
Applying the ISO 9126 Quality Model to Test Specifications
—

Exemplified for TTCN-3 Test Specifications

Benjamin Zeiss∗‡, Diana Vega∗∗ ‡‡, Ina Schieferdecker‡‡,
Helmut Neukirchen‡, Jens Grabowski‡

‡Software Engineering for Distributed Systems Group, Institute for Informatics,
University of G̈ottingen, Lotzestr. 16–18, 37083 Göttingen, Germany.

{zeiss,neukirchen,grabowski }@cs.uni-goettingen.de
‡‡ ETS, Technical University Berlin, Franklinstr. 28–29, 10587 Berlin, Germany.

{vega,ina }@cs.tu-berlin.de

Abstract: Quality models are needed to evaluate and set goals for the quality of a
software product. The international ISO/IEC standard 9126 defines a general quality
model for software products. Software is developed in different domains and the usage
of the ISO/IEC quality model requires an instantiation for each concrete domain. One
special domain is the development and maintenance of test specifications. Test speci-
fications for testing, e.g. the Internet Protocol version 6 (IPv6) or the Session Initiation
Protocol (SIP), reach sizes of more than 40.000 lines of test code. Such large test
specifications require strict quality assurance. In this paper, we present an adaptation
of the ISO/IEC 9126 quality model to test specifications and show its instantiation for
test specifications written in the Testing and Test Control Notation (TTCN-3). Exam-
ple measurements of the standardised SIP test suite demonstrate the applicability of
our approach.

1 Introduction

Test specifications developed today by industry and standardisation are usually volumi-
nous and are, in our experience, often regarded as complex. Such statements are based on
subjective opinions about few quality aspects that stand out, but neither is the term “com-
plexity” clearly defined nor is it evident how it relates to the quality of a test specification.
In the context of software engineering, metrics are a common means to quantify quality
aspects of software. Metrics are classified into those that concern products, processes, and
resources. While metrics support the measurement of quality aspects, they do not pro-
vide an answer what constitutes quality in software. To gain reasonable statements from
metrics, a quality model is required which defines distinct characteristics and correspond-
ing subcharacteristics that relate to software quality. ISO/IEC 9126 [ISO04] is a standard
describing such a model for software products.

∗Supported by a PhD scholarship from Siemens AG, Corporate Technology.
∗∗Supported by Alfried Krupp von Bohlen und Halbach-Stiftung.

Quality aspects of test specifications are somehow related to the characteristics stated in
ISO/IEC 9126. However, a more elaborated analysis on the peculiarities and differences
between the quality aspects that constitute test specifications and software has not been
made yet. Still, quality aspects concerning test specifications and test implementations are
constantly subject of discussions and various test metrics have been developed measuring
single aspects only [Sne04, VS06, ZNG+06a, ZNG+06b]. Thus, a more general view on
the different quality aspects of test specifications is needed. The contribution of this paper
is a quality model for test specifications which is derived from the ISO/IEC 9126 quality
model.

For concrete investigations, we selected theTesting and Test Control Notation(TTCN-3)
[ETS05a] which is standardised by theEuropean Telecommunications Standards Insti-
tute (ETSI). TTCN-3 is a language for test specification and implementation, i.e. it sup-
ports abstract test specifications which can be compiled and executed if additional imple-
mentation components (such as anSUT adapter) are provided.

This paper is structured as follows: Section 2 introduces ISO/IEC 9126. Subsequently,
our quality model for test specifications is presented and discussed in Section 3. Section 4
describes an instantiation of our quality model for TTCN-3. An application of our TTCN-3
specific model to different versions ofSession Initiation Protocol(SIP) test specifications
is given in Section 5. We conclude with a summary and an outlook.

2 Overall View of ISO/IEC 9126

Based on previous attempts for defining software quality [MRW77, BBK+78], the In-
ternational Organization for Standardization(ISO) and theInternational Electrotechnical
Commission(IEC) have published the multipart standard ISO/IEC 9126 [ISO04] which de-
fines a software product quality model, quality characteristics, and related metrics. These
constituents can be used to both evaluate and set goals for the quality of a software product.

Part 1 of ISO/IEC 9126 contains a two-part quality model: one part of the quality model is
applicable for modelling the internal and external quality of a software product, whereas
the other part is intended to model the quality in use of a software product. These different
quality models are needed to be able to model the quality of a software product at differ-
ent stages of the software lifecycle. Typically,internal quality is obtained by reviews of
specification documents, checking models, or by static analysis of source code.External
quality refers to properties of software interacting with its environment. In contrast,qual-
ity in userefers to the quality perceived by an end user who executes a software product
in a specific context. These product qualities at the different stages of development are not
completely independent, but influence each other. Thus, internal metrics may be used to
predict the quality of the final product – also in early development stages.

For modelling internal quality and external quality, ISO/IEC 9126 defines the same model.
This generic quality model can then be instantiated as a model for internal quality or for
external quality by using different sets of metrics. The model itself is based on the six
characteristicsfunctionality, reliability, usability, efficiency, maintainability, andportabil-
ity. As shown in Figure 1, each of these characteristics has further subcharacteristics.

External and
Internal Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability

Accuracy

Interoperability

Security

Functionality
Compliance

Maturity

Fault Tolerance

Recoverability

Reliability
Compliance

Understand-
ability

Learnability

Operability

Attractiveness

Usability
Compliance

Time Behaviour

Resource
Utilisation

Efficiency
Compliance

Analysability

Changeability

Stability

Testability

Maintainability
Compliance

Adaptability

Installability

Co-Existence

Replaceability

Portability
Compliance

Figure 1: The ISO/IEC 9126-1 Model for Internal and External Quality

The model of quality in use is based on the characteristicseffectiveness, productivity,
safety, andsatisfactionand does not elaborate on further subcharacteristics. In the fur-
ther parts of ISO/IEC 9126, metrics are defined which are intended to be used to measure
the attributes of the (sub)characteristics defined in Part 1: The provided metrics are quite
abstract which makes them applicable to various kinds of software products, but they can-
not be applied without further refinement.

The actual process of evaluating a software product is not part of ISO/IEC 9126, but it is
defined in ISO/IEC 14598 [ISO01]: To be able to take different requirements of different
products into account, the model needs to beinstantiatedby weighting the different (sub-)
characteristics and by choosing appropriate metrics.

3 A Quality Model for Test Specifications

Our quality model for test specification is an adaptation of ISO/IEC 9126 to the domain
of test specification. While the ISO/IEC 9126 model deals with internal quality, external
quality, and quality in use, the remainder of this paper will only address internal quality
characteristics.

Figure 2 illustrates our test specification quality model. The model is divided into seven
main characteristics: test effectivity, reliability, usability, efficiency, maintainability, porta-
bility, and reusability. Each main characteristic is structured into several subcharacteris-
tics.

While most of the characteristics defined in ISO/IEC 9126 can be generously re-interpreted
and thus applied for test specifications as well, we preferred to introduce names which are
more appropriate in the context of testing. To indicate the relationship of our model to
ISO/IEC 9126, we provide the corresponding name of the ISO/IEC 9126 characteristics in
parenthesises. Test quality characteristics are printed in bold letters. Characteristics which
have no corresponding aspect in ISO/IEC 9126, are denoted by the sign (–). The seven

Test Specification
Quality

Test Effectivity
(Functionality)

Reliability
(Reliability)

Usability
(Usability)

Efficiency
(Efficiency)

Maintainability
(Maintainability)

Portability
(Portability)

Reusability
(—)

Test Coverage
(Suitability)

Test
Correctness
(Accuracy)

Fault-
Revealing
Capability

(—)

Test Effectivity
Compliance
(Functionality
Complicance)

Test
Repeatability

(—)

Maturity
(Maturity)

Fault-Tolerance
(Fault-

Tolerance)

Security
(—)

Recoverability
(Recoverability)

Reliability
Compliance
(Reliability

Compliance)

Understand-
ability

(Understand-
ability)

Learnability
(Learnability)

Operability
(Operability)

Test
Evaluability

(—)

Usability
Compliance

(Usability
Compliance)

Time Behaviour
(Time

Behaviour)

Resource
Utilisation
(Resource
Utilisation)

Efficiency
Compliance
(Efficiency

Compliance)

Analysability
(Analysability)

Changeability
(Changeability)

Stability
(Stability)

Maintainability
Compliance

(Maintainability
Compliance)

Adaptability
(Adaptability)

Portability
Compliance
(Portability

Compliance)

Coupling
(—)

Flexibility
(—)

Comprehen-
sibility
(—)

Reusability
compliance

(—)

Bold text: Quality characteristic
(Text in parenthesises): Corresponding characteristic in ISO/IEC 9126-1
(—): No corresponding characteristic in ISO/IEC 9126-1

Figure 2: The Test Specification Quality Model

characteristics are explained in more detail in the following paragraphs. Characteristics
that are not applicable for test specifications are also reviewed.

The main characteristicreusability(right-hand side of Figure 2) is not explicitly covered
in ISO/IEC 9126. We added it to our model, because test specifications and parts of
them are often reused for different kinds of testing, e.g. test cases and test data for system
level testing may be reused for regression testing, performance testing, or testing different
versions of theSystem Under Test(SUT). Thus, design for reusability is an important
quality criterion for test specifications.

Each main characteristic contains acompliancesubcharacteristic which denotes the degree
to which the test specification adheres to potentially existing standards or conventions
concerning this aspect. Since such conventions also exist for test design, they are also
included in our model. However, they will not be covered any further in the following
descriptions since such conventions and standards are company- or project-specific.

Test Effectivity. The test effectivitycharacteristic describes the capability of the spec-
ified tests to fulfil a given test purpose.Test effectivityis the characterisation of the
term “functionality” in the context of test specification and was thus renamed from
ISO/IEC 9126. In the context of test specification, thesuitabilityaspect is characterised by
test coverage. Coverage constitutes a measure for test completeness and can be measured
on different levels, e.g. the degree to which the test specification covers system require-
ments, system specification, or test purpose descriptions.

The test correctnesscharacteristic denotes the correctness of the test specification with
respect to the system specification or the test purposes. Furthermore, a test specification
is only correct when it always returns correct test verdicts and when it has reachable end
states.

The fault-revealing capabilityhas been added to the list of subcharacteristics. Obtaining
a good coverage with a test suite does not make any statement about the capability of
a test specification to actually reveal faults. Usage of cause-effect analysis [Mye79] for
test creation or usage of mutation testing may be indicators for increased attention to the
fault-revealing capability.

The interoperability characteristic has been omitted from the test specification quality
model. Test specifications are too abstract forinteroperabilityto play a role. Thesecurity
aspect has been moved to thereliability characteristic.

Reliability. The reliability characteristic describes the capability of a test specification
to maintain a specific level of performance under different conditions. In this context, the
word “performance” expresses the degree to which needs are satisfied.

The reliability subcharacteristicsmaturity, fault-tolerance, and recoverability of
ISO/IEC 9126 apply to test specifications as well. However, new subcharacteristicstest
repeatabilityandsecurityhave been added. Test results should always be reproducible in
subsequent test runs if generally possible. Otherwise, debugging the SUT to locate a de-
fect becomes hard to impossible.Test repeatabilityincludes the demand for deterministic
test specifications.

The securitysubcharacteristic covers issues such as included plain-text passwords that
play a role when test specifications are made publicly available or are exchanged between
development teams.

Usability. Theusabilityattributes characterise the ease to actually instantiate or execute
a test specification. This explicitly does not include usability in terms of difficulty to
maintain or reuse parts of the test specification which are covered by other characteristics.

Understandabilityis important since the test user must be able to understand whether a
test specification is suitable for his needs. Documentation and description of the overall
purpose of the test specification are key factors – also to find suitable test selections.

The learnability of a test specification pursues a similar target. To properly use a test
suite, the user must understand how it is configured, what kind of parameters are involved,
and how they affect test behaviour. Proper documentation or style guides have positive
influence on this quality as well.

A test specification has a pooroperability if it, e.g. lacks appropriate default values, or
a lot of external, i.e. non-automatable, actions are required in the actual test execution.
Such factors make it hard to setup a test suite for execution or they make execution time-
consuming due to a limited automation degree.

A new test-specific subcharacteristic inusability is test evaluability. The test specification
must make sure that the provided test results are detailed enough for a thorough analysis.
An important factor is the degree of detail richness in test log messages.

Lastly,attractivenessis not relevant for test specifications.Attractivenessmay play a role
for test execution environments and tools, but for plain test specifications, there simply is
no user interface involved that could be liked or not.

Efficiency. Theefficiencycharacteristic relates to the capability of a test specification to
provide acceptable performance in terms of speed and resource usage. The ISO/IEC 9126
subcharacteristicstime behaviourandresource utilisationapply without change.

Maintainability. Maintainabilityof test specifications is important when test developers
are faced with changing or expanding a test specification. It characterises the capability
of a test specification to be modified for error correction, improvement, or adaption to
changes in the environment or requirements. Theanalysability, changeability, andstabil-
ity subcharacteristics from ISO/IEC 9126 are applicable to test specifications as well. The
testabilitysubcharacteristics does not play any role for test specifications.

The analysabilityaspect is concerned with the degree to which a test specification can
be diagnosed for deficiencies. For example, test specifications should be well structured
to allow code reviews. Test architecture, style guides, documentation, and generally well
structured code are elements that have influence in the quality of this property.

The changeabilitysubcharacteristic describes the capability of the test specification to
enable necessary modifications to be implemented. E.g. badly structured code or a test
architecture that is not expandable may have negative impact on this quality aspect.

Depending on the test specification language used, unexpected side effects due to a modi-
fication have negative impact on thestabilityaspect.

Portability. Portability in the context of test specification does only play a very limited
role since test specifications are not yet instantiated. Therefore,installability (ease of in-
stallation in a specified environment),co-existence(with other test products in a common
environment), andreplaceability(capability of the product to be replaced by another one
for the same purpose) are too concrete. However,adaptabilityis relevant since test speci-
fications should be capable to be adapted to different SUTs or environments. For example,
hardcoded SUT addresses (e.g. IP addresses or port numbers) or access data (e.g. user
names) in the specification make it hard to adapt the specification for other SUTs.

Reusability. Althoughreusabilityis not part of ISO/IEC 9126, we consider this aspect to
be particularly important for test specifications since it matters when test suites for differ-
ent test types are specified. For example, the test behaviour of a performance or stress test
specification may differ from a functional test, but the test data, such as predefined mes-
sages, can be reused between those test suites. It is noteworthy that the subcharacteristics
correlate with themaintainabilityaspects to some degree.

The coupling degree is arguably the most important subcharacteristic in the context of
reuse. Coupling can occur inbetween test behaviour, inbetween test data, and between test
behaviour and test data. For example, if there is a function call within a test case, the test

case is coupled to this function. To make test specifications reusable, the ultimate goal is
loose coupling and strong cohesion.

Theflexibility of a test specification is characterised by the length of a specification sub-
part and its customiseability regarding unpredictable usage. For example, if fixed values
appear in a part of a test specification, a parametrisation likely increases its reusability.

Finally, parts of a specification can only be reused if there is a good understanding of the
reusable parts (comprehensibilitysubcharacteristic). Good documentation, comments, and
style guides are necessary to achieve this goal.

4 An Instantiated Test Specification Quality Model for TTCN-3

Our quality model for test specifications (see Section 3) is kept abstract to support the
application to different test specification technologies like, e.g. TTCN-3 [ETS05a] or
UML 2.0 Testing Profile(U2TP) [OMG05]. The instantiation of the test specification
quality model requires a set of metrics for each subcharacteristic that adequately capture
the different aspects in numbers. There are various ways to obtain these numbers: static
analysis, dynamic analysis on the specification level, but also results from manual reviews
of specification documents. The latter may include the comparison of different kinds of
test specification documents to assess the degree of consistency between them or coverage
of specifications.

Due to our involvement in the standardisation, we chose TTCN-3 as test specification lan-
guage to demonstrate the instantiation of our quality model. The instantiation depends
on a variety of different aspects like application specific properties, customer-specific re-
quirements, or weaknesses of test developers. Hence, our set of metrics should not be
misconceived as a fixed set that cannot be changed. Rather, they represent a variable ex-
cerpt of what measurements may be suitable for each subcharacteristic.

A well known methodology to find appropriate metrics is theGoal Question Metric
(GQM) approach [BW84] which we used to obtain suitable TTCN-3 specific metrics. In
the following, we provide example metrics for three main characteristics:test effectivity,
maintainability, andreusability.

Main Characteristic: Test Effectivity

Subcharacteristic 1:test coverage

- metric 1.1: test purpose coverage:= number of test purposes covered by TTCN-3 test cases
overall number of test purposes , i.e. the

number of test purposes covered by test cases specified in a TTCN-3 test suite is
compared to the number of test purposes contained in a corresponding test purpose
specification.

- metric 1.2: system model coverage:= test coverage of system model
possible coverage of system model, where several differ-

ent coverage criteria like path coverage, branch coverage, etc. are applicable. This
metric determines the test coverage with respect to a model of the SUT.

Subcharacteristic 2:test correctness

- metric 2.1:test verdict completeness:= number of paths in TTCN-3 test cases setting a test verdict
overall number of paths in TTCN-3 test cases , i.e. it

is assessed whether all paths of the test cases do set a test verdict.

- metric 2.2: test termination:= number of paths in TTCN-3 test cases terminating correctly
overall number of paths in TTCN-3 test cases , i.e. it is as-

sessed whether all paths of the test cases terminate correctly.

Subcharacteristic 3:fault-revealing capability

- metric 3.1:transmissibility of receiving templates:=

1− number of wildcard-only-covered elements in type definitions used by receiving templates

overall number of elements in type definitions used by receiving templates

SUT responses might never be properly evaluated when the corresponding receiving
templates are too transmissible due to wildcards. This metric measures to which
degree the elements of received data are at least covered once by a non-wildcard
expected value.

- metric 3.2:effect coverage:= number of effects tested by a TTCN-3 test suite
overall number of effects possible in the system specification. This metric

uses cause-effect analysis to determine the degree to which each effect is at least
tested once.

Main Characteristic: Maintainability

Subcharacteristic 1:analysability

- metric 1.1:complexity violation:=

1− number of behavioural entities violating upper bound of complexity

overall number of behavioural entities

This metric measures the number of TTCN-3 testcases, functions, and altsteps which
violate a defined boundary value of a complexity measure in comparison to the
overall number of testcases, functions, and altsteps. Several complexity measures
may be used, e.g. McCabe’s cyclomatic number [McC76, ZNG+06b], nesting level,
call-depth, or number of statements.

Subcharacteristic 2:changeability

- metric 2.1:code duplication:= 1 − entities containing duplicated code
overall number of entities . Since changes to dupli-

cated code requires changing all locations of duplication, this metric determines the
portion of duplicated code in terms of, e.g.Lines of Code(LOC) or statements.

- metric 2.2:maximum number of references violation:=

1− number of entities which are referenced more times than an upper bound allows

overall number of entities

This metric determines how often an entity is referenced and penalises the violation
of an upper boundary value. When applying changes to entities which are referenced
very often, a developer needs to check for every reference whether a change may
have unwanted side effects or requires follow-up changes.

Subcharacteristic 3:stability

- metric 3.1:global variable and timer usage:=

1− number of component variables and timers referenced by more than one behaviour

overall number of component variables and timers

Global variables promote side effects. In TTCN-3, component variables and timers
are global to all behaviour running on the same component. This metric measures
the number of all component variables and timers referenced by more than one func-
tion, testcase, or altstep and relates them to the overall number of component vari-
ables and timers.

- metric 3.2:parameter reassignment:= 1− number of out and inout parameters
overall number of parameters . Any modification

of parameters which are passed into a testcase, function, or altstep asout or inout
parameter leads to a side effect. Hence, this metric measures the potential of side
effects by relating the number of out and inout parameters to the overall number of
parameters.

Main Characteristic: Reusability

Subcharacteristic 1:coupling

- metric 1.1: coupling to other modules:= number of modules importing from other modules
overall number of modules . The

reusability of the modules of a test suite depends on how tightly each module is
coupled to other modules. Hence, this metric counts the number of modules cou-
pled to other modules and relates this to the overall number of modules. In TTCN-3,
coupling between modules is introduced by theimport construct.

- metric 1.2:coupling to overspecialised components:=
number of behavioural entities unnecessarily running on a specialised component

overall number of behavioural entities running on components

Reusability is reduced if a function, testcase, or altstep running on a component
would run on a parent component as well, but is bound to a more specialised com-
ponent. Hence, this metric relates the number of such cases to the overall number
of functions, testcases, and altsteps which are coupled to components in general.

Subcharacteristic 2:flexibility

- metric 2.1:shortness:= number of behavioural entities violating size limit
overall number of behavioural entities . The shorter an entity is,

the higher the probability is that it is flexible enough to be reused in a different
context. Hence, this metric measures the number of testcases, functions, and altsteps
whose LOC or number of statements violate a defined boundary value.

- metric 2.2: parametrisation:= number of formal parameters
number of formal parameters+number of hardcoded values. Reuse is

hindered by hardcoded values and promoted by parametrisation. Hence, this metric
values parametrisation and penalises hardcoded values.

Subcharacteristic 3:comprehensibility

- metric 3.1: comments:= number of commented entities
overall number of entities , i.e. the number of entities, e.g. test-

cases, functions, or altsteps, whose interface is properly documented in comparison
to the overall number of considered entities.

- metric 3.2:groupedness:= 1− number of ungrouped elements
overall number of elements. In TTCN-3 grouping is a means

to structure the elements of a module. Hence, this metric calculates the degree of
structuredness by penalising unstructured elements.

5 Example

As an example for the usage of our test specification quality model instantiation for
TTCN-3, we applied it to several versions of a TTCN-3 test suite for testing the con-
formance of implementations of the SIP protocol. The different versions of the test suites
are based on a TTCN-3 SIP test suite standardised by ETSI [ETS05b].

From the previously described quality metrics, we have so far automated the calculation
of those related to maintainability. Table 1 shows some results of the calculated metrics
for different versions of the SIP test suite (we designed the quality metrics to yield a value
between 0, i.e. considered quality aspect not fulfilled at all, and 1, i.e. considered quality
aspect fulfilled to 100%). To give an impression of the evolution of the sizes of the SIP
test suite, we provide as well some absolute values of size metrics. From these, it can be
seen that between versions 2.x and 3.x the number of testcases has been increased. The
further size metrics are used as input for the subsequent quality metrics.

Metric SIP v2.20 SIP v2.24 SIP v3.01 SIP v3.06
Testcases 1068 1068 1412 1412
Behavioural entities 1961 1971 2360 2369
Violations of max. cyclomatic complexity 27 30 51 51
Violations of max. number of statements 449 460 677 681
Overall alt branches 1900 1958 2482 2534
Duplicate alt branches 1435 1471 1849 1879
Definitions 2499 2526 3369 3419
Violation of max. references to definitions 119 111 133 134
Component variables and timers 63 65 66 66
Component variables and timers with side effects53 55 56 56
Formal parameters 3175 3224 5062 5084
Formal parameter with side effects 1237 1244 1617 1628
Analysability:
complexity violation wrt. cyclomatic complexity 0.99 0.98 0.98 0.98
complexity violation wrt. number of statements 0.77 0.77 0.71 0.71
Changeability:
code duplication wrt. alt branches 0.25 0.25 0.26 0.26
maximum number of references violation 0.95 0.96 0.96 0.96
Stability:
global variable and timer usage 0.16 0.15 0.15 0.15
parameter reassignment 0.61 0.61 0.68 0.68

Table 1: Measurements of Maintainability Characteristic

For assessing the analysability subcharacteristic, the violation of behavioural complexity
bounds in terms of cyclomatic complexity and number of statements has been measured.
For the cyclomatic complexity, the upper boundary has been chosen to be 10, for maxi-
mum number of statements, the boundary is 20. For the changeability subcharacteristic,
code duplication has been measured with respect to duplicate branches in alternatives.
75% of all alt branches are duplicated, hence the obtained quality is very low (0.25–0.26).
The number of references up to which changeability is considered as good has been set
to 50. The stability subcharacteristic has been evaluated based on the usage of compo-
nent variables and timers as global variables. This occurs quite frequently in the SIP test
suite, thus the corresponding quality is low. Furthermore, possible side effects due to re-
assignment of inout and out parameters have been measured. The corresponding values
(0.61–0.68) can be considered as barely acceptable. The maintainability compliance has
not been measured, since no maintainability guidelines were defined when creating the
SIP test suites.

Most efforts for the newer versions have been spent on adding new test cases to increase
the coverage and were thus additions rather than refactorings [ZNG+06a]. However, they
had minimal impact concerning the quality aspects measured. This can be interpreted
positively considering that additions or changes can also lead to software ageing. However,
some measurements, for example the high number of duplicate alt branches, indicate that
there is room for improvement regarding maintenance.

6 Summary and Outlook

In this paper, we presented a quality model for test specifications. Our model is an adapta-
tion of the ISO/IEC 9126 quality model to the domain of test development. We instantiated
our model for TTCN-3 test specifications and presented measurements for different ver-
sions of the standardised SIP test suite to demonstrate the application of our approach.

Due to the domain of test specification, our model currently only covers internal quality as-
pects. We started to investigate a generalisation of our model which also includes external
quality aspects, e.g. performance aspects and properties related to test campaigns.

A subset of the metrics presented in this paper has already been implemented in our tools
[TRe07, Tes07]. We plan to implement further metrics and support for the quality as-
sessment based on user-specific variants of our quality model. The latter may include the
possibility to define user-specific profiles allowing the selection of relevant characteristics,
subcharacteristics, and metrics as well as the specification of individual threshold values
for metrics and the definition of evaluation schemes to combine measurements for different
metrics to general quality verdicts. Furthermore, we are investigating means to evaluate
whether chosen metrics are reasonable and independent, i.e. orthogonal to each other.

In addition to these activities, we started to work on further case studies (e.g. IPv6
[ZNG+06b]) and to investigate the combined usage of metrics and refactoring for a contin-
uous quality assessment and quality improvement of test specifications. For the future, we
plan to instantiate our quality model for tests specified by means of the UML 2.0 Testing
Profile [OMG05].

References

[BBK+78] Boehm, B.; Brown, J.; Kaspar, J.; Lipow, M.; MacLead, C.; Merrit, M.: Characteristics
of Software Quality. North Holland, 1978.

[BW84] Basili, V. R.; Weiss, D. M.: A Methodology for Collecting Valid Software Engineering
Data. IEEE Transactions on Software Engineering, SE-10(6):728–738, 1984.

[ETS05a] ETSI Standard ES 201 873-1 V3.1.1 (2005-06): The Testing and Test Control Notation
version 3; Part 1: TTCN-3 Core Language. European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France, 2005.

[ETS05b] ETSI Technical Specification TS 102 027-3: SIP ATS & PIXIT; Part 3: Abstract
Test Suite (ATS) and partial Protocol Implementation eXtra Information for Testing
(PIXIT). European Telecommunications Standards Institute (ETSI), Sophia-Antipolis,
France, 2005.

[ISO01] ISO/IEC Standard No. 14598: Information technology – Software product evaluation;
Parts 1–6. International Organization for Standardization (ISO) / International Elec-
trotechnical Commission (IEC), Geneva, Switzerland, 1999-2001.

[ISO04] ISO/IEC Standard No. 9126: Software engineering – Product quality; Parts 1–4. Inter-
national Organization for Standardization (ISO) / International Electrotechnical Com-
mission (IEC), Geneva, Switzerland, 2001-2004.

[McC76] McCabe, T. J.: A Complexity Measure. IEEE Transactions of Software Engineering,
2(4):308–320, 1976.

[MRW77] McCall, J.; Richards, P.; Walters, G.: Factors in Software Quality. Technical Report
RADC TR-77-369, US Rome Air Development Center, 1977.

[Mye79] Myers, G.: The Art of Software Testing. Wiley, 1979.

[OMG05] OMG. UML Testing Profile (Version 1.0 formal/05-07-07). Object Management
Group (OMG), 2005.

[Sne04] Sneed, H. M.: Measuring the Effectiveness of Software Testing. In (Beydeda, S.;
Gruhn, V.; Mayer, J.; Reussner, R.; Schweiggert, F., eds.): Proceedings of SOQUA
2004 and TECOS 2004, volume 58 of Lecture Notes in Informatics (LNI). Gesellschaft
für Informatik, 2004.

[Tes07] TestingTechnologies: TTworkbench. http://www.testingtech.de/products, 2007. Last
visited: 1 February 2007.

[TRe07] TRex. http://www.trex.informatik.uni-goettingen.de, 2007. Last visited: 1 February
2007.

[VS06] Vega, D.-E.; Schieferdecker, I.: Towards Quality of TTCN-3 Tests. In: Proceedings of
SAM’06: Fifth Workshop on System Analysis and Modelling, May 31–June 2 2006,
University of Kaiserslautern, Germany, 2006.

[ZNG+06a] Zeiss, B.; Neukirchen, H.; Grabowski, J.; Evans, D.; Baker, P.: Refactoring and Met-
rics for TTCN-3 Test Suites. In (Gotzhein, R.; Reed, R., eds.): System Analysis and
Modeling: Language Profiles, volume 4320 of Lecture Notes in Computer Science.
Springer, 2006.

[ZNG+06b] Zeiss, B.; Neukirchen, H.; Grabowski, J.; Evans, D.; Baker, P.: TRex – An Open-
Source Tool for Quality Assurance of TTCN-3 Test Suites. In (ASQF e.V., ed.): Soft-
ware Quality in Service-Oriented Architectures – Proceedings of CONQUEST 2006.
dpunkt.Verlag, 2006.

