSLs is limited by design. For just that reason, DSLs
are superior in their domain compared to general-purpose languages. This
sections presents a couple of languages specific to the domain of pattern
detection in software artefacts.

Jackpot [Jac07] is an extension of the open-source development environ-
ment NetBeans [Net07] which adds extensible refactoring capabilities for
Java source code to the IDE. User-defined refactorings can be contributed
by writing new Java classes according to the Jackpot API or by making

38

use of Jackpot’s rule language5. This language is not intended to be a
complete language, but it serves the need to define pattern matching and
replacement for Java source code. The basic construct of the language is
<pattern> => <replacement>;. This read as: if the pattern matches, substitute
it with the replacement. The pattern consists of Java constructs and meta-
variables to provide wildcard-like matching of the source code. Listing 3.4
shows two examples: the pattern in line 1 shows how boolean expressions
can be simplified by applying DeMorgan’s Theorem. The example in line 2
uses the optional guard expression :: which allows to formulate conditions
under which a replacement should happen. In this case: if the object bound
to the meta-variable $object is an instance of the type $type, the casting of
this object can be removed as it is not necessary.

1 !($a <= $b) => $a > $b;
2 ($type)$object => $object :: $object instanceof $type;

Listing 3.4: Two examples using the Jackpot rule language

Even though the Jackpot rule language is a transformation language and
no pure query language (beside the workaround to replace the pattern by
itself) it is a demonstrative example for a domain-specific language related
to software analysis.

The Program Query Language (PQL) [PQL07, MLL05] allows to express
queries regarding sequences of events associated with a set of related objects
in an application-specific context. The focus of PQL is software behaviour
instead of software structure as it allows to track method invocations and
accesses in related objects. Therefore PQL abstracts the program execution
as a trace of events. PQL queries are patterns to be matched on the execution
trace and actions to be performed upon matches. A matching query is a set
of objects and a subsequence of the trace that together satisfy the pattern.

PQL is currently adapted for the analysis of Java systems and therefore
PQL queries partially look like pieces of Java source code. Listing 3.5 shows
a query which finds all occurrences where a Java OutputStream object is not
shut done correctly before the surrounding method ends (lines 2–5). This
is expressed as an object that is instantiated (line 3) but not terminated
using its close method (expressed by the sign ~ in line 4). PQL is not a pure
query language and can also be used for transformations. In this example
the missing call to the method close can be added at the end of the method
under investigation (line 6).

To enable those high-level queries, the PQL system hides a lot of com-
plexity: PQL queries are represented by state machines and all inputs and
results for the static analysis are stored in a relational database. Inter-

5http://jackpot.netbeans.org/docs/rulelanguage.html

39

~
http://jackpot.netbeans.org/docs/rule-language.html

1 uses object OutputStream o;
2 matches {
3 o = new OutputStream();
4 ~o.close();
5 }
6 executes o.close();

Listing 3.5: Simplified PQL query to detect potential resource leaks

nally, static analyses are performed by translating PQL queries into Datalog
(a subset of Prolog) and using the database to resolve the queries.

While the most other software analysis systems permit patterns to be
matched only against source code, a key contribution of PQL is its pattern
matcher which “combines object-based parametric matching across widely-
spaced events” [MLL05].

The originators of SCRUPLE (see section 3.2) found out that “one of
the fundamental problems designers of source code querying systems face
is the lack of good underlying models to represent source code information
and to express queries. [. . .] We found that no satisfactory choice for the
underlying model to represent program information was available” [PP94a].
The desired source code query system should be able to answer queries based
on global structural information, on syntactical structure, and on program
flow information. Most approaches lack of either a powerful query language
or adequate modeling power due to “the absence of clean formalisms for
modeling and querying source code” [PP94b].

To address these issues a completely different approach is chosen: mod-
eling source code using an algebra. The Source Code Algebra (SCA) plays
the same role for source code as the relational algebra plays for relational
databases. The algebra is developed as a theoretical foundation for a pow-
erful source code query system [PP94b, PP96]. The benefits of using SCA
include the integration of structural and flow information and the ability to
process high-level source code queries using SCA expressions. Two sample
queries are shown in the following.

• Find all functions defined in the file analyzer.c:
funcs(pickname=′analyzer.c(FILE))

• Find all functions directly or indirectly called by the function sort:
closurecalls(pickname=′sort(FUNCTION))

Even though the domain model of SCA depends on the underlying source
code and must be adapted to the specifics of each programming language, the
SCA query language itself is domain-independent. This is a valuable feature
and essentially means that an implementation of a SCA query processor
works unchanged across different SCA domain models [PP94b].

40

3.5 XML-based Approaches

As seen in section 2.4.3 a lot of approaches for the representation of software
as XML exist. All levels are covered: high-level and full-detail XML rep-
resentations are available. The range of XML-based approaches to process
XML documents and to locate patterns in these documents is also wide. This
section first introduces the most important APIs for programmatical access
to XML documents. The application of these APIs to the software analysis
is only briefly described as they provide no declarative query possibilities.
Hence, the focus is set to declarative processing languages for XML. First
the languages TQL and XDuce are presented, followed by approaches that
make use of the standardised XML processing languages XPath and XQuery
for the analysis of software.

The Document Object Model (DOM)“is a platform- and language-neutral
interface that [allows] to dynamically access and update the content, struc-
ture and style of [XML] documents” [DOM05]. The DOM tree is a repre-
sentation of the underlying XML document and can be traversed and trans-
formed arbitrarily. Implementations are available for nearly all programming
languages, but the drawback of DOM is its high memory requirement as the
complete DOM tree must be kept in memory at once.

The opposite approach is the Simple API for XML (SAX) [SAX04] which
provides a mechanism for read-only access to the data of XML documents.
SAX traverses XML documents once from the start to the end and calls user-
defined callback methods on occurring events. This event-driven approach
makes SAX faster than DOM and features a small memory footprint. On
the other hand programming with low-level API of SAX is non-trivial and
it is not possible to change the XML document.

The Streaming API for XML (StAX) [StA04] is a Java-only API which
“gives parsing control to the programmer by exposing a simple iterator based
API and an underlying stream of events. [It allows a] developer to ask for
the next event (pull the event) rather than handling the event in a call-
back” [StA04]. This design is a mixture of DOM and SAX as it allows to
navigate in the XML document comparable to DOM and features adequate
memory consumption and good speed like SAX.

There is no known approach directly deploying one of the APIs for the
task of finding patterns in software artefacts, even though their usage is
often recommended for this purpose [APMV03, ZK01, AEK05, Bad00]. If
these APIs are used, they are wrapped into specialised high-level APIs for
software analysis [MY04]. The situation is summarised by [MY04]: “The
standard APIs (e.g. DOM and SAX) are of course convenient for writing
code, independent to a specific programming language but too primitive for
most developers when they build tools in practice.”

41

Therefore the focus is set to declarative XML processing languages. First,
two academic approaches are presented whose main targets and applications
are not software analysis, but which provide properties to be used for soft-
ware analysis tasks.

The Tree Query Language (TQL) [CG04] is a language to query semistruc-
tured data like unordered forests with labelled nodes. TQL can also be used
to query XML trees and is therefore discussed in this section. Papers regard-
ing TQL and a reference implementation can be found online [TQL03]. TQL
does not follow an approach limited to path-based pattern matching, but also
incorporates logic-based elements. This makes TQL queries more declara-
tive and less operational than queries in comparable languages like XPath.
Listing 3.6 shows an example to clarify this feature. The query returns all
elements which are located inside of a book element (.bib.book.$elements)
and which contain a firstname element whose content matches the string
Homer (.firstname[Homer]). Even though the equivalent XPath expression
$bib/book/*[.//firstname[. = "Homer"]] is a little bit shorter, it lacks of read-
ability compared to the TQL one.

1 from $bib |= .bib.book.$elements.firstname[Homer]
2 select $elements

Listing 3.6: TQL query which combines path-based and logic elements

The expressive power of TQL is comparable with XPath but lesser then
XQuery which is Turing-complete. Nevertheless TQL could be used to detect
patterns in XML representations of software artefacts. The crucial reason
not to use TQL, is its unordered data model—while the data model of XPath
respectively XQuery keeps all nodes in document order. This feature is im-
portant especially regarding software analysis when expressing queries which
compare the location and/or order of software constructs. This limitation is
known and future versions of TQL will resolve it [CG04]. Another limitation
of TQL is its missing support for user-defined functions and modules.

While TQL links elements of logic programming with tree data struc-
tures like XML, the following approach joins XML and regular expressions.
XDuce is a statically typed XML processing language with support for reg-
ular expression pattern matching [HP03b, HP03a, XDu05]. XDuce is based
on so-called regular expression types which correspond to the schema of the
XML document. Hence, XDuce can make use of existing schema definitions
in the DTD format. It is also possible to define own types like shown in list-
ing 3.7. The type Addrbook in line 1 consists of a name, an address, and an
optional telephone number which are defined in lines 2–4. Type definitions
of XDuce are at about the same level of expressiveness as DTDs but not as
powerful as XML schema definitions.

XDuce supports user-definition functions and pattern matching with a
single-match semantic. This is demonstrated in listing 3.8 in which the

42

1 type Addrbook = addrbook[(Name,Addr,Tel?)*]
2 type Name = name[String]
3 type Addr = addr[String]
4 type Tel = tel[String]

Listing 3.7: XDuce: definition of a regular expression type

function createtelephonelist is defined. The function makes use of the
types defined in the preceding listing and takes a sequence of one or more
Addrbook items as input and returns a sequence of name and telephone items.
Each item of the input sequence is bound to the variable item and its content
is evaluated in lines 2–6. If the Addrbook type consists of name, address,
and the optional telephone number (line 3), the values of the name and
telephone fields are returned (line 4). In this case and also in the case
that the current address contains no telephone number (lines 5 and 6) the
function is called recursively with the residual items as argument. This is the
practical consequence of XDuce’s single-match semantic: the first matching
item is taken and further items are processed recursively.

1 fun createtelephonelist (val item as Addrbook+) : (Name,Tel)+ =
2 match item with
3 name[val n], addr[val a], tel[val t], val rest
4 > name[n], tel[t], createtelephonelist(rest)
5 | name[val n], addr[val a], val rest
6 > createtelephonelist(rest)

Listing 3.8: XDuce function for the transformation of XML data

Even though XDuce supports user-defined functions, what is an advan-
tage compared to TQL, and its query power might be adequate for most
software analysis purposes, it lacks all those additional features standard-
ised languages can provide: an active user community, multiple reference
implementations, and ongoing development of tools and language concepts.

This is where standardised and declarative XML processing languages,
mainly XPath, XQuery, and XSLT, come into the field. The first two of these
languages have been introduced in detail in the sections 2.3.2 and 2.3.3. As
this thesis is focused on software analysis and not on the transformation
of software, the presentation of approaches making use of XPath and/or
XQuery is preferred over those using the transformation language XSLT.
For more considerations on XQuery vs. XSLT regarding software analysis
see section 4.4.

PMD [PMD07] is a tool for scanning Java source code for potential prob-
lems. It provides a set of predefined rules for the detection of source code
anomalies and two ways to define new rules. This can be done by providing
new Java classes that traverse the AST or by writing custom rules using
XPath [Cop05]. Listing 3.9 shows two example XPath expressions that op-

43

erate on an XML representation of the AST provided by PMD. The pattern
in line 1 finds all while loops that omit the optional braces. This is expressed
by searching all WhileStatement elements whose Statement element does not
contain a Block element. The expression in line 2 finds occurrences of empty
if statements by searching IfStatement elements without braces and without
any contained statements (EmptyStatement) and by searching empty blocks
(Block[count(*) = 0]) contained by IfStatement elements.

1 //WhileStatement[not(Statement/Block)]
2 //IfStatement/Statement[EmptyStatement or Block[count(*) = 0]]

Listing 3.9: PMD XPath expressions for the analysis of Java source code

PMD currently supports only XPath 1.0 expressions which are less pow-
erful then XPath 2.0 ones. The reason is the XPath engine jaxen used by
PMD which only supports XPath 1.0. Support for version 2.0 of XPath is
not planned.6 PMD is not only restricted to anomalies in Java source code,
but the XPath expressions are additionally tightly coupled to the AST of
PMD. If the underlying grammar changes, for example due to new features
in upcoming Java releases, the XPath expressions must reflect these changes
as they would also be visible in the XML representation of the AST.

More powerful analyses can be achieved by using XQuery instead of
XPath as query language. The framework XIRC (XML-based Information
Retrieval and Conversion) [EMOS04] is used by the open static analysis
platform Magellan [Eic07] to support XQuery for application-specific anal-
yses. As a case study, the analysis of Enterprise JavaBean (EJB) classes is
used and XQuery expression are applied for checking structural properties
of EJBs.

According to the EJB specification, all entity bean classes and contained
methods must not be declared as final. Listing 3.10 shows an XQuery ex-
pression which find classes and methods that violate this EJB constraint. In
the first line all entity bean classes are located using a path expression and
bound to the variable $ebs. In the second line those classes and methods are
returned that are misleadingly declared as final.

1 let $ebs := //class[./annotations//@type = "javax.ejb.Entity"]
2 return $ebs[@final = "true"] union $ebs/method[@final = "true"]

Listing 3.10: XQuery expression searching final EJB classes and methods

Even though a central concern of Magellan is the decoupling of analyses
as “the same functionality for parsing and analyzing code is developed over
and over again” [Eic07], this is not done consequently as the XQuery analysis

6http://jaxen.org/faq.html

44

http://jaxen.org/faq.html

functions are bound to the underlying XML data structure what limits their
reusability.

The same critique applies to the framework XCARE [MFM04] which
stands for XML-based Code Analysis and Reverse Engineering. XCARE
is also based on XQuery and implements the following analysis operations:
metrics, design critiques (a mixture of design defects and bad smells, the
term was introduced by RevJava7), and reverse engineering operations. List-
ing 3.11 shows an XQuery expression to find public Java classes (represented
as XML using the JavaML version of Badros [Bad00]) that are lacking a con-
structor. As seen with PMD and Magellan, the query directly accesses the
underlying XML document which leads to the described drawbacks.

1 for $class in $document//class
2 where (($class/@visibility = "public")
3 and not(exists($class/constructor)))
4 return $class/@name

Listing 3.11: XCARE pattern of the design critique Uninstantiable Public

The RefaX refactoring framework [MMFA04] makes use of XQuery to
check pre- and post-conditions for refactorings while the actual refactorings
are implemented using the XML update language XUpdate [XUp00]. Even
though RefaX is about software transformations and the detection of bad
smells is explicitly not in the scope of RefaX, the design of the framework
is also of interest regarding software analysis as it addresses the problems
described with PMD, Magellan, and XCARE.

The main point of critique is that most of the available approaches “rely
on their own, closed mechanisms for representing and manipulating source
code information, which makes them difficult to customize, extend and
reuse” [MMFA04]. Hence, the primary design goals of RefaX are scheme-
independence (support different XML data models for the same program-
ming language) and language-independence (refactorings should be applica-
ble to different programming languages). This is achieved by varying levels of
abstraction between the XML representation of the programming language
and the refactorings respectively the pre- and post-condition checks. Access
to the XML data is never performed directly, but each XML data access
is encapsulated so that consumer of the data needs no further information
regarding the underlying structures. This approach can also be adopted for
software analysis.

3.6 Other Common Approaches

The methods presented above to find patterns in software artefacts cover
a wide range of the available approaches. Other classes of common meth-

7http://www.serc.nl/people/florijn/work/designchecking/RevJava.htm

45

http://www.serc.nl/people/florijn/work/designchecking/RevJava.htm

ods are not presented in depth, but mentioned for reasons of completeness.
Approximate matching of patterns can be achieved by approaches based on
fuzzy logic [NWW01]. The detection of duplicate code (so-called clone de-
tection) is also a common task for software analyses [BYM+98, KdMMB96]
which can be combined with fuzzy logic [Wei05]. Clone detection can also
take information into account contained in repositories of version control sys-
tems for source code. This allows for example to detect divergent changes
over time [She05] and so-called change patterns [BGA06].

Abstract syntax trees and parse trees are important data structures re-
garding software analysis as nearly all approaches—also those presented in
the preceding sections—require parsing the source code at first. Instead of
using abstract syntax trees only as intermediate format to fill XML or fact
databases for instance, the syntax tree can be used as primary data struc-
ture for the software analysis. Nearly all known approaches for the detection
of bad smells are based on the direct use of abstract syntax trees. For in-
stance, the TTCN-3 tool TRex [TRe07] which is used for the integration
of the software analysis framework presented in this thesis, already features
a pattern detection engine. It is based on traversing the AST and mak-
ing use of related data structures like the symbol table and reference finder
provided by TRex [Bis06]. The Static Analysis Framework of the Eclipse
Test & Performance Tools Platform (TPTP) Project [Ecl07c] on which the
pattern detection of TRex is built, also provides a set of 70 predefined code
review rules for Java. The technical foundations are very close to the pattern
detection of TRex: it makes use of an abstract syntax tree—in this case pro-
vided by the Eclipse Java Development Tools (JDT)—and detects anomalies
in the source code by traversing this AST. Built on the same infrastructure
is CodeNose [Sli05], an Eclipse plug-in specialised for the detection of bad
smells in Java source code. Additionally to the access to the AST, a fact
database is used to detect “more complex smells like Refused Bequest and
Feature Envy” [Sli05].

FindBugs is a tool which uses “static analysis to look for bugs in Java
code” [Fin07]. It is based on the concept of bug patterns—code idioms that
are often errors—which are described more detailed in section 2.1 and in
the according FindBugs paper [HP04]. As the tool’s name already states,
Checkstyle [Che07] is focused on the review of coding standards for Java.
Checkstyle is included here, as it is extended to “find class design problems,
duplicate code, or bug patterns” [Che07]. FindBugs and Checkstyle provide
APIs to write new analysis function but only by plugging-in Java classes.
While FindBugs and Checkstyle directly work on abstract syntax trees, a
metamodel is used to represent the source code for the code smell browser
jCOSMO [vEM02]. It is capable to detect and visualise smells in Java source
code but “it is possible to generalize our approach to other object-oriented
languages” [vEM02].

46

3.7 Summary and Discussion

Table 3.1 summarises some of the query technologies for the pattern de-
tection presented in the preceding sections. It includes languages specific
to software analysis and/or transformation of the sections 3.2–3.4 but no
general purpose languages like those for XML processing. This is done as
the concepts of specialised languages differ significantly from those of gen-
eral purpose languages. Additionally, general purpose languages feature no
specifics regarding pattern detection and software analysis.

The table columns consist of the names of the approach in the first one,
the class of the approach in the second column (regular expression, logic
programming, or domain-specific language) and a short summary of the
provided functionality. The last two columns state if the query language
is independent regarding the underlying programming language and which
language is the current main analysis target.

Name Class Summary Lang.

Indep.

Analysis

Target

SCRUPLE RE Lexical approach using RE-
based patterns to match ASTs

No C

TAWK RE Syntactical approach using syn-
tax patterns to match ASTs

Yes C

JQuery Logic Predicates to query a fact
database

Mostly Java

GenTL Logic Predicates and syntax pattern
to query a logic representation
of ASTs

Mostly Java

Jackpot DSL Meta-variables and Java con-
structs

No Java

PQL DSL Based on objects and sequences
of events

Hardly Java

SCA DSL Algebraic source code model,
high-level queries

Yes C

Table 3.1: Different approaches for pattern detection in software

Table 3.1 points up that the presented analysis languages base on very
different approaches and are therefore hardly comparable. Only a small
subset of properties like the independence of the analysed programming lan-
guage or the query power can be compared. But none of these properties
can be mapped to a comparable scale and therefore the results would be
unsatisfying.

A conclusion that can be drawn is that domain-specific language provide
well ease of use as their scope is clearly laid out and the syntax is straight-
forward. Another remarkable outcome is that most of the query languages

47

specialised to one analysis target, make use of the underlying programming
language itself. The Jackpot rule language for example uses Java statements
like instanceof as shown in listing 3.4 what limits the language reusability
by design.

Even though only a few approaches address the language-independence
regarding the analysis target, most of the approaches provide flexible and
powerful query capabilities. Support for user-defined queries without mak-
ing programmatic use of provided APIs is also not common. Just a few
approaches allow on-the-fly integration of queries like those based on XPath
or XQuery, logic programming, or domain-specific languages. The experi-
ences and issues of this chapter flow into the requirements and design of
the software analysis framework which is described in the remainder of this
thesis.

48

Chapter 4

Requirements and Design

This chapter describes the requirements and the design of a software analysis
framework. In section 4.1 the requirements of the framework are presented.
The transformation of the requirements into a concrete framework design
and architecture is described in sections 4.2, 4.3, and 4.4. Finally, the over-
all design of the framework is discussed in section 4.5. The concrete imple-
mentation of a software analysis framework that fulfils the requirements and
realises the design is presented in chapter 5.

4.1 Requirements for a Software Analysis Frame-

work

Before going into the details of the requirements for a software analysis
framework, definitions of the terms software, analysis, and framework are
given and it is clarified how they apply in the context of this thesis.

According to the ISTQB, software is defined as “computer programs,
procedures, and possibly associated documentation and data pertaining to
the operation of a computer system” [Int06]. Regarding this thesis, the term
software is used for software artefacts to be analysed. These software arte-
facts can represent source code or software on an abstract level as described
in section 2.4.

Analysis in this context is the generic term for dynamic analysis and
static analysis of software. The first is “the process of evaluating behavior,
e.g. memory performance, CPU usage, of a system or component during exe-
cution”while the latter is an“analysis of software artifacts, e.g. requirements
or code, carried out without execution of these software artifacts” [Int06].
Another difference between both kinds of analyses is that the information
obtained from a static analysis is valid for all possible executions of the soft-
ware while the result of a dynamic analysis is typically valid for the run in
question [JR00].

49

Frameworks provide conceptual structures to solve complex problems.
Software frameworks can be defined as a “set of cooperating classes that
makes up a reusable design for a specific class of software. A framework pro-
vides architectural guidance by partitioning the design into abstract classes
and defining their responsibilities and collaborations” [GHJV95]. Thus,
frameworks provide reusable and extensible structures for application-specific
problems. Customising frameworks is mostly done by inheriting from pre-
defined structures or by writing plug-ins for extension points defined by the
framework. Even though frameworks often make use of design patterns both
concepts must be differentiated. While design patterns provide abstract so-
lutions for common problems, frameworks provide concrete extensible im-
plementations that address domain-specific problems.

Combining these three definitions results in a definition of a software
analysis framework: it is a tool providing an infrastructure for the static
and/or dynamic analysis of software artefacts. It can include predefined
analysis plug-ins and adoptions for specific software artefacts. It allows to
integrate new analysis plug-ins as well as adoptions for new software arte-
facts. As the focus of this thesis is the static analysis, the main task of a
software analysis framework is to carry out static code analysis. “The tool
checks source code, for certain properties such as conformance to coding
standards, quality metrics or data flow anomalies” [Int06].

The following enumeration lists general requirements for a software anal-
ysis framework, sorted by relevance, and tagged with corresponding short
names (like R5 for the fifth requirement) to be able to refer to each require-
ment:

R1 The framework must provide a way to describe patterns that occur in
software artefacts (such as design patterns, bad smells, and metrics as
described in section 2.1).

R2 The patterns must be describable in a generic way on a high level of
abstraction.

R3 The language which is used for the description of the patterns must as-
sure well comprehensibility of the patterns. Functional and declarative
languages should be favoured over procedural ones.

R4 The description of patterns must be independent of specific analysis
targets (for example a concrete programming language like Java or C)
and specific representations of the analysis targets (for example a con-
crete representation format like an abstract syntax tree).

R5 The description of patterns must be human readable and directly ex-
ecutable by the framework at the same time.

50

R6 The framework must be able to execute the patterns to detect instances
of these patterns in software artefacts. (Such an instance is called a
match.)

R7 The framework must be capable to detect patterns in result of static
analyses. It should also be possible to detect patterns in result of
dynamic analyses.

R8 The pattern detection must work accurate. It should generate as few
as possible false positive and false negative matches.

R9 The framework must be extensible regarding new types of patterns and
also regarding new analysis targets (like new kinds of software artefacts
or representation formats).

R10 It must be possible to add user-defined patterns to the framework to
enrich the set of predefined patterns. Writing user-defined patterns
should be possible without profound knowledge of the underlying rep-
resentation format.

Some requirements are not explicitly mentioned in this list as they arise
from the presented requirements. For example the need to perform the
analysis in an acceptable space of time to encourage developers to make
use of it. Other requirements are the possibility to group related patterns
and to execute a subset of the available patterns and/or plug-ins instead of
executing all patterns.

The requirements R1–R10 concern the framework core of describing and
executing patterns and ways of extension. Requirements regarding user in-
terfaces (UI) and usability are not in the scope of the requirements R1–R10.
Instead, the application embedding the framework should provide an appro-
priate user interface which permits at least to select patterns to be executed
and to display the result of an analysis in a suitable, graphical way.

The result of an analysis is composed of zero or more matches. Matches
are instances of patterns detected by the analysis in the representation for-
mat. The result of the analysis should be presented by the embedding ap-
plication in the analysis target and not in its representation format. Hence,
representation formats needs to fulfil the following requirements to allow
the mapping of matches from the representation format to the underlying
analysis target where they originate from. The following requirements for
representation formats assume that the analysis target is stored in one or
more files whereat each file contains one or more lines.

51

For matches that encompass at most one line, representation formats
must contain the following information for each differentiable entity (such as
variable names or statements) of the analysis target:

• minimal set of information: filename and line number

• optimal set of information: filename, line number, start and end1 offset
(based on the start of the current line)

For matches that encompass multiple lines, representation formats must
contain the following information for each differentiable entity of the analysis
target:

• minimal set of information: filename and start and end line numbers
or alternatively: filename and start and end offsets (based on the start
of the current file)

• optimal set of information: filename, start and end line numbers, and
start and end offsets (based on the start of the current file)

The subtitle of this thesis states that the software analysis is applied
to detect bad smells in TTCN-3 test suites (see section 2.2.1 for details on
TTCN-3). This leads to the following list of requirements for a software
analysis framework regarding TTCN-3 (sorted by relevance):

T1 The framework must be customised for the static analysis of TTCN-3
source code.

T2 More specific, it must be adopted for the detection of bad smells in
TTCN-3 source code.

T3 It must be capable to detect those bad smells described in the TTCN-3
code smell catalogue (see section 2.2.2 for details) that can be discov-
ered in result of static analyses.

T4 The software analysis framework must be integrated into the TTCN-3
tool TRex [TRe07].

T5 It should be possible to customise the framework for the detection of
test purposes in TTCN-3 source code or in behavioural representations
of TTCN-3 source code. See section 6.3 for details regarding this.

Requirement R10 demands the possibility to add new user-defined pat-
terns to the framework and consists of a number of subordinate requirements.
They do not directly concern the framework core itself but the user inter-
face of the embedding application. As the framework must be integrated
into the TTCN-3 tool TRex (according to requirement T4) the following
requirements regarding user-defined patterns must be considered.

1Equivalent to the start and end information is the start and length information.

52

U1 The application embedding the software analysis framework must allow
to enter and execute user-defined patterns. Errors (like syntax errors)
must be handled.

U2 It must present the result of the pattern detection in an appropriate
way.

U3 It must be able to store user-defined patterns including pattern names.

U4 It must allow to select a subset of user-defined and predefined patterns
for analysis runs.

U5 It should be possible to view, edit, delete, and rename stored user-
defined patterns.

While this section lists abstract requirements for a software analysis
framework and its customisation towards TTCN-3, the following sections
transfer these requirements into a concrete design for the software analysis
framework.

4.2 Design: A Layered and Extensible Architec-

ture

This section presents the global architecture of the software analysis frame-
work and addresses the requirements R4, R7, and R9. The most important
requirement of these is requirement R4 which demands patterns to be inde-
pendent of the analysis targets and their representation formats. Require-
ments R7 and R9 mainly demand an infrastructure which supports adding
new analysis targets and new types of patterns.

The overall design of the framework is described by differentiating be-
tween the vertical and horizontal design. The vertical design makes use of
the facade design pattern which provides a “unified interface to a set of in-
terfaces in a subsystem. [The] facade defines a higher-level interface that
makes the subsystem easier to use” [GHJV95]. A positive side effect of this
design pattern is a loose coupling between the layers below the facade layer
and upper layers using the facade.

Figure 4.1 gives an overview of the vertical, layered design of the frame-
work. The boxes on the left side use abstract terms while the right side
shows a concrete instance of the framework customised for the detection of
bad smells in TTCN-3 source code. The first layer consists of an analysis
target, TTCN-3 source code in this example. The second layer is a repre-
sentation of the analysis target that acts as the primary data structure for
the analysis.2 The exemplified instance on the right side uses an abstract

2The representation format and the underlying analysis target might also be the same.
For example, when analysing source code and using plain source code as representation
format.

53

Analysis Target TTCN-3 Source Code

Representation Format AST of TTCN-3 Code

Facade Layer TTCN-3 Facade Layer

Analysis Plug-in Smell Detection

Figure 4.1: Vertical framework design: abstract on the left side, examplified
on the right side

syntax tree for the representation of TTCN-3 source code. The third layer
is an instance of the facade design pattern which is used for a unified ac-
cess to the representation format. Towards the fourth layer the facade layer
provides stable interfaces to ensure the reusability of plug-ins. Towards the
layer of the representation format the facade layer must be customised for
each format to actually be able to access it. The fourth layer consists of
plug-ins that perform analyses. Plug-ins make use of the facade layer to
access the analysis target. This layered architecture permits plug-ins to de-
pend only on the facade layer and to be independent of the analysis target
and its representation—and therewith fulfil requirement R4.

Plug-ins consist of a set of analysis functions and facade layers consists of
a set of stable interfaces—respectively a set of functions implementing these
interfaces. Both, the plug-in and the facade layer, can be topically grouped to
improve the overview and reusability. Given a topical intersection of different
analysis targets (for instance commonness between different programming
languages), these similarities can be reflected by these layers. The smell
detection plug-in for example can be grouped into generic smell detection
functions and specific smell detection ones (for instance groups of functions
for TTCN-3 specific and UML specific smell detection). This can also be
done for the facade layer by grouping the interfaces into general interfaces
and interfaces for specific analysis targets.

Note that in figures (like figure 4.1 and 4.2) regarding the framework
architecture the arrow type is used for any kinds of access and the arrow
type for conversions (for instance conversions of software artefacts to
representation formats).

The horizontal design of the software analysis framework is shown in
figure 4.2. Extending the framework is possible by adding plug-ins such as
the metrics and smell detection plug-ins in this example. As plug-ins are
only bound to the stable facade interfaces, all plug-ins can be used for the
analysis of all targets. Customising the framework is possible by integrating
new representation formats respectively analysis targets (UML models and

54

UML Model TTCN-3 Source Code

Representation Format Representation Format

Facade Layer Facade Layer

Metrics Smell Detection

Figure 4.2: Horizontal framework design: plug-ins extend the framework and
can be used independently of analysis targets

TTCN-3 source code in this example). This requires a customisation of the
facade layer towards the representation layer to adapt the new representation
format. These properties of the framework fulfil requirements R7 and R9.

The core of the software analysis framework is the application of the
facade design pattern to create an abstraction layer between the representa-
tion layer and the analysis layer. Plug-ins are only coupled with the facade
layer what results in a decoupling of the plug-ins from the underlying repre-
sentation formats respectively analysis targets. If the analysis target and/or
its representation format changes or new targets/representations are added,
only an adoption of the facade layer is required—the stable interfaces of the
facade layer and even more important the plug-ins remain untouched.

4.3 XML for the Representation of Software Arte-

facts

As discussed in section 2.4.3 the Extensible Markup Language (XML) can
serve as representation format for different kinds of software artefacts. This
includes abstract high-level software representations, fully detailed source
code representations and even ones for data and control flow graphs. “This
makes XML [. . .] a natural choice to be used as [. . .] representation format
for program representations” [AEK05].

The software analysis framework also builds upon XML as a universal
representation format. Reasons for this decision are the availability of many
XML-based software representation formats and XML-aware languages like
XQuery and XSLT [MMFA04]. Additionally, it is possible to transform
nearly every data structure into XML without major effort. Examples re-
garding those transformations are given in section 2.4.3 by the transforma-
tion of ASTs, models, and graphs to XML.

55

XML also fulfils the requirements to serve as representation format for
a software analysis framework (see section 4.1), as all information required
for the mapping of matches from the representation format to the analysis
target can be stored using XML elements or attributes—as long as these in-
formation are provided by the underlying representation format respectively
analysis target.

4.4 XQuery for the Facade Layer and Pattern De-

scription

This section presents a concretion regarding the design of the software anal-
ysis framework concerning the plug-in and facade layers. In the first step
the requirements for both layers are summarised, followed by a discussion
of technical realisation possibilities, and a concrete recommendation for the
implementation.

Concerning the plug-in layer, the main focus is to fulfil the requirements
regarding the description of the patterns (R1–R3, R5, R6, R8, and R10).
The core requirements for the pattern description (R1–R3) mainly demand
the possibility to describe patterns in a general, abstract, and comprehen-
sive way. According to requirement R3, this could be achieved by using
functional and declarative languages for the pattern description. Addition-
ally, the patterns should be human readable on the one hand and directly
executable by the framework on the other hand (R5). By executing the pat-
terns, the framework must be able to detect instances of these patterns in
the representation format of the analysis target (R6).

The requirements for the facade layer arise from the global architecture
of the framework (section 4.2) and the design decision to use XML as rep-
resentation format for the framework (section 4.3). Hence, the facade layer
must fulfil two major requirements: it must provide stable interfaces towards
the plug-in layer and it must be able to access the XML of the representation
layer. The facade layer must be able to handle XML and therefore the usage
of an XML-aware language is self-evident.

The most well-known, widely implemented, and standardised XML-aware
programming languages are XSLT 2.0 and XQuery 1.0. The latter is de-
scribed in detail in section 2.3.3 and its application regarding software anal-
ysis is discussed in chapter 3. XQuery is focused on querying XML while
XSLT’s domain is the transformation of XML. Both languages make use of
XPath 2.0 but their concepts of doing this differ significantly. While XQuery
extends the non-XML syntax of XPath with powerful constructs, XSLT uses
an own XML-based syntax and incorporates XPath expressions. XSLT and
XQuery are functional and declarative programming languages and support
the concept of user-defined functions and modules which allows to group
related functions into independent packages.

56

To demonstrate the different approaches and syntaxes of XSLT and
XQuery an example is given. The goal is to transform the Simpsons ex-
ample XML document of listing 2.6 from section 2.3 to the output shown in
listing 4.1—once using XSLT, once using XQuery.

1 <episode number="1" season="1"/>
2 <episode number="2" season="1"/>
3 <episode number="401" season="19"/>
4 <episode number="402" season="19"/>

Listing 4.1: Simpsons episodes including episode and season numbers

Listing 4.2 shows the XSLT stylesheet for the desired transformation
of the Simpsons example. For each episode element which is matched in
line 1, a new episode element is created in line 2. The attributes are added
in line 3–8 and the according episode and season numbers are selected in
lines 4 and 7 using incorporated XPath expressions. The used XSLT syntax
could be abbreviated, but to demonstrate the different syntaxes of XSLT
and XQuery this elaborate syntax is chosen.

1 <xsl:template match="//episode">
2 <episode>
3 <xsl:attribute name="number">
4 <xsl:valueof select="@number"/>
5 </xsl:attribute>
6 <xsl:attribute name="season">
7 <xsl:valueof select="../@number"/>
8 </xsl:attribute>
9 </episode>

10 </xsl:template>

Listing 4.2: Using XSLT to create the XML output of listing 4.1

Listing 4.3 shows the equivalent XQuery expression which needs no fur-
ther explanations as the language was already introduced in section 2.3.3.
The usage of a non-XML syntax eases the readability and also the effort to
write new queries.

1 for $episode in $xml//episode
2 return element episode {
3 attribute number { $episode/@number },
4 attribute season { $episode/../@number }
5 }

Listing 4.3: Using XQuery to create the XML output of listing 4.1

Although it would be possible to combine XSLT and XQuery, the usage
of one language for the facade and plug-in layer is favoured for reasons of sim-
plicity. The functional capabilities of both languages are at the same level.
But as software analysis is more about querying than about transforming

57

and as XQuery’s non-XML syntax is better human readable than the XML
syntax of XSLT, XQuery is the preferred language for the implementation
of the facade and plug-in layers.

XQuery functions (respectively the function’s signatures) serve as stable
interfaces of the facade layer and the function’s bodies perform the access to
the XML of representation layer at the same time. All functions that belong
to a concrete facade (such as a facade for the access to a concrete represen-
tation format) are grouped into one XQuery module. Listing 4.4 shows an
example of a complete XQuery module providing the desired functionality
of the facade layer. In the first line the namespace prefix examplefacade and
the according namespace are declared. Line 2 contains a declaration of an
external XQuery variable which means that the content of this variable is
provided by the XQuery processor prior to the execution of the query. The
variable $examplefacade:root contains the input XML data in the chosen rep-
resentation format. In lines 4–6 the function examplefacade:getclasses() is
declared and covers two different purposes. First, the signature of the func-
tion serves as a stable interface. Hence, calling this facade function always
returns all class definitions regardless of the underlying representation for-
mat. The second requirement is the actual access to the XML of the repre-
sentation format. XQuery functions fulfilling both requirements are called
facade functions. In this example, class definitions can be accessed through
the module variable $examplefacade:root and XML elements named ClassDef

in line 5. Adopting the facade layer for a new representation format would
only require renaming this XML element name.

1 module namespace examplefacade = "uniquefacadenamespace";
2 declare variable $examplefacade:root external;
3
4 declare function examplefacade:getclasses() {
5 $examplefacade:root//ClassDef
6 };

Listing 4.4: Example XQuery module of the facade layer

XQuery modules are also used for the plug-in layer as containers for re-
lated analysis functions. These analysis functions are XQuery functions de-
scribing patterns in software artefacts. Listing 4.5 contains a sample module
of the plug-in layer with one analysis function. Line 1 of listing 4.5 con-
tains the standard header of every XQuery module: the declaration of the
namespace and its prefix. In lines 3 and 4 the facade module of listing 4.4
is imported into the current module to be able to access the facade layer
functions. Lines 6–9 contain the declaration of an exemplary analysis func-
tion which returns the number of functions for each class. The access to
the analysis target respectively its representation format is fully channelled
through the interfaces of the facade layer.

58

1 module namespace exampleplugin = "uniquepluginnamespace";
2
3 import module namespace examplefacade =
4 "uniquefacadenamespace" at "facade.example.xquery";
5
6 declare function exampleplugin:functionsperclass() {
7 for $class in examplefacade:getclasses()
8 return count(examplefacade:getfunctions($class))
9 };

Listing 4.5: Example XQuery module of the plug-in layer

The requirements R1 and R2 demand the possibility to describe patterns
in a generic way on a high level of abstraction. The usage of XQuery for the
pattern description fulfils these requirements as the Turing complete [Kep04]
language allows to express all kinds of patterns. A high level of abstraction
is achieved through the facade layer which also permits the patterns to be
as generic as possible by being independent of the underlying analysis tar-
get. XQuery is a functional and declarative programming language which
improves the comprehensibility of the patterns and fulfils requirement R3.
The syntax of XQuery is human readable on the one hand and also directly
executable by an XQuery processor on the other hand—as demanded by
requirement R5. The detection of pattern instances is done by executing
XQuery functions which describe patterns. Hence, using XQuery for the
pattern description also fulfils requirement R6.

The requirements that the detection must work accurate (R8) and the
possibility to add user-defined patterns to a set of predefined patterns (R10)
is also addressed. The latter can be achieved by an XQuery module for user-
defined patterns and the possibility to add functions to existing modules.
The accuracy of the pattern detection is mainly up to the author’s care
when creating new patterns.

After having solved the main technical issues by deciding to use XQuery
and the introduction of XQuery-related vocabularies, a few words about the
terminology are required. The term pattern is used as an abstract term for
patterns in software artefacts referring to the requirements and the design of
the analysis framework. In contrast, the term function stands for concrete
XQuery functions describing such patterns. The same relation holds for the
terms plug-in and module. While the first is an abstract term used mainly for
the design and requirements, the term module stands for XQuery modules
used for the facade layer and plug-in layer. The term query describes any
XQuery expression that can be executed.

Plug-ins realised as XQuery modules consist of XQuery analysis func-
tions. They appear in modules as flat and unstructured lists of functions.
The user of a module could manually look into it and select the required func-
tions. However, that would not work for a program as it cannot recognise
the semantics of the functions. But as frameworks should smoothly interact

59

with other programs, a way must be provided to describe the structure of
modules.

This is done by an XML document for each XQuery plug-in module.
The XML document represents each analysis function of the module and the
hierarchical structure of the module. The structure of the XML document
itself is defined by an XML schema (hierarchy.xsd). An exemplary XML
document conforming to the hierarchy.xsd schema is presented in listing 4.6.
The root element hierarchy (lines 1–6) features the attribute filename to
find the according XQuery module file. The attributes namespaceprefix and
namespace allow to access the module with correct namespace information.
The hierarchy itself is made up of arbitrarily nested category elements (lines 7
and 10) which contain function elements (lines 8 and 11) for each XQuery
analysis function. Each function element features the attributes name used for
a description and xqueryname which is the function name used in the XQuery
module. The function elements can contain parameter elements (line 12)
whereat each one represents one XQuery parameter of the analysis function.

1 <hierarchy
2 xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
3 xsi:noNamespaceSchemaLocation="hierarchy.xsd"
4 filename="plugin.example.xquery"
5 namespaceprefix="exampleplugin"
6 namespace="uniquepluginnamespace">
7 <category name="Root Category">
8 <function name="Number of Functions per Class"
9 xqueryname="functionsperclass"/>

10 <category name="Nested Category">
11 <function name="Another Analysis Function" xqueryname="function">
12 <parameter name="Limit" xqueryname="limit" type="integer"/>
13 </function>
14 </category>
15 </category>
16 </hierarchy>

Listing 4.6: Describing the structure of plug-ins using hierarchy.xsd

With the information provided by a hierarchy XML document it is possi-
ble to access all functions of the described module. An application can parse
the hierarchy XML file and extract all required information to access the
according XQuery module including its structure and the analysis functions
provided by the module including their parameters and parameter types.
The hierarchy.xsd schema is not bound to the software analysis focus of the
framework and can be used to describe the structure of any kinds of plug-
ins. The software analysis tool PMD [PMD07] presented in section 3.5 uses a
similar approach to manage its rules: XML files3 contain related rules includ-
ing descriptions, examples, and XPath expressions. This strategy permits a
completely declarative way to extend the frameworks with new rules.

3An example XML file of PMD can be found in this article: http://www.onjava.com/
pub/a/onjava/2003/04/09/pmd_rules.html

60

http://www.onjava.com/pub/a/onjava/2003/04/09/pmd_rules.html
http://www.onjava.com/pub/a/onjava/2003/04/09/pmd_rules.html

As mentioned in section 4.1 the result of an analysis consists of matches
whereat a match is an instance of a detected pattern. Analysis plug-ins
return matches in order to allow the embedding application to display the
matches in the underlying analysis target. Each analysis function is an
XQuery function which returns XML nodes. These nodes constitute matches
and reflect instances of patterns in terms of selections of the representation
format (subtrees of the XML input document). Instead of returning com-
plete matches only the information required for locating the matches in the
analysis target needs to be returned. To enhance the reusability of the soft-
ware analysis framework the way of returning matches is standardised by an
XML Schema definition (matches.xsd). This schema reflects the requirements
any representation formats needs to fulfil for the mapping of matches to the
analysis target (these requirements are defined in section 4.1).

Instead of presenting the schema itself in detail, listing 4.7 shows an
instance of an XML document which conforms to the schema. The root
element (line 1) is called matches and holds an arbitrary number of match

elements. In this example two match elements are part of the XML document
(lines 4–7), each featuring a set of attributes allowing to locate match in the
analysis target. These are the attributes filename, offset, and offsetend.
Optionally the schema allows the additional attributes line and lineend to
specify additional location information. The attribute foundby of a match

element permits to recognise which match originates from which analysis
function. For a unique mapping of the matches to the analysis functions the
value of the foundby attribute should be the namespace prefix followed by
the function’s name (for example exampleplugin:functionsperclass).

1 <matches
2 xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
3 xsi:noNamespaceSchemaLocation="matches.xsd">
4 <match filename="foo.c" offset="17" offsetend="33" foundby="pattern1"/>
5 <match filename="bar.c" offset="44" offsetend="68" foundby="pattern2">
6 <causedby offset="23" offsetend="27"/>
7 </match>
8 </matches>

Listing 4.7: The schema match.xsd defines how matches are returned

Each match element may have a child element causedby to refer to a place
in the analysis target which caused the current match. An example is shown
in line 6 in listing 4.7. The usefulness of the caused by information can be
explained with the bad smell Unreachable Default (see section 5.5). The
actual smell is a default which is unreachable due to an else branch of an
alt construct. This else branch can be reported as the place that caused
the smell. It can be useful to always report such places when the actual
smell and its root cause are different. Each match element may feature an
optional attribute returnvalue which is not shown in the example and allows

61

to pass additional information from the analysis function to the subsequent
application.

The detection of duplicates is a common task for any software analysis
framework. Hence, this is reflected by the schema as it allows duplicates ele-
ments which contain two or more match elements representing the duplicates.
See listing 4.8 for an example of three duplicates.

1 <matches
2 xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
3 xsi:noNamespaceSchemaLocation="matches.xsd">
4 <duplicates>
5 <match filename="foo" offset="11" offsetend="17" foundby="pattern1"/>
6 <match filename="foo" offset="23" offsetend="29" foundby="pattern1"/>
7 <match filename="foo" offset="80" offsetend="86" foundby="pattern1"/>
8 </duplicates>
9 </matches>

Listing 4.8: Returning duplicate matches conforming to match.xsd

The matches.xsd schema reflects requirements for analysing software but
is kept as general as possible and could be used by other plug-ins. As this
schema is only bound to the plug-ins using it and not to the framework itself,
other plug-ins might use own schemata to define their ways of returning
matches.

4.5 Discussion of this Approach

As seen in the previous sections the general requirements R1–R10 are cov-
ered by the design and architecture of the software analysis framework. The
requirements T1–T5 regarding TTCN-3 and those concerning user-defined
pattern (U1–U5) are not yet discussed as they must be addressed by the ap-
plication embedding the framework. Therefore these requirements are picked
up again in the discussion of the framework implementation in section 5.9.

Reasoning about the pros and cons of the design and architecture of the
software analysis framework reveals one main point of critique: too few spe-
cialisation respectively too much generalisation due to the usage of common
technologies like XML and XQuery. Languages specialised for software anal-
ysis as presented in chapter 3 can be more powerful and intuitive to use. But
the high degree of specialisation is also a drawback of these languages at the
same time as they are tightly coupled with their underlying data structures
and analysis targets. Exactly this is addressed by the presented framework
architecture which permits a decoupling of analysis targets from the actual
analyses. This allows to write analyses on a high level of abstraction what
improves the reusability of analyses and permits eminent extensibility of the
framework. Additionally, the readability of the patterns benefits from the
abstraction.

62

The usage of XML as representation format permits to analysis any kinds
of data as it is the“lingua franca”for information markup and exchange. But
XML tends to bloat up the encoded information by being verbose (for in-
stance element names are repeated in the closing tag) and this can slow down
the analysis process. As a counter strategy, the storing of XML information
in an XML-aware database can be considered. But the utilisability of this
approach depends on the concrete analysis target. If the content of the anal-
ysis target changes often, the additional effort to keep an XML database
synchronous with the analysis target might be considered as too high.

63

Chapter 5

Implementation and Test

The concrete implementation of a software analysis framework discussed
in this chapter is called XAF which stands for “XQuery-based Analysis
Framework [for Software]”. To point out that the design of the framework
and central parts of the implementation are not limited to the analysis of
software, the appendix for Software is written in squared braces. The con-
crete implementation is focused on the detection of bad smells in TTCN-3
test suites and is therefore named XAF for TTCN-3. For reasons of simplic-
ity the implementation is referred to as XAF instead of its full name.

This chapter is split up in the following sections: in section 5.1 the soft-
ware technologies used for the implementation of XAF are introduced, sec-
tion 5.2 describes possibilities of interaction between Java and XQuery also
used for the implementation, section 5.3 covers the concept and implemen-
tation of the conversion of TTCN-3 source code to XML. The main focus of
this chapter are sections 5.4 and 5.5 which cover the usage of XQuery for the
TTCN-3 facade layer and XQuery for the pattern description of bad smells.
The integration of the framework into the TTCN-3 tool TRex is presented
in section 5.6, followed by the implementation of user-defined queries and
according use cases in section 5.7. Section 5.8 covers testing XAF and a
discussion of the implementation is given in section 5.9.

The source code of XAF is located at the CD-ROM added to the last
page of the print version of this thesis. For a brief description of the contents
of the CD-ROM, see also appendix B. Alternatively the latest version of the
source code can be found in the Subversion repository of TRex which is
located at http://www.trex.informatik.unigoettingen.de/svn/trex/.

5.1 Underlying Software Technologies

This section gives an overview of the software used for the implementa-
tion of the XQuery-based Analysis Framework for TTCN-3. According to
requirement T4 the framework should be integrated into the TTCN-3 refac-
toring and metrics tool TRex [TRe07]. TRex was initially developed as a

64

http://www.trex.informatik.uni-goettingen.de/svn/trex/

part of the master’s thesis of Zeiss [Zei06] and provides “IDE functionality
for the TTCN-3 core notation, and supports the assessment and automatic
restructuring of TTCN-3 test suites by providing suitable metrics and refac-
torings”1. TRex is built up on the Eclipse platform [Ecl07a] and makes use of
foundations provided by the bachelor’s thesis of Kemnade [Kem05]. XAF is
also integrated into TRex respectively the Java-based Eclipse platform. The
Eclipse way to extend and integrate is to create new plug-ins. Extension
points define where and how plug-ins can extend existing functionality and
add new features. Therefore XAF plug-ins for TRex are provided to couple
the framework with TRex. For the implementation of XAF plug-ins and the
integration into TRex see section 5.6.

ANTLR (ANother Tool for Language Recognition) “is a language tool
that provides a framework for constructing recognizers, interpreters, com-
pilers, and translators from grammatical descriptions” [ANT07]. The gram-
matical structure of the TTCN-3 core notation (provided by the TTCN-3
specification [ETS07a]) was translated to the ANTLR grammar syntax. This
allows TRex to make use of ANTLR 2.7 to parse the TTCN-3 source code
and to transform it to an abstract syntax tree. For details on the usage of
ANTLR regarding TTCN-3 and its TRex integration see the master’s thesis
of Zeiss [Zei06].

TRex features not only plug-ins for refactoring and metrics but also for
pattern-based smell detection in TTCN-3 test suites. The pattern-based
smell detection plug-ins as well as the TTCN-3 code smell catalogue (see sec-
tion 2.2.2) originate from the master’s thesis of Bisanz [Bis06]. The pattern
detection plug-ins make use of the Static Analysis Framework provided by
the Eclipse Test & Performance Tools Platform (TPTP) Project [Ecl07c].
To make use of the static analysis framework an application needs to ex-
tend predefined abstract classes for analysis providers, categories, rules, and
analysis results. Providers are the topmost of these classes. They contain all
categories and rules and control the execution of analysis runs. Categories
are used to structure analysis rules and can include arbitrary subcategories.
Rules perform the actual analyses and can be parametrised using rule pa-
rameters. Result classes prepare the analysis results in a way the framework
can display them using the predefined user interface (UI). The user interface
of the static analysis framework is not only responsible for the graphical pre-
sentation of analysis results but also for the selection of categories and rules
for analysis runs. For details on the usage and structure of the TPTP static
analysis framework see [Bis06, GM05, GM06a, GM06b]. The framework is
also used for the integration of XAF into TRex and acts as a link between
both components. The latest available version 4.4 of TPTP which requires
Eclipse version 3.3 is used for the implementation of XAF. This is no addi-
tional restriction, as the upcoming release 0.6 of TRex requires Eclipse 3.3
anyway.

1http://www.trex.informatik.unigoettingen.de

65

http://www.trex.informatik.uni-goettingen.de

The XQuery processor is a central part of the XQuery-based analysis
framework as it is responsible for the execution of the queries and the detec-
tion of the patterns. The most important requirements regarding the proces-
sor are a complete and correct implementation of the XQuery 1.0 standard
and a good performance. Saxon [Sax07] is an XSLT and XQuery processor
developed by Michael Kay which fulfils these requirements as Saxon is the
only processor that reached 100% pass rates2 against the XQuery Test Suite3

provided by the W3C. These results are due to the fact that the author of
Saxon is the editor of the XSLT 2.0 standard [Kay07] and one of the edi-
tors of the XPath 2.0 standard [CBF+07]. Hence, Saxon is something like a
reference implementation of an XSLT and XQuery processor.

Saxon is available in different versions: Saxon-B (for basic) is the less
powerful but freely available open-source version, Saxon-SA (for schema-
aware) is a commercial product built on the same source code basis as
Saxon-B. Both products are available for Java and Microsoft .NET plat-
forms. Saxon-SA provides advanced features like schema-awareness (allows
to import an XML Schema and to validate input and output trees) and ad-
vanced optimisers which recognise joins in XPath expressions and XQuery
FLWOR expressions. Starting with version 8.9.0.4 Saxon-SA provides the
ability to translate XQuery expressions “directly into Java source code, re-
ducing execution time by anything from 25% to 80%.”4 The superior perfor-
mance of Saxon-SA is also backed by third-party performance tests [Eic07].

XAF utilises the Java edition of Saxon-B (version 8.9.0.4) as Eclipse and
TRex are also based on Java. To be able to use Saxon from inside of TRex
is must be packaged as an Eclipse plug-in. Hence, the plug-in de.ugoe.cs.

swe.saxon contains all Saxon Java archive (JAR) files and exports Saxon’s
packages which are located in the namespaces net.sf.saxon.* to allow other
plug-ins to makes use of Saxon.

All underlying software technologies used for the implementation of XAF
are open-source software: Eclipse, TPTP, and TRex are available under the
terms of the Eclipse Public License 1.0 (EPL)5 while Saxon-B is licensed
under the terms of the Mozilla Public License 1.0 (MPL)6. Both licenses
follow the Open Source Initiative (OSI)7 definition of open source8 and are
open-source licenses approved by the OSI. All parts of XAF that relate to
the TRex integration are also licensed using the EPL 1.0 while the XQuery
core of XAF is licensed under the terms of the GNU Lesser General Public
License 2.1 (LGPL)9. The reason for this decision is the stronger copyleft

2http://www.w3.org/XML/Query/testsuite/XQTSReport.html
3http://www.w3.org/XML/Query/testsuite/
4http://www.saxonica.com
5http://www.opensource.org/licenses/eclipse1.0.php
6http://www.opensource.org/licenses/mozilla1.0.php
7http://www.opensource.org
8http://www.opensource.org/docs/osd/
9http://www.gnu.org/licenses/oldlicenses/lgpl2.1.html

66

http://www.w3.org/XML/Query/test-suite/XQTSReport.html
http://www.w3.org/XML/Query/test-suite/
http://www.saxonica.com
http://www.opensource.org/licenses/eclipse-1.0.php
http://www.opensource.org/licenses/mozilla1.0.php
http://www.opensource.org
http://www.opensource.org/docs/osd/
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

property of the LGPL compared to the Eclipse Public License. Hence, all
contributions made to LGPL licensed source code must also be licensed using
LGPL while EPL allows to license contributions using non-free licenses. The
combination of the different licenses does not lead to problems regarding
license compatibility as no source code was copied, shared, or linked together.

5.2 Alliances of Java and XQuery

This section describes ways to combine the usage of Java and XQuery. This is
necessary as the patterns are described using XQuery. Indeed, the execution
of the patterns is controlled by TRex which is Java-based. In the first part
of this section the XQuery API for Java is introduced which provides a
standardised way of executing XQuery expressions from Java. The second
part covers the other way around and describes a possibility to access Java
from XQuery.

The XQuery API for Java (XQJ) [XQJ07] is currently being standardised
as Java Specification Request 225. The specification reached the status of a
public review draft in May 2007 and the final standard is expected for the
year 2008. XQJ is a “common API that allows an application to submit
queries conforming to the W3C XQuery 1.0 specification and to process the
results of such queries” [XQJ07]. Hence, XQJ is for XQuery what the Java
Database Connectivity (JDBC) API is for relational databases. XQJ also
provides a mapping of XQuery data types to Java data types and other
advanced features like transactional operations. The current Java edition of
Saxon implements the latest XQJ specification 0.9 and is used by XAF for
the execution of the XQuery expressions.

The usage of XQJ is straightforward as listing 5.1 shows. The method
executeXQuery (line 1) takes an XQuery expression as string parameter and
returns an XQResultSequence object which represents a sequence of items.
As mentioned in section 2.3.2 such a sequence consists of atomic values
and/or nodes. It is up to the caller of the method executeXQuery to loop
through the sequence and extract the desired information. In lines 2 and 3
an XQExpression object is instantiated and its method executeQuery is called
in line 4. The query’s result is stored in the XQResultSequence object which
is returned in line 6 if it contains any items (test in line 5). Otherwise
an EmptySequenceException exception is risen in line 8 to indicate that the
sequence is empty.

Some XQuery tools offer Java bindings which permit creating Java ob-
jects and calling Java methods from within XQuery. These non-standardised
Java bindings were introduced by Saxon10 and adopted by other XQuery
tools like the XML database eXist [eXi07]. Listing 5.2 shows an XQuery
expression inspired by the eXist documentation11 making use of the Java

10http://www.saxonica.com/documentation/extensibility/functions.html
11http://exist.sourceforge.net/xquery.html#N10599

67

http://www.saxonica.com/documentation/extensibility/functions.html
http://exist.sourceforge.net/xquery.html#N10599

1 public XQResultSequence executeXQuery(String query) throws Exception {
2 XQExpression expression =
3 new SaxonXQDataSource().getConnection().createExpression();
4 XQResultSequence result = expression.executeQuery(query);
5 if (result.next())
6 return result;
7 else
8 throw new EmptySequenceException();
9 }

Listing 5.1: Executing an XQuery expression from Java using XQJ

bindings. The query uses the java.io.File class to return a sequence of the
XML elements directory and file. These feature according name attributes
reflecting the contents of the current working directory.

1 declare namespace file="java:java.io.File";
2
3 for $currentfile in file:listFiles(file:new("."))
4 let $name := file:getName($currentfile)
5 return
6 if (file:isDirectory($currentfile)) then
7 <directory name="{ $name }" />
8 else
9 <file name="{ $name }" />

Listing 5.2: Using Java objects and methods from within XQuery

In line 1 of listing 5.2 the XQuery namespace file is bound to the Java
class java.io.File. In line 3 a file object is instantiated (file:new(".")) and
used as argument of the method listFiles. This style differs from the classic
Java way of calling member methods. Using the XQuery Java bindings the
current object instance is always passed as first parameter to the called
member method. This can also be seen in line 4 and 6 for the calls of the
methods getName and isDirectory. To clarify the difference the equivalent
Java source code snippet is shown in listing 5.3.

In line 3 of listing 5.2 each Java file object returned by the method
listFiles is bound to the XQuery variable $currentfile. This variable is
used to get the filename (line 4) and to distinguish between directories and
files (line 6). Finally, a directory respectively a file element is returned
including the according name attribute (lines 7 and 9).

The possibility to access arbitrary Java classes from within XQuery is
a powerful extension mechanism. It is also used by the implementation of
XAF to make use of existing methods already implemented in Java by TRex.

5.3 Conversion of TTCN-3 Source Code to XML

As the framework is integrated into TRex—and this “dinosaur” is already
capable of parsing TTCN-3 source code using ANTLR—it is self-evident

68

1 for (File currentFile : new File(".").listFiles()) {
2 String name = currentFile.getName();
3 if (currentFile.isDirectory())
4 System.out.println("directory: " + name);
5 else
6 System.out.println("file: " + name);
7 }

Listing 5.3: Java equivalent of listing 5.2

to build the XML representation of TTCN-3 on these foundations. Each
TTCN-3 source code file is represented as an abstract syntax tree by TRex12.
This tree can be accessed through the class LocationAST in the package de.

ugoe.cs.swe.trex.core.analyzer.rfparser
13. The class LocationAST extends the

class CommonAST provided by ANTLR and adds “corresponding start and end
offsets as well as the line in the parsed source file, the associated token in
the token stream and the associated scope” [Zei06].

The information stored in LocationAST objects fulfil the requirements to
serve as representation format for the software analysis framework. The lo-
cation information of the TTCN-3 source code entities can be used to map
matches found by the analysis framework to the original source code. Hence,
a nearly complete one-to-one mapping of LocationAST objects to XML doc-
uments is required. TTCN-3 definitions, operators, statements, and blocks
(respectively their AST representations) are mapped to XML elements be-
cause elements can contain other nested elements. TTCN-3 identifier and
literals are mapped to XML text nodes and location information (like the file-
name, line numbers, and offset information) are mapped to XML attributes.

The implementation of the XML export is done by extending the class
LocationAST by a new public method xmlSerialize(Writer stream, String file.

Name, boolean indentXML) and some private helper methods. The AST is tra-
versed recursively and all elements of the tree are mapped to according XML
elements and attributes as described in the previous paragraph. The result-
ing XML document is written to the Writer object passed to the xmlSerialize

method. The parameter String fileName must be passed as this information
is not already part of the LocationAST class. The filename is added an an XML
attribute to the root element TTCN3File to be able to relocate the according
TTCN-3 source code file. This is required when the XML result of the anal-
ysis is mapping back to the TTCN-3 source code. The XML document can
be created with indentation for better readability. This is controlled by the
parameter boolean indentXML. Additionally, the attribute endLine is added to
the class LocationAST which denotes the line in which the associated token
ends.

12“In a strict sense the TRex syntax tree is not abstract as it contains elements without
semantic relevance as well. Hence, it is similar to a parse tree/concrete syntax tree.” [Bis06]

13For an overview of the TRex packages and plug-in structure see: http://www.trex.

informatik.unigoettingen.de/trac/wiki/PluginStructure

69

http://www.trex.informatik.uni-goettingen.de/trac/wiki/PluginStructure
http://www.trex.informatik.uni-goettingen.de/trac/wiki/PluginStructure

Listing 5.4 shows a part of the XML document of the serialised LocationAST

object representing the TTCN-3 source code of listings 2.2 and 2.3 from
section 2.2.1. The XML snippet in listing 5.4 represents this source code:
template charstring HTTPResponse := pattern "HTTP/1.1 \d\d\d *"; (it is taken
from line 9 in listing 2.3 from section 2.2.1). Definitions, blocks, and types
are represented as XML elements. Identifier and literals as XML text nodes,
and location information as XML attributes. For reasons of clarity only the
attributes of the ModuleDefinition element in line 1 are included. Normally
each element features the attributes line, offset, and offsetend. The at-
tribute lineend is only added if it is different from the attribute line to
avoid information duplication. As the template in this example is defined in
one line, the attribute lineend is not included.

1 <ModuleDefinition line="9" offset="234" offsetend="297">
2 <TemplateDef>
3 <BaseTemplate>
4 <Type><PredefinedType>charstring</PredefinedType></Type>
5 <Identifier>HTTPResponse</Identifier>
6 </BaseTemplate>
7 <TemplateBody>
8 <SingleValueOrAttrib>
9 <MatchingSymbol>

10 <CharStringMatch>HTTP/1.1 \d\d\d *</CharStringMatch>
11 </MatchingSymbol>
12 </SingleValueOrAttrib>
13 </TemplateBody>
14 </TemplateDef>
15 </ModuleDefinition>SemiColon

Listing 5.4: Partial XML representation of a LocationAST object

The method xmlSerialize of the LocationAST class is used by the main
XAF plug-in de.ugoe.cs.swe.trex.xaf to create one global XML document
representing all TTCN-3 files that should be analysed. This is performed by
the method createXML of the class Analysis. The createXML method iterates
over all files to be analysed and instantiates a TTCN3Analyzer object for each
file. The analyser object permits access to the LocationAST object and on
which finally the xmlSerialize method is called. The resulting global XML
document is written to a file named ttcn3.xml which is used as input for the
XQuery facade layer. Listing 5.5 shows the global structure of such an XML
document. One XML file representing multiple TTCN-3 files allows analyses
crossing the file borders but can also lead to large file sizes. The file sizes for
the XML representation of the TRex AST can be estimated by 1.6 megabyte
per thousand lines of TTCN-3 source code.

70

1 <TTCN3Files>
2 <TTCN3File filename="/folder/moduleFoo.ttcn3">
3 <! [...] >
4 </TTCN3File>
5 <TTCN3File filename="/folder/moduleBar.ttcn3">
6 <! [...] >
7 </TTCN3File>
8 <! [...] >
9 </TTCN3Files>

Listing 5.5: Structure of the global XML document

5.4 XQuery Facade Layer for TTCN-3

This section describes the implementation of the XQuery-based facade layer
according to its design presented in section 4.4. The purpose of the facade
layer is to provide an abstraction from the underlying representation format
respectively analysis target and a decoupling of the analysis plug-ins from
the underlying layers.

The XQuery module facade.ttcn3.trex.xquery and all other XQuery and
XML files belonging to XAF are contained in the Eclipse plug-in de.ugoe.

cs.swe.xaf. The naming of the plug-in already states that XAF is neither
part of TRex nor depends on it. Indeed, the facade module is customised to
provide access to TTCN-3 source code provided by TRex. This is reflected
in the naming of the XQuery module file (facade.ttcn3.trex.xquery14) and
the module namespace (de.ugoe.cs.swe.xaf.facade.ttcn3.trex, see listing 5.6,
line 1).

Listing 5.6 shows the header of the facade layer module for the access to
the XML-encoded TTCN-3 source code provided by TRex. Line 1 contains
the mentioned namespace declaration, followed by the declaration of the
external variable $xfacade:path in line 3. The value of this variable needs to
be provided by the XQuery processor and is the absolute path to the input
XML file ttcn3.xml. The XML structure contained in this file is loaded into
the global module variable $xfacade:root in line 4 using the doc function.
This variable is used by the facade functions to provide a channelled access
to the underlying representation format.

Instead of passing the path to the XML file as an external variable to the
XQuery module, the XML document itself could have been passed directly as
an external variable. The presented solution is chosen because performance
tests revealed that passing the document directly is considerably slower than
passing the path and reading the file using the doc function.

14XAF facade namespaces and module files should be named according to the pattern
facade.analysistarget.representationformat[.xquery]. For instance, facade.

java.srcml.xquery for a facade module file providing access to Java source code using
the representation format srcML.

71

1 module namespace xfacade = "de.ugoe.cs.swe.xaf.facade.ttcn3.trex";
2
3 declare variable $xfacade:path external;
4 declare variable $xfacade:root := doc($xfacade:path);

Listing 5.6: Header of the XQuery facade layer module for TTCN-3

Listing 5.7 is the continuation of the preceding listing 5.6 and contains
two exemplary facade functions (lines 1–7) and the helper function getnode

(lines 9–14). The two facade functions getfiles and getfunctions provide
access to the XML element TTCN3File which represents a TTCN-3 source
code file respectively to the element FunctionDef which represents a TTCN-3
function definition. Both functions feature a parameter $n of the type node()*

(zero or more items of the type node) and do not directly access the global
module variable $xfacade:root but instead pass the parameter $n to the helper
function getnode (lines 2 and 6) to access the underlying XML document.

This strategy allows to control the scope of facade functions. If for in-
stance getfunctions is called and the parameter $n is the empty sequence
(getfunctions(())), all function definitions are returned. On the other hand,
if parameter $n is for instance bound to a TTCN3File element, only the function
definitions of this TTCN-3 file are returned. This behaviour is implemented
in the helper method getnode which returns either the variable $xfacade:root

(line 11) if $n is empty or otherwise $n itself (line 13).

1 declare function xfacade:getfiles($n as node()*) {
2 xfacade:getnode($n)//TTCN3File
3 };
4
5 declare function xfacade:getfunctions($n as node()*) {
6 xfacade:getnode($n)//FunctionDef
7 };
8
9 declare function xfacade:getnode($n as node()*) {

10 if (empty($n)) then
11 $xfacade:root
12 else
13 $n
14 };

Listing 5.7: Facade functions of the TTCN-3 facade module

The complete facade module currently consists of about 70 facade func-
tions and their source code is included as appendix A.1. For a better
overview, the function are structured in groups. The first group contains
facade functions like getfiles, getfunctions, and getidentifiers which are
common for most programming languages. The second group consists of
functions specific to TTCN-3 such as gettestcases and getaltconstructs.
The facade functions are not complete in the way that all kinds of information
of the underlying XML tree could be accessed through them. The currently

72

implemented functions providing access to the most important parts of the
TTCN-3 representation. But as seen above, the functions of the facade layer
are quite simple and therefore missing ones could simply be added as the
framework grows.

The third group of facade functions is a special case and contains func-
tions calling AST-related Java methods of TRex. This is realised using the
Java bindings provided by Saxon which are described in section 5.2. The
direct access to the AST using the TRex APIs is preferred over the access
to the XML structure, as TRex already implements AST-related analysis
methods like a scope-aware reference finder. Repeating these implementa-
tions using XQuery would have required additional effort without significant
benefits. The use of the direct access to the AST is currently only used by
two smell detection functions to discover single references. All other analysis
functions are written using pure XQuery expressions.

The following details regarding the usage of Java methods of TRex are
strictly related to the facade layer. Hence, they are presented here and
not in section 5.6 which discusses the integration of XAF into TRex. The
Java methods called by the facade module are located in the class TRexAST

of the main XAF plug-in de.ugoe.cs.swe.trex.xaf. This main XAF plug-
in requires the Saxon plug-in de.ugoe.cs.swe.saxon to make use of Saxon to
execute XQuery expressions. Java calls from XQuery modules are executed
by Saxon and therefore Saxon needs to find the according classes. Normally
the Java classpath is used for this purpose, but the Eclipse plug-in concept
differs from the classpath approach. To permit Saxon to find the class TRexAST

in the plug-in de.ugoe.cs.swe.trex.xaf it is not possible to let the Saxon
plug-in depend on the XAF plug-in because this would lead to a plug-in
dependency cycle. The solution is the Buddy Class Loading15 concept of
Eclipse. For instance, this allows plug-in A to register at plug-in B. If plug-in
A cannot find a class in its own scope, it looks for the class at all registered
plug-ins, in this example plug-in B. This behaviour is controlled by entries
in the MANIFEST.MF files. Hence, the file MANIFEST.MF of the Saxon plug-in is
modified to permit other plug-ins to register themselves at the Saxon plug-in
by adding the line EclipseBuddyPolicy: registered. The manifest file of the
XAF plug-in is also modified to register itself at the Saxon plug-in by adding
the line EclipseRegisterBuddy: de.ugoe.cs.swe.saxon. The Saxon plug-in is
now able to find the TRexAST class in the XAF plug-in.

Figure 5.1 summarises the tasks of the XQuery facade layer module and
shows its central position in the framework. The facade layer is used by the
smell detection module to access the XML representation of the TRex AST
and additionally to directly access the TRex AST by utilising the TRex API.

15http://wiki.eclipse.org/index.php/Context_Class_Loader_Enhancements#

Buddy_Class_Loading, http://www.eclipsezone.com/articles/eclipsevms/

73

http://wiki.eclipse.org/index.php/Context_Class_Loader_Enhancements#Buddy_Class_Loading
http://wiki.eclipse.org/index.php/Context_Class_Loader_Enhancements#Buddy_Class_Loading
http://www.eclipsezone.com/articles/eclipse-vms/

TRex API TRex TTCN-3 AST

XML representation of the
TRex TTCN-3 AST

XQuery Facade Layer

XQuery Smell Detection

Figure 5.1: Central position of the XQuery facade layer module

5.5 XQuery Pattern Description of Bad Smells

The description of patterns using XQuery is the actual core of XAF. As the
framework is customised for the detection of bad smells, this section shows
how XQuery is used to describe and detect bad smells in TTCN-3 source
code. The section is structured as follows: the main focus is set to the
detailed presentation of a few sample XQuery functions for the detection of
bad smells. This is succeeded by XQuery implementation-related features,
a list of all currently available XQuery smell detection functions, and the
presentation of the XML file smells.ttcn3.xml describing the structure of the
bad smell detection module.

Listing 5.8 shows the XQuery function to detect instances of the bad smell
Long Parameter List (see section 2.2.2 for details on this smell). The func-
tion longparameterlist is parametrised with the integer parameter $floor.
The value of $floor is the minimal number of parameters required to mark a
parameter list as too long. TTCN-3 allows not only functions to have a pa-
rameter list but also templates, testcases, typedefs, external functions, signa-
tures, and altsteps. Therefore the parameter lists of those constructs are also
included in the analysis. For reasons of clarity the presented XQuery function
only takes functions and templates into account. Hence, in line 4 all function
and template definitions are joined into one sequence. Using a for loop, each
item of the sequence is bound to the variable $parametrizableconstruct one
after another in line 3. Its parameters are stored in the variable $parameters

in line 5, and the number of parameters is compared to the number of re-
quired parameters to match. This is done using the where condition in line 6
which checks if the number of parameters (count($parameters)) is greater or
equal to the value of the variable $floor. If this condition is true, an instance
of the bad smell is found and returned in line 7.

Listing 5.9 shows the second sample XQuery function which is called
missinglog. It describes the bad smell Missing Log which is a TTCN-3-
specific smell that occurs if “setverdict is used with verdict inconc or fail,

74

1 declare function xsmell:longparameterlist($floor as xs:integer)
2 {
3 for $parametrizableconstruct in
4 (xfacade:getfunctions(()), xfacade:gettemplates(()))
5 let $parameters := xfacade:getparameters($parametrizableconstruct)
6 where count($parameters) >= $floor
7 return $parametrizableconstruct
8 };

Listing 5.8: XQuery function to detect the bad smell Long Parameter List

but without calling log” [Bis06]. The function missinglog iterates over all
setverdict statements (line 3), stores the according type of the verdict in the
variable $verdicttype (line 4), and the parent block of the setverdict state-
ment in the variable $parentblock (line 5). The where condition in lines 6–8
ensures that in the block of the setverdict statement no log operation is
contained and that the verdict type is fail or inconc (lines 7–8). If both con-
ditions are true (no log operation and verdict type fail or inconc) an instance
of the bad smell Missing Log is found and the verdict is returned in line 9.

1 declare function xsmell:missinglog()
2 {
3 for $verdict in xfacade:getsetverdicts(())
4 let $verdicttype := xfacade:getverdicttype($verdict)
5 let $parentblock := xfacade:getparentblock($verdict)
6 where not(xfacade:getlogops($parentblock))
7 and (xfacade:verdictisfail($verdicttype)
8 or xfacade:verdictisinconc($verdicttype))
9 return $verdict

10 };

Listing 5.9: XQuery function to detect the bad smell Missing Log

Listing 5.10 shows slightly simplified version of the smell detection func-
tion unreachabledefault. It describes the TTCN-3-related bad smell Un-
reachable Default which occurs if an alt statement contains an else branch
while a default is active. This functions makes use of the XQuery data model
which keeps all nodes in the document order. This allows the function to
detect if a default is activated when an else branch is executed. The function
loops over all block which contain default declarations in line 3. In lines 6–8
the else branch and the activation/deactivation statements of the default
are bound to corresponding variables. If the activate statement is followed
by the else branch which is followed by the deactivation of the default, an
instance of this bad smell is found. The according check is performed in
line 10.

XAF also implements an infrastructure for the clone detection of dupli-
cated code. The actual comparison functions are located in a library module
and their application is presented to detect instances of the bad smell Du-
plicate Alt Branches. Listing 5.11 shows a slightly simplified version of the

75

1 declare function xsmell:unreachabledefault()
2 {
3 for $block in xfacade:getblocks(())[xfacade:getdefaults(.)]
4 return
5 let $alt := xfacade:getaltconstructs($block)
6 let $else := (xfacade:getelsestatements($alt))[1]
7 for $activate in xfacade:getactivateops($block)
8 for $deactivate in xfacade:getdeactivateops($block)
9 (: else statement must be surrounded by activate and deactivate :)

10 where $activate << $else and $else << $deactivate
11 return $activate
12 };

Listing 5.10: XQuery function to detect the bad smell Unreachable Default

XQuery function describing this bad smell. The workflow for each dupli-
cate search is related: first the scope of the comparison is estimated. In
this case duplicate branches contained in altsteps and alt constructs must
be compared. Hence, the for loop in line 3 interates over all altsteps and alt
constructs and selects the alt branches of the current scope. The actual com-
parison is performed by the function findduplicates in line 5 which returns
a sequence of duplicates. As this sequence may contain multiple kinds of
duplicates16 the duplicates belonging together are grouped by the function
groupduplicates and returned in line 6.

1 declare function xsmell:duplicatealtbranches()
2 {
3 for $scope in (xfacade:getaltsteps(()), xfacade:getaltconstructs(()))
4 let $tocompare := xfacade:getaltbranches($scope)
5 let $duplicates := xlib:findduplicates($tocompare)
6 return xlib:groupduplicates($duplicates)
7 };

Listing 5.11: XQuery function to detect the bad smell Duplicate Alt Branches

The duplicate search can simply be adapted to find other types of dupli-
cate code by changing the scope and the elements to compare in the lines 3
and 4. It is also possible to omit the scope completely and to compare ele-
ments in the complete XML document what allows to find duplicates that
are located in different TTCN-3 source code files. But these kinds of du-
plicate searches are quite expensive regarding running time as each element
must be compared to each other.

The precise number of comparisons that are performed by the function
findduplicates is

∑n
i=1 i + . . . + (n − i) ⇒ n∗(n−1)

2 whereat n is the number
of elements to compare. Using the O-notation the maximal effort can be
estimated by an upper boundary of O(n2

2) ⇒ O(n2) [Knu97].

16Using a non-XML syntax to describe this: the sequence might look like (dup1, dup1,
dup2, dup2, dup2). To ease the subsequent processing this sequence is transformed to look
like ((dup1, dup1), (dup2, dup2, dup2)).

76

The implemented XQuery functions for the detection of duplicated code
currently support two comparison modes. The default mode returns only
strictly matching duplicates while the second mode returns those elements
as duplicates whose XML subtrees contain the same elements. Text nodes
and attributes are not taken into account for the comparison using this
mode. As only identifiers and literals are stored as text nodes, this strategy
allows to find duplicates with differing arguments. For example, the two
alt branches shown in listing 5.12 are considered as duplicates—even though
the arguments of the functions receive and log are different. The desired
comparison behaviour is controlled via a parameter of the clone detection
functions which is left out in listing 5.11.

1 [] InputPort.receive(ErrorFoo) {
2 setverdict(fail);
3 log("received error foo");
4 }
5 [] InputPort.receive(ErrorBar) {
6 setverdict(fail);
7 log("received error bar");
8 }

Listing 5.12: TTCN-3 alt branches considered as duplicates

The presented sample XQuery smell detections functions clarify the ad-
vantages of using XQuery for the pattern description. Easy readability of
the patterns is achieved by using descriptive variable names and avoiding
deep nesting of function calls. The usage of library functions and facade
functions instead of XML element and attribute names also improves the
comprehensibility of the patterns.

The described XQuery functions return their matches as XML subtrees
of the global XML document ttcn3.xml. As discussed in section 4.4 only the
information required for locating the matches in the analysis target need to
be returned. Thus, for each analysis function a corresponding function is
declared which returns the match formated according to the XML schema
matches.xsd. Listing 5.13 shows a pair of two functions called missinglog.
The first one is the analysis function, the second function formats the match
as desired. In lines 1–4 the function of listing 5.9 is repeated but the function
body is left out as it is not necessary for this context. In lines 6–9 the second
function named missinglog is located. The only purpose of this function is
to take the additional parameter $name and call the function formatmatch

with the result of the first missinglog function and the parameter $name.
The formatmatch function extracts all required information from the com-
plete match(es) and returns a sequence of match elements conforming to the
matches.xsd schema. The value of the parameter $name should be set by the
caller to the function name itself (for instance xsmell:missinglog) to include
this value in the match element as foundby attribute. This allows the subse-

77

quent application to distinguish which match element was created by which
function. Unfortunately, neither XQuery itself nor a Saxon extension sup-
ports reflection mechanisms which would have allowed to get the current
function name from inside of XQuery.

1 declare function xsmell:missinglog()
2 {
3 [...]
4 };
5
6 declare function xsmell:missinglog($name as xs:string)
7 {
8 xfacade:formatmatch(xsmell:missinglog(), $name)
9 };

Listing 5.13: Two XQuery functions per analysis: One returning complete
matches, one returning match elements conforming to the matches.xsd schema

Currently 20 XQuery analysis functions for the detection of bad smells
are implemented. All of them are described in the TTCN-3 code smell
catalogue. The implemented analysis function cover all categories of the
code smell catalogue but the category data flow anomalies. The following
analysis functions are not TTCN-3-specific as the bad smells can also oc-
cur in other programming languages (ordered by name): duplicatecodein

conditionals, goto, longparameterlist, longstatementblock, magicnumber,
and nestedconditional. The following smell detection functions are spe-
cific to TTCN-3 (ordered by name): deactivationotherlevel, duplicatealt
branches, fullyparameterizedtemplate, idleptc, missingactivation, missing
deactivation, missinglog, missingverdict, shorttemplate (based on the num-
ber of characters), shorttemplate2 (based on the number of template fields),
singularcomponentelementreference, singulartemplatereference, stopin

function, and unreachabledefault.
For details on the bad smells and their implementation, see the comments

in the XQuery module smells.ttcn3.xquery, the according XML file smells.

ttcn3.xml, and the TTCN-3 code smell catalogue. Additionally, the source
codes of all XQuery analysis functions are included as appendix A.2 (generic
smell detection functions) and appendix A.3 (smell detection functions for
TTCN-3).

As discussed in section 4.4 XQuery modules are unstructured lists of
XQuery functions which is not suitable for a framework as the embedding
application cannot easily make use of the modules. Hence, the structure
of modules is described in according XML documents conforming to the
XML schema definition hierarchy.xsd. Listing 5.14 contains a snippet of the
file smells.ttcn3.xml which describes the hierarchical structure of the smell
detection module smells.ttcn3.xquery. As the allowed XML elements and at-
tributes of hierarchy XML documents are presented in detail in section 4.4,
listing 5.14 is only briefly described. Lines 1–6 contain the root element

78

hierarchy and its attributes to find the according XQuery module file and
to access it with correct namespace information. The remainder of the doc-
ument (lines 7–15) consists of a category element containing two function

elements. The second function element features a parameter element and
according attributes.

1 <hierarchy xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
2 xsi:noNamespaceSchemaLocation="hierarchy.xsd"
3 name="Bad Smell Detection for TTCN3 Source Code"
4 filename="smells.ttcn3.xquery"
5 namespaceprefix="xsmell"
6 namespace="de.ugoe.cs.swe.xaf.smells.ttcn3">
7 <category name="Test Behavior">
8 <function name="Missing Log" xqueryname="missinglog"/>
9 <function name="Stop In Function" xqueryname="stopinfunction">

10 <parameter
11 name="Exclude functions running on a component"
12 xqueryname="skiprunson" type="boolean"/>
13 </function>
14 </category>
15 </hierarchy>

Listing 5.14: File smells.ttcn3.xml describing the structure of the smell
detection module smells.ttcn3.xquery

5.6 Integration into TRex

Before going into the details of the integration, an overview of the complete
framework architecture including its embedding into TRex is given. Fig-
ure 5.2 shows the global structure of the XQuery-based analysis framework
customised for the detection of bad smells in TTCN-3 test suites and inte-
grated into TRex. While figure 5.1 is focused on the position of the facade
layer, figure 5.2 includes all relevant parts of the framework. Only details re-
garding the integration into the TPTP static analysis framework are left out.
The three boxes in figure 5.2 at the right bottom of the figure illustrate the
core framework: the XQuery facade layer, XQuery smell detection module,
and XQuery library modules. The latter contain common functions which
are not related to software analysis and therefore no further described. The
round box at the left bottom is the starting point for the usage of XAF and
the interface where the framework is coupled with TPTP. The three boxes
on the right top show, starting with the topmost box, the analysis target
(TTCN-3 source code) and its representation formats (AST of the TTCN-3
source code and the XML representation of the AST). The box on the left
side shows the direct access from the facade layer through TRex APIs to the
AST passing by the XML representation format which is described in detail
at the end of section 5.4.

The integration of XAF into TRex is described in this section. First a
narrow description of preparations regarding updating existing TRex plug-

79

Access
Conversion TTCN-3 Source Code

TRex API TRex TTCN-3 AST

XML representation of the
TRex TTCN-3 AST

XQuery Facade Layer

User/TPTP XQuery Smell Detection

XQuery Library Modules

Figure 5.2: Overview of the framework customised for the detection of bad
smells in TTCN-3 test suites

ins is given. Afterwards the actual integration of XAF into TRex using the
static analysis framework of TPTP is discussed.

The Eclipse plug-ins de.ugoe.cs.swe.trex.patterndetection.* created by
Bisanz [Bis06] in 2006 serve as a starting point for the integration of XAF
into TRex as they are already built upon the TPTP static analysis frame-
work. These pattern detection plug-ins shall be preserved and it should
be possible to use them in conjunction with the newly created XAF plug-
ins. Additionally, as much as possible TPTP-related functionality should
be shared between the pattern detection and XAF plug-ins to avoid code
duplication.

The fist step was an update of the existing pattern detection plug-ins to
the current TPTP 4.4.0 branch which required mostly adoptions of TPTP
interface changes. In the second step, functionality that should be shared
between the XAF and pattern detection plug-ins was identified. As a result
of this, the plug-in de.ugoe.cs.swe.trex.tptp was created which contains a
common base class for analysis results and declarations of shared constants.
Additionally, the plug-in de.ugoe.cs.swe.trex.patterndetection.ui no longer
depends on the core plug-in of the pattern detection and can now serve as
the user interface for the pattern detection and XAF plug-ins. These changes
allow to combine both analysis plug-ins and to perform analyses including
rules from both plug-ins at the same time.

The XAF integration into TRex is located in the plug-in de.ugoe.cs.swe.

trex.xaf which contains all classes required for the usage of the TPTP static
analysis framework. The most important classes are briefly described in

80

Class Name Functionality

AnalysisProvider Creates TPTP categories and rules and controls the
execution of analysis runs.

AnalysisRule Represents XQuery functions as TPTP rules.
Analysis Represents analysis runs.
XafResults Represents XML results of XAF as Java object.

Table 5.1: Important classes of the de.ugoe.cs.swe.trex.xaf plug-in

table 5.1. The entry point to the static analysis framework is the XAF class
AnalysisProvider which extends the class AbstractAnalysisProvider of TPTP.
This relationship is reflected by the plugin.xml file shown in listing 5.15. The
TPTP extension point in line 2 is extended by the XAF analysis provider
in lines 3–7. A link to the AnalysisProvider class is provided in line 4, a
unique identifier and a human readable label for the provider are stored
in lines 5 and 6. In line 7 the link to user interface implementation of a
viewer class is provided. As described above, XAF and the pattern detection
plug-ins by Bisanz make use of the shared viewer class de.ugoe.cs.swe.trex.

patterndetection.ui.PatternDetectionViewer.

1 <plugin>
2 <extension point="org.eclipse.tptp.platform.analysis.core.

analysisProvider">
3 <analysisProvider
4 class="de.ugoe.cs.swe.trex.xaf.AnalysisProvider"
5 id="de.ugoe.cs.swe.trex.xaf.provider"
6 label="XQuerybased Analysis Framework for TTCN3"
7 viewer="de.ugoe.cs.swe.trex.patterndetection.ui.

PatternDetectionViewer"/>
8 </extension>
9 </plugin>

Listing 5.15: File plugin.xml of the XAF plug-in for TRex

The AnalysisProvider class fulfils the following tasks: it is responsible
for the creation of the TPTP categories and rules based on the contents of
the file smells.ttcn3.xml. Additionally, the provider controls the workflow of
analysis runs. The implementation of both tasks is described in the following.

The XQuery-based analysis framework describes the structure of XQuery
analysis modules in XML files conforming to the hierarchy.xsd schema. This
allows the structure of modules to be described independent of any third-
party standards and dependencies. Hence, the class AnalysisProvider needs
to parse the file smells.ttcn3.xml to create a TPTP category for each category
defined in the XML file and to create a TPTP rule for each function defined
in the XML file. This is done on-the-fly the first time the TPTP analysis
dialogue is opened inside a TRex instance.

81

The TPTP static analysis framework is not designed for adding cate-
gories and rules at runtime. Normally they are statically declared as TPTP
extensions in the file plugin.xml. To work around this limitation, the method
getOwnedElements of the abstract provider class is overwritten and used to in-
sert the categories and rules on-the-fly. The first time the getOwnedElements

method is called, the file smells.ttcn3.xml is parsed and all TPTP categories
and rules are created according to contents of the XML file.

Without going into details, the process of creating TPTP categories
and rules on-the-fly is described in this paragraph. First the file smells.

ttcn3.xml is parsed, made available as DOM tree, and validated against
its XML schema definition. Afterwards the DOM tree is traversed recur-
sively and TPTP categories and rules are created. For each category el-
ement of the XML file an according DefaultAnalysisCategory object is in-
stantiated. Each XML function element—which describes an XQuery anal-
ysis function—is mapped to an AnalysisRule object which is provided by
XAF. The AnalysisRule object stores the function name of its corresponding
XQuery to enable a reverse mapping from the analysis rule to the corre-
sponding XQuery function. To complete the mapping of the XML file to the
static analysis framework of TPTP, parameter elements of the XML file are
mapped to TPTP AnalysisParameter objects.

The control of the workflow of an analysis run—the execution of multiple
analysis rules—is also located in the AnalysisProvider class and consists of
the following steps.

Step 1: The scope of the analysis run is determined. All TTCN-3 source
code files respectively projects or a subsets of these can be selected
for an analysis run. The scope is set by the user through an interface
provided by TPTP.

Step 2: The XML representation is created which reflects the abstract syn-
tax trees of all files of the analysis scope.

Step 3: The hierarchy of the TPTP categories and rules is traversed to
collect the information which rules are selected by the user and need
therefore to be included in the analysis run. Based on these information
an according XQuery expression is built.

Step 4: The XQuery expression created in the preceding step is executed,
the resulting XML is parsed and stored in an XafResults object.

Step 5: Finally, the matches contained in the XafResults object are trans-
formed into TPTP results to allow to display them using the TPTP
user interface.

The starting point of each analysis run is the method analyze located
in the class AnalysisProvider which is called by the TPTP static analysis

82

framework. The implementation of the five steps is briefly described in the
following.

Step 1 is completely done by the TPTP static analysis framework: the
method getFilteredResources returns a list of all required TTCN-3 IFile ob-
jects. This list reflects the scope of the analysis run. Step 2, the genera-
tion of the XML representation, is realised by the createXML method of the
XAF Analysis class. It covers all required subordinate steps like parsing
the TTCN-3 source code files and calling the xmlSerialize method of each
LocationAST object. In the end an XML file named ttcn3.xml is created which
is the input for the software analysis.

Step 3—building the XQuery expression based on the selected TPTP
rules—is quite complex. As motivation an example of the desired result is
given in listing 5.16. It shows an XQuery expression calling two analysis func-
tions from the module smells.ttcn3.xquery. The execution of this expression
by the XQuery processor is the actual XQuery-based analysis. The first four
lines of the expression import the required smell detection and library mod-
ules. This is followed by the calls of the analysis functions missinglog and
longparameterlist in lines 7 and 8. Both function calls are wrapped into
a call to the XQuery helper function finalizequery (line 6) which ensures
that the returned results conform to the XML schema matches.xsd.

1 import module namespace xsmell =
2 ’de.ugoe.cs.swe.xaf.smells.ttcn3’ at ’smells.ttcn3.xquery’;
3 import module namespace xlib =
4 ’de.ugoe.cs.swe.xaf.library’ at ’library.xquery’;
5
6 xlib:finalizequery((
7 xsmell:missinglog(’xsmell:missinglog’),
8 xsmell:longparameterlist(4, ’xsmell:longparameterlist’)
9))

Listing 5.16: XQuery expression calling two analysis functions

To build such an XQuery expression it must first be determined which
TPTP rules are selected by the user and should be included in the expres-
sion. This is done by the helper method traverseCategories which recursively
traverses the hierarchy of all TPTP categories/rules and calls the method
generateXQueryFunctionCall for each object AnalysisRule selected by the user.
This generates a list of function calls—like the list of two calls in lines 7
and 8 in listing 5.16—which is stored in the class Analysis.

The mapping of TPTP rule parameter values to according XQuery pa-
rameter values is also required. The first parameter of the function call
longparameterlist in line 8 has the value 4. This value originates from the
TPTP analysis dialogue in which the user entered the value. Hence, these
parameter values need to be mapped from Java to XQuery values. For in-
stance, a checkbox of the TPTP dialogue is represented by the Java type
boolean. If the value of such a Java boolean object is true it is mapped to the

83

XQuery type xs:boolean and value true(). Parameter mapping is currently
supported from the Java types boolean, String, and Integer to the according
XQuery types.

Step 4 of each analysis run is the actual execution of the XQuery ex-
pression created in the preceding step. The analysis provider thus calls the
method executeXQuery of the Analysis class. This method adds all required
namespace import statements as shown in lines 1–4 of listing 5.16 and also
adds the call the XQuery function finalizequery (line 6). Additionally, it
sets the value of the external XQuery variable $xfacade:path (listing 5.6,
line 3) of the facade layer module. The content of this variable is the abso-
lute path to the XML input file ttcn3.xml generated in step 2. This allows
the facade layer module to access and read the XML file and to provide ac-
cess to this representation format through its functions. Finally, the XQuery
expression is executed using the XQuery API for Java (XQJ) provided by
Saxon (see sections 5.1 and 5.2 for details on both). The resulting XML
which conforms to the matches.xsd schema is parsed and transformed to a
Java object of the class XafResults which provides simplified access to all
matches and their attributes.

In the final step 5, the matches contained in the XafResults object are
mapped to TPTP-based AnalysisResult objects. This is required to make
use of the user interface provided by TPTP to present the results to the
user. This again requires recursively traversing the hierarchy of the TPTP
categories/rules using the helper method traverseCategories and calling the
method generateResult for each rule. The reason for these traversals lays in
the way XAF makes use of the static analysis framework. Normally each rule
object features an analyze method which is called once for each analysis run,
performs the analysis, and immediately returns its results. For example, this
workflow is used by the pattern detection plug-ins by Bisanz [Bis06]. XAF
could have adopted this, but for reasons of performance the described process
of five steps was chosen. Otherwise each AnalysisRule object would have
executed its own XQuery. This would have required parsing the XML input
file for each analysis function. This would have slowed down the analysis
obviously and needlessly—especially for large XML input files.

While figure 5.2 is organised XAF-centric, the following figure 5.3 is
TRex-centric and shows integration of XAF into TRex. On the top, the
different TRex plug-ins are listed like the XAF for TTCN-3 plug-in and the
Java-based pattern detection plug-in. Both make use of the static analy-
sis framework of TPTP which in turn is based on Eclipse. On the right
side, some of the TRex core functionalities are listed. On the left side, the
XQuery-based analysis framework itself and the XQuery processor Saxon are
displayed.

The following Eclipse plug-ins are modified respectively created during
the implementation of XAF and the integration into TRex.

84

Figure 5.3: TRex overall architecture including the XQuery-based analysis
framework

• The plug-in de.ugoe.cs.swe.trex.patterndetection.ui is modified to act
as user interface component for the the pattern detection plug-in and
the XAF TRex plug-in at the same time.

• The plug-in de.ugoe.cs.swe.trex.patterndetection.tests is modified to
be extensible and act as basis for the XAF tests. See section 5.8 for
details on this.

• The plug-in de.ugoe.cs.swe.trex.tptp is introduced to share TPTP-
related code between the pattern detection plug-in and the XAF plug-
in using TPTP.

• The plug-in de.ugoe.cs.swe.xaf is created to contain the XAF core of
XQuery modules and related XML files.

• The plug-in de.ugoe.cs.swe.trex.xaf makes use of the preceding plug-in
and is created to separate the XAF core from its integration into TRex.
The TPTP-related classes described in this section 5.6 are contained
in this plug-in.

• The plug-in de.ugoe.cs.swe.trex.xaf.ui contains the implementation of
user-defined queries for TRex which are based on XAF. The imple-
mentation is described in detail in the following section 5.7.

• The plug-in de.ugoe.cs.swe.saxon wraps the Saxon packages into an
Eclipse plug-in to be able to make use of Saxon from within of Eclipse.

5.7 User-Defined Queries

This section covers the implementation of XAF user-defined queries for
TRex. Extending XAF itself with new analysis functions is possible by

85

adding new XQuery modules or by adding additional functions to existing
XQuery modules. As this is not very comfortable for end-users, a user in-
terface (UI) for creating and executing user-definition queries is provided.
The plug-in de.ugoe.cs.swe.trex.xaf.ui contains the implementation which
allows TRex users to enter and execute custom XQuery expression and to
search for patterns in TTCN-3 source code using the XAF infrastructure.
The search dialogue itself is located in the search menu of TRex and can
alternatively be opened using the keyboard shortcut Ctrl+H. For displaying
results of user-defined queries, a result view is implemented which displays
matches grouped per file. Additionally, it is possible to store user-defined
queries and to include these queries as TPTP rules in analysis runs.

As most of the Java code for the implementation of user-defined queries
is related to the user interface, it is separated into the UI plug-in de.ugoe.

cs.swe.trex.xaf.ui. Functionalities like executing XQuery expressions and
parsing results are already implemented in the plug-in de.ugoe.cs.swe.trex.

xaf and are reused by the UI plug-in. Sharing features is also the reason to
store results of XQuery expressions in XafResults objects instead of directly
mapping the XQuery results to TPTP result objects: XafResults objects are
also used by the implementation of user-defined queries.

The search dialogue and the result view are implemented by extend-
ing the Eclipse extension point org.eclipse.search.searchPages with the class
SearchPage and the extension point org.eclipse.search.searchResultViewPages

with the class SearchResultPage. The SearchPage class is mainly responsible
for filling the search dialogue with Standard Widget Toolkit (SWT) controls
like a text box to enter the XQuery expression and other controls like a
button to store the current query.

The button to execute the search is already predefined by Eclipse. Click-
ing it invokes the run method of the XAF class SearchQuery which first calls the
method createXML of the Analysis class to generate the ttnc3.xml input file. Af-
terwards the user-defined XQuery is executed using the method executeXQuery

which is also located in the Analysis class and the result is displayed in the
result view. If no matches are found or the XQuery expression contains syn-
tax errors, the user is informed using a pop-up message box including an
appropriate advice.

Displaying and handling the results of user-defined queries is taken over
by the XAF classes SearchResult and SearchResultPage. First, the returned
XafResults object is transformed into FileMatches objects (one per file) as the
result view displays the results grouped by files. The FileMatches objects
in turn are encapsulated in Match objects which are provided by Eclipse
and required to make use of the given interfaces of the SearchResult classes.
Finally, the class SearchResultPage is responsible to deliver the matches in the
desired format to predefined interfaces to allow the user to navigate through
a tree of matches, to click on each match, and to open a TRex editor window
with the selected match.

86

If the user stores an XQuery expression, the query and its name are stored
using the XAF class PersistentPreferences. It makes use of the Eclipse class
PreferenceStore which allows to persistently store arbitrary data. The seri-
alisation of the according object is stored in the root of the TRex workspace
directory as file xafuserdefinedqueries.store. It is a plain text file con-
taining key-value pairs for each user-defined query respectively its name.
Beside the purpose of storing queries to enrich the set of predefined analysis
functions, additionally the last executed user-defined query is stored in this
file. The query is loaded from the store when the search dialogue is opened
again. This allows to refine queries step-by-step without starting with an
empty search dialogue every time.

Figure 5.4 shows a screenshot of the TRex user interface for the user-
defined queries. On the right side, the search dialogue is shown. On the left
side, the result view is shown at the bottom of the screenshot. On the upper
left side, a TTCN-3 file is opened in a TRex editor window and the found
matches are highlighted using Eclipse search markers.

Figure 5.4: TRex user-defined query: search dialogue, results, and markers

To be able to run analyses including a mixture of predefined and user-
defined queries, it is required to map user-defined queries from the store
to TPTP rules. This is done analogous to the run-time creation of prede-
fined queries in the method getOwnedElements of the class AnalysisProvider

presented in section 5.6. The method addUserDefinedCategoryAndRules creates
a category for all user-defined queries and iterates over the queries in the
store. For each query an AnalysisRule object is created and added to the
category. At the same time, an XQuery module containing all user-defined
queries is created on-the-fly and stored as file user.ttcn3.trex.xquery with

87

the other XAF modules. This allows analysis runs to call functions from
both modules—the module containing user-defined queries and the smell
detection module.

User-defined queries themselves can access the facade layer module and
also the smell detection module. This allows to create new smell detection
functions—either based on existing ones or completely new ones. The imple-
mentation of user-defined queries is in closer contact to TRex and TTCN-3
compared to the abstracted smell detection module. Hence, it is possible
to give up the policy that queries should be independent of their repre-
sentation formats and analysis targets. Bypassing the facade layer permits
user-defined queries to directly interact with the XML representation of the
AST what affords writing compact and highly specialised queries.

In the following a few sample user-defined queries are presented. List-
ing 5.17 shows a query which checks function names for their conformance
to the TTCN-3 Naming Conventions [ETS07d] proposed by the ETSI. It is
recommended that function names should start with f_ and therefore the
query in listing 5.17 discovers those functions whose name does not start
accordingly.

1 for $function in xfacade:getfunctions(())
2 let $name := xfacade:getidentifierup($function)
3 where not(startswith($name, "f_"))
4 return $name

Listing 5.17: User-defined query using facade functions

The second user-defined query in listing 5.18 fulfils the same task as
the first one, but while the first query in listing 5.17 consequently makes
use of the facade layer functions to access the XML document, the query
in listing 5.18 directly accesses the XML document. Direct access to the
XML document permits to write queries which are much shorter than the
once making use of the facade layer. Additionally, it is possible to access
parts of the XML document for which no corresponding facade functions are
available. (See appendix A.1 for all currently available facade functions.)
The drawback of such queries is evident: they completely depend on the
structure of the XML document and hence on TTCN-3. Additionally, their
readability is worse than those making use of the facade functions.

1 $xfacade:root//(FunctionDef//Identifier)[1][not(startswith(., ’f_’))]

Listing 5.18: User-defined query directly accessing the XML document

88

“Querying source code interactively [. . .] is a critical task” [PP94b] and a
base technology regarding reverse engineering of software [EKW99]. Hence,
the workflow of creating efficiently new user-defined queries for TTCN-3
source code using TRex is presented in the following.

The internal representation of the TTCN-3 source code as abstract syn-
tax trees is based on the BNF grammar definition provided by the TTCN-3
specification [ETS07a]. For example, the naming and nesting of the nonter-
minal symbols of the TTCN-3 grammar is reflected by the abstract syntax
tree. The AST View provided by TRex allows to visualise the abstract syn-
tax tree of the currently displayed file. Marking places in the source code,
highlights the according passage in the AST. Combining this TRex view and
the information about the TTCN-3 grammar in the specification, helps to
improve the understanding of the structure of the TTCN-3 core language
and its tree representation.

The XML document which is used as data structure for the user-defined
queries, is nearly a one-to-one mapping of the abstract syntax tree. This
eases the creation of new queries as the names in the AST view and those of
the XML elements and hence those used for the XQuery path expressions are
all the same. The first step in the workflow towards a new user-defined query
is that the user needs to know what to query for—in terms of source code.
Marking the source code of interest and looking at the AST view, reveals
those elements of the syntax tree which represent this currently marked piece
of source code. As just mentioned, these names are also used by the XML
document and can therefore be used to formulate user-defined queries.

For instance, marking the source code myTimer.start(5); would let the
user know that the corresponding XML element is called StartTimerStatement

and that the query xfacade:getroot()//StartTimerStatement finds all timers
on which the start function is called. Some further investigations later, the
user might be able to write a user-defined function which detects all started
timers that are never stopped as shown in listing 5.19.

1 for $start in xfacade:getroot()//StartTimerStatement
2 let $block := xfacade:getparentblock($start)
3 where not($block//StopTCStatement)
4 return $start

Listing 5.19: User-defined query to find never stopped timers

Still some improvements regarding user-defined queries might be reason-
able. A tighter interaction between the AST view and the search dialogue
of the user-defined queries is imaginable. For instance, each element of the
AST view could provide a context menu with the option to start a query
based on this node. This could open the search dialogue with an XQuery
path expression based on the element that was clicked in the AST view.
Another desireable improvement would be a live search: while typing an

89

XQuery expression, the matched source code would be highlight on-the-fly
in the currently displayed file. Both possible improvements would permit an
even faster and efficient creation of user-defined queries.

5.8 Tests for the Implementation

The integration of XAF into TRex is tested using JUnit 3.8 [JUn07]. Even
though testing Eclipse plug-ins using JUnit is similar to the standard work-
flow of JUnit, the testcases must be executed as JUnit Plug-In Test (also
called Plug-In Development Environment (PDE) JUnit Test). The main dif-
ference is that instead of“using the standard JUnit class TestRunner, PDE JU-
nit tests are executed by a special test runner that launches another Eclipse
instance [. . .] and executes the test methods within that workbench.”17

The JUnit testsuite for the XAF plug-ins is located in the plug-in de.ugoe.

cs.swe.trex.xaf.tests and based on the testsuite for the pattern detection
plug-ins [Bis06, Chap. 5.5]. This is done as both projects use the UI of the
TPTP static analysis framework to interact with the user and therefore the
pattern detection tests are already adapted to TPTP. To make use of the ex-
isting test infrastructure, the plug-in de.ugoe.cs.swe.trex.patterndetection.

tests was changed to be extensible and the XAF test plug-in was created on
top of that.

For each testcase the following files must be provided: one or more
TTCN-3 source code files, a launch configuration file which selects the TPTP
rules to include in the analysis run, and an according Java TestCase subclass
which controls the test execution. Every testcase makes use of the class
PatternDetectionTestProject to copy the source code and launch configura-
tion files to the expected locations, parse the source code files, create the
abstract syntax trees, and launch the TPTP analysis run. Finally, it is
checked that the desired matches are found by the analysis.

This testing workflow covers the following parts of TRex respectively
XAF:

Step 1: Starting TRex, creating a workspace and a TTCN-3 project, im-
porting TTCN-3 source code files, and creating abstract syntax trees.

Step 2: Dynamic creation of the TPTP categories and rules of XAF based
on the XML file smells.ttcn3.xml.

Step 3: Transformation of the abstract syntax trees to the XML represen-
tation of the AST.

Step 4: Execution of TPTP analysis runs and displaying the analysis re-
sults. This includes the following step:

17http://wiki.eclipse.org/index.php/FAQ_What_is_a_PDE_JUnit_test%3F

90

http://wiki.eclipse.org/index.php/FAQ_What_is_a_PDE_JUnit_test%3F

• Generation of XQuery expressions based on the TPTP rule selec-
tions and execution of the XQuery expressions.

• Parsing of the matches returned from XQuery and transformation
of the matches to TPTP results.

Four JUnit test cases for different XQuery analysis functions are cur-
rently implemented. They cover different kinds of XQuery functions: one
that calls Java methods of TRex from XQuery, one that returns matches in
different TTCN-3 files, and two with multiple matches. Test cases for the
user interface of the user-defined queries are currently not provided.

5.9 Discussion

Before going into the discussion of the implemented XQuery-based analysis
framework, it is checked if the requirements for the framework as formulated
in chapter 4 are met. The general requirements R1–R10 are already covered
by the design and architecture of the framework as discussed in section 4.5.
The requirements T1–T4 are specific to TTCN-3 and mainly demand a cus-
tomisation of the framework towards the detection of bad smells in TTCN-3
source code and the integration into TRex. These requirements are ful-
filled as presented in the preceding sections 5.3–5.6 by converting TTCN-3
source code into XML, implementing the facade layer for TTCN-3 using
XQuery, describing and detecting bad smells of the TTCN-3 code smell cat-
alogue using XQuery, and integrating XAF into TRex and the static analysis
framework of TPTP. The subordinate requirements U1–U5 of requirement
R10 demand the possibility to add user-defined pattern and mainly concern
the user interface of TRex. The according implementation is described in
section 5.7 and fulfils all but the optional requirement U5 which requests
support to view, edit, delete, and rename stored user-defined queries.

This leads directly to the limitations of the current implementation re-
garding the integration of XAF into TRex and the implementation of user-
defined queries. No limitation concerns the XQuery core of XAF. Most of
the following items are due to the limitations of the TPTP static analysis
framework respectively the way XAF makes use of it.

• TPTP measures the overall time of an analysis run as sum of the times
each rule takes. As all XQuery analysis functions are executed in one
step, only the overall time the execution takes can be presented by
TPTP instead of the time information for each rule.

• Normally, each TPTP rule features a severity property. For dynam-
ically added rules, like those of XAF, this severity property is not
available.

91

• Displaying duplicates using TPTP is not very well arranged as all
duplicates of one rule appear in a flat list of matches. It is desireable
to extend TPTP to allow displaying matches belonging together in
separate groups.

• TPTP allows to link so-called quick fixes to TPTP rules. These quick
fixes suggest refactorings to remove the bad smell and make therefore
use of the refactoring capabilities of TRex. Currently, XAF does not
implement any quick fixes.

• There is no possibility to persistently skip false positives or undesired
matches for future analysis runs. This could be implemented for in-
stance using source code comments containing special instructions to
skip a match or using a database which reminds undesired matches by
their position in the source code.

Regarding user-defined queries, the following limitations are known:

• As already mentioned, currently no user interface to view, edit, delete,
and rename stored queries is implemented (requirement U5).

• Unlike TPTP analysis runs, the search dialogue of the user-defined
queries does not support scope-aware searches. All TTCN-3 files of
the currently opened TRex projects are included in the search. As
soon as a query is stored and executed as TPTP rule it uses the scope
of TPTP.

• The text box of the search dialogue where user-defined queries are
entered, features no undo capability or other desireable features like
syntax highlighting for XQuery.

Removing these limitations would make the framework more user-friendly
and powerful, but the currently implemented functions already provide a
smooth integration of the predefined XQuery functions. Additionally, user-
defined queries provide a powerful way to extend the framework with new
smell detection functions and other patterns. Regarding the application and
performance of the framework it is referred to section 6.1.

92

Chapter 6

Application and Extension

The current chapter presents results of the application of the XQuery-based
analysis framework for the detection of bad smells in existing, commercially
used TTCN-3 test suites (section 6.1). Additionally, this chapter reveals
possibilities for the extension of the framework towards new analysis targets
(section 6.2) and towards new types of patterns (section 6.3) beside this
thesis’ focus on TTCN-3 and bad smells.

6.1 Detection of Bad Smells in TTCN-3 Test Suites

In this section, the results of the bad smell detection in existing TTCN-3
test suites using XAF are discussed. This is done mainly for two reasons:
first to check the implementation of XAF for correctness and usability. The
second reason is to reveal the need for automated bad smell detection even
for commercially used TTCN-3 test suites.

The following TTCN-3 test suites1 are publicly available and used to
perform the tests: Session Initiation Protocol (SIP) [ETS06a], Internet Pro-
tocol version 6 (IPv6) [ETS06c], and Digital Mobile Radio (DMR) [ETS06b].
All tests are performed using the following 32-bit software versions: Debian
GNU/Linux version 4.0, Sun Java 6 SE Runtime Environment (1.6.0 03-
b05), Eclipse SDK 3.3.1 (M20070921-1145), Eclipse TPTP 4.4.0.3, Saxon-B
8.9.0.4, XAF 1.0.0, and the currently latest available version of TRex2. The
test system was equipped with 2 GiB of RAM and an AMD Athlon 64
single-core processor with 2 GHz.

The results of the test runs are presented in table 6.1. The first column
contains the names of the analysis functions and their parameter settings.
The other three columns contain the number of smell instances found for
each function. Additionally, the time consumption for the complete analysis
run is given in the last row. The overall time consumption includes the

1http://www.ttcn3.org/PublicTTCN3TestSuites.htm
2Subversion branch trunk, timestamp 2007-10-17

93

http://www.ttcn-3.org/PublicTTCN3TestSuites.htm

Test Suite SIP IPv6 DMR
Version v4.1.1 v1.1.1 v1.2.1
Lines of Code 55510 24462 15485

Avoid Goto Statement – – –
Magic Numbers (not 0,0.0,1,1.0) 427 331 109
Long Statement Block (120+ lines) 58 4 –
Nested Conditional 178 58 58
Short Template (2 or less fields) 62 39 88
Short Template (50 or less chars) 31 21 65
Deactivation On Another Level – – –
Missing Activation – – –
Missing Deactivation 686 367 326
Unreachable Default – – –
Duplicate Alt Branches 5 26 48
Duplicate Code in Conditionals 192 111 90
Fully Parameterized Template – – –
Long Parameter List (6+ parameters) 108 8 2
Missing Log 692 13 389
Missing Verdict (in alt branches) 3 – –
Stop In Function 313 5 5
Idle PTC – – 7

Duration seconds (XQuery/total) 142/170 34/43 30/36

Table 6.1: Bad smells found by XAF in TTCN-3 test suites

following steps: creation of the XML representation of the abstract syntax
tree (the time required for building the AST is not included), execution of
the XQuery expressions (this includes reading the XML file ttcn3.xml), and
displaying the matches in the TPTP view inclusive Eclipse markers. Also
the time the execution of the XQuery expressions takes (without creating
the XML file and displaying the results) is given.

First of all, the duration of the analysis runs shows that the execution of
the XQuery expressions took between a half minute for the DMR test suite
and about two and a half minutes for the SIP test suite. As the latter consists
of about 55000 lines of code while the DMR suite consists of about 15000
lines of code, it can be assessed that the framework scales well. Additional
to the time the XQuery executions take, about 20% extra time is consumed
by the TRex for the creation of the input XML file and the parsing and
displaying of the results. The performance can be improved by using a
further optimised XQuery processor like Saxon-SA instead of Saxon-B (see
section 5.1 for details on this).

The detection results can be parted in two groups. The first one contains
those analysis functions which found no smell instances at all. The reasons

94

for this result can be various: the smell detection functions might be written
in a way to miss existing smells or there are no instances of these smells in
the investigated test suites. For some smell detection functions like Avoid
Goto Statement it can be assessed that they work as intended and miss no
smell instances. Another possibility is that the functions are working correct
and the smell descriptions which originate from an academic background are
not existing in real-world test suites.

The second group contains those smell detection functions that returned
matches. The bad smell Missing Deactivation seem to be very common. But
as defaults are automatically deactivated at the end of their lifetimes, the
consequences of this smell are not drastic. The current implementation of
the detection function to find instances of the smell Missing Log might return
false positive matches. This is due to the fact that log operations called in
subordinate functions are currently not taken into account. The majority
of the functions like Magic Numbers, Long Statement Block, and Duplicate
Alt Branches finds smell instances without false positives and negatives and
indicate a lot of refactoring opportunities.

Only the 18 pure XQuery analysis functions of the currently 20 imple-
mented ones are included in the test runs discussed above. The two functions
calling Java methods of the TRex reference finder, are left out due to the
fact that the TRex implementation of the reference finder is slow and would
have adulterated the performance results. To show how large the effect of
the invocations of these TRex methods is, two additional analysis runs are
performed using the Java-based pattern detection of Bisanz [Bis06] with the
DMR test suite [ETS06b]: the first run consists of all eleven implemented
rules of the Java-based pattern detection and took 476 seconds. The second
run includes only those seven rules not using the reference finder of TRex and
took only 43 seconds. A similar performance loss can be observed with XAF
when the reference finder of TRex is invoked from within XQuery functions.
To show that the invocation of Java methods from within XQuery is not
the bottleneck—but the referencing counting itself is slow—the Java-only
implementation of Bisanz is chosen for this two test runs.

To compare the performance of TRex’ Java-based pattern detection and
XAF, four smell detection functions which are implemented by both ap-
proaches (Magic Number, Short Template, Duplicate Alt Branches, and Fully
Parameterized Template) are used for analysis runs with the DMR test
suite [ETS06b]. The analysis run with the Java-based approach takes 2.4 sec-
onds while the XAF run takes 22.3 seconds. The reasons for this obvious
difference are various: while the Java-based approach starts analysing the
AST which was created before, XAF first needs to convert the AST to XML
(what takes about three seconds for the DMR test suite) and parse the
XML document before starting the actual analysis. Additional test runs
using an XQuery debugger3 revealed that most of the time is spent by the

3http://www.oxygenxml.com/xquery_debugger.html

95

http://www.oxygenxml.com/xquery_debugger.html

duplicate search and highlighted some potential optimisation opportunities.
Altogether, the performance loss seams to be the price that needs to be paid
for a declarative approach.

6.2 Extension of the Framework to New Analysis

Targets

To prove the extensibility of the XQuery-based analysis framework, two new
analysis targets and according representation formats are integrated as ex-
perimental implementations. As additional analysis targets UML models
(created with ArgoUML [Arg07]) and Java source code are used. They are
represented using XMI (see section 2.4.3.1, also created using ArgoUML) re-
spectively srcML (see section 2.4.3.2). The XQuery analysis function long

parameterlist (see section 5.5) is applied to TTCN-3, UML, and Java to
detect instances of the bad smell Long Parameter List in these different
analysis targets. Therefore according facade layer modules for XMI and sr-
cML are implemented which only consist of those facade functions required
for the detection of this bad smell. All required new facade functions are
shown in listing 6.1 (UML/XMI) respectively listing 6.2 (Java/srcML). Com-
pared to those for TTCN-3 (see appendix A.1) only the XML element names
had to be changed to the according names of the XMI respectively srcML
format.

1 declare namespace UML = "org.omg.xmi.namespace.UML";
2 declare function xfacade:getfunctions($n as node()*) {
3 xfacade:getnode($n)//UML:Operation
4 };
5 declare function xfacade:getparameters($n as node()*) {
6 xfacade:getnode($n)//UML:BehavioralFeature.parameter/UML:Parameter
7 };

Listing 6.1: Facade functions for UML in XMI/ArgoUML flavour

1 declare function xfacade:getfunctions($n as node()*) {
2 xfacade:getnode($n)//function
3 };
4 declare function xfacade:getparameters($n as node()*) {
5 xfacade:getnode($n)//parameter_list/param
6 };

Listing 6.2: Facade functions for Java in srcML flavour

The positive results of this prototypical integration of UML models and
Java source code demonstrates that the usage of XML as representation
format allows a smooth extension of the framework towards new analysis
targets. The application of the facade layer provides a level of abstraction

96

that allows to write analysis functions to be independent of the underlying
analysis target and representation format. This allows to implement analysis
functions once and make use of them to discover pattern in different software
artefacts.

The analysis targets presented up to now reflect static structures of source
code respectively software architectures. The core framework is also adopt-
able for the analysis of software behaviour. Given an XML representation
of software behaviour, it is possible to adopt the framework to this scenario.
Potential XML formats capable of representing software behaviour are in-
troduced in section 2.4.3.2.

Patterns regarding software behaviour are different from those that can
be found in static software artefacts. While switching from one representa-
tion format of static software artefacts to another requires relatively small
changes, the initial creation of a facade layer for the access to a behavioural
representation format requires a higher effort. This is due to the fact that the
underlying representation formats differ significantly from those representing
static software artefacts. Still the process is the same as for the presented
facade layer for TTCN-3: identify information required by the analysis layer
and provide abstract access to these information using XQuery facade func-
tions.

6.3 Extension of the Framework to New Types of

Patterns

The framework is designed to be extensible regarding new analysis target
and also regarding new types of patterns. This section covers the possibility
to make use of XAF for the integration of new pattern types. It provides
a concrete example how the framework could be used for the calculation
of source code metrics. Additionally, a possibility is discussed to adopt
the framework for the recognition of test purposes in traces of test case
executions.

As discussed in section 3.1, source code metrics which exceed their bound-
ary value, can indicate instances of bad smells and can therefore be used
for the smell detection. But the original purpose of source code metrics is
software measurement which is a stand-alone type of pattern. The XQuery-
based analysis framework can be extended to the calculation of source code
metrics as listing 6.3 shows. The provided example calculates the simple
metric Lines of Code which counts all non-empty and non-comment lines of
a source code file. Using XQuery and the facade layer of TTCN-3 is is done
by iterating over all files (line 1) and returning for each file an XML element
linesofcode (line 2). Each of these elements contains the according file-
name as attribute (line 3) and the number of lines of code as content. The
calculation of the lines of code is based on the location information contained

97

in the XML document: the line information where each entity of the source
code starts and ends are joined in one sequence (line 5) and the total number
of the distinct values equals the lines of code.

1 for $file in xfacade:getfiles(())
2 return element linesofcode {
3 xfacade:getfilename($file),
4 count(distinctvalues(
5 (xfacade:getlines($file), xfacade:getlineends($file))
6))
7 }

Listing 6.3: XQuery implementation of the metric Lines of Code

As the implementation indicates, XQuery can be used to express arbi-
trary metrics. More metrics based on XQuery, like Number of Methods and
Lack of Cohesion in Methods, are discussed in [Eic07].

One desireable goal regarding testing is to examine if the implemented
tests fulfil their purposes. Test purposes are prose descriptions of testing
objectives regarding conformance testing.4 They can be formulated using
natural language, but also using more formal, structured approaches. Test
purposes can be seen as patterns in the test behaviour. The goal is to
retarget test purposes in the according behaviour representations of test
cases. This is only possible, if the purposes are specified using a formal or
semi-formal approach like the Testing Purpose Language (TPLan) [SWR07].
This increases the possibility to recover the purposes from the test cases.
“TPLan has been designed to make test purpose specification more formal
without inhibiting the expressive power of prose” [SWR07].

Listing 6.4 shows the basic structure of TPLan test purpose specifica-
tions. Each test purpose needs an unique identifier (line 1) and a with con-
dition (line 2) which contains specific initial condition required for the test
purpose to be valid. The ensure that part (lines 3–6) contains the actual
critical verdict criteria for a test in form of a stimulus and response to en-
sure that the requirements are met [SWR07]. The parts written between
“<” and “>” need to be filled with predefined or user-defined entities, events,
values, units, conditions, and words describing the actual purpose. The de-
gree of prose used for this is up to the author of the test purposes.

The optional requirement T5 demands possibilities for the detection of
test purposes in TTCN-3 source code or in behavioural representations of it.
As currently no tool is available which allows to extract behavioural repre-
sentations of TTCN-3 test suite executions (for instance traces of the exe-
cution), this requirement could not be investigated in depth. Even though
it is currently not implemented, it should be possible to make use of the
software analysis framework to perform analyses for the detection of test

4http://portal.etsi.org/mbs/Testing/conformance/conformance.htm#TP

98

http://portal.etsi.org/mbs/Testing/conformance/conformance.htm#TP

1 TP id: <string>
2 with { <preconditions> }
3 ensure that {
4 when { <stimulus> }
5 then { <response> }
6 }

Listing 6.4: Basic structure of TPLan test purpose specification

purposes, given the following prerequisites: an XML representation reflect-
ing the behaviour of TTCN-3 test suite executions and the availability of an
accordingly adopted facade layer module as described in section 6.3. Addi-
tionally, the test purposes must be specified in formal way, for instance using
TPLan. This would allow a transformation of the purposes into XQuery ex-
pressions and to check if they can be found in the traces of the test case
execution.

99

Chapter 7

Summary and Outlook

This thesis presented a generic XML-based approach for software analysis
and an accordingly implemented framework. The most important goal is the
possibility to describe software patterns like bad smells using the declarative
XML query language XQuery. Another major achievement is the indepen-
dence of the patterns regarding the underlying programming languages re-
spectively software artefacts. This combination allows to describe patterns
in a generic way and on a high level of abstraction. Additionally, it enhances
the readability and reusability of the patterns.

The software analysis framework is adopted towards the testing language
TTCN-3 and the detection of bad smells in TTCN-3 test suites. Currently
20 functions for the detection of bad smells are implemented and the frame-
work is integrated in the TTCN-3 tool TRex. Additionally to the smell
detection, user-defined queries for TRex are implemented which permit to
interactively query TTCN-3 source code. The results of the smell detection
in existing test suites reveal the need for automated smell detection and
highlight the usability of the framework.

The prototypical adoption of the framework towards new types of pat-
terns and the integration of new analysis targets gives an outlook towards
additional fields of application. The presented solution is mainly focused on
structural issues like the detection of bad smells and can be advanced to-
wards related patterns like bug patterns, design defects, and design patterns.
Additional research can also be done into the direction of data and control
flow anomalies and the analysis of XML-based traces of dynamic software
behaviour.

100

Abbreviations and Acronyms

ANTLR ANother Tool for Language Recognition

AST Abstract Syntax Tree

BNF Backus–Naur Form

DOM Document Object Model

DSL Domain-Specific Languages

DTD Document Type Definition

EJB Enterprise JavaBean

EPL Eclipse Public License

ETSI European Telecommunications Standards Institute

GCC GNU Compiler Collection

GenTL Generic Transformation Language

GNU GNU is not Unix

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

ISO International Organization for Standardization

ISTQB International Software Testing Qualification Board

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

JavaML Java Markup Language

LGPL GNU Lesser General Public License

LMP Logic Meta-Programming

101

MOF Meta-Object Facility

MPL Mozilla Public License

MTC Main Test Component

OMG Object Management Group

OSI Open Source Initiative

PDE Plug-In Development Environment

PQL Program Query Language

RE Regular Expression

SAX Simple API for XML

SCA Source Code Algebra

SCRUPLE Source Code Retrieval Using Pattern Languages

SGML Standard Generalized Markup Language

SQL Structured Query Language

srcML Source Code Markup Language

StAX Streaming API for XML

SUT System Under Test

SWT Standard Widget Toolkit

TPLan Testing Purpose Language

TPTP Test & Performance Tools Platform

TQL Tree Query Language

TRex TTCN-3 Refactoring and Metrics Tool

TTCN-3 Testing and Test Control Notation Version 3

UI User Interface

UML Unified Modeling Language

W3C World Wide Web Consortium

XAF XQuery-based Analysis Framework [for Software]

XMI XML Metadata Interchange

102

XML Extensible Markup Language

XPath XML Path Language

XQJ XQuery API for Java

XQuery XML Query Language

XSL Extensible Stylesheet Language

XSLT XSL Transformations

103

Bibliography

[ADB04] Ademar Aguiar, Gabriel David, and Greg Badros. JavaML 2.0:
Enriching the Markup Language for Java Source Code. XML:
Aplicações e Tecnologias Associadas (XATA 2004), Porto,
Portugal, 2004. http://www.di.uminho.pt/~jcr/XML/conferencias/

xata2004/artigos/AdemarAguiar/JavaML2.pdf.

[AEK05] Raihan Al-Ekram and Kostas Kontogiannis. An XML-Based
Framework for Language Neutral Program Representation and
Generic Analysis. In CSMR ’05: Proceedings of the Ninth Eu-
ropean Conference on Software Maintenance and Reengineer-
ing, pages 42–51, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[AG06] Darren Atkinson and William Griswold. Effective Pattern
Matching of Source Code Using Abstract Syntax Patterns.
Software – Practice & Experience, 36(4):413–447, 2006.

[AIS+77] Christopher Alexander, Sara Ishikawa, Murray Silverstein,
Max Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel. A
Pattern Language: Towns, Buildings, Construction. Oxford
University Press, New York, USA, 1977.

[AK05] Darren Atkinson and Todd King. Lightweight Detection of
Program Refactorings. In APSEC ’05: Proceedings of the 12th
Asia-Pacific Software Engineering Conference, pages 663–670,
Washington, DC, USA, 2005. IEEE Computer Society.

[AK07] Malte Appeltauer and Günter Kniesel. Towards Concrete Syn-
tax Patterns for Logic-Based Transformation Rules. In Pro-
ceedings of the Eighth International Workshop on Rule-Based
Programming, 2007. Electronic Notes in Theoretical Computer
Science, Elsevier, Amsterdam, Netherlands.

[All02] Eric Allen. Bug patterns in Java. Apress, New York, USA,
2002.

104

http://www.di.uminho.pt/~jcr/XML/conferencias/xata2004/artigos/AdemarAguiar/JavaML2.pdf
http://www.di.uminho.pt/~jcr/XML/conferencias/xata2004/artigos/AdemarAguiar/JavaML2.pdf

[AMS02] Jennitta Andrea, Gerard Meszaros, and Shaun Smith. Catalog
of XP Project Smells. The Third International Conference on
eXtreme Programming and Agile Processes in Software Engi-
neering, 2002.

[ANT07] ANTLR website. http://www.antlr.org, 2007.

[AP05] Marcus Alanen and Ivan Porres. Model Interchange Using
OMG Standards. In EUROMICRO ’05: Proceedings of the
31st EUROMICRO Conference on Software Engineering and
Advanced Applications, pages 450–459, Washington, DC, USA,
2005. IEEE Computer Society.

[APMV03] Giuliano Antoniol, Massimiliano Di Penta, Gianluca Masone,
and Umberto Villano. XOgastan: XML-oriented GCC AST
Analysis and Transformations. In Proceedings of the Third
IEEE International Workshop on Source Code Analysis and
Manipulation, pages 173–182, Washington, DC, USA, 2003.
IEEE Computer Society. http://xogastan.sourceforge.net.

[Arg07] ArgoUML website. http://argouml.tigris.org, 2007.

[Bad00] Greg Badros. JavaML: A Markup Language for Java Source
Code. Computer Networks, 33(1-6):159–177, 2000.

[BCE06] Byte Code Engineering Library (BCEL) website. http://

jakarta.apache.org/bcel/, 2006.

[BGA06] Salah Bouktif1, Yann-Gaël Guéhéneuc, and Giuliano Anto-
niol. Extracting Change-patterns from CVS Repositories. In
WCRE ’06: Proceedings of the 13th Working Conference on
Reverse Engineering, pages 221–230, Washington, DC, USA,
2006. IEEE Computer Society.

[Bis06] Martin Bisanz. Pattern-based Smell Detection in TTCN-3 Test
Suites. Master’s thesis, Institute for Informatics, ZFI-BM-
2006-44, ISSN 1612-6793, Center for Informatics, University
of Göttingen, 2006.

[BMG+94] Erich Buss, Renato De Mori, Morven Gentleman, John Hen-
shaw, Howard Johnson, Kostas Kontogiannis, Ettore Merlo,
Hausi Muller, John Mylopoulos, Santanu Paul, Atul Prakash,
Martin Stanley, Scott Tilley, Joel Troster, and Kenny Wong.
Investigating Reverse Engineering Technologies for the CAS
Program Understanding Project. IBM Systems Journal,
33(3):477–500, 1994.

105

http://www.antlr.org
http://xogastan.sourceforge.net
http://argouml.tigris.org
http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/

[BMMM98] William Brown, Raphael Malveau, Hays McCormick, and
Thomas Mowbray. AntiPatterns: Refactoring Software, Ar-
chitectures, and Projects in Crisis. John Wiley & Sons, New
York, USA, 1998.

[Bru04] Michael Brundage. XQuery: The XML Query Language. Pear-
son Higher Education, Boston, MA, USA, 2004.

[BSMY+06] Tim Bray, Michael Sperberg-McQueen, François Yergeau, Eve
Maler, and Jean Paoli. Extensible Markup Language (XML)
1.0 (Fourth Edition). World Wide Web Consortium Recom-
mendation, August 2006. http://www.w3.org/TR/2006/RECxml

20060816.

[BYC+06] Tim Bray, François Yergeau, John Cowan, Eve Maler, Jean
Paoli, and Michael Sperberg-McQueen. Extensible Markup
Language (XML) 1.1 (Second Edition). World Wide Web Con-
sortium Recommendation, August 2006. http://www.w3.org/TR/

2006/RECxml1120060816.

[BYM+98] Ira Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna, and Lorraine Bier. Clone detection using abstract
syntax trees. In ICSM ’98: Proceedings of the International
Conference on Software Maintenance, pages 368–377. IEEE
Computer Society, 1998.

[CBF+07] Don Chamberlin, Anders Berglund, Mary Fernández,
Jonathan Robie, Jérôme Siméon, Scott Boag, and Michael Kay.
XML Path Language (XPath) 2.0. World Wide Web Consor-
tium Recommendation, January 2007. http://www.w3.org/TR/

2007/RECxpath2020070123.

[CG04] Luca Cardelli and Giorgio Ghelli. TQL: A Query Language for
Semistructured Data Based on the Ambient Logic. Mathemat-
ical Structures in Computer Science, 14(3):285–327, 2004.

[CH04] James Coplien and Neil Harrison. Organizational Patterns
of Agile Software Development. Prentice-Hall, Upper Saddle
River, NJ, USA, 2004.

[Che07] Checkstyle website. http://checkstyle.sourceforge.net, 2007.

[Cla99] James Clark. XSL Transformations (XSLT) Version 1.0. World
Wide Web Consortium Recommendation, November 1999.
http://www.w3.org/TR/1999/RECxslt19991116.

[CM01] James Clark and MURATA Makoto. RELAX NG Specifica-
tion. OASIS Committee Specification, December 2001. http://

www.oasisopen.org/committees/relaxng/spec20011203.html.

106

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/2006/REC-xml11-20060816
http://www.w3.org/TR/2007/REC-xpath20-20070123
http://www.w3.org/TR/2007/REC-xpath20-20070123
http://checkstyle.sourceforge.net
http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

[CMM04] Glauco Carneiro, Manoel Mendonça, and José Carlos Mal-
donado. Automatic Detection of Refactoring Opportunities.
Transactions on Software Engineering, 2004. http://lens.cos.

ufrj.br:8080/eselaw/papers/interestedareas/eselaw19.

[Con96] The Unicode Consortium. The Unicode standard, Version 2.0.
Addison-Wesley, Boston, MA, USA, 1996.

[Con06] The Unicode Consortium. The Unicode Standard, Version 5.0.
Addison-Wesley, Boston, MA, USA, 2006.

[Cop05] Tom Copeland. PMD Applied. Centennial Books, Colorado
Springs, Colorado, USA, 2005.

[Cre97] Roger Crew. ASTLOG: A Language for Examining Abstract
Syntax Trees. In DSL’97: Proceedings of the Conference on
Domain-Specific Languages on Conference on Domain-Specific
Languages, pages 229–242, Berkeley, CA, USA, 1997. USENIX
Association.

[CS63] Noam Chomsky and Marcel Paul Schützenberger. The alge-
braic theory of context-free languages. In Computer Program-
ming and Formal Systems, Studies in Logic, pages 118–161.
North-Holland Publishing, 1963.

[DC99] Steven DeRose and James Clark. XML Path Language
(XPath) Version 1.0. World Wide Web Consortium Recom-
mendation, November 1999. http://www.w3.org/TR/1999/REC

xpath19991116.

[Dev92] Premkumar Devanbu. GENOA: A Customizable Language-
and Front-end Independent Code Analyzer. In ICSE ’92: Pro-
ceedings of the 14th International Conference on Software En-
gineering, pages 307–317, New York, NY, USA, 1992. ACM
Press.

[DMJ01] Steve DeRose, Eve Maler, and Ron Daniel Jr. XML Pointer
Language (XPointer) Version 1.0. World Wide Web Consor-
tium, Last Call Working Draft, January 2001. http://www.w3.

org/TR/2001/WDxptr20010108.

[DOM05] Document Object Model (DOM) website of the World Wide
Web Consortium. http://www.w3.org/DOM/, 2005.

[Ecl07a] Eclipse website. http://www.eclipse.org, 2007.

[Ecl07b] Eclipse Modeling Framework Project (EMF) website. http://

www.eclipse.org/emf/, 2007.

107

http://lens.cos.ufrj.br:8080/eselaw/papers/interestedareas/eselaw19
http://lens.cos.ufrj.br:8080/eselaw/papers/interestedareas/eselaw19
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116
http://www.w3.org/TR/2001/WD-xptr-20010108
http://www.w3.org/TR/2001/WD-xptr-20010108
http://www.w3.org/DOM/
http://www.eclipse.org
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/

[Ecl07c] Eclipse Test & Performance Tools Platform Project (TPTP)
website. http://www.eclipse.org/tptp/, 2007.

[Eic07] Michael Eichberg. Open Integrated Development and Analysis
Environments. PhD thesis, Technical University Darmstadt,
Department of Computer Science, 2007.

[EKW99] Juergen Ebert, Bernt Kullbach, and Andreas Winter. Query-
ing as an Enabling Technology in Software Reengineering. In
CSMR ’99: Proceedings of the Third European Conference on
Software Maintenance and Reengineering, pages 42–50, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[EMOS04] Michael Eichberg, Mira Mezini, Klaus Ostermann, and
Thorsten Schafer. XIRC: A Kernel for Cross-Artifact Informa-
tion Engineering in Software Development Environments. In
WCRE ’04: Proceedings of the 11th Working Conference on
Reverse Engineering, pages 182–191, Washington, DC, USA,
2004. IEEE Computer Society.

[ETS01] ETSI. Standard ES 201 873-1 V1.1.2 (2001-06), Part 1:
TTCN-3 Core Language. European Telecommunications Stan-
dards Institute (ETSI), Sophia-Antipolis, France, June 2001.

[ETS06a] ETSI. Technical Specification TS 102 027-3 V4.1.1 (2006-07):
SIP ATS & PIXIT; Part 3: Abstract Test Suite (ATS) and
partial Protocol Implementation eXtra Information for Testing
(PIXIT). European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France, 2006.

[ETS06b] ETSI. Technical Specification TS 102 362-3 V1.2.1 (2006-06):
Conformance testing for the Digital Mobile Radio (DMR), Part
3: Abstract Test Suite (ATS). European Telecommunications
Standards Institute (ETSI), Sophia-Antipolis, France, 2006.

[ETS06c] ETSI. Technical Specification TS 102 516 V1.1.1 (2006-04):
IPv6 Core Protocol; Conformance Abstract Test Suite (ATS)
and partial Protocol Implementation eXtra Information for
Testing (PIXIT) proforma. European Telecommunications
Standards Institute (ETSI), Sophia-Antipolis, France, 2006.

[ETS07a] ETSI. Standard ES 201 873-1 V3.2.1 (2007-02), Part 1:
TTCN-3 Core Language. European Telecommunications Stan-
dards Institute (ETSI), Sophia-Antipolis, France, February
2007.

[ETS07b] ETSI. Standard ES 201 873-2 V3.2.1 (2007-02), Part 2:
TTCN-3 Tabular Presentation Format (TFT). European

108

http://www.eclipse.org/tptp/

Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France, February 2007.

[ETS07c] ETSI. Standard ES 201 873-3 V3.2.1 (2007-02), Part 3:
Graphical Presentation Format for TTCN-3 (GFT). Euro-
pean Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France, February 2007.

[ETS07d] ETSI. TTCN-3 Naming Conventions website. http://www.ttcn
3.org/NamingConventions.htm, 2007.

[eXi07] eXist – Open Source native XML Database website. http://

exist.sourceforge.net, 2007.

[Fin07] FindBugs website. http://findbugs.sourceforge.net, 2007.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Exist-
ing Code. Addison-Wesley Longman Publishing, Boston, MA,
USA, 1999.

[Fow03] Martin Fowler. UML Distilled. Addison-Wesley, Boston, MA,
USA, 3rd edition, 2003.

[Fox06] John Fox. Introduction to Software Engineering Design: Pro-
cesses, Principles, and Patterns with UML2. Pearson Educa-
tion, Boston, MA, USA, 2006.

[FP97] Norman Fenton and Shari Lawrence Pfleeger. Software Met-
rics: A Rigorous and Practical Approach. PWS Publishing Co.
Boston, MA, USA, 1997.

[FRC06] Daniela Florescu, Jonathan Robie, and Don Chamberlin.
XQuery Update Facility. World Wide Web Consortium Work-
ing Draft, July 2006. http://www.w3.org/TR/2006/WDxqupdate

20060711.

[FY94] Chin-Feng Fan and Swu Yih. Prescriptive Metrics for Software
Quality Assurance. In Proceedings of the First Asia-Pacific
Software Engineering Conference, pages 430–438. IEEE Com-
puter Society Press, Los Alamitos, CA, USA, 1994.

[GAA01] Yann-Gaël Guéhéneuc and Hervé Albin-Amiot. Using Design
Patterns and Constraints to Automate the Detection and Cor-
rection of Inter-class Design Defects. In TOOLS ’01: Proceed-
ings of the 39th International Conference and Exhibition on
Technology of Object-Oriented Languages and Systems, pages
296–305, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.

109

http://www.ttcn-3.org/NamingConventions.htm
http://www.ttcn-3.org/NamingConventions.htm
http://exist.sourceforge.net
http://exist.sourceforge.net
http://findbugs.sourceforge.net
http://www.w3.org/TR/2006/WD-xqupdate-20060711
http://www.w3.org/TR/2006/WD-xqupdate-20060711

[GDB02] Timothy Grose, Gary Doney, and Stephen Brodsky. Mastering
XMI: Java Programming with XMI, XML, and UML. John
Wiley & Sons, New York, USA, 2002.

[GEJ03] Pieter Van Gorp, Niels Van Eetvelde, and Dirk Janssens. Im-
plementing Refactorings as Graph Rewrite Rules on a Plat-
form Independent Metamodel. Proceedings of the 1st Interna-
tional FUJABA Days, pages 17–24, 2003. http://wwwcs.uni

paderborn.de/cs/fujaba/.

[Gen07] Generic Transformation Language GenTL website. https://

sewiki.iai.unibonn.de/research/gentl/start, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns Elements of Reusable Object-Oriented
Software. Addison-Wesley, Boston, MA, USA, 1995.

[GM05] Steve Gutz and Orlando Marquez. TPTP Static Analysis
Tutorial Part 1 – A Consistent Analysis Interface. http://www.

eclipse.org/tptp/home/documents/process/development/static_

analysis/TPTP_static_analysis_tutorial_part1.html, 2005.

[GM06a] Steve Gutz and Orlando Marquez. TPTP Static Analysis
Tutorial Part 2 – Enhancing Java Code Review. http://www.

eclipse.org/tptp/home/documents/process/development/static_

analysis/TPTP_static_analysis_tutorial_part2.html, 2006.

[GM06b] Steve Gutz and Orlando Marquez. TPTP Static Analysis
Tutorial Part 3 – Integrating Your Own Analysis. http://www.

eclipse.org/tptp/home/documents/process/development/static_

analysis/TPTP_static_analysis_tutorial_part3.html, 2006.

[Gué02] Yann-Gaël Guéhéneuc. Three Musketeers to the Rescue –
Meta-modelling, Logic Programming, and Explanation-based
Constraint Programming for Pattern Description and Detec-
tion. Proceedings of the 1st ASE Workshop on Declarative
Meta-Prorgramming, University of British Columbia, Com-
puter Science Department, 2002.

[Hal77] Maurice Halstead. Elements of Software Science. Elsevier, New
York, USA, 1977.

[Har01] Elliotte Rusty Harold. XML Bible. John Wiley & Sons, New
York, USA, 2nd edition, 2001.

[HM04] Elliotte Rusty Harold and Scott Means. XML in a Nutshell.
O’Reilly Media, Sebastopol, CA, USA, 3rd edition, 2004.

110

http://wwwcs.uni-paderborn.de/cs/fujaba/
http://wwwcs.uni-paderborn.de/cs/fujaba/
https://sewiki.iai.uni-bonn.de/research/gentl/start
https://sewiki.iai.uni-bonn.de/research/gentl/start
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part1.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part1.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part1.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part2.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part2.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part2.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part3.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part3.html
http://www.eclipse.org/tptp/home/documents/process/development/static_analysis/TPTP_static_analysis_tutorial_part3.html

[HP03a] Haruo Hosoya and Benjamin Pierce. Regular Expression Pat-
tern Matching for XML. Journal of Functional Programming,
13(06):961–1004, 2003.

[HP03b] Haruo Hosoya and Benjamin Pierce. XDuce: A Statically
Typed XML Processing Language. ACM Transactions on In-
ternet Technology, 3(2):117–148, 2003.

[HP04] David Hovemeyer and William Pugh. Finding Bugs Is Easy.
ACM SIGPLAN Notices, 39(12):92–106, 2004.

[HVdM06] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. Code-
Quest: Scalable Source Code Queries with Datalog. In Dave
Thomas, editor, ECOOP’06: Proceedings of the 20th European
Conference on Object-Oriented Programming, volume 4067 of
Lecture Notes in Computer Science, pages 2–27, Berlin, Ger-
many, 2006. Springer.

[HWS00] Richard Holt, Andreas Winter, and Andy Schürr. GXL: To-
ward a Standard Exchange Format. In Proceedings of the 7th
Working Conference on Reverse Engineering (WCRE 2000),
pages 162–171. IEEE Computer Society, 2000. http://www.

gupro.de/GXL/.

[Int06] International Software Testing Qualification Board (ISTQB).
Standard Glossary of Terms Used in Software Testing, Version
1.2. June 2006.

[ISO04] ISO/IEC. ISO/IEC Standard No. 9126: Software Engineering,
Product Quality, Parts 1–4. International Organization for
Standardization (ISO) / International Electrotechnical Com-
mission (IEC), Geneva, Switzerland, 2001-2004.

[IT06a] ITU-T. Standard Z.140 (03/2006): Testing and Test Control
Notation version 3 (TTCN-3): Core language. ITU Telecom-
munication Standardization Sector (ITU-T), Geneva, Switzer-
land, 2006.

[IT06b] ITU-T. The Evolution of TTCN. 2006. http://www.itu.int/

ITUT/studygroups/com17/ttcn.html.

[Jac07] The Jackpot Project website. http://jackpot.netbeans.org,
2007.

[JR00] Daniel Jackson and Martin Rinard. Software Analysis: A
Roadmap. In ICSE ’00: Proceedings of the Conference on The
Future of Software Engineering, pages 133–145, New York, NY,
USA, 2000. ACM Press.

111

http://www.gupro.de/GXL/
http://www.gupro.de/GXL/
http://www.itu.int/ITU-T/studygroups/com17/ttcn.html
http://www.itu.int/ITU-T/studygroups/com17/ttcn.html
http://jackpot.netbeans.org

[JRH99] Ian Jacobs, David Raggett, and Arnaud Le Hors. HTML 4.01
specification. World Wide Web Consortium Recommenda-
tion, December 1999. http://www.w3.org/TR/1999/REChtml401

19991224.

[JUn07] JUnit testing framework website. http://www.junit.org, http://
junit.sourceforge.net, 2007.

[Kay07] Michael Kay. XSL Transformations (XSLT) Version 2.0.
World Wide Web Consortium Recommendation, January 2007.
http://www.w3.org/TR/2007/RECxslt2020070123.

[KBSD04] Suraj Kothari, Luke Bishop, Jeremias Sauceda, and Gary
Daugherty. A Pattern-Based Framework for Software Anomaly
Detection. Software Quality Journal, 12(2):99–120, 2004.

[KdMMB96] Kostas Kontogiannis, Renato de Mori, Ettore Merlo, and Mor-
ris Bernstein. Pattern Matching for Clone and Concept Detec-
tion. Applied Categorical Structures, 3(1):77–108, 1996.

[Kem05] Jochen Kemnade. Development of a Semantics-aware Editor
for TTCN-3 as an Eclipse Plug-in. Bachelor’s thesis, Institute
for Informatics, ZFI-BM-2005-19, ISSN 1612-6793, Center for
Informatics, University of Göttingen, 2005.

[Kep04] Stephan Kepser. A Simple Proof for the Turing-Completeness
of XSLT and XQuery. 2004. http://www.idealliance.org/papers/
extreme/proceedings/html/2004/Kepser01/EML2004Kepser01.html.

[Ker05] Joshua Kerievsky. Refactoring to patterns. Addison-Wesley,
Boston, MA, USA, 2005.

[KHR07] Günter Kniesel, Jan Hannemann, and Tobias Rho. A Compar-
ison of Logic-Based Infrastructures for Concern Detection and
Extraction. In LATE ’07: Proceedings of the 3rd Workshop
on Linking Aspect Technology and Evolution, New York, NY,
USA, 2007. ACM Press.

[KMP07] Nicholas Kraft, Brian Malloy, and James Power. An Infras-
tructure to Support Interoperability in Reverse Engineering.
Information and Software Technology, 49(3):292–307, 2007.

[Knu97] Donald Ervin Knuth. The Art of Computer Programming:
Volume 1, Fundamental Algorithms. Addison-Wesley, Boston,
MA, USA, 3 edition, 1997.

[LTBH06] Andrew Layman, Richard Tobin, Tim Bray, and Dave Hollan-
der. Namespaces in XML 1.0 (Second Edition). World Wide

112

http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.junit.org
http://junit.sourceforge.net
http://junit.sourceforge.net
http://www.w3.org/TR/2007/REC-xslt20-20070123
http://www.idealliance.org/papers/extreme/proceedings/html/2004/Kepser01/EML2004Kepser01.html
http://www.idealliance.org/papers/extreme/proceedings/html/2004/Kepser01/EML2004Kepser01.html

Web Consortium Recommendation, August 2006. http://www.

w3.org/TR/2006/RECxmlnames20060816.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification. Addison-Wesley Longman Publishing, Boston,
MA, USA, 2nd edition, 1999.

[MBMB02] Stephen Mellor, Marc Balcer, Stephen Mellor, and Marc Bal-
cer. Executable UML: A Foundation for Model-Driven Archi-
tecture. Addison-Wesley Professional, Boston, MA, USA, 2002.

[McC76] Thomas McCabe. A Complexity Measure. IEEE Transactions
of Software Engineering, 2(4):308–320, 1976.

[MCK02] Jonathan Maletic, Michael Collard, and Huzefa Kagdi. Source
Code Files as Structured Documents. In IWPC ’02: Proceed-
ings of the 10th International Workshop on Program Compre-
hension, pages 289–292, Washington, DC, USA, 2002. IEEE
Computer Society. http://www.sdml.info/projects/srcml/.

[MCK04] Jonathan Maletic, Michael Collard, and Huzefa Kagdi. Lever-
aging XML Technologies in Developing Program Analysis
Tools. In Proceedings of the 4th International Workshop on
Adoption-Centric Software Engineering (ACSE’04) - ICSE’04
Workshop, 2004.

[Mes07] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley, Boston, MA, USA, 2007.

[MFM04] Nabor Mendonça, Leonardo Fonseca, and Paulo Henrique
Maia. Towards Reusable Code Analysis Tools Using Stan-
dard XML Technologies. Anais do I Workshop de Ciên-
cias da Computação e Sistemas da Informação da Região Sul
(WORKCOM-SUL), Palhoça, SC, Maio, 2004. http://inf.

unisul.br/~ines/workcomp/cd/pdfs/2404.pdf.

[MG05] Naouel Moha and Yann-Gaël Guéhéneuc. On the Automatic
Detection and Correction of Software Architectural Defects in
Object-Oriented Designs. In Proceedings of the 6th ECOOP
Workshop on Object-Oriented Reengineering. Universities of
Glasgow and Strathclyde, Glasgow, UK, July 2005.

[MK00] Even Mamas and Kostas Kontogiannis. Towards Portable
Source Code Representations Using XML. In WCRE ’00: Pro-
ceedings of the Seventh Working Conference on Reverse Engi-
neering, pages 172–182, Washington, DC, USA, 2000. IEEE
Computer Society.

113

http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.w3.org/TR/2006/REC-xml-names-20060816
http://www.sdml.info/projects/srcml/
http://inf.unisul.br/~ines/workcomp/cd/pdfs/2404.pdf
http://inf.unisul.br/~ines/workcomp/cd/pdfs/2404.pdf

[MLL05] Michael Martin, Benjamin Livshits, and Monica Lam. Finding
Application Errors and Security Flaws Using PQL: a Program
Query Language. ACM SIGPLAN Notices, 40(10):365–383,
2005.

[MM07] Subramanian Muralidhar and Jim Melton. XML Syntax for
XQuery 1.0 (XQueryX). World Wide Web Consortium Rec-
ommendation, January 2007. http://www.w3.org/TR/2007/REC

xqueryx20070123.

[MMFA04] Nabor Mendonça, Paulo Maia, Leonardo Fonseca, and Rossana
Andrade. Building Flexible Refactoring Tools with XML.
Proceedings of Simpósio Brasileiro de Engenharia de Soft-
ware (SBES 2004), pages 20–22, 2004. http://nabor.mendonca.

googlepages.com/SBES2004paper.pdf.

[MMN02] Gregory McArthur, John Mylopoulos, and Siu Kee Keith Ng.
An Extensible Tool for Source Code Representation Using
XML. In WCRE ’02: Proceedings of the Ninth Working Con-
ference on Reverse Engineering, pages 199–208, Washington,
DC, USA, 2002. IEEE Computer Society.

[MN95] Gail Murphy and David Notkin. Lightweight source model
extraction. In SIGSOFT ’95: Proceedings of the 3rd ACM
SIGSOFT symposium on Foundations of software engineering,
pages 116–127, New York, NY, USA, 1995. ACM Press.

[MOF07] Object Management Group, MetaObject Facility (MOF).
http://www.omg.org/mof/, 2007.

[MRS+07] Ashok Malhotra, Kristoffer Rose, Jérôme Siméon, Mary Fer-
nández, Peter Fankhauser, Denise Draper, Philip Wadler, and
Michael Rys. XQuery 1.0 and XPath 2.0 Formal Semantics.
World Wide Web Consortium Recommendation, January 2007.
http://www.w3.org/TR/2007/RECxquerysemantics20070123.

[MW03] André Marburger and Bernhard Westfechtel. Behavioral Anal-
ysis of Telecommunication Systems by Graph Transformations.
In John Pfaltz, Manfred Nagl, and Boris Böhlen, editors, AG-
TIVE, volume 3062 of Lecture Notes in Computer Science,
pages 202–219. Springer, 2003.

[MWM07] Ashok Malhotra, Norman Walsh, and Jim Melton. XQuery
1.0 and XPath 2.0 Functions and Operators. World Wide Web
Consortium Recommendation, January 2007. http://www.w3.

org/TR/2007/RECxpathfunctions20070123.

114

http://www.w3.org/TR/2007/REC-xqueryx-20070123
http://www.w3.org/TR/2007/REC-xqueryx-20070123
http://nabor.mendonca.googlepages.com/SBES2004-paper.pdf
http://nabor.mendonca.googlepages.com/SBES2004-paper.pdf
http://www.omg.org/mof/
http://www.w3.org/TR/2007/REC-xquery-semantics-20070123
http://www.w3.org/TR/2007/REC-xpath-functions-20070123
http://www.w3.org/TR/2007/REC-xpath-functions-20070123

[MY04] Katsuhisa Maruyama and Shinichiro Yamamoto. A CASE Tool
Platform Using an XML Representation of Java Source Code.
In SCAM ’04: Proceedings of the Fourth IEEE International
Workshop on Source Code Analysis and Manipulation, pages
158–167, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[NB07] Helmut Neukirchen and Martin Bisanz. Utilising Code Smells
to Detect Quality Problems in TTCN-3 Test Suites. In Pro-
ceedings of the 19th IFIP International Conference on Testing
of Communicating Systems and 7th International Workshop on
Formal Approaches to Testing of Software (TestCom/FATES
2007), June 26-29 2007, Tallinn, Estonia. Lecture Notes in
Computer Science 4581, pages 228–243. Springer, Heidelberg,
Germany, June 2007.

[Net07] NetBeans IDE website. http://www.netbeans.org, 2007.

[NWW01] Jörg Niere, Jörg Wadsack, and Lothar Wendehals. Design
Pattern Recovery Based on Source Code Analysis with Fuzzy
Logic. Technical report, Technical Report tr-ri-01-222, Univer-
sity of Paderborn, Germany, 2001.

[NZG08] Helmut Neukirchen, Benjamin Zeiss, and Jens Grabowski. An
Approach to Quality Engineering of TTCN-3 Test Specifica-
tions. International Journal on Software Tools for Technology
Transfer (STTT), 2008. to appear.

[Pan03] Ravindranath Pandian. Software Metrics: A Guide to Plan-
ning, Analysis, and Application. Auerbach, CRC Press LLC,
Boca Raton, USA, 2003.

[Pen02] Thomas Pender. UML Weekend Crash Course. Wiley Pub-
lishing, Indianapolis, USA, 2002.

[Per07] Perl website. http://perl.com, 2007.

[PMD07] PMD website. http://pmd.sourceforge.net, 2007.

[PP94a] Santanu Paul and Atul Prakash. A Framework for Source Code
Search Using Program Patterns. IEEE Transactions on Soft-
ware Engineering, 20(6):463–475, 1994.

[PP94b] Santanu Paul and Atul Prakash. Supporting Queries on Source
Code: A Formal Framework. International Journal of Software
Engineering and Knowledge Engineering, 4(3):325–348, 1994.

115

http://www.netbeans.org
http://perl.com
http://pmd.sourceforge.net

[PP96] Santanu Paul and Ataul Prakash. A Query Algebra for Pro-
gram Databases. IEEE Transactions on Software Engineering,
22(3):202–217, 1996.

[PQL07] PQL: Program Query Language website. http://pql.

sourceforge.net, 2007.

[Pre05] Roger Pressman. Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill Higher Education, New York, USA, 6th
edition, 2005.

[QP06] Terry Quatrani and Jim Palistrant. Visual Modeling with IBM
Rational Software Architect and UML. Pearson Education,
Boston, MA, USA, 2006.

[RSF+07] Jonathan Robie, Jérôme Siméon, Mary Fernández, Don Cham-
berlin, Daniela Florescu, and Scott Boag. XQuery 1.0: An
XML Query Language. World Wide Web Consortium Rec-
ommendation, January 2007. http://www.w3.org/TR/2007/REC

xquery20070123.

[SAK07] Daniel Speicher, Malte Appeltauer, and Günter Kniesel. Code
Analyses for Refactoring by Source Code Patterns and Logical
Queries. In Proceedings of the 1st Workshop on Refactoring
Tools held in conjunction with 21st European Conference on
Object-Oriented Programming (ECOOP 2007), Berlin. (Edi-
tors: Danny Dig, Michael Cebulla). Technical Report No 2007-
8, Technical University Berlin, ISSN 1436-9915, 2007.

[SAX04] Simple API for XML (SAX) website. http://www.saxproject.

org, 2004.

[Sax07] Saxon – The XSLT and XQuery Processor website. http://

saxon.sourceforge.net, 2007.

[SD04] Ina Schieferdecker and George Din. A Meta-Model for
TTCN-3. In Manuel Núñez, Zakaria Maamar, Fernando
Pelayo, Key Pousttchi, and Fernando Rubio, editors, Applying
Formal Methods: Testing, Performance, and M/E-Commerce:
FORTE 2004 Workshops The FormEMC, EPEW, ITM, vol-
ume 3236 of Lecture Notes in Computer Science, pages 366–
379. Springer, 2004.

[She05] Saad Inaam Sheikh. Detecting Bad Code Smells for Refactor-
ing by Using Historical Data of Source Control System. Mas-
ter’s thesis, National University of Computer and Emerging
Sciences, Lahore, Pakistan, 2005.

116

http://pql.sourceforge.net
http://pql.sourceforge.net
http://www.w3.org/TR/2007/REC-xquery-20070123
http://www.w3.org/TR/2007/REC-xquery-20070123
http://www.saxproject.org
http://www.saxproject.org
http://saxon.sourceforge.net
http://saxon.sourceforge.net

[Sli05] Stefan Slinger. Code Smell Detection in Eclipse. Master’s
thesis, University of Technology, Delft, Netherlands, 2005.

[Som04] Ian Sommerville. Software Engineering. Pearson Education,
Harlow, England, UK, 7th edition, 2004.

[SSL01] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Met-
rics Based Refactoring. In CSMR ’01: Proceedings of the Fifth
European Conference on Software Maintenance and Reengi-
neering, pages 30–38, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[ST03] Ed Seidewitz and InteliData Technologies. What Models Mean.
IEEE Software, 20(5):26–32, 2003.

[StA04] Streaming API for XML (StAX) 1.0 Final Release. http://jcp.

org/en/jsr/detail?id=173, 2004.

[SWR07] Stephan Schulz, Anthony Wiles, and Steve Randall. TPLan-A
Notation for Expressing Test Purposes. In Alexandre Petrenko,
Margus Veanes, Jan Tretmans, and Wolfgang Grieskamp, edi-
tors, TestCom/FATES, volume 4581 of Lecture Notes in Com-
puter Science, pages 292–304. Springer, 2007.

[Teo98] Toby Teorey. Database Modeling and Design. Morgan Kauf-
mann Publishers, San Francisco, CA, USA, 3rd edition, 1998.

[TM03] Tom Tourwé and Tom Mens. Identifying Refactoring Opportu-
nities Using Logic Meta Programming. In CSMR ’03: Proceed-
ings of the Seventh European Conference on Software Main-
tenance and Reengineering, pages 91–100, Washington, DC,
USA, 2003. IEEE Computer Society.

[TQL03] TQL website. http://www.di.unipi.it/~ghelli/tql/, 2003.

[TRe07] TRex – The TTCN-3 Refactoring and Metrics Tool website.
http://www.trex.informatik.unigoettingen.de, 2007.

[TSDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and
Oscar Nierstrasz. A Meta-Model for Language-Independent
Refactoring. In Proceedings of the International Workshop
on Principles of Software Evolution (IWPSE), pages 157–169.
IEEE Computer Society Press, 2000.

[TyR06] TyRuBa website. http://tyruba.sourceforge.net, 2006.

[UML07] Object Management Group, Unified Modeling Language
(UML), version 2.1.1. http://www.omg.org/technology/documents/
formal/uml.htm, 2007.

117

http://jcp.org/en/jsr/detail?id=173
http://jcp.org/en/jsr/detail?id=173
http://www.di.unipi.it/~ghelli/tql/
http://www.trex.informatik.uni-goettingen.de
http://tyruba.sourceforge.net
http://www.omg.org/technology/documents/formal/uml.htm
http://www.omg.org/technology/documents/formal/uml.htm

[vEM02] Eva van Emden and Leon Moonen. Java Quality Assurance
by Detecting Code Smells. In WCRE ’02: Proceedings of the
Ninth Working Conference on Reverse Engineering, page 97,
Washington, DC, USA, 2002. IEEE Computer Society.

[vMV95] Anneliese von Mayrhauser and Marie Vans. Program Compre-
hension During Software Maintenance and Evolution. IEEE
Computer, 28(8):44–55, 1995.

[Vol06] Kris De Volder. JQuery: A Generic Code Browser with a
Declarative Configuration Language. volume 3819 of Lecture
Notes in Computer Science, pages 88–102. Springer, 2006.

[Wal07] Priscilla Walmsley. XQuery. O’Reilly Media, Sebastopol, CA,
USA, 2007.

[WDT+05] Colin Willcock, Thomas Deiß, Stephan Tobies, Stefan Keil,
Federico Engler, and Stephan Schulz. An Introduction to
TTCN-3. John Wiley & Sons, Ltd, Chichester, UK, 2005.

[Wei05] Melanie Weis. Fuzzy Duplicate Detection on XML
Data. 2005. Humboldt University, Berlin, Ger-
many, http://www.hpi.unipotsdam.de/fileadmin/hpi/FG_Naumann/
publications/VLDB05Phd_xmloid.pdf.

[WF04] Priscilla Walmsley and David Fallside. XML Schema Part 0:
Primer Second Edition. World Wide Web Consortium Rec-
ommendation, October 2004. http://www.w3.org/TR/2004/REC

xmlschema020041028.

[WMN+07] Norman Walsh, Ashok Malhotra, Marton Nagy, Jonathan
Marsh, and Mary Fernández. XQuery 1.0 and XPath 2.0 Data
Model (XDM). World Wide Web Consortium Recommen-
dation, January 2007. http://www.w3.org/TR/2007/RECxpath

datamodel20070123.

[WP05] Bartosz Walter and Blazej Pietrzak. Multi-criteria Detection of
Bad Smells in Code with UTA Method. In Hubert Baumeister,
Michele Marchesi, and Mike Holcombe, editors, XP, volume
3556 of Lecture Notes in Computer Science, pages 154–161.
Springer, 2005.

[XDu05] XDuce website. http://xduce.sourceforge.net, 2005.

[XMI05] Object Management Group, MOF 2.0/XMI Mapping Speci-
fication, v2.1. http://www.omg.org/technology/documents/formal/

xmi.htm, 2005.

118

http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_Naumann/publications/VLDB05Phd_xmloid.pdf
http://www.hpi.uni-potsdam.de/fileadmin/hpi/FG_Naumann/publications/VLDB05Phd_xmloid.pdf
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028
http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123
http://www.w3.org/TR/2007/REC-xpath-datamodel-20070123
http://xduce.sourceforge.net
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm

[XQ206] XQ2XML website. http://monet.nag.co.uk/xq2xml/, 2006.

[XQJ07] XQuery API for Java (XQJ) 0.9 Public Review Draft. http://

jcp.org/en/jsr/detail?id=225, 2007.

[XUp00] XUpdate Working Draft 2000-09-14. http://xmldborg.

sourceforge.net/xupdate/xupdatewd.html, 2000.

[Zei06] Benjamin Zeiss. A Refactoring Tool for TTCN-3. Master’s
thesis, Institute for Informatics, ZFI-BM-2006-05, ISSN 1612-
6793, Center for Informatics, University of Göttingen, March
2006.

[ZK01] Ying Zou and Kostas Kontogiannis. Towards a Portable XML-
based Source Code Representation. In Proceedings of the In-
ternational Conference on Software Engineering (ICSE) 2001
Workshops of XML Technologies and Software Engineering
(XSE), 2001. http://post.queensu.ca/~zouy/files/xse2001.pdf.

[ZNG+06] Benjamin Zeiss, Helmut Neukirchen, Jens Grabowski, Dominic
Evans, and Paul Baker. Refactoring and Metrics for TTCN-3
Test Suites. In System Analysis and Modeling: Language Pro-
files. 5th International Workshop, SAM 2006, Kaiserslautern,
Germany, May 31–June 2, 2006, Revised Selected Papers, Lec-
ture Notes in Computer Science 4320, pages 148–165. Springer,
Heidelberg, Germany, December 2006.

All URIs mentioned in this thesis have been verified on the 2007-10-24.
Copies of the pages can be requested by sending an email to jens@noedler.de.

119

http://monet.nag.co.uk/xq2xml/
http://jcp.org/en/jsr/detail?id=225
http://jcp.org/en/jsr/detail?id=225
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://xmldb-org.sourceforge.net/xupdate/xupdate-wd.html
http://post.queensu.ca/~zouy/files/xse-2001.pdf

Appendix A

XQuery Source Codes

A.1 XQuery Facade Functions

1 (:::::::::::::::::::::::: generic facade functions :::::::::::::::::::::::::::)
2
3 declare function xfacade:getroot()
4 {
5 $xfacade:root
6 };
7
8 declare function xfacade:getfiles($n as node()*)
9 {

10 xfacade:getnode($n)//TTCN3File
11 };
12
13 declare function xfacade:getmodules($n as node()*)
14 {
15 xfacade:getnode($n)//TTCN3Module
16 };
17
18 declare function xfacade:getblocks($n as node()*)
19 {
20 xfacade:getnode($n)//StatementBlock
21 };
22
23 declare function xfacade:getparentblock($n as node()*)
24 {
25 ($n/ancestor::StatementBlock)[last()]
26 };
27
28 declare function xfacade:getfunctions($n as node()*)
29 {
30 xfacade:getnode($n)//FunctionDef
31 };
32
33 declare function xfacade:getunions($n)
34 {
35 xfacade:getnode($n)//UnionDef
36 };
37
38 declare function xfacade:gettypedefs($n)
39 {
40 xfacade:getnode($n)//TypeDef
41 };

120

42
43 declare function xfacade:getconstdefs($n)
44 {
45 xfacade:getnode($n)//ConstDef
46 };
47
48 declare function xfacade:isconstvalue($n)
49 {
50 $n/ancestor::ConstDef
51 };
52
53 declare function xfacade:getparameters($n as node()*)
54 {
55 xfacade:getnode($n)//FormalValuePar
56 };
57
58 declare function xfacade:getstatements($n as node()*)
59 {
60 xfacade:getnode($n)//FunctionStatementOrDef
61 };
62
63 declare function xfacade:getifconstructs($n as node()*)
64 {
65 xfacade:getnode($n)//ConditionalConstruct
66 };
67
68 declare function xfacade:getifbranch($n as element(ConditionalConstruct)*)
69 {
70 $n/StatementBlock
71 };
72
73 declare function xfacade:getelsebranch($n as element(ConditionalConstruct)*)
74 {
75 $n/ElseClause/StatementBlock
76 };
77
78 declare function xfacade:getelseifbranch($n as element(ConditionalConstruct)*)
79 {
80 $n/ElseIfClause/StatementBlock
81 };
82
83 declare function xfacade:getgotos($n as node()*)
84 {
85 xfacade:getnode($n)//GotoStatement
86 };
87
88 (: gets the next identifier that is located on the descendant axis. hence, the
89 search for the identifier in the tree is towards the leaves. that’s up! :)
90 declare function xfacade:getidentifierup($n as node()*)
91 {
92 (xfacade:getnode($n)//Identifier)[1]
93 };
94
95 (: gets the next identifier that is located on the preceding axis. hence, the
96 search for the identifier in the tree is towards the root. that’s down! :)
97 declare function xfacade:getidentifierdown($n as node()*)
98 {
99 (xfacade:getnode($n)/preceding::Identifier)[last()]

100 };
101
102
103
104

121

105 declare function xfacade:getidentifiers($n as node()*)
106 {
107 xfacade:getnode($n)//Identifier
108 };
109
110 declare function xfacade:getrepeatops($n as node()*)
111 {
112 xfacade:getnode($n)//RepeatStatement
113 };
114
115 declare function xfacade:getlogops($n as node()*)
116 {
117 xfacade:getnode($n)//LogStatement
118 };
119
120 declare function xfacade:getintegervalues($n as node()*)
121 {
122 xfacade:getnode($n)//IntegerValue
123 };
124
125 declare function xfacade:getfloatvalues($n as node()*)
126 {
127 xfacade:getnode($n)//FloatValue
128 };
129
130 declare function xfacade:getvariablereferences($n as node()*)
131 {
132 xfacade:getnode($n)//VariableRef
133 };
134
135 declare function xfacade:getfilename($n as node()*)
136 {
137 (: try to get the attribute form the TTCN3File element :)
138 let $filename := $n/ancestor::TTCN3File/@filename
139 return
140 if (exists($filename)) then
141 $filename
142 else
143 (: if the attr was not found, search all elements for the attribute.
144 this is not done in the first place for reasons of speed. :)
145 ($n//@filename)[1]
146 };
147
148 declare function xfacade:getline($n as node()*)
149 {
150 $n/@line
151 };
152
153 declare function xfacade:getlines($n as node()*)
154 {
155 $n//@line
156 };
157
158 declare function xfacade:getlineend($n as node()*)
159 {
160 $n/@lineend
161 };
162
163 declare function xfacade:getlineends($n as node()*)
164 {
165 $n//@lineend
166 };
167

122

168 declare function xfacade:getoffset($n as node()*)
169 {
170 $n/@offset
171 };
172
173 declare function xfacade:getoffsetend($n as node()*)
174 {
175 $n/@offsetend
176 };
177
178
179 (:::::::::::::::::::: TTCN3specific facade functions :::::::::::::::::::::::)
180
181 declare function xfacade:gettestcases($n)
182 {
183 xfacade:getnode($n)//TestcaseDef
184 };
185
186 declare function xfacade:getexternalfunctions($n)
187 {
188 xfacade:getnode($n)//ExtFunctionDef
189 };
190
191 declare function xfacade:getcomponents($n)
192 {
193 xfacade:getnode($n)//ComponentDef
194 };
195
196 declare function xfacade:getsignatures($n)
197 {
198 xfacade:getnode($n)//SignatureDef
199 };
200
201 declare function xfacade:getaltsteps($n)
202 {
203 xfacade:getnode($n)//AltstepDef
204 };
205
206 declare function xfacade:getelsestatements($n as node()*)
207 {
208 xfacade:getnode($n)//ElseStatement
209 };
210
211 declare function xfacade:getdefaults($n as node()*)
212 {
213 xfacade:getnode($n)[*//PredefinedType[. = "default"]]
214 };
215
216 declare function xfacade:getactivateops($n as node()*)
217 {
218 xfacade:getnode($n)//ActivateOp
219 };
220
221 declare function xfacade:getdeactivateops($n as node()*)
222 {
223 xfacade:getnode($n)//DeactivateStatement
224 };
225
226 declare function xfacade:getactivatebyname($n, $name)
227 {
228 xfacade:getidentifierdown(xfacade:getactivateops($n))[. = $name]
229 };
230

123

231 declare function xfacade:getdeactivatebyname($n, $name)
232 {
233 xfacade:getnode($n)//DeactivateStatement[VariableRef/Identifier = $name]
234 };
235
236 declare function xfacade:getaltconstructs($n as node()*)
237 {
238 xfacade:getnode($n)//AltConstruct
239 };
240
241 declare function xfacade:getaltbranches($n as node()*)
242 {
243 xfacade:getnode($n)//GuardStatement
244 };
245
246 declare function xfacade:gettemplates($n as node()*)
247 {
248 xfacade:getnode($n)//TemplateDef
249 };
250
251 declare function xfacade:istemplatefieldvalue($n)
252 {
253 $n/ancestor::TemplateDef
254 };
255
256 declare function xfacade:gettemplateinnerbodies($n as node()*)
257 {
258 xfacade:getnode($n)/TemplateBody//TemplateBody
259 };
260
261 declare function xfacade:gettemplatebody($n as node()*)
262 {
263 (xfacade:getnode($n)//TemplateBody)[1]
264 };
265
266 declare function xfacade:gettemplatefields($n as node()*)
267 {
268 xfacade:getnode($n)//FieldSpec
269 };
270
271 declare function xfacade:gettemplateidentifier($n as element(TemplateDef))
272 {
273 $n/BaseTemplate/Identifier
274 };
275
276 declare function xfacade:getidentifieresofdeactivateopssamelevel(
277 $n as node()*)
278 {
279 $n/followingsibling::FunctionStatementOrDef/
280 FunctionStatement/BehaviourStatements/DeactivateStatement//Identifier
281 };
282
283 declare function xfacade:getsetverdicts($n as node()*)
284 {
285 xfacade:getnode($n)//SetLocalVerdict
286 };
287
288 declare function xfacade:getverdicttype($n as node()*)
289 {
290 xfacade:getnode($n)//VerdictTypeValue
291 };
292
293

124

294 declare function xfacade:verdictisfail($n as element(VerdictTypeValue)*)
295 {
296 $n = "Fail"
297 };
298
299 declare function xfacade:verdictisinconc($n as element(VerdictTypeValue)*)
300 {
301 $n = "Inconc"
302 };
303
304 declare function xfacade:getrunson($n as node()*)
305 {
306 xfacade:getnode($n)//RunsOnSpec
307 };
308
309 declare function xfacade:gettimers($n as node()*)
310 {
311 xfacade:getnode($n)//TimerInstance
312 };
313
314 (: returns complete variable declarations like "var integer i, j;" :)
315 declare function xfacade:getvars($n as node()*)
316 {
317 xfacade:getnode($n)//VarInstance
318 };
319
320 (: returns single variables like "i" of a declarations "var integer i, j;" :)
321 declare function xfacade:getsinglevars($n as node()*)
322 {
323 xfacade:getnode($n)//SingleVarInstance
324 };
325
326 declare function xfacade:gettype($n as node()*)
327 {
328 xfacade:getnode($n)//Type
329 };
330
331 declare function xfacade:getcreateops($n as node()*)
332 {
333 xfacade:getnode($n)//CreateOp
334 };
335
336 declare function xfacade:getstartops($n as node()*)
337 {
338 xfacade:getnode($n)//ConfigurationStatements[. = "StartTCStatement"]
339 };
340
341 declare function xfacade:getstopops($n as node()*)
342 {
343 xfacade:getnode($n)//ConfigurationStatements[. = "StopTCStatement"]
344 };
345
346 declare function xfacade:isstartop($n)
347 {
348 $n/ancestor::StartTCStatement
349 };

125

A.2 Generic Smell Detection Functions

1 declare function xsmell:duplicatecodeinconditionals(
2 $comparemode as xs:integer) as node()*
3 {
4 for $scope in xfacade:getblocks(())
5 let $tocompare := (
6 let $if := xfacade:getifconstructs($scope)
7 return (
8 xfacade:getifbranch($if) |
9 xfacade:getelseifbranch($if) |

10 xfacade:getelsebranch($if)
11)
12)
13
14 let $duplicates := xlib:findduplicates($tocompare, $comparemode)
15 let $duplicates := xfacade:addfilenameattributes($duplicates)
16 return xlib:groupduplicates($duplicates, $comparemode)
17 };
18
19
20 declare function xsmell:nestedconditional() as node()*
21 {
22 for $ifconstruct in xfacade:getifconstructs(())
23 let $ifbranch := xfacade:getifbranch($ifconstruct)
24 let $elsebranch := xfacade:getelsebranch($ifconstruct)
25 (: count of the statements contained in the if/else branches :)
26 let $ifcount := count(xfacade:getstatements($ifbranch))
27 let $elsecount := count(xfacade:getstatements($elsebranch))
28 (: only proceed if the if construct contains an else branch :)
29 where $elsebranch
30 return
31 (: skip if constructs where both branches contain only one statement :)
32 if ($ifcount = 1 and $elsecount = 1) then
33 ()
34 (: return those branches containing one statement :)
35 else if ($ifcount = 1) then
36 $ifbranch
37 else if ($elsecount = 1) then
38 $elsebranch
39 else
40 ()
41 };
42
43
44 declare function xsmell:goto() as node()*
45 {
46 xfacade:getgotos(())
47 };
48
49
50 declare function xsmell:longstatementblock($floor as xs:integer) as node()*
51 {
52 (: check not only statement blocks of functions, test cases or altsteps
53 as the smell catalog demands, but any statement block :)
54 for $block in xfacade:getblocks(())
55 let $blocklength := xfacade:getlineend($block) xfacade:getline($block)
56 where $blocklength + 1 >= $floor
57 return $block
58 };
59
60

126

61 declare function xsmell:magicnumber($ignore as item()*) as node()*
62 {
63 for $value in (xfacade:getintegervalues(()), xfacade:getfloatvalues(()))
64 (: skip constants and template field values :)
65 where not(xfacade:isconstvalue($value))
66 and not(xfacade:istemplatefieldvalue($value))
67 (: skip values found in the ignore list :)
68 and not(functx:isvalueinsequence($value, $ignore))
69 return $value
70 };
71
72
73 declare function xsmell:longparameterlist($floor as xs:integer) as node()*
74 {
75 (: not only functions can be parameterized but also many other constructs :)
76 for $parametrizableconstruct in
77 (
78 xfacade:getfunctions(()),
79 xfacade:gettemplates(()),
80 xfacade:gettestcases(()),
81 xfacade:gettypedefs(()),
82 xfacade:getexternalfunctions(()),
83 xfacade:getsignatures(()),
84 xfacade:getaltsteps(())
85)
86 let $parameters := xfacade:getparameters($parametrizableconstruct)
87 let $numberofparameters := count($parameters)
88 where $numberofparameters >= $floor
89 return ($parametrizableconstruct, xlib:returnvalue($numberofparameters))
90 };

A.3 Smell Detection Functions for TTCN-3

1 declare function xsmell:duplicatealtbranches($comparemode as xs:integer)
2 as node()*
3 {
4 for $scope in (xfacade:getaltsteps(()), xfacade:getaltconstructs(()))
5 let $tocompare := xfacade:getaltbranches($scope)
6 let $duplicates := xlib:findduplicates($tocompare, $comparemode)
7 let $duplicates := xfacade:addfilenameattributes($duplicates)
8
9 return xlib:groupduplicates($duplicates, $comparemode)
10 };
11
12
13 declare function xsmell:unreachabledefault() as node()*
14 {
15 for $block in xfacade:getblocks(())[xfacade:getdefaults(.)]
16 return
17 let $alt := xfacade:getaltconstructs($block)
18 let $else := (xfacade:getelsestatements($alt))[1]
19 for $activate in xfacade:getactivateops($block)
20 for $deactivate in xfacade:getdeactivateops($block)
21 (: else statement must be surrounded by activate and deactivate :)
22 where $activate << $else and $else << $deactivate
23 (: identifieres of the activate and deactivate must be the same :)
24 and xfacade:getidentifierdown($activate) eq
25 xfacade:getidentifierup($deactivate)
26 return ($activate, xlib:causedby($else))
27 };

127

28 declare function xsmell:fullyparameterizedtemplate() as node()*
29 {
30 for $template in xfacade:gettemplates(())
31 let $defined := data(xfacade:getidentifiers(
32 xfacade:getparameters($template)))
33 let $used := data(xfacade:getidentifiers(
34 xfacade:gettemplateinnerbodies($template)))
35 where count($defined) > 0
36 and count($defined) = count(xfacade:gettemplatefields($template))
37 and deepequal($defined, $used)
38 return $template
39 };
40
41
42 declare function xsmell:missingdeactivation() as node()*
43 {
44 for $block in xfacade:getblocks(())
45 let $activate := xfacade:getactivateops($block)
46 where not(xfacade:getdeactivateops($block))
47 return $activate
48 };
49
50
51 declare function xsmell:missingactivation() as node()*
52 {
53 for $block in xfacade:getblocks(())
54 let $deactivate := xfacade:getdeactivateops($block)
55 where not(xfacade:getactivateops($block))
56 return $deactivate
57 };
58
59
60 declare function xsmell:deactivationotherlevel() as node()*
61 {
62 for $block in xfacade:getblocks(())
63 for $statement in xfacade:getstatements($block)
64 for $default in xfacade:getdefaults($statement)
65 where $default
66 return
67 let $defaultname := xfacade:getidentifierup($default)
68 let $activate := xfacade:getactivatebyname($block, $defaultname)
69 let $deactivate := xfacade:getdeactivatebyname($block, $defaultname)
70 let $deactivatenames :=
71 xfacade:getidentifieresofdeactivateopssamelevel($default)
72 (: the default must be:
73 activated and deactivated
74 deactivated at another level as its the declaration :)
75 where $activate
76 and $deactivate
77 and not($deactivatenames = $defaultname)
78 return $deactivate
79 };
80
81
82 declare function xsmell:missingverdict($skiptestcases as xs:boolean)
83 as node()*
84 {
85 for $testcase in xfacade:gettestcases(())
86 return
87 (: return test cases without any setverdict call :)
88 if (not(xfacade:getsetverdicts($testcase))) then
89 if ($skiptestcases) then
90 ()

128

91 else
92 $testcase
93 else
94 (: return alt guards without any setverdict call :)
95 for $altguard in xfacade:getaltbranches($testcase)
96 where not(xfacade:getsetverdicts($altguard))
97 (: skip alt guards which call repeat() as no verdict is required :)
98 and not(xfacade:getrepeatops($altguard))
99 return $altguard

100 };
101
102
103 declare function xsmell:missinglog() as node()*
104 {
105 for $verdict in xfacade:getsetverdicts(())
106 let $verdicttype := xfacade:getverdicttype($verdict)
107 let $parentblock := xfacade:getparentblock($verdict)
108 where not(xfacade:getlogops($parentblock))
109 and (xfacade:verdictisfail($verdicttype)
110 or xfacade:verdictisinconc($verdicttype))
111 return $verdict
112 };
113
114
115 declare function xsmell:stopinfunction($skiprunson as xs:boolean)
116 as node()*
117 {
118 for $func in xfacade:getfunctions(())
119 let $stop := xfacade:getstopops($func)
120 where $stop
121 return
122 if ($skiprunson and xfacade:getrunson($func)) then
123 ()
124 else
125 $stop
126 };
127
128
129 declare function xsmell:shorttemplate($floor as xs:integer)
130 as node()*
131 {
132 for $template in xfacade:gettemplates(())
133 let $templatebody := xfacade:gettemplatebody($template)
134 let $numberofchars :=
135 xfacade:getoffsetend($templatebody) xfacade:getoffset($templatebody)
136 where $numberofchars <= $floor
137 return $template
138 };
139
140
141 declare function xsmell:shorttemplate2($floor as xs:integer)
142 as node()*
143 {
144 for $template in xfacade:gettemplates(())
145 where count(xfacade:gettemplatefields($template)) <= $floor
146 return $template
147 };
148
149
150 declare function xsmell:idleptc() as node()*
151 {
152 (: check for each variable declaration if it’s of the type component :)
153 for $var in xfacade:getvars(())

129

154 for $comp in xfacade:getcomponents(())
155 where xfacade:getidentifierup($comp) =
156 xfacade:getidentifierup(xfacade:gettype($var))
157 return
158 (: get component’s variable name, surrounding block, and references :)
159 let $varname := xfacade:getidentifierup(xfacade:getsinglevars($var))
160 let $block := xfacade:getparentblock($var)
161 let $references :=
162 xfacade:getvariablereferences($block)
163 [xfacade:getidentifierup(.) = $varname]
164 return
165 (: no references of this component found? that smells! :)
166 if (empty($references)) then
167 $var
168 (: report an idle ptc, if the create operation is called
169 but the start operation is never called :)
170 else if (
171 xfacade:getcreateops($block)
172 [xfacade:getidentifierdown(.) = $varname]
173 and
174 (every $r in $references satisfies not(xfacade:isstartop($r))))
175 then
176 $var
177 else
178 ()
179 };
180
181
182 declare function xsmell:singulartemplatereference() as node()*
183 {
184 for $template in xfacade:gettemplates(())
185 let $templatereferences := xfacade:gettemplatereferences($template)
186 where $templatereferences = 1
187 return $template
188 };
189
190
191 declare function xsmell:singularcomponentelementreference() as node()*
192 {
193 for $component in xfacade:getcomponents(())
194 where xfacade:getcomponentreferences($component) > 1
195 (: check each timer, var, and const if it referenced only once :)
196 return (
197 for $timer in xfacade:gettimers($component)
198 where xfacade:gettimerreferences($timer) = 1
199 return $timer,
200 for $var in xfacade:getsinglevars($component)
201 where xfacade:getvarreferences($var) = 1
202 return $var,
203 for $const in xfacade:getconstdefs($component)
204 where xfacade:getconstreferences($const) = 1
205 return $const
206)
207 };

130

Appendix B

Contents of the CD-ROM

The CD-ROM which is attached to the print version of this thesis contains:

• a digital PDF version of this thesis and

• the source codes of TRex and the XQuery-based Analysis Framework (XAF)
taken from the Subversion repository (branch trunk) of TRex which is located
at http://www.trex.informatik.unigoettingen.de/svn/trex/.

131

http://www.trex.informatik.uni-goettingen.de/svn/trex/

	1 Introduction
	1.1 Structure of this Thesis

	2 Foundations
	2.1 Patterns in Software Artefacts
	2.2 TTCN-3 Testing Language
	2.3 XML Technologies
	2.4 Representations of Software Artefacts

	3 Related Work
	3.1 Source Code Metrics
	3.2 Regular Expressions
	3.3 Logic Programming
	3.4 Domain-Specific Languages
	3.5 XML-based Approaches
	3.6 Other Common Approaches
	3.7 Summary and Discussion

	4 Requirements and Design
	4.1 Requirements for a Software Analysis Framework
	4.2 Design: A Layered and Extensible Architecture
	4.3 XML for the Representation of Software Artefacts
	4.4 XQuery for the Facade Layer and Pattern Description
	4.5 Discussion of this Approach

	5 Implementation and Test
	5.1 Underlying Software Technologies
	5.2 Alliances of Java and XQuery
	5.3 Conversion of TTCN-3 Source Code to XML
	5.4 XQuery Facade Layer for TTCN-3
	5.5 XQuery Pattern Description of Bad Smells
	5.6 Integration into TRex
	5.7 User-Defined Queries
	5.8 Tests for the Implementation
	5.9 Discussion

	6 Application and Extension
	6.1 Detection of Bad Smells in TTCN-3 Test Suites
	6.2 Extension of the Framework to New Analysis Targets
	6.3 Extension of the Framework to New Types of Patterns

	7 Summary and Outlook
	Abbreviations and Acronyms
	Bibliography
	A XQuery Source Codes
	A.1 XQuery Facade Functions
	A.2 Generic Smell Detection Functions
	A.3 Smell Detection Functions for TTCN-3

	B Contents of the CD-ROM

