
Adressing Problems with External Validity of Repository
Mining Studies Through a Smart Data Platform

Fabian Trautsch, Steffen Herbold, Philip Makedonski, Jens Grabowski
Institute for Computer Science, Georg-August-Universität Göttingen, Germany
{trautsch,herbold,makedonski,grabowski}@cs.uni-goettingen.de

ABSTRACT
Research in software repository mining has grown consid-
erably the last decade. Due to the data-driven nature of
this venue of investigation, we identified several problems
within the current state-of-the-art that pose a threat to the
external validity of results. The heavy re-use of data sets
in many studies may invalidate the results in case problems
with the data itself are identified. Moreover, for many stud-
ies data and/or the implementations are not available, which
hinders a replication of the results and, thereby, decreases
the comparability between studies. Even if all information
about the studies is available, the diversity of the used tool-
ing can make their replication even then very hard. Within
this paper, we discuss a potential solution to these problems
through a cloud-based platform that integrates data collec-
tion and analytics. We created the prototype SmartSHARK
that implements our approach. Using SmartSHARK, we
collected data from several projects and created different
analytic examples. Within this article, we present Smart-
SHARK and discuss our experiences regarding the use of
SmartSHARK and the mentioned problems.

CCS Concepts
•Software and its engineering → Software evolution;
•Information systems → Data mining;

Keywords
software mining, software analytics, smart data

1. INTRODUCTION
During the last decade, the collection of data from soft-

ware repositories and the subsequent analysis of the data
to perform software analytics became a highly topical re-
search topic that spawned hundreds of publications. We
define software analytics as data analytics applied in the
domain of software development to gain insights into the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR’16, May 14-15, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4186-8/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2901739.2901753

software development process and support the associated de-
cision making process. This includes defect prediction [15],
effort prediction [55], dependency analysis [50], developer
social networks [54], and other topics related to the field of
software evolution. The rise of this research area resulted in
many tools for mining repositories [24, 25], data sets gener-
ated by researchers [64], analytics performed by researchers
[20, 36], and insights into the process of software evolution
[38, 47]. Due to the diversity of approaches, researchers face
five major problems, when it comes to the external validity
of the results.

(1) Heavy re-use of data sets. While the re-use of the
same data is important for the comparability of results,
too heavy re-use without also considering new data poses
a threat to the external validity of the results. One exam-
ple for this is the heavy use of the NASA defect data for
software defect prediction, which is used in at least 58 dif-
ferent studies on software defect prediction [45]. This allows
good comparability between results, but poses a threat to
the external validity, as, e.g., Shepperd et al. [70] point out
problems with the quality of the data which could, thereby,
threaten the validity of 58 studies at once.

(2) Non-availability of data sets. The opposite of the
above mentioned is that the data used for a study is not
available for other researchers. In this case, a replication of
the study is not possible, which makes it hard to compare
results between studies with different data sets.

(3) Non-availability of implementations. The imple-
mentations of approaches are not always publicly available
as open source. For a complex research proposal, a re-imple-
mentation can require a high amount of resources. Even for
lower effort, re-implementations may differ from the initial
implementation due to different interpretations of the paper
contents where the original implementation was described.
Moreover, there are instances in which the description of an
approach does not provide all necessary details for a one-to-
one re-implementation.

(4) Small data sets. Due to a lack of readily preprocessed
public data, some studies use rather small amounts of data,
often of less than ten software projects. Moreover, only very
few studies use larger data sets with more than 100 software
projects. This is a threat to the generalization of results.

(5) Diverse tooling. For most studies, developers cre-
ate their own tool environment based on their preferences.
These environments are often based on existing solutions for
data analytics, e.g., R [66] for data mining or WEKA [61]
for machine learning. These solutions range from prototypes

that can only be applied to the data used in the case study
but nothing else, to close-to-industrial level solutions that
can be applied in a broad range of settings. However, these
solutions are usually incompatible to each other (e.g., solu-
tions for Linux or for Windows). Hence, even if all data, im-
plementations, etc. required for a replication are available,
the diversity of the required tooling puts a heavy burden on
the replication process, especially if multiple results need to
be replicated.

Within this paper, we want to investigate how we can
address these problems. Our proposed solution is a smart
data platform for conducting experiments that provides a
solution for both: data collection and storage, as well as
flexible functionalities for data analytics. The smart data
platform can serve as a common data store and thereby,
directly enable researchers to share data sets, without ad-
ditional effort, simply by using the platform. The integra-
tion of software analytics directly into the platform gives re-
searchers a common ground for their implementations and
thereby facilitates the sharing of approaches, without the
problem of different environments for the analytics. More-
over, through automation of the data collection, constant
maintenance of the underlying data, as well as the addition
of new projects to the underlying database, problems due to
heavy data re-use could be mitigated.

The Microsoft internal tool CODEMINE [18] demonstrates
that in principle such a platform is possible. However, within
the current state-of-the-art of repository mining, we found
no publicly available approach that is similar to CODEMINE
in terms of its capabilities. Therefore, we considered a
CODEMINE for researchers who work on publicly available
data, as our goal and started to built a platform similar
to it based on publicly available technologies. To this aim,
we created SmartSHARK. With SmartSHARK we want to
evaluate the feasibility of such a smart data platform: 1) is
such a platform able to perform different analytic tasks?;
2) can such a platform help address problems with the ex-
ternal validity of studies?; and 3) which lessons additional
to the ones provided by CODEMINE are important for re-
searchers who try to develop such a platform? To this aim,
we conducted an experience study to collect data for the
evaluation of SmartSHARK. In addition to the three main
questions above, we considered the usability of such a plat-
form, as it is a central factor for the acceptance by other
researchers.

In summary, the contributions of our paper are the fol-
lowing:

• The SmartSHARK platform that combines automated
data collection from different sources with an Applica-
tion Programming Interface (API) for software analyt-
ics based on publicly available tools.

• An evaluation of the lessons learned from CODEMINE
from a research perspective.

• An analysis based on an experience report of how such
a platform can be used to resolve problems with the
external validity.

The remainder of this paper is structured as follows. In
Section 2, we give an overview of the related work. Then,
we describe the SmartSHARK platform in Section 3. Af-
terwards, we give an experience report regarding the usage
of SmartSHARK in Section 4. In Section 5, we discuss how

SmartSHARK can contribute to resolve problems regard-
ing the external validity of the results and discuss lessons
learned from our experience. Finally, we conclude our paper
and give an outlook on future work in Section 6.

2. RELATED WORK
The research on software data collection and combination,

as well as software analytics cover many different directions
and aspects. Most related work only considers either the
data collection (e.g., [12, 17, 35]), potentially including the
provision of data sets or queryable databases (e.g., [51, 42,
43, 19, 44]) or the analytical aspect (e.g., defect prediction
[15], effort prediction [55], developer social networks [54]),
and very few studies deal with both aspects.

A proprietary and not publicly available approach for
building a software analytics platform with integrated data
collection is the Microsoft internal CODEMINE [18]. With
our work, we tried to built a platform with features sim-
ilar to CODEMINE with publicly available and cost-free
tools. CODEMINE is designed in a way, that more than
one CODEMINE instance can run at the same time by dif-
ferent product teams. These instances all have a common
core. In CODEMINE, the data is collected by different data
loaders and stored in a data store. The stored data is then
exposed via different APIs on which analytics and tools can
be defined. Due to its proprietary nature, no details on the
implementation of the platform are available. However, Cz-
erwonka et al. provide lessons learned for building tools sim-
ilar to CODEMINE. Our SmartSHARK platform uses the
same general structure as CODEMINE and these lessons
were vital for the development of SmartSHARK. Details on
how the lessons learned influenced SmartSHARK are dis-
cussed in Section 5.2. Due to the focus of CODEMINE on
supporting the product teams at Microsoft only Microsoft
internal data is collected. Therefore, considerations on the
collection and analysis of publicly available data are out of
scope of their work. Conversely, our paper focuses on the
development of a platform that can be used by researchers
who work with publicly available data and the impact such
a platform can have on the external validity of studies.

Dyer et al. [25, 26] developed Boa, a domain-specific lan-
guage and infrastructure for analyzing ultra-large-scale soft-
ware repositories. Boa is a query system, where complicated
queries can be executed to extract information from pre-
viously cached repositories using a distributed MapReduce
query language. Boa programs compile down to different
MapReduce jobs, which are then executed on an Apache
Hadoop [6] cluster. The key difference between Boa and
SmartSHARK is the type of analytics that is supported.
While Boa provides Abstract Syntax Trees (ASTs) of the
projects, it does not directly enable deep analytics, e.g.,
based on software metrics, social aspects, or similar, which
are possible with SmartSHARK. Such data would have to
be calculated manually for each project by the researchers,
which is very time consuming and, thereby, probably lead to
performance problems of the analytic approaches. Further-
more, Boa heavily uses MapReduce for its queries, whereas
SmartSHARK uses Apache Spark [80, 79]. It is reported
that Hadoop MapReduce is inefficient for interactive ana-
lytics [80] as they are intended to be performed with Boa.
This is the main problem that should be resolved by Apache
Spark. Finally, we evaluated different aspects of such a plat-
form. The developers of Boa focused on how to enable large-

scale analytics, while we additionally consider how factors
related to the external validity can be improved.

Gousios and Spinellis [41] developed the Alitheia Core
platform to perform “large-scale software quality evaluation
studies” [41]. The architecture of Alitheia Core is divided
into three different layers: (1) result presentation, (2) sys-
tem core, and (3) data mirroring, storage, and retrieval. The
first layer is implemented via a web front-end. The second
layer includes a job scheduler and cluster service as well as
other services, which are connected via an Open Services
Gateway Initiative (OSGi) interface. The third layer is re-
sponsible for the storage and retrieval of the collected data.
This platform provides a metrics plug-in system, which en-
ables researchers to implement their own plug-ins to calcu-
late metrics out of the collected data. From a structural
perspective and general idea, Alitheia Core is very similar
to our approach: we also have a data collection part, an an-
alytic core, and a web front-end. However, our platform is
designed around big data technologies to allow scalable ana-
lytics. Moreover, our platform is deployed in a cloud, which
allows elastic scaling of resources. Finally, our analytic core,
using Apache Spark, is more powerful in terms of computa-
tional capabilities due to the usage of an Apache Hadoop
cluster for job execution and provides powerful algorithms
for the data analytics through Apache Spark’s Mllib [9] and
GraphX [8] libraries. Moreover, same as Boa, the authors
did not consider how the platform can improve the external
validity of studies.

There are also commercial approaches that try to com-
bine software data collection with software analytics. Biter-
gia [13] offers several packages, which differ in the level of
analytic capabilities. However, the analytics provided by
Bitergia are on the level of Business Intelligence (BI), i.e.,
reporting the history of the repositories. For example, they
provide dashboards that display the number of performed
commits or how many authors are active in the analyzed
project. Similar to Bitergia is the OpenHub project [14].
OpenHub is an open platform, where every user can add
or edit projects. The platform calculates different statistics
for added projects, which are similar to the statistics calcu-
lated by Bitergia and also on the BI level. In comparison to
SmartSHARK, Bitergia and OpenHub do not support deep
analytics or predictions for the future of projects. Addi-
tionally, users of Bitergia and OpenHub are not allowed to
create their own analytics.

3. THE SMARTSHARK PLATFORM
In order to get insights of how a CODEMINE-like tool

can be made available for all researchers, as well as analyze
the features that such a platform should offer from a re-
search perspective, we created the platform SmartSHARK1.
Figure 1 gives a logical overview of the platform, which is in-
dependent of the underlying infrastructure. SmartSHARK
is designed as a cloud-based data platform. This means that
data is shared between all users of the platform. The process
of analyzing a software project can be divided into two steps:
1) Extract, Transform, Load (ETL) of the project data and
2) writing and running the analytic program. The ETL is

1The complete source code as well as deployment scripts
are available in our public SVN: http://trex.informatik.
uni-goettingen.de/svn/smartshark/. A running instance is
located at the following URL: http://smartshark.informatik.
uni-goettingen.de.

Researcher

MongoDB

Project Data
ETL

Project
Analytics

save access

Software Project Analytic Program

choose write

Figure 1: Design of SmartSHARK

implemented as an automated process that loads extracted
project data in a MongoDB. Hence, researchers can focus on
writing their analytic programs that utilizes the previously
stored data from the MongoDB.

3.1 Data ETL Process
Projects, from which the data should be extracted, trans-

formed and loaded, are added via the web front-end of Smart-
SHARK. SmartSHARK only requires (1) the URL of the
Version Control System (VCS), (2) the programming lan-
guage, and (if applicable) (3) the URL of the mailing list
of the project. After this information is supplied, the ETL
process for this project can be started and is performed au-
tomatically.

Currently, SmartSHARK supports GIT as VCS. The pro-
gramming language is required by InFamix [52] for the cal-
culation of software metrics. During the ETL process, the
progress can be observed in the web front-end to give the
user a feedback about it. Furthermore, each project has its
own configuration files, which can optionally be edited via
the web front-end to customize the ETL process.

3.1.1 Model-based Fact Extraction and Transforma-
tion Framework

Many tools and methods, which are used for data extrac-
tion and application, are context-specific. These tools are
hard to adapt to different circumstances, because of the
tight coupling between the extraction process and the ap-
plication. Makedonski et al. [63] proposed a model-based
software mining infrastructure, called DECENT, to circum-
vent these problems. The framework relies on “homoge-
neous high-level domain-specific models of facts extracted
from raw assets” [63]. These different domain-specific mod-
els are then combined and transformed into models, that are
related to a certain assessment task. The models make use
of the Eclipse Modeling Framework (EMF). DECENT uses
different tools, which are widely used in research, to extract
facts from raw assets in the extraction step. These tools in-
clude CVSAnaly [65] for extracting information out of source
code repository logs (e.g., used in [32, 48]), InFamix [52] for
calculating software quality metrics (e.g., used in [4]), and
DuDe [24, 76] for duplication detection.

Extracted facts are transformed into different (high-level)
facts models and afterwards combined and linked together
into a single DECENT model. This DECENT model is fur-
ther transformed into an intermediate EMF model (called
DECENTMongo), which represents the structure of the Mon-
goDB used by SmartSHARK. From this model, the collected
data is finally loaded into the MongoDB for later usage
within analytic programs.

3.1.2 VCS-ETL
The VCS-data, obtained during the ETL process, is

change-based. For each change (i.e. commit), we store all
changed software artifacts and their location in the project.
Therefore, it is possible to reconstruct the whole project
structure at any point in time. The software artifacts in-
clude source code files, classes, methods, functions as well
as documentation files, such as readme files.

Furthermore, five different types of data are stored for
each artifact: 1) software metrics; 2) source code changes;
3) project structure; 4) change history; and 5) bug labels.
The software metrics include static source code metrics,
change metrics, and social metrics (e.g. developer cooper-
ation factors). A list of the metrics can be found in the
SmartSHARK documentation online [72]. Furthermore, we
save delta values for each metric, which indicate how this
metric has changed since the artifact was last touched. In
addition to the metrics, we also save the concrete textual
change that was made, i.e., the diff [34] of the commit. Es-
pecially these diffs can be important for the development of
new analytic approaches, as shown by Walden et al. [75].

Additionally, we determine bug labels (artifact is bug-
prone at this change or not) and a confidence indicator label
for each artifact at each change. The confidence label indi-
cates, if the resulting bug label can be trusted. These bug
and confidence labels are generated by DECENT via origin
analysis [62].

3.1.3 Mailing List-ETL
SmartSHARK extracts, transforms, and loads mailing

lists of projects in the MongoDB. The data includes infor-
mation about the sender, receiver, time, subject, actual mes-
sage, and if the mail was sent in response to another mail.

This data is linked via the email address of the contrib-
utor to the VCS data, as proposed by Herraiz et al. [49].
Therefore, it is possible to build complex developer coop-
eration networks on basis of this data. This is especially
interesting for the development of new models regarding the
cooperation and communication of developers or to perform
intention mining, as shown by Di Sorbo et al. [20].

3.2 Software Analytics
With the collected data, various kinds of aspects regard-

ing the software projects and their evolution can be ana-
lyzed, e.g., the number of file changes in a given timeframe,
changes within the file ownership, and patterns in mailing
list activities. Furthermore, different applications of ma-
chine learning, e.g., for defect prediction are possible.

To facilitate such a diversity of analytic problems, Smart-
SHARK uses the Apache Spark framework as analytic back-
end. Apache Spark is especially designed for big data an-
alytics. In our deployment, Apache Spark uses an Apache
Hadoop cluster to distribute data and computations across
nodes. For the definition of analytic jobs, Spark supports
multiple languages. With SmartSHARK, we currently sup-
port Java and Python. To perform analytics on Smart-
SHARK, the researcher first writes their analytic program.
The analytic programs can use the whole functionality of the
programming language as well as Spark specific features.
The standard language features are computed on a single
node of the Hadoop cluster used by Spark. The Spark spe-
cific features allow the distributed computation of results
within the Hadoop cluster and, therefore, analytics that are

very complex or data intensive. Researchers can upload and
execute the compiled Java application or Python file to the
platform using the web front-end. The front-end allows to
add Spark arguments as well as program arguments. This
allows for parametrizeable analytic jobs, e.g., to define the
name of the project to be analyzed or a certain threshold
important for the analytics. For the execution, the Spark
jobs are submitted to the Hadoop cluster. Results can ei-
ther be saved in the MongoDB to enrich the database or as
a file that users can download later.

3.3 Web Front-End
From an end-user perspective, the web front-end is the

central part of our platform and it is based on the Yii2 frame-
work [77]. It is the only place where users directly interact
with SmartSHARK and the starting point for both the data
collection and the software analytics. The front-end allows
to add projects as well as view information about the already
processed projects, e.g., general information about the num-
ber of commits, project ages, and changed artifacts in each
commit. Moreover, it provides a job submission interface,
through which users of SmartSHARK can run their analytic
programs. Each user has an own results folder, which can
be accessed through the web front-end. SmartSHARK im-
plements a simple access rights system. We defined different
roles: the administrator has all rights on the web interface
and complete access to the MongoDB, whereas the advanced
spark user role is restricted in using the web interface and
can only modify the underlying MongoDB through analytic
jobs. The normal user role has very limited access rights
in the web interface and can only read data from the Mon-
goDB.

The front-end is connected via a REST API to the Apache
Hadoop cluster manager. But in the current state of the
platform several shell scripts are executed for the data ETL
process and the sending of the analytic jobs to the Spark
instance.

Moreover, the web front-end allows users to create a
backup of the MongoDB for download. This way, users can
replicate the data of the platform and, e.g., use it in their
local environment or archive it as part of a replication set
for a published study.

3.4 Cloud Deployment
Currently, we are running SmartSHARK in a small pri-

vate cloud that we operate locally for research purposes.
The infrastructure of our SmartSHARK deployment is de-
picted in Figure 2. Currently, we have a web-server that
also serves as database server and data collection server and
an Apache Hadoop cluster to execute analytic jobs. The
platform can be automatically deployed via our deployment
scripts using the DevOps technologies Vagrant [46] and An-
sible [5]. Details regarding the used software versions and
more information regarding the deployment are given on the
homepage of SmartSHARK [28].

4. SMARTSHARK EXPERIENCE REPORT
In order to evaluate if SmartSHARK can address the prob-

lems of heavy data re-use, non-availability of data sets, non-
availability of implementations, small data sets, and diverse
tooling, we made experiments with the platform. We col-
lected data from multiple projects to see if such a high degree
of automation for such complex data is feasible. Then, we

Webserver /
Data Collection Server

Slave 1 Slave N

Namenode Ressourcemanager

Hadoop Cluster for
Analytic Job Execution

Researcher

access

MongoDB

Figure 2: Infrastructure of SmartSHARK.

proceeded with the definition of three kinds of software an-
alytics: 1) visual analytics of evolutionary trends during the
development and within the mailing list usage; 2) a complex
machine learning based defect prediction approach; and 3) a
statistical evaluation of data in order to support effort esti-
mation. The three analytical examples are selected in a way
to cover a broad area of research topics. The last part of
our experience report is related to an often neglected, but
important attribute of such platforms: the usability.

4.1 Data Collection
To evaluate the data collection, we randomly selected 23

projects from GitHub [37]. We did not follow any specific
methodology for the selection of projects, instead we used
the explore function of GitHub to browse available projects.
The only requirement for a project was that they were pro-
grammed in Java, C, or C++. Table 1 lists the chosen
projects, including number of commits, number of files in
the repository, size of the repository, programming language,
number of stored mails, and a very brief project description.
We started the ETL process via the SmartSHARK web in-
terface and noted the following problems during the data
collection:

• CVSAnalY stopped working for the oryx project for a
while, but then simply resumed. Upon further investi-
gation we determined that this was most likely a race
condition in the ”Content” extension of CVSAnalY.

• InFamix did not work for all revisions of the Mahout [11]
project. We were not able to track down the problem,
because while InFamix is available for free, it is a closed
source software.

• The collection of source code metrics was restricted
to one programming language per project, because In-
Famix does not support multiple languages within a
project.

• We could collect the data for only one project at a
time due to the limited resources and the high resource
consumption in terms of both memory and computing
power required for the data collection.

Besides these problems, there were no other failures in our
data collection process for the projects we have tested.

4.2 Software Analytics
The second part of our experience report is how well the

collected data in combination with the architecture of the

SmartSHARK platform is suited to perform tasks from soft-
ware analytics. The source code for all analytics is available
in the SmartSHARK SVN.

4.2.1 Visualization of Evolution Trends
We created five different visualizations for the projects we

added to SmartSHARK.

Change History Visualization. This visualization shows
how many software artifacts (i.e., files, classes, functions)
were changed at which point in time (i.e., commit). Further-
more, the commit message can be retrieved for each change
in this visualization.

File-level Bug Overview Visualization. This visualiza-
tion depicts the number of changed files over the project
lifespan together with the number of defects.

Mailing List Activity - Number of sent Messages. For
projects that have a mailing list, depicts how many messages
were sent at which point in time. The mailing list activity
is shown together with the number of changed files for the
project in order to allow researchers to look for correlations.

Mailing List Activity - Activity of contributing Peo-
ple. For projects that have a mailing list, this visualization
shows how many people were active on the mailing list on
a monthly basis. The visualization allows to differentiate
between new users on the mailing list and these also active
in the previous month.

Defect Prediction Results Visualization. In order to
show if the platform can also be used to give feedback on
analytics performed, we created a visualization of the de-
fect prediction results (see Section 4.2.2). We show which
changes were predicted as defective by our created model in
comparison to which changes were marked as defective by
the data collection process. This visualization shows, that
visualizations for results computed by complex analytics are
also possible with the platform.

The visualizations give a first impression about the project
and provide researchers insights regarding several evolution-
ary questions, e.g., patterns on the mailing list activity, the
evolution of the size of a project or when bugs were created.
One example for the mailing list activity visualization, which
shows the number of sent messages in the project log4j, is
depicted in Figure 3. Other visualizations, like the defect
prediction results visualization, are accessible via the Smart-
SHARK website [28].

4.2.2 Defect Prediction
The second analytic example implemented on

SmartSHARK is a defect prediction model. We selected a
change-based defect prediction model based on a recent pub-
lication by Tan et al. [71]. The approach by Tan et al. sug-
gests to use the first part of a project as training data, then
leave a gap and predict the remainder of the project using
a prediction model trained on the first part of the data.

The data required for the defect prediction was readily
available in the MongoDB back-end of SmartSHARK. Us-
ing the functionality provided by Spark, creating the data
splits as required for the approach by Tan et al. [71] as well
as the training of the defect prediction model was straight-
forward. After fetching the data from the MongoDB, a Map
job was used to prepare the data. Then, the defect predic-
tion model was trained using the machine learning package
spark.ml of Apache Spark [9]. We evaluated our classifier

Project Lang. #Commits Size #Files #ML Messages Type

guice [39] Java 1442 89 MB 713 n/a Programming
openage [69] C++ 1761 8 MB 560 n/a Game

Minesweeper [60] Java 65 7 MB 207 n/a Game
HackerNews [59] Java 12 1 MB 78 n/a News

SMSSync [74] Java 1395 40 MB 557 n/a Messaging
cursynth [73] C++ 219 3 MB 185 n/a Audio

passivedns [33] C 220 1 MB 50 n/a Network
oryx [16] Java 372 48 MB 537 n/a Machine Learning
ohmu [40] C++ 226 3 MB 185 n/a Programming
libxcam [1] C++ 250 3 MB 242 n/a Camera
libyami [2] C 487 4 MB 248 108 Media

wds [3] C++ 238 3 MB 193 27 Media
oclint [67] C++ 733 3 MB 349 n/a Programming

xgboost [23] C++ 1847 8 MB 373 n/a Mathematics
elasticsearch-hadoop [27] Java 1243 9 MB 576 n/a Search Engine

cxxnet [21] C++ 852 4 MB 173 n/a Machine Learning
mxnet [22] C++ 236 1 MB 124 n/a Machine Learning

osquery [30] C++ 2208 9 MB 555 n/a Instrumentation
swift [31] Java 496 8 MB 427 n/a Programming
fatal [29] C++ 401 3 MB 141 n/a Programming
k3b [56] C++ 5508 47 MB 1069 587 Media

ksudoku [58] C++ 668 7 MB 233 125442 Game
log4j [10] Java 3266 18 MB 643 54546 Programming

Table 1: Information about the examined projects.

with the project data available in the MongoDB. Further-
more, a confusion matrix is created to allow the calculation
of performance metrics like recall and precision. The predic-
tion results, as well as the confusion matrix, are then stored
in the MongoDB for later use by the visualization.

To evaluate the versatility of the platform to exploit dif-
ferent types of data, as well as create different types of mod-
els, we created four different defect prediction models as de-
scribed above, all using different data and classifiers: 1) a
logistic regression model based on static source code met-
rics and change metrics; 2) a random forest based on static
source code metrics, change metrics, and social metrics; 3) a
näıve bayes for text classification based on textual diffs of
revisions; 4) and a majority voting scheme with three al-
gorithms: a random forest and a logistic regression model
trained on the static source mode metrics, change metrics,
and social metrics as well as a näıve bayes model trained on
the textual diffs. All of these models could be trained and
defined without any problems.

4.2.3 Effort Estimation
The third analytic example was created with the aim to

gain insights into how much effort must be put into the
creation of a simple effort prediction model. The analytic
job takes a list of projects as input. To create this model,
the means for the lines added, lines removed, the growth of
the absolute file size of the repository, and the LOC in the
repository per commit were calculated for each project. The
required information is all part of the collected data. For the
aggregation of the information with Apache Spark, two Map
jobs and two reduce jobs were defined, first to create a map
between the file names and the associated metric data, and
then to reduce the maps to the required means. Moreover,

2There is no ksudoku specific list. Instead we collected the
whole kde-games-devel mailing list [57] data.

the mean values not only for each project by themselves, but
for all listed projects are calculated.

The output of the analytic job is then a list of the means
for the metrics for each project in the list, as well as the
overall mean values. This information can be used to es-
timate and predict the effort for new projects or project
phases based on the number of source code revisions.

While not part of the sample analytic, SmartSHARK
would also allow to give insights on the expected number of
source code revisions and, e.g., the relationship to the num-
ber of unique developers. This way, SmartSHARK would
allow to gain further insights and expand upon this very
simple approach to estimate the effort for a project.

4.3 Usability
Usability is defined through its major aspects: a given

task must be executed with effectiveness, efficiency and sat-
isfaction [53]. To assess these attributes we conducted dif-
ferent experiments with SmartSHARK. In this Section, the
usability of the four most important tasks is evaluated.

4.3.1 Definition of Analytic Jobs
SmartSHARK allows the usage of any existing library for

the definition of analytic jobs. In case the full power of
Apache Spark is required, e.g., to achieve scalability for
complex analytics, features for the distributed processing
must be used. This includes regular map/reduce jobs and
libraries, which are directly developed for Apache Spark. We
demonstrated the use of the Spark machine learning library
for the definition of our defect prediction model.

The definition of analytic jobs fulfilled all of the differ-
ent major usability aspects, as we were able to successfully
define different analytic jobs without much effort. Further-
more, we were able to use libraries to which we are used
to.

Figure 3: Screenshot of the mailing list activity of log4j mined by SmartSHARK.

4.3.2 Debugging
Currently, SmartSHARK offers the possibility to gather

debugging information via log files of the Hadoop cluster.
Although, this solution is feasible, most developers are used
to directly debug within their Integrated Development Envi-
ronment (IDE). Furthermore, the debugging of applications
which are executed on multiple nodes, is difficult to perform,
e.g., debugging Hadoop Map Reduce programs [7]. Never-
theless, Apache Spark offers debugging possibilities, which
can be included in later versions of SmartSHARK to offer a
direct interface for developers to debug their programs.

We were able to successfully debug our programs via the
log file access. But the satisfaction for this task is currently
lacking, because the debugging was a repetitive task as we
needed to gather information from the log file to pinpoint
the bug.

4.3.3 Evaluation and Presentation of Results
The evaluation of the results with Apache Spark is well

supported by libraries. The feedback loop, of how the results
are displayed and returned to the user, is passive. Currently,
SmartSHARK offers three options: 1) storage of the results
directly in the MongoDB, as we demonstrate with the defect
prediction example; 2) storage on the file system for later
download by the user as we do it in the effort estimation
example; and 3) directly output the desired results via the
language specific print commands.

For all options the user needs to get active, i.e., access the
MongoDB, downloading the results from the file system, or
gather the log file to see the print output. We have shown
one way to overcome this problem by directly show the de-

fect prediction results on the SmartSHARK website.
Therefore, the task of evaluating and presenting the re-

sults fulfilled all of the different usability aspects, at least
for our defect prediction example. Our visualization directly
gives feedback to the developer, without the need of her
to actively retrieving the results. This shows, that Smart-
SHARK is capable of switching the feedback loop from a
passive one (i.e., the user needs to get active to get the re-
sults) to an active one. The only requirement for this is
the provision of Yii2-Widgets [78], which are plug-ins that
implement the logic to gather and display the data. Fur-
thermore, these plug-ins can easily be shared.

4.3.4 Addition of New Data Sources
We developed SmartSHARK in two increments: the first

increment contained only the ETL of VCS data. We then
started with the collection of data for all projects. Then, we
extended SmartSHARK in the second increment with the
ETL of mailing list data. For all projects that contain a
mailing list, the new data could be added without problem.

Hence, our design of the ETL process and the schema
of the MongoDB ensured that the task of adding new data
sources could be performed effectively, efficiently and with
satisfaction.

5. DISCUSSION
Within this section, we discuss how SmartSHARK can be

used to address problems with external validity as well as
lessons learned.

5.1 Addressing External Threats to Validity
with SmartSHARK

The motivation of our work on SmartSHARK are the five
major problems regarding the external validity of results as
we discussed in the introduction. Based on our experience
with SmartSHARK, we discuss the impact a platform like
SmartSHARK can have on these problems, how it may help
to overcome these problems, or which additional work is
required.

(1) Heavy Re-use of Data Sets. A platform like Smart-
SHARK natively addresses this problem, since the body
of data can be automatically extended with new projects.
This way, SmartSHARK provides a foundation for a con-
stantly growing database, which means that with every ex-
periment, new data could be used. However, SmartSHARK
also demonstrates the limitation regarding this research ques-
tion: the platform must be able to collect the required data
for the desired analytics. But our experience shows, that
the ETL process is extensible and, moreover, the results of
Spark jobs can be stored in the MongoDB to further enrich
the data, if required.

(2) Non-availability of Data Sets. SmartSHARK pro-
vides two possible ways to address this problem: the first is
a shared cloud deployment, where all researchers have access
to the same data. The second is to create and share backups
of the underlying MongoDB.

(3) Non-availability of Implementations. All analytic
jobs on SmartSHARK are provided as Apache Spark jobs.
Therefore, published implementations can be executed on
each instance of SmartSHARK, both private and public.
Implementations can be shared both as source code or com-
piled Spark jobs. However, SmartSHARK itself currently
does not directly offer the sharing of the implementation,
this must be done at a third-party side. Therefore, one ex-
tension would be the addition of an implementation catalog,
where researchers can upload their implementation to share
them with other researchers.

Our experience shows, that the adding of new visualiza-
tions is easy, as our website uses the Yii2 framework, which
provides a plug-in mechanism for widgets [78]. Therefore, if
a researcher develops a visualization, it can easily be shared
and installed in any SmartSHARK instance via this mecha-
nism.

(4) Small data sets. Through the automated mining, the
addition of new data to SmartSHARK is not very time con-
suming for researchers, even if the mining itself might take
a while. Hence, constantly growing data sets are not a prob-
lem, which will lead to a large body of rich data that includes
the structure and meta information about the VCS, software
metrics, defect information, and mailing list data.

(5) Diverse Tooling. SmartSHARK currently addresses
this problem differently for data collection and analytic ap-
plications. For the data collection, we use a model-based
framework for the harmonization of diverse tooling. We
have experienced, as described in Section 4.3.4, that this
approach is easily extensible and also feasible for the data
collection and combination.

For the analytics, we address this problem by using Apache
Spark as analytic back-end. This means that for the execu-
tion, the problem of tool diversity is resolved, as Spark jobs
can easily be shared and executed on any SmartSHARK in-
stance.

5.2 Lessons from CODEMINE
While not many details about Microsoft’s internal

CODEMINE [18] were published, the authors gave a list of
lessons learned during the creation of the platform. We now
compare these lessons to our experience with SmartSHARK
as a tool for the research community.

Create an independent instance for each product
team in the data platform. The target of SmartSHARK
are not product teams, but rather research communities. We
believe that ideally only a single instance of SmartSHARK
for each community or even multiple communities is bet-
ter suited. Nevertheless, we have taken this lesson into ac-
count by designing SmartSHARK as an independent plat-
form, which can be set up easily via DevOps tools to support
separate instances for research communities or teams.

Have uniform interfaces for data analysis. This lesson
lead to the central design decision of SmartSHARK to use
Apache Spark as common API for the analytic tasks. This
uniform interface allows more specific APIs to evolve for
different research communities, e.g., to better support defect
prediction.

Encode process information. Process information ”in-
cludes release schedule (milestones and dates), organization
of code bases, team structure, and so on” [18]. Czerwonka et
al. advise, that these information should be embedded into
the platform’s data store. For open source projects, this
information is often not available or unclear. Still, the col-
lection of such information for open-source projects would be
valuable for SmartSHARK and will be part of future work.

Provide flexibility and extensibility for collected data
and deployed analytics. We found this lesson to be very
important for SmartSHARK, because in research the kinds
of analytics can be almost anything. Therefore, we designed
the database to be as flexible as possible (NoSQL key/value
storage) and allow with Apache Spark all kinds of analytic
programs.

Allow dynamic discovery of data platform’s capabil-
ities by application. This lesson was partially followed.
While SmartSHARK does not provide a sandbox where re-
searchers can test the capabilities, the incremental develop-
ment of Apache Spark jobs allows them to experience the
capabilities and test the limits.

Support policies for security, privacy, and audit.
While SmartSHARK has a basic user access rights system,
the current implementation is not enough and more diverse
access rights are required, e.g., to restrict writing access only
on parts of the database.

Allow ongoing support and maintenance outside of
CODEMINE. For acceptance in the research community it
is mandatory to allow maintenance outside of SmartSHARK.
SmartSHARK is open-source and we invite other researchers
to work together with us on the extension of the prototype.

Host as a cloud service. Following this lesson, we de-
signed SmartSHARK as a cloud platform to be easily scal-
able in terms of computational and storage resources.

Know the data platform might not fulfill all data
needs. For SmartSHARK we used this lesson as motivation
to create an extensible approach for the ETL process. This
way, if the platform is lacking in terms of data, it is designed
in a way that the problem can be mitigated by extending the
ETL process.

Innovate at the right level of the stack. Czerwonka
et al. advise, that you should only use mature foundational
technology as much as possible. For a platform aimed at
researchers, like SmartSHARK, this lesson is only partially
applicable, because it is part of research to innovate and
test new technologies. However, due to the high level of in-
tegration between tools within SmartSHARK, we also think
that a certain level of quality and maturity is required for
everything that shall be part of the main branch of Smart-
SHARK.

5.3 Lessons from SmartSHARK
Because of the different focus of SmartSHARK on research

instead of the support of product teams, as well as due to the
difference in available resources for researchers in compari-
son to a company like Microsoft, we learned the following
lessons.

Use only mature tools which you can maintain by
yourselves. The development of SmartSHARK was chal-
lenging due to the quality and maturity of the tools used.
For the ETL of the VCS data, we relied on the popular CVS-
AnalY [65]. However, the tool once stopped for an extended
period of time, which is problematic for a fully automated
mining process, where human intervention should be the ex-
ception and not the rule. However, since CVSAnalY is open
source, we could pin point the source of the problem and
can provide a solution in the future. For the proprietary In-
Famix on the other hand, we do not know the source of the
failure for Mahout and have no means of fixing this problem,
except exchanging InFamix with another tool.

Document, document, document! Another problem
that we encountered is the insufficient documentation of
tools, libraries and API descriptions of tools published by
researchers, together with often sparse source code docu-
mentation. This made their reuse to built a larger platform
extremely difficult. Hence, quality of documentation should
also be a factor for research prototypes to facilitate their
re-use.

Model-based fact extraction works, but is very re-
source demanding. SmartSHARK is based on DECENT,
a model-based fact extraction and transformation frame-
work (see Section 3.1.1). DECENT provided a good founda-
tion for the integration of information. However, the created
EMF model must fit completely into the RAM and there-
fore sufficient resources need to be available. This a threat
to the scalability of the data collection, as the memory re-
quirements of very large projects like the Linux kernel or
Firefox are high. Nevertheless, there is a solution to this
problem, which was presented by Scheidgen et al. [68]. This
approach showed, that it is possible to transparently frag-
ment the different models and store these fragments, e.g., in
a MongoDB.

Support optimized database queries. Since the amount
of collected data grows rapidly with the number of projects,
well-formulated database queries are required in order to
keep the burden on the storage back-end and internal net-
work traffic in the cloud low. Therefore, an API that already
supports the most important database queries is important
for a large-scale deployment with thousands of projects.

Heavy resource demand on the infrastructure. Even
taking the above lessons into account, we experienced that
our setup with four Virtual Machines (VMs) is the bare min-

imum at which we can get SmartSHARK to run somewhat
decently. For a large deployment that should be able to
mine thousands of projects a larger cloud infrastructure is
required with multiple worker nodes for the project data col-
lection and a dedicated database back-end that is separated
from the web-front-end.

Allow visualization plug-ins. While Apache Spark is a
good solution for non-visual analytics, it does not support
visual analytics, as we described in the experience report. To
this aim, a good and very flexible plug-in system is required,
that allows, e.g., visualization of trends, social networks, and
dependencies within projects.

Provide externally accessible APIs. An enhanced API
for job submission, which could be accessed via a script, di-
rectly from an IDE, or from within other applications (e.g.,
as part of other Java applications) could help to further im-
prove the writing of analytic jobs. Moreover, an API that
makes log information, which was collected during the ex-
ecution of jobs, visible to users would offer another active
feedback loop besides the visualizations.

5.4 Threads to Validity
There are several threads to validity regarding our work.

First, the usability evaluation was done only by authors of
this paper and, therefore, may be biased. Hence, a usability
evaluation needs to be done with more and unbiased people
(e.g., students, other researchers) to get additional insights
regarding the usability of SmartSHARK. Furthermore, we
used SmartSHARK to collect data from 23 projects. We
described the problems, that we encountered during the
data collection process and we need to evaluate it for more
projects. Furthermore, the scalability of the platform (in
both, data collection and analysis) could not be tested, as
we do not have the required infrastructure for such tests at
the moment.

6. CONCLUSION
Within this paper, we discussed how a platform that com-

bines automated data collection with a flexible analytic front-
end can be used to address problems regarding the external
validity of studies. To this aim, we created the platform
SmartSHARK, inspired by CODEMINE [18]. Due to the
differences between research and industrial exploitation of
such a platform, we focused our evaluation on three aspects:
1) we showed through the definition of visualizations, de-
fect prediction, and effort analysis, based on two different
data sources (VCS and mailing lists) that SmartSHARK can
be used to define analytics; 2) outlined how SmartSHARK
help improve the external validity of studies; and 3) gave
insights on research-specific lessons learned that are impor-
tant for building such a platform that were not addressed by
the proprietary CODEMINE. SmartSHARK is open-source
and we invite all interested researchers to contribute to our
platform.

In the future, we plan to build upon our results and ex-
tend SmartSHARK. SmartSHARK was developed as combi-
nation of a feasibility study regarding whether such a plat-
form is possible, as well as for the overall analysis whether
such a platform makes sense for researchers. Furthermore,
we wanted to gain insights into which design decision are
important. Using our knowledge, we plan to extend Smart-
SHARK to a fully fledged platform to be used by other re-

searchers. This includes, but is not limited to the following
aspects:

• migration of SmartSHARK to a larger cloud environ-
ment to be able to massively collect project data, ex-
pand the database, and analyze the scalability of the
platform;

• a plug-in system for the definition of visualizations;

• inclusion of new data sources, especially Issue Tracking
Systems (ITSs);

• enhanced APIs for job submission and debugging;

• enhanced APIs built on top of Apache Spark to further
support the definition and evaluation of analytic prob-
lems, e.g., the generation of developer social networks
or defect prediction models;

• usage of the platform by additional user groups, e.g.,
students as part of lectures or other researchers to get
feedback about the usability and extend the overall
functionality of the platform.

Acknowledgements
The authors would like to thank Fabian Glaser, Michael
Göttsche, and Gunnar Krull for their support for regard-
ing the cloud technologies and deployment.

7. REFERENCES
[1] 01org. Libxcam GitHub.

https://github.com/01org/libxcam. [accessed
22-January-2015].

[2] 01org. Libyami GitHub.
https://github.com/01org/libyami. [accessed
22-January-2015].

[3] 01org. Wds GitHub. https://github.com/01org/wds.
[accessed 22-January-2015].

[4] C. V. Alexandru and H. C. Gall. Rapid
Multi-Purpose, Multi-Commit Code Analysis. In
Proceedings of the IEEE/ACM 37th International
Conference on Software Engineering (ICSE), pages
635–638. IEEE/ACM, 2015.

[5] Ansible Inc. Ansible Documentation.
http://www.ansible.com/. [accessed 22-January-2015].

[6] Apache Software Foundation. Apache Hadoop.
https://hadoop.apache.org/. [accessed
22-January-2015].

[7] Apache Software Foundation. Apache Hadoop Wiki.
https://wiki.apache.org/hadoop/
HowToDebugMapReducePrograms. [accessed
22-January-2015].

[8] Apache Software Foundation. Apache Spark GraphX.
http://spark.apache.org/graphx/. [accessed
01-March-2016].

[9] Apache Software Foundation. Apache Spark MLLib.
http://spark.apache.org/docs/latest/mllib-guide.html.
[accessed 22-January-2015].

[10] Apache Software Foundation. Log4j GitHub.
https://github.com/apache/log4j. [accessed
22-January-2015].

[11] Apache Software Foundation. Mahout GitHub.
https://github.com/apache/mahout. [accessed
22-January-2015].

[12] J. Bevan, E. J. Whitehead Jr, S. Kim, and
M. Godfrey. Facilitating software evolution research
with kenyon. In ACM SIGSOFT Software Engineering
Notes, volume 30, pages 177–186. ACM, 2005.

[13] Bitergia. Bitergia. http://bitergia.com/. [accessed
22-January-2015].

[14] Black Duck Software, Inc. Open HUB.
https://www.openhub.net/. [accessed
22-January-2015].

[15] C. Catal and B. Diri. A systematic review of software
fault prediction studies. Expert Systems with
Applications, 36(4):7346–7354, 2009.

[16] Cloudera. Oryx GitHub.
https://github.com/cloudera/oryx. [accessed
22-January-2015].

[17] D. Čubranić, G. C. Murphy, J. Singer, and K. S.
Booth. Hipikat: A project memory for software
development. IEEE Transactions on Software
Engineering, 31(6):446–465, 2005.

[18] J. Czerwonka, N. Nagappan, and W. Schulte.
CODEMINE: Building a Software Development Data
Analytics Platform at Microsoft. IEEE Software,
30(4):64–71, 2013.

[19] D. Di Ruscio, D. S. Kolovos, I. Korkontzelos,
N. Matragkas, and J. Vinju. Ossmeter: A software
measurement platform for automatically analysing
open source software projects. In ESEC/FSE 2015
Tool Demonstrations Track, 2015.

[20] A. Di Sorbo, S. Panichella, C. Visaggio, M. Di Penta,
G. Canfora, and H. Gall. Development emails content
analyzer: Intention mining in developer discussions. In
Proceedings of the IEEE/ACM 30th International
Conference on Automated Software Engineering
(ASE), 2015.

[21] Distributed Machine Learning Common. Cxxnet
GitHub. https://github.com/dmlc/cxxnet. [accessed
22-January-2015].

[22] Distributed Machine Learning Common. Mxnet
GitHub. https://github.com/dmlc/mxnet. [accessed
22-January-2015].

[23] Distributed Machine Learning Common. Xgboost
GitHub. https://github.com/dmlc/xgboost. [accessed
22-January-2015].

[24] U. Draisbach and F. Naumann. Dude: The duplicate
detection toolkit. In Proceedings of the International
Workshop on Quality in Databases (QDB), 2010.

[25] R. Dyer, H. A. Nguyen, H. Rajan, and T. Nguyen.
Boa: Ultra-Large-Scale Software Repository and
Source Code Mining. ACM Transactions on Software
Engineering and Methodology, forthcoming, 2015.

[26] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen.
Boa: A language and infrastructure for analyzing
ultra-large-scale software repositories. In Proceedings
of the IEEE/ACM 35th International Conference on
Software Engineering (ICSE), 2013.

[27] Elasticsearch BV. Elasticsearch-hadoop GitHub.
https://github.com/elastic/elasticsearch-hadoop.
[accessed 22-January-2015].

[28] Fabian Trautsch. SmartSHARK Homepage.
http://smartshark.informatik.uni-goettingen.de.
[accessed 22-January-2015].

[29] Facebook Inc. Fatal GitHub.
https://github.com/facebook/fatal. [accessed
22-January-2015].

[30] Facebook Inc. Osquery GitHub.
https://github.com/facebook/osquery. [accessed
22-January-2015].

[31] Facebook Inc. Swift GitHub.
https://github.com/facebook/swift. [accessed
22-January-2015].

[32] J. Fernandez-Ramil, D. Izquierdo-Cortazar, and
T. Mens. What does it take to develop a million lines
of open source code? In Open Source Ecosystems:
Diverse Communities Interacting, pages 170–184.
Springer, 2009.

[33] E. Fjellsk̊al. Passivedbs GitHub.
https://github.com/gamelinux/passivedns. [accessed
22-January-2015].

[34] Free Software Foundation. GNU Diffutils.
http://www.gnu.org/software/diffutils/. [accessed
22-January-2015].

[35] D. M. German. Mining CVS repositories, the
softChange experience. Evolution, 245(5,402):92–688,
2004.

[36] E. Giger, M. Pinzger, and H. Gall. Predicting the fix
time of bugs. In Proceedings of the 2nd International
Workshop on Recommendation Systems for Software
Engineering (RSSE), pages 52–56. ACM, 2010.

[37] I. GitHub. GitHub. https://github.com/.

[38] M. Godfrey and Q. Tu. Tracking structural evolution
using origin analysis. In Proceedings of the
International Workshop on Principles of Software
Evolution (IWPSE), 2002.

[39] Google. Guice GitHub.
https://github.com/google/guice. [accessed
22-January-2015].

[40] Google. Ohmu GitHub.
https://github.com/google/ohmu. [accessed
22-January-2015].

[41] G. Gousios and D. Spinellis. Alitheia core: An
extensible software quality monitoring platform. In
Proceedings of the IEEE/ACM 31st International
Conference on Software Engineering (ICSE), 2009.

[42] G. Gousios and D. Spinellis. Ghtorrent: Github’s data
from a firehose. In Proceedings of the 9th IEEE
Working Conference on Mining Software Repositories
(MSR), pages 12–21. IEEE, 2012.

[43] G. Gousios, B. Vasilescu, A. Serebrenik, and
A. Zaidman. Lean ghtorrent: Github data on demand.
In Proceedings of the 11th IEEE Working Conference
on Mining Software Repositories (MSR), pages
384–387. ACM, 2014.

[44] I. Grigorik. GitHub Archive.
https://www.githubarchive.org/. [accessed
22-January-2015].

[45] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A systematic literature review on fault
prediction performance in software engineering. IEEE
Transactions on Software Engineering,

38(6):1276–1304, Nov 2012.

[46] HashiCorp. Vagrant. https://www.vagrantup.com/.
[accessed 22-January-2015].

[47] G. Hecht, B. Omar, R. Rouvoy, N. Moha, and
L. Duchien. Tracking the software quality of android
applications along their evolution. In Proceedings of
the IEEE/ACM 30th International Conference on
Automated Software Engineering (ASE), page 12.
IEEE, 2015.

[48] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles.
Forecasting the number of changes in Eclipse using
time series analysis. In Proceedings of the 4th IEEE
Working Conference on Mining Software Repositories
(MSR), 2007.

[49] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and
J. M. González Barahona. The processes of joining in
global distributed software projects. In Proceedings of
the 2006 International Workshop on Global Software
Development for the Practitioner, pages 27–33. ACM,
2006.

[50] V. Honsel, D. Honsel, S. Herbold, J. Grabowski, and
S. Waack. Mining Software Dependency Networks for
Agent-Based Simulation of Software Evolution. In
Proceedings of the 4th International Workshop on
Software Mining (SoftMine), 2015.

[51] J. Howison, M. S. Conklin, and K. Crowston. Ossmole:
A collaborative repository for floss research data and
analyses. In Proceedings of the 1st International
Conference on Open Source Software, 2005.

[52] Intooitus. InFamix.
https://www.intooitus.com/company/news/
introducing-infamix-free-ccjava-parser-moose.
[accessed 22-January-2015].

[53] ISO/IEC. 9241-11 Ergonomic requirements for office
work with visual display terminals (VDTs). ISO/IEC
9241-14, 1998.

[54] A. Jermakovics, A. Sillitti, and G. Succi. Mining and
visualizing developer networks from version control
systems. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE), CHASE ’11, pages
24–31, New York, NY, USA, 2011. ACM.

[55] M. Jorgensen and M. Shepperd. A systematic review
of software development cost estimation studies. IEEE
Transactions on Software Engineering, 33(1):33–53,
Jan 2007.

[56] KDE. K3b GitHub. https://github.com/KDE/k3b.
[accessed 22-January-2015].

[57] KDE. KDE games developer mailing list.
https://mail.kde.org/pipermail/kde-games-devel.
[accessed 22-January-2015].

[58] KDE. Ksudoku GitHub.
https://github.com/KDE/ksudoku. [accessed
22-January-2015].

[59] E. Lawlor. HackerNews GitHub.
https://github.com/lawloretienne/HackerNews.
[accessed 22-January-2015].

[60] E. Lawlor. Minesweeper GitHub.
https://github.com/lawloretienne/Minesweeper.
[accessed 22-January-2015].

[61] Machine Learning Group at the University of Waikato.

WEKA. http://www.cs.waikato.ac.nz/ml/weka/.
[accessed 22-January-2015].

[62] P. Makedonski and J. Grabowski. Weighted
Multi-Factor Multi-Layer Identification of Potential
Causes for Events of Interest in Software Repositories.
In Proceedings of the Seminar Series on Advanced
Techniques and Tools for Software Evolution
(SATToSE) 2015. Forthcoming 2016.

[63] P. Makedonski, F. Sudau, and J. Grabowski. Towards
a model-based software mining infrastructure. ACM
SIGSOFT Software Engineering Notes, 40(1):1–8,
2015.

[64] T. Menzies, M. Rees-Jones, R. Krishna, and C. Pape.
The promise repository of empirical software
engineering data. http://openscience.us/repo. North
Carolina State University, Department of Computer
Science [accessed 22-January-2015].

[65] Metrics Grimoire. CVSAnaly GitHub.
http://github.com/MetricsGrimoire/CVSAnalY.
[accessed 22-January-2015].

[66] R Foundation. R Project. https://www.r-project.org/.
[accessed 22-January-2015].

[67] R. Saito. Oclint GitHub.
https://github.com/oclint/oclint. [accessed
22-January-2015].

[68] M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe.
Automated and transparent model fragmentation for
persisting large models. Springer, 2012.

[69] SFTtech. OpenAge GitHub.
https://github.com/SFTtech/openage. [accessed
22-January-2015].

[70] M. Shepperd, Q. Song, Z. Sun, and C. Mair. Data
Quality: Some Comments on the NASA Software
Defect Datasets. IEEE Transactions on Software
Engineering, 39(9):1208–1215, 2013.

[71] M. Tan, L. Tan, S. Dara, and C. Mayeux. Online
Defect Prediction for Imbalanced Data. In Proceedings
of the IEEE/ACM 37th International Conference on
Software Engineering (ICSE), 2015.

[72] F. Trautsch. SmartSHARK MongoDB Design.
http://smartshark.informatik.uni-goettingen.de/index.
php?r=site%2Fmongodesign. [accessed
22-January-2015].

[73] M. Tytel. Cursynth GitHub.
https://github.com/mtytel/cursynth. [accessed
22-January-2015].

[74] Ushahidi. SMSSync GitHub.
https://github.com/ushahidi/SMSSync. [accessed
22-January-2015].

[75] J. Walden, J. Stuckman, and R. Scandariato.
Predicting vulnerable components: Software metrics
vs text mining. In Proceedings of the IEEE 25th
International Symposium on Software Reliability
Engineering (ISSRE), pages 23–33. IEEE, 2014.

[76] R. Wettel. DuDe.
http://www.inf.usi.ch/phd/wettel/dude.html.
[accessed 22-January-2015].

[77] Yii Software LLC. Yii Framework.
http://www.yiiframework.com/. [accessed
22-January-2015].

[78] Yii Software LLC. Yii Framework - Widgets.

http://www.yiiframework.com/doc-2.0/
guide-structure-widgets.html. [accessed
22-January-2015].

[79] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Network System Design and
Implementation (NSDI), 2012.

[80] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: cluster computing
with working sets. In Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing
(HotCloud), 2010.

