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Abstract

Extensive testing of modern communicating systems often involves large and complex test
suites that need to be maintained throughout the life cycle of the tested systems. For this
purpose, quality assurance of test suites is an inevitable task that eventually may have an
impact on the quality of the system under test as well.

In this thesis, we present a holistic method towards the analytical quality engineering of
test specifications. We cover in detail what constitutes the quality of test specifications by
adapting a quality model for software to test specifications and present how to apply target-
oriented static testing to test specifications. We also introduce a dynamic testing method
for test specifications, including a reverse engineering approach for test behavior models,
and present a method for the consistency analysis of system responses in test suites. Based
on the quality assessments made, the test suites can be improved regarding specific quality
characteristics of this quality model. Finally, we validate and demonstrate the applicability
of our approaches in a case study by means of a prototype implementation.





Zusammenfassung

Umfassendes Testen von modernen kommunizierenden Systemen beinhaltet oft große und
komplexe Testsuiten, die über den Lebenszyklus des getesteten Systems hinweg gewartet
werden müssen. Daher ist Qualitätssicherung von Testsuiten eine unvermeidliche Aufgabe,
die letztendlich auch einen Einfluss auf die Qualität des getesteten Systems haben kann.

In dieser Arbeit wird eine ganzheitliche Methode zur analytischen Qualitätssicherung
von Testspezifikationen vorgestellt. Sie beschreibt die Qualität von Testspezifikationen,
indem ein allgemeines Qualitätsmodell für Softwareprodukte adaptiert wird. Es wird
gezeigt wie statisches Testen zielgerichtet auf Testspezifikationen angewendet werden
kann und wie dynamisches Testen von abstrakten Testspezifikationen möglich ist. Für
den dynamischen Testansatz wird eine Reverse-Engineering Methode zur Gewinnung
von Test-Verhaltensmodellen beschrieben sowie eine Konsistenzanalyse für Systemant-
worten in Testsuiten diskutiert. Basierend auf Qualitätsbewertungen können Testsuiten
bezüglich spezifischer Qualitätscharakteristiken des Qualitätsmodelles verbessert werden.
Zuletzt werden die präsentierten Ansätze in einer Fallstudie validiert und Ihre praktische
Anwendbarkeit mit Hilfe einer prototypischen Implementierung gezeigt.
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1. Introduction

Industrial test suites for modern communicating systems are often huge in size and complex
in behavior. The tested devices and systems are becoming increasingly sophisticated and at
the same time, they have to be more reliable than ever before. Nowadays, extensive testing
involves not only the specification, the selection, and the execution of test cases, but also
includes the maintenance of test suites throughout the life cycle of the tested system. For
this purpose, quality assurance of test suites is an inevitable task that eventually may have
an impact on the quality of the System Under Test (SUT). There is always a reciprocal
effect between the quality of the test suite and the quality of the SUT. In addition, just like
general-purpose software, test suites suffer from software aging [116]. It is thus sensible to
find quality issues in tests as early as possible. For that purpose, we need to apply quality
assurance and quality assurance techniques to test suites as well.

1.1. Software Quality Assurance

Quality assurance for general-purpose software is nothing new—in fact, it is a main subject
in the field of software engineering. The IEEE 610 standard [108] defines the term qual-
ity as the “degree to which a system, component, or process meets specified requirements”
and the “degree to which a system, component, or process meets customer or user needs
or expectations”. The overall fitness of such a software product is usually determined by
its internal characteristics (i.e., characteristics derived from an internal view of the software
product, such as code or specification documents that can be improved during implementa-
tion, reviewing, and testing), its characteristics when it is executed (external quality), and
the characteristics that it exposes when it is used. These characteristics are weighted ac-
cording to the needs, requirements, and expectations of this project. The needs towards
the quality characteristics of two different software products are rarely the same. In the
end of 2005, the Tokyo Stock Exchange had to deal with various software issues [135].
Among them was an issue where the cancel command for trades failed. An employee of
Mizuho Securities mistakenly typed to sell 610,000 shares at 1 Yen instead of one share at
610,000 Yen. Even though Mizuho noticed the mistake in time, they were unable to cancel
the order due to the bug in the software system denying the cancel command. Mizuho’s
loss amounted to approximately 225 million US dollars. Being only the most prominent
example of loss caused by software problems at the Tokyo Stock Exchange in late 2005, it
is likely that the total sum of losses due to software glitches is a lot higher. On the other
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Figure 1.1.: Software Quality Assurance Overview

hand, a crashing word processing application may (in most cases) only cause productivity
loss for an individual person in the worst case. Quality depends on many non-technical
factors such as time, cost, size of the development team, developer experience. It can be
decisive for the success of a software product in the non-critical case, whereas for critical
software, software quality is a factor that may prevent or trigger catastrophes.

To make sure that software quality characteristics are respected during development and
within maintenance of a software product, quality assurance measures need to be estab-
lished. The IEEE 610 standard defines quality assurance as a “planned and systematic
pattern of all actions necessary to provide adequate confidence that an item or product con-
forms to established technical requirements”. A second definition in the standard states
that quality assurance is a “set of activities designed to evaluate the process by which prod-
ucts are developed or manufactured”. This twofold definition stresses that software quality
assurance concerns not only the evaluation of the software product, but also the software
development process and its procedures. Software quality assurance can be viewed from
a multitude of different angles. Different factors within the software development process
influence quality characteristics of a software product. These factors are not only found in
the analysis, design, specification, and implementation of the software product, but also in
the organizational parts of a project of technical and non-technical nature that surround the
actual software development.

Figure 1.1 illustrates an overview how quality assurance can be subdivided [78]. Or-
ganizational quality measures concern the organization of the infrastructure and the man-
agement. Means for supporting the infrastructure are configuration management or defect
management. Management quality is influenced by process models and process improve-
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ment models. Process models comprise models such as the V-Modell 97 [60], iterative
models such as Rational Unified Process (RUP) [94], or incremental and agile models such
as Extreme Programming [11]. Process improvement models comprise models such as
Capability Maturity Model Integration (CMMI) [26, 27, 28] or the ISO/IEC 15504 stan-
dard [89]. They define criteria based on which a product can claim a certain level of matu-
rity.

Constructive quality assurance comprises activities that prevent future quality problems
by avoiding issues. These measures are proactive and often start before the actual project
begins. Constructive measures are technical trainings, certifications, choice of tooling,
formalisms that improve communication (for example, by using Unified Modeling Lan-
guage (UML) [111, 112] for documentation), or usage of best practices such as design
patterns [65] or refactoring [64].

Analytical measures, the primary focus of this thesis, are reactive to existing problems
and try to locate and eliminate quality problems when specifications or code has been pro-
duced already. Figure 1.2 illustrates how analytical quality assurance can be structured. The
vocabulary and the differentiation between static testing and dynamic testing are aligned to
definitions given by the International Software Testing Qualifications Board (ISTQB) [134].
Static testing is applied when the software is not actually used or executed. Rather, it essen-
tially means to look at a software product and possibly its underlying code. Static testing
can be further subdivided into machine supported testing and manual testing. Machine sup-
ported static testing is applied when the specification (or code at a lower level) of the soft-
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ware product is automatically analyzed in some manner. This may include simple semantic
checks of a compiler, but it may also include the checking of guidelines, the calculation
of software metrics [61], or the detection of bad smells [64]. Manual static testing, on the
other hand, is performed without any kind of machine support and includes, for example,
manual technical reviews or code inspections. Once possible issues have been identified
and located, methods for improvement can be applied.

1.2. Distinctive Properties of Test Specifications

To discuss quality assurance for test specifications, it is necessary to identify the differences
between a test specification and a general-purpose software product. This is especially of
particular importance since we use and present methods that are already known for general-
purpose software systems, but adapted and instantiated for the context of test specifications.

A test specification is an abstract document that specifies a test suite with the purpose to
test another software system, the SUT, in order to find bugs or misbehaviors. A test suite
itself is composed by a number of test cases. It describes the behavior of test cases, the
interfaces of the SUT, the execution orders of the tests, data types, and test data descriptions.
The degree to which a test specification is formalized can differ significantly. An informal
test specification could be a document written in a text processor in a natural language
with instructions how to manually perform the tests in the test specification. A formal test
specification could be a specification written in a language like Testing and Test Control
Notation (TTCN-3), they could be described in the form of state machines, or in the form
of a UML model. There are clear differences between those more formal test specifications.
The language TTCN-3, for example, has strict syntax and semantics. However, the overall
complexity of the language is relatively high in both its grammatical and semantic nature.
A state machine on the other hand can represent test behavior using simple syntax and
semantics. However, it is not as expressive and as high-level as a language like TTCN-3.
Tests specified using UML models, e.g., using the UML 2.0 Testing Profile (U2TP) [110],
may appear easy to understand due to its graphical representation, but they lack the kind of
strict semantics that a language such as TTCN-3 offers. UML does not exactly state how
and when to use its diagrams (or model elements) and how they can or must be connected
to each other. Therefore, models are likely to look different unless they are forced to follow
specific custom guidelines.

Having discussed the term test specification and what its requirements are, we continue
the discussion about the differences between a software system and a test specification.
The goal of a test case for communicating systems is to produce a concrete answer to a
specific question. The question is whether a certain behavior executes as expected, i.e.,
the test simulates a specific communication scenario between the SUT and its environment.
The test replaces the environment and simulates its behavior for this scenario. Depending
on the SUT reactions, the test case concludes with an answer—a verdict about the tested
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scenario. Using a set of such scenarios with associated conclusions, a certain degree of
security towards the quality of the tested aspect of the SUT is assumed. While tests do not
assure any kind of correctness towards the tested aspect, they do help to build confidence in
the system that is tested.

In order to reproduce the scenario that has been tested, the test should ideally be deter-
ministic, i.e., it should be able to repeat its behavior in exactly the same way as before. This
is important since missing repeatability can make a problem hard to debug and fix when
the problem cannot be reproduced easily and reliably. Therefore, any kind of randomness
introduced into the test behavior, either explicitly, by using random decisions, or implicitly,
for example, due to the specification of parallel behavior that may be scheduled differently
in each execution, can cause trouble in the analysis of the underlying problem.

Test specifications are usually designed to have as little user interaction as possible. Of-
ten, there is no user interaction at all. The reason is that the unsupervised execution of
instantiated test specifications is on the one hand more effective than any kind of supervised
execution and on the other hand the confidence and security towards the tested system in-
creases the more often the tests are executed—due to the expectation that the automated
test cases catch a high number of mistakes introduced due to changes. Depending on the
concrete test, however, full automation may not be always possible or feasible.

Finally, one very distinctive property of test specifications is that they are usually not
tested dynamically. Even though test specifications are software artifacts just like the soft-
ware product itself, it is not considered to be feasible to write test cases for test specifications
as well. After all, the tests that check the test specifications would strictly have to be tested
again. In addition, system tests in particular are often defined against design documents and
interface specifications when the actual SUT is still in development. Thus, there is often no
possibility to execute the test specifications against its target. As a result, the quality assur-
ance measures applied to general-purpose software, especially dynamic testing techniques,
need to be adapted for test specifications to fit their requirements.

To summarize, the main distinctive properties of test specifications as opposed to general-
purpose software systems are the following:

• The purpose of a test specification is to describe behavior that evaluates certain as-
pects of the SUT. It concludes with a test verdict.
• Tests should ideally be repeatable. To achieve that, their behavior should ideally be

deterministic.
• Depending on the test type, test behavior is often designed to be executed unsuper-

vised and without any user interaction. Effortless execution of test behavior is a
requirement for a continuous safety net that may catch errors due to changes.
• Test specifications cannot be tested in the same way. Quality assurance measures

therefore need to be adapted.
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1.3. Quality Assurance for Test Specifications

In general, the work on quality assurance for test cases or test suites is rare despite the
fact that they present software products as well. As an example, a 3GPP Long Term Evolu-
tion (LTE) test suite for mobile terminals currently in development at the European Telecom-
munications Standards Institute (ETSI) already encompasses over 160,000 lines of code.
Test suites can be not only huge in size, but they are also reasonably complex. Therefore,
means for quality assurance of test specifications is an inevitable necessity.

In the area of organizational quality assurance, the infrastructure quality measures can be
applied to test specifications in a similar way as they are applied to general-purpose soft-
ware. For the management quality assurance, there are several test process improvement
models available, such as Test Maturity Model Integrated (TMMi) [138], Test Process Im-
provement (TPI) [93], Critical Testing Processes (CTP) [19], or Systematic Test and Eval-
uation Process (STEP) [38]. For test processes, there is, for example, the fundamental test
process from the ISTQB [21].

Among the constructive measures are, for example, certifications and trainings for the
certified tester program from the ISTQB [20], that are currently available at the foundation
level and advanced level. High-level languages can be a constructive measure by reducing
the potential for errors due to a high degree of abstraction and domain-specific features—
a high degree of abstraction makes test specifications easier to understand and thus less
error-prone. The introduction of domain-specific features can make the specification more
natural (in the case of test specifications, for example, verdict handling would be such a
domain-specific feature). TTCN-3 is such a domain-specific high-level language for test
specifications. Best practices for the specification of tests exist in the form of pattern cat-
alogs for TTCN-3 [150] or smell and refactoring descriptions for TTCN-3 and xUnit test
specifications [103, 154].

Analytical measures regarding test specifications primarily take place in the form of man-
ual reviews. Often, manual reviews are the only available possibility to evaluate infor-
mal design documents or test descriptions written in natural language. Work on machine-
supported analytical measures for the assessment and improvement of test specifications on
the other hand is relatively rare (see Sections 3.6 and 4.6). There is currently no work that
instantiates quality assurance for test specifications with a systematic approach regarding
the classification, identification, and removal of possible quality problems in test specifi-
cations. In particular, a feasible solution for machine-supported dynamic testing of test
specifications has not been presented so far.

Enforcing systematic quality assurance of test specifications, no matter whether organi-
zational, constructive, or analytical, affects the test process in all its phases. Figure 1.3
illustrates the ISTQB fundamental test process [20]. It contains six phases in which the
test process is partitioned and one phase spanning over the other six, the control phase. In
the planning phase, resources are allocated and the test strategy is chosen, for example, to
decide which system parts are critical to test and which are not. In the test analysis, test
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Figure 1.3.: ISTQB Fundamental Test Process

design, and test implementation, logical test cases (without concrete test input data) and
afterwards concrete test cases are defined according to the selected test strategy. The test
implementation includes the establishment of the test infrastructure and, in general, all nec-
essary steps to make the tests executable. In the execution phase, the test cases are executed
against the SUT and the involved steps are journalized. If a test case fails, the journal, the
test environment, and the input data help to make the possible problem reproducible. These
artifacts that result from the execution are evaluated and then passed on to the responsible
persons in the exit criteria evaluation and test result report phase. In the closure phase, the
results of the previous phases are examined and prepared for the use in other projects so that
the lessons that have been learned are not lost and can be made useful for other projects or
in new iterations of the same project that may take place. Finally, the control phase makes
sure that current test activities are executed according to the test plan and according to the
resources allocated. If deviations are detected, test control commences the necessary steps
achieve the test plan goals.

Quality assurance of the test specifications should take place in all phases of the test pro-
cess. Constructive and organizational quality assurance primarily takes place in the planning
phase. For example, the necessary infrastructure is allocated, test developers are chosen or
sent to technical trainings, and technical decisions are made that ensure high quality artifacts
later on. Analytical quality assurance, on the other hand, takes place in all phases of the test
process. All artifacts, even the artifacts describing the resource allocation or the test strat-
egy should be reviewed. Therefore, in a test process with enforced quality assurance, static
testing takes place in all phases to ensure that the documents are correct. Automated static
and dynamic testing can be primarily performed in the analysis, design, implementation,
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and execution phases. The execution phase and test evaluation phases can be considered to
be supportive in testing the test specification as the examination of the test results may also
uncover errors or anomalies in the test specification. In that sense, the test specification tests
the SUT and vice-versa. The artifacts produced in the analysis, design, and implementation
phases can be automatically checked statically or even tested dynamically. The primary
purpose of this thesis is to demonstrate how exactly to perform testing on test specifications
that result from the analysis, design, and implementation phase.

While we can differentiate between internal and external quality characteristics for test
specifications as well, external characteristics only become apparent when the tests are ex-
ecuted. However, test specifications by themselves are abstract on the one hand and on
the other hand, we want to concentrate on quality assurance during the development, i.e.,
when the actual system might not be available for testing. Thus, we concentrate on internal
quality characteristics of test specifications in the following.

1.4. Thesis Scope, Approach, and Contribution

We concentrate on those items in the analytical quality assurance that have not been covered
holistically for test specifications, i.e., we cover in detail what quality for test specifications
exactly constitutes and based on that, we survey how to apply machine-supported static test-
ing to test specifications with the help of software metrics and bad smell patterns. We intro-
duce a dynamic testing method for test specifications that is feasible to apply and present a
method for the consistency analysis of responses in test suites. These items are covered with
regard to high-level message-based black-box test specifications with queues. The intent of
this thesis is to show how systematic machine-supported analytical quality assurance using
both static testing and dynamic testing, respecting test-specific characteristics, is possible
and feasible.

The holistic approach of this thesis is the application of the presented quality assurance
techniques as part of the test development process in a quality assurance cycle (illustrated
in Figure 1.4). The cycle consists of four phases. In the first phase, a quality characteristic
that should be assessed is chosen. The quality characteristic is derived from an adapted
quality model for test specifications. Based on the chosen quality characteristic, questions
are defined and metrics answer these questions (Goal Question Metric (GQM) approach).
Once we have determined the metrics that we want to use to assess the test artifact, we
can analyze it by collecting and evaluating these metrics. The metrics on the one hand
deliver values that allow an assessment and on the other hand, they deliver locations within
the artifact that may need improvement. Based on this information, the test artifact can
then be improved. For this purpose, we perform refactoring, i.e., we improve the quality
characteristic under analysis without changing the semantics of the test specification.
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The concrete contributions of this thesis are the following:

• A quality model for test specifications which examines the different quality charac-
teristics and subcharacteristics of test specifications. It presents the basis for this the-
sis by providing answers to the questions “What do we need to analyze?” and “What
quality characteristics can we improve?”. The quality model enables a target-oriented
choice of the aspects that should be assessed and provide an important building block
for the application of the GQM approach.
• An exemplary instantiation of this quality model for quality characteristics of a

TTCN-3 project. Here, we present how exactly the GQM is applied to specify ques-
tions and to determine metrics for a project using a concrete testing language. The
instantiation also demonstrates that metrics can be language-specific—in our case,
specific to the TTCN-3 language.
• A model-based analysis method for test specifications which provides an answer to

the question how dynamic testing can be performed on tests in a feasible way. It
constitutes the following:

– A reverse engineering algorithm to construct Extended Multi-Input/Output
Transition System (EMIOTS) models from high-level test specifications. The
reverse engineering model allows a subsequent analysis to assess and locate
quality characteristics.
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– A catalog of test specific, TTCN-3-specific, and generic properties that describe
specific anomalies in test cases. These properties benefit from an analysis using
the reverse engineered model or are not possible to analyze statically. The cata-
log is a guide and a starting point for test quality engineers to enable the design
of their own custom properties.

• A method for the detection of test cases with inconsistent responses in a test suite.
Inconsistent responses happen when two test cases are considered to have matching
behavior up to a certain state. However, in this state, one test case expects different
responses from the SUT than the other. In such occurrences, the test cases are consid-
ered to violate a response consistency criterion. The presented response consistency
relation and the provided detection algorithm allow test quality engineers to detect
such inconsistencies in test suites.

The case study in Section 5 presents how the approaches have been implemented in a
prototype. This prototype is then applied to test cases of standardized test suites devel-
oped at ETSI to validate the contributions. The composite of the contributions provide a
framework for the application of analytical quality assurance by providing the necessary
methods to perform dynamic testing and inconsistency analyses that are novel to the quality
engineering of test specifications.

1.5. Impact

The results of this dissertation have been peer-reviewed and published in several interna-
tional workshop and conference proceedings as well as in various journals. In the following,
we list workshop and conference publications with relation to the content in this disserta-
tion:

• SAM 2006: Refactoring and Metrics for TTCN-3 Test Suites. Benjamin Zeiss, Hel-
mut Neukirchen, Jens Grabowski, Dominic Evans, Paul Baker. LNCS 4320.
• TAIC PART 2006: TRex – The Refactoring and Metrics Tool for TTCN-3 Test Spec-

ifications. Paul Baker, Dominic Evans, Jens Grabowski, Helmut Neukirchen, Ben-
jamin Zeiss.
• SE 2007: Applying the ISO 9126 Quality Model to Test Specifications – Exemplified

for TTCN-3 Test Specifications. Benjamin Zeiss, Diana Vega, Ina Schieferdecker,
Helmut Neukirchen, Jens Grabowski. LNI 105.
• SDL Forum 2007: TTCN-3 Quality Engineering: Using Learning Techniques to

Evaluate Metric Sets. Edith Werner, Jens Grabowski, Helmut Neukirchen, Nils
Röttger, Stephan Waack, Benjamin Zeiss. LNCS 4745.
• TESTCOM/FATES 2008: Reverse-Engineering Test Behavior Models for the Anal-

ysis of Structural Anomalies (Short Paper). Benjamin Zeiss, Jens Grabowski.
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• SDL FORUM 2009: Towards an Integrated Quality Assessment and Improve-
ment Approach for UML Models. Akthar Ali Jalbani, Jens Grabowski, Helmut
Neukirchen, Benjamin Zeiss.
• TESTCOM/FATES 2009: Analyzing Response Inconsistencies in Test Suites. Ben-

jamin Zeiss, Jens Grabowski. LNCS 5826.

The subsequent list presents the published journal and online journal articles with relation
to in this dissertation:

• STTT Vol. 10(4): An Approach to Quality Engineering of TTCN-3 Test Specifica-
tions. Helmut Neukirchen, Benjamin Zeiss, Jens Grabowski. 2008.
• STVR Vol. 18(2): Quality assurance for TTCN-3 test specifications. Helmut

Neukirchen, Benjamin Zeiss, Jens Grabowski, Paul Baker, Dominic Evans. 2008.
• OBJEKTspektrum Online Themenspezial Testing: Systematische Qualitätssicherung

für Testartefakte. Jens Grabowski, Philip Makedonski, Thomas Rings, Benjamin
Zeiss. 2009.

Furthermore, the author identified the topics and supervised two master theses, one bach-
elor thesis, and one project work with some relation to the overall topic of this thesis:

• Dennis Neumann: Test Case Generation using Model Transformations. Master The-
sis. 2009.
• Lucas Schubert: An Evaluation of Model Transformation Languages for UML Qual-

ity Engineering. Master Thesis. 2010.
• Stefan Kirchner: Documentation Generation for TTCN-3. Bachelor Thesis. 2009.
• Dennis Neumann: Entwurf und Weiterverarbeitung eines XML-Formates zur Spe-

icherung von Transitionssystemen. Project Work. 2008.

The tools and technologies created during the development of this thesis have been devel-
oped further (as the t3q and t3d tools) for use within the test standardization at ETSI and are
actively used, for example, for checking the 3GPP LTE test suites during their development.

1.6. Thesis Structure

The structure of this thesis is as follows: in Chapter 2, we introduce the prerequisites of
this thesis that are needed across all chapters. Chapter 2.1 introduces TTCN-3 [55], a test
specification and implementation language standardized by ETSI. We use TTCN-3 for our
practical discussions and experiments. In Chapter 2.2, we provide basic definitions and
terms for the formal models that we use in the chapters on model-based analyses. Chapter
2.3 introduces temporal logic and model checking.
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Chapter 3 discusses software quality models (Chapter 3.1). We discuss how these models
can and must be adapted for the domain of test specifications and testing in general (Chapter
3.2) and present such an adaption in detail (Chapter 3.3). We show how to instantiate such
a quality model by means of metrics, smells, static analysis, and dynamic analysis for the
assessment and refactoring for the improvement (Chapter 3.4). Finally, we provide an exem-
plary instantiation of quality model characteristics for a project using TTCN-3 and discuss
how to develop appropriate metrics for the discussed subcharacteristics (Chapter 3.5). The
chapter concludes with a discussion of the related work on quality assurance approaches
for test specifications and static analyses of general-purpose software and test specifications
(Chapter 3.6).

The next chapter discusses the model-based analysis of test specifications (Chapter 4).
We explain the terms and techniques involved in reverse engineering (Chapter 4.1) and
present a formal model for representing test cases and test suites (Chapter 4.2). Based
on this, we provide a reverse engineering method and algorithm that is applicable to ab-
stract test specification (Chapter 4.3). Based on the reverse engineered model, we provide a
catalog of generic applicable properties that can then be analyzed using this method (Chap-
ter 4.4). Model-based analyses for test suites as a whole are described in Chapter 4.5 where
we discuss a specific kind of consistency criterion between two test cases that we call re-
sponse consistency. We conclude the chapter with a survey of related work (Chapter 4.6)
on dynamic analyses for test specifications and dynamic analyses in general.

The practical application of analytical quality assurance to industrial-size test suites is
demonstrated in Chapter 5. We first describe the implementation that we have developed
for the static and dynamic quality assessment as well as for the improvement of TTCN-3
test specifications (Chapter 5.1). The actual application of the analysis software to TTCN-3
test specifications is presented in Chapter 5.2. We first measure quality attributes statically
and associate automated refactorings to the assessment to improve the test suite. In a second
experiment, we validate the feasibility of our dynamic analysis approach.

The last chapter (Chapter 6) concludes this thesis. We summarize our efforts and provide
an outlook how our work can be refined further or what kinds of new research directions
have emanated from our research results. Chapters 3 and 4 have been written to be self-
contained, i.e., only the prerequisites chapter (Chapter 2) is a necessary dependency to
understand the respective chapters. Chapter 5 builds on the results of both Chapter 3 and 4.



2. Prerequisites

In this chapter, we present the prerequisites of this thesis that will be used and referred
to throughout this entire work. We introduce the core elements of the test specification and
implementation language TTCN-3 (Section 2.1), formal models for describing test behavior
(Section 2.2), and a short introduction to model checking (Section 2.3).

2.1. Testing and Test Control Notation 3 (TTCN-3)

The Testing and Test Control Notation (TTCN-3) [55, 67] is a testing language standardized
by the European Telecommunications Standards Institute (ETSI). It is the successor of
the Tree and Tabular Combined Notation (TTCN) which has been widely used for test
suite standardization and testing—especially in the telecommunications sector. TTCN was
originally a part of the ISO standard 9646 [86], the Conformance Testing Methodology
and Framework (CTMF) for the Open Systems Interconnection (OSI) [85]. The strength
of TTCN-3 is system testing, i.e., specification-based black-box testing, where an SUT is
stimulated with input messages and the subsequent reactions are observed and assessed.
Since its introduction, TTCN-3 has been adopted in a wide variety of new areas, such as
the automotive domain, the avionics domain, or the health care sector. Its use has also been
extended to different test types, such as performance testing [42].

The main presentation format for TTCN-3 is textual (the core notation) and has a lot
of syntactical similarity to a general-purpose language like C or Java. However, unlike a
general-purpose language, TTCN-3 is tailored for the purpose of test specification and re-
tains a lot of concepts from TTCN while introducing new concepts as well. In the following,
we will present the most important concepts of TTCN-3 along with small examples.

2.1.1. Distributed Testing

TTCN-3 introduces the concept of distributed testing as a standard language feature. Dis-
tributed testing means that the test behavior is distributed across several Parallel Test Com-
ponents (PTCs) that execute behavior concurrently. The PTCs may send messages among
each other to synchronize their behavior or exchange data. Figure 2.1 illustrates a TTCN-3
test system architecture with multiple components, i.e., a Main Test Component (MTC)
and multiple PTCs. The test components communicate with each other and the SUT via
ports, where each port (illustrated by circles) of a test component has an input queue. By
connecting or mapping ports among the test components or between the test components
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Figure 2.1.: TTCN-3 Test System Architecture

and the SUT, they are configured for communication. Due to the presence of queues, the
communication paradigm of TTCN-3 is non-blocking, i.e., the sender does not wait for any
confirmation from the sender and carries on directly. A test architecture frequently found
in practice is the distribution of behavior corresponding to each port to a different test com-
ponent. As mentioned before, the PTCs may communicate internally with each other or
through the Test System Interface (TSI) with the SUT. The overall setup how the ports of
the MTC, of the PTCs, and of the TSI are connected and mapped among each other is called
test configuration.

2.1.2. Templates

Templates are the means to define and use test data in TTCN-3. The test data is defined
according to specific predefined types for the templates. Templates do not only contain
concrete values, but they may also utilize matching operators, which can be used to define
a range or domain of test data. Such matching operators are, for example, optional values
or wildcards. In addition, the type system is very comprehensive and allows a lot of restric-
tions, such as subtyping by range restriction. The actual test data that is received during a
test execution is checked against a template to decide whether it matches. Templates that are
used for sending data must be concrete and thus may not contain any special matching op-
erators, such as wildcards. Listing 2.1 presents a simple template definition with matching
operators along with the referenced type definition.
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1 module TemplateExample {
2 type record Address {
3 charstring street,
4 integer zipCode,
5 charstring city,
6 charstring country
7 }
8
9 template Address myAddress := {

10 street := "Goldschmidtstrasse 7",
11 zipCode := "37077",
12 city := "Goettingen",
13 country := "Germany"
14 }
15
16 template Address hamburgAddress := {
17 street := ?,
18 zipCode := ?,
19 city := "Hamburg",
20 country := "Germany"
21 }
22
23 }

Listing 2.1: Example: TTCN-3 Template

In lines 2–7, a type for the template is defined—an address record. Then, a concrete
template is defined in lines 9–14. A matching template can be found in lines 16–21 that
would match any message of type Address that have data values “Hamburg” and “Germany”
in the city and country field respectively. The street and zipCode fields may have arbitrary
values.

2.1.3. Behavior, Alternative Behavior, and Defaults

Behavior in TTCN-3 is specified by means of either the testcase, function, or altstep con-
structs. Testcases are compounds that specify the starting point of a test case behavior.
Functions are subroutines used to perform a specific task that is to some degree independent
of the code that calls the function. The altstep is a construct encapsulating alt-statements.
Alt-statements can be regarded as a specialized switch statement in which behavioral deci-
sions are taken based on when and whether certain messages arrive at test component ports.
Before such an alt-statement is evaluated, a snapshot of the input queues is taken in order
to capture one specific state of the queues in an evaluation step. Such alternative behavior
of an alt-statement can be encapsulated in a specialized kind of subroutine, called an alt-
step. Altsteps can be explicitly referenced (just like a function) or they can be activated as
so called default behavior. Defaults specify an altstep that is dynamically attached to the
end of every alt-statement that is evaluated during the test execution. This way, common
behavior, such as error catching behavior (such as unexpected incoming messages or timer
timeouts), can be implicitly called without cluttering the test code. On the downside, due to
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its implicit nature, it may not always be clear to test engineers who are unfamiliar with the
test code when exactly such a default is attached to an alt-statement.

2.1.4. Verdict Mechanism

TTCN-3 features a built-in mechanism for handling test verdicts. Each test component
maintains its own local verdict. Additionally, there is a global test case verdict that is up-
dated when test components terminate their execution. The global verdict is returned when
a test case terminates its execution whereas the test component verdicts can be accessed
directly within the TTCN-3 behavior. Valid verdicts in TTCN-3 are none, pass, fail, and
inconclusive. In addition, TTCN-3 provides a set of rules on how verdicts can or cannot
be overwritten. For example, a fail verdict cannot be overwritten or an inconclusive verdict
can only be overwritten by a fail verdict.

2.1.5. Abstraction

A noteworthy characteristic of TTCN-3 is its architecture and how it promotes abstraction.
Unlike generic scripting languages that can be used for testing, TTCN-3 is built upon a
system that provides standardized services and capabilities that allow the adaption of the
rather high-level test specifications to test implementations that can be executed. Abstract
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test specifications in TTCN-3 can be compiled, but they are not executable by themselves.
Instead, information needs to be added that allows an execution of the test specifications
against a real-world SUT. Thus, we have a layered architecture where details are pushed
into lower-level layers to keep higher-level layers abstract.

The interfaces for the parts that are required for an executable test specification are de-
fined in the Test Runtime Interface (TRI) [57] and the Test Control Interface (TCI) [58].
With these interfaces, we can realize a test adapter that is able to encode and decode ab-
stract messages into messages that are defined in the protocol under test. Furthermore, the
adapter specifies how ports are mapped, how timers are realized, and similar.

Figure 2.2 illustrates the structure of a TTCN-3 test system. The TRI is more concerned
with operations towards the SUT and platform adapters. The TCI focuses on test manage-
ment, logging, and the codec.

2.1.6. Example

In the following, we present an abstract and simple, but complete example of TTCN-3
behavior. Listing 2.2 illustrates this example.
1 module testConfigEample {
2 type port myPort message {
3 inout integer
4 }
5 type component myComponent {
6 port myPort p;
7 }
8
9 template integer myMessage := 1;

10 template integer expectedMessage := 2;
11
12 altstep catchUnexpected() runs on myComponent {
13 [] p.receive {
14 stop;
15 }
16 }
17
18 testcase test() runs on myComponent {
19 var default myDefault := activate(catchUnexpected());
20 p.send(myMessage);
21 alt {
22 [] p.receive(expectedMessage) {
23 setverdict(pass);
24 }
25 }
26 deactivate(myDefault);
27 }
28 }

Listing 2.2: Example: TTCN-3 Code

In the component definition (Lines 5 – 7), a port is defined. The interface definition for
the test component and the TSI coincide. Therefore, the test case definition in Line 18
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references only one component definition. In Line 19, a default is activated that will be dy-
namically attached to alt-statements from there on. A stimulus is sent to the SUT in Line 20.
As a reaction to the stimulus there is an alt-statement (Lines 21 – 25) that handles expected
and unexpected reactions to the stimulus. If the expected message arrives (Line 22), the
verdict is set to pass. The other case is handled by the default altstep (Lines 12 – 16). In this
default, the testcase is stopped when any other message than the expected message arrives.
Note: in this case, no verdict is set. Finally, the default is deactivated in Line 26.

2.2. Formal Notations for Transition Systems

Model-based analysis of test specifications requires an appropriate formal model definition
that is suitable for representing test specifications and capable to model those properties
which are subject of the analysis. On the other hand, the formal model must be sufficiently
simple. Otherwise, the definition of model analyses can easily become very complex. A
model formalism often used for the representation of reactive systems is the Labeled Tran-
sition System (LTS). It forms the foundation for formal languages like the Calculus of
Communicating Systems (CCS) [104] or Communicating Sequential Processes (CSP) [77].
It is generic enough to describe any kind of common existing languages while still being
reasonably simple.

In the following, we give a few essential definitions that form the foundations for the
model-based analyses in this thesis.

2.2.1. Formal Models

We start by giving a definition for the LTS, with actions partitioned into inputs and outputs
(I/O). The I/O partitions give an additional context to each message—the information could
theoretically also be encoded as information in the action itself. In addition, we describe
unobservable actions by their own partition.

Definition 2.1 (Labeled Transition System (LTS) with I/O Partitions) An LTS M is de-
fined by the tuple (S,A,λ ,s0) where

• S is a finite and non-empty set of states,
• A is a set of actions that is partitioned into the sets of input actions AI , the set of

output actions AO, and the set of unobservable internal actions AN , i.e., A = AI ∪
AO∪AN ,AI ∩AO∩AN = /0,
• λ is a transition relation with λ ⊆ S×A×S,
• s0 is the initial state.

A transition from the set λ is either written as triple (s,a,s′) or as s a−→ s′.
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We also refer to the tuple elements of the model by using them as index of M, e.g., MS

refers to the set of states in M. The elements of each set may have an upper index to refer to
the model they belong to, for example, sM

i refers to a state si ∈MS. To ease the distinction
between input actions and output actions, we also use the notation ?a if a ∈ AI and !a if
a ∈ AO. We use the notation p!a or p?a if a message a sent through a channel p or received
through a channel p respectively1.

Since channels are not explicitly a part of the LTS model, the channels can be interpreted
as a label prefix. Due to our partitioning in inputs AI , outputs AO, and internal actions AN ,
we are not in need of a special τ symbol that avoids multi-way synchronization—actions in
AN are never synchronized between communicating models (see Section 2.2.2). However,
we use the τ symbol to refer to unnamed internal transitions.

Another model that we use is the Extended Multi-Input/Output Transition Sys-
tem (EMIOTS). We derive this definition from our LTS definition with input and output
partitions and as well add partitions for channels, variables, and guards. By adding chan-
nels, a message is not received and sent globally to the system, but via specified channels.

Definition 2.2 (Extended Multi-Input/Output Transition System (EMIOTS)) An
EMIOTS M is defined by the tuple (S,V,P,A,λ ,G,s0) where

• S is a finite and non-empty set of states,
• V is an n-dimensional linear space v1× v2× . . .× vn representing global variables,
• P represents the set of channels,
• A is a set of actions that is partitioned into the sets of input actions AI , the set of output

actions AO, the set of unobservable internal actions AU that manipulate variables
V → V , and the set of unobservable internal actions AN , i.e., A = AI ∪AO ∪AU ∪
AN ,AI ∩AO∩AU ∩AN = /0. The set of input actions AI and the set of output actions
AO are each partitioned further into a finite number of disjoint non-empty sets Ap

I and
Ap

O where the upper index p ∈ P represents a channel of the communicating systems,
• G is a set of guard predicates gi over the set of variables gi : V →{0,1},
• λ is a transition relation with λ ⊆ S×G×A×S,
• s0 is the initial state.

A transition from the set λ is either written as quadruple (s,g,a,s′), or as a triple (s,a,s′).
In the latter case, the guard is disregarded, i.e., any specified predicate matches. The no-

tation s
g/a−−→ s′ is equivalent to (s,g,a,s′) and likewise s a−→ s′ again disregards the guard

predicate.

1In this thesis, we discuss properties of test cases and test suites rather than properties of the tested system.
Therefore, inputs and outputs take the view of the test case for a more intuitive understanding from its
perspective. This means that inputs in our models are inputs to the test case, i.e., responses from the system,
whereas outputs are outputs to the system, i.e., the stimuli.
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An EMIOTS holds an extra space of variables, where a v ∈V is described by the n-tuple
v = (v1,v2, . . . ,vn) denoting the variables in M. Only actions from the set AU can manipulate
the set of variables and the values of any vi. Due to this fact, a state can become ambiguous
in the sense that a variable may take on different values within a state. A transition is only
applicable when the guard predicate evaluates to true. An empty predicate is denoted by
“−”, which always evaluates to true. Intuitively, the underlying structure of the EMIOTS
depicts the behavioral control-flow, while the variables and the variable manipulation depict
the data-flow. As a result, the EMIOTS model can have a more compact form than its
corresponding LTS representation.

We distinguish between the terms port and channel. With the term port, we describe an
access point of a communicating system. With the term channel, we describe an established
connection between behavioral entities through which messages are received and sent. A
channel has two ends, a sender and a receiver, whereas a port describes only one end with
no established connection in between.

In the following, we provide various definitions for terms based on these models. With the
introduced notations, the definitions are applicable to both the LTS and EMIOTS models.
As the LTS model does not include guards, the provided guards in the following definitions
simply always evaluate to 1.

Definition 2.3 (Path) A path si
σ−→ sn in M is a finite and non-empty sequence

〈si,gi,ai,si+1,gi+1,ai+1, ...,an−1,sn〉 with i,n ∈N such that the transitions s j
g j/a j−−−→ s j+1, j ∈

N, i≤ j < n exist in λ .

Definition 2.4 (Traces) A trace σ in M is a finite sequence 〈ai,ai+1, ...,an−1〉 such that the
sequence 〈si,gi,ai,si+1,gi+1,ai+1, ...,an−1,sn〉 is a path in M. We denote the set of all traces
over a set of actions A with A∗. We concatenate actions to denote action sequences using
the · sign, e.g., ?a·!b·?c·!d would denote a sequence of actions that is read from left to right.

The notation s a1·a2·...·an−−−−−−→ t means that transitions s a1−→ s′ a2−→ . . .
an−→ t exist. We write

s a1·a2...·an−−−−−→ to denote the set of states t with s a1·a2...·an−−−−−→ t.
With the double arrow, we denote paths that skip unobservable actions in AU ∪AN , i.e.,

if we have a path s
a1·a2·a3·a4−−−−−−→ s′ where a1,a4 ∈ AI ∪AO and a2,a3 ∈ AU ∪AN , we may write

s a1·a4==⇒ s′ for the abstracted sequence of observable actions. We write s σ=⇒ iff there exists a
state t with s σ=⇒ t.

Furthermore, with traces(M) we denote the set of all traces that can be produced in
model M from the start state s0, i.e., traces(M) := {σ ∈ A∗|M σ=⇒}. Here, M refers to the
initial state s0 of M.

Definition 2.5 (Enabled Actions) The set of enabled actions of a state s is defined as
enabled(s) := {a|∃s′ ∈ S : (s,g,a,s′) ∈ λ}, i.e., a state s is enabled if there exists a state s′

with a transition (s,g,a,s′) and the set enabled(s) is the set of available actions from this
enabled state. A state s is called a deadlock state if enabled(s) = /0.
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Definition 2.6 (Determinism) A model M is deterministic if for all paths s σ−→ t and s σ−→ t ′

in M t = t ′ is implied.

Definition 2.7 (Relabeling Operator) The operator [ f ] denotes the relabeling operator
where the notation M[ f ] refers to a model M where actions are relabeled by a function
f : A→ A. The notation M[a1/a′1,a2/a′2, . . . ,an/a′n] refers to a model M where ai is rela-
beled to a′i for a≤ i≤ n.

2.2.2. Parallel Composition

To depict the composite behavior of multiple sequential test system models that run in paral-
lel, we define composition operators that realize parallel behavior by means of interleaving.
This model imposes that the order of concurrent actions is arbitrary and thus the interleaving
results in all possible action orderings.

The synchronous parallel composition operator defines the fundamental set of rules to
interleave models. It interleaves the models M with N in such way that shared actions
which exist in MA as well as NA must always be executed at the same time. All kinds of
compositions, also of non-blocking queued systems, can be modeled with the synchronous
composition operator. For example, the synchronous composition of a model with a corre-
sponding queue yields a non-blocking system. We will refine the synchronous composition
operator for queued systems though to keep the notations in a compact form. Whether the
actions are inputs, outputs, or internal actions is disregarded here. The following definitions
define parallel composition for EMIOTS models. Just like with the previous definitions,
for LTS models, guards evaluate to 1 and variables and guards are dropped from the tuple
definition.

Definition 2.8 (Synchronous Parallel Composition Operator) Given two models M and
N, the synchronous parallel composition P = M‖N is defined as follows:

• PS = MS×NS.
• PV = MV ∪NV .
• PA = MA∪NA.
• PG = MG∪NG.
• Pλ is defined by the following inference rules:

– (s, t)
g/a−−→ (s′, t) ∈ Pλ if s

g/a−−→ s′ ∈Mλ and a ∈MA\NA,

– (s, t)
g/a−−→ (s, t ′) ∈ Pλ if t

g/a−−→ t ′ ∈ Nλ and a ∈ NA\MA,

– (s, t)
g∧g′/a−−−−→ (s′, t ′)∈Pλ if s

g/a−−→ s′ ∈Mλ and t
g′/a−−→ t ′ ∈Nλ and a∈NA∩MA.

• Ps0 = (Ms0 ,Ns0).
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The third inference rule requires the logical conjunction of the guard operators of both in
the composed system to enforce that both predicates from M and N evaluate to true. Finally,
we need a composition operator that composes the behavior of two models by synchronizing
inputs and outputs. However, with this operator, we need to respect the variable, channel,
and guard sets as well.

Definition 2.9 (Multi-Input/Output Parallel Composition Operator) Given two models
M and N, the multi-input/out parallel composition P = M‖MN is defined as follows:

• PS = MS×NS.
• PV = MV ∪NV .
• PA = MA∪NA.
• PP = MP∪NP.
• PG = MG∪NG.
• Pλ is defined by the following inference rules:

– (s, t)
g/a−−→ (s′, t) ∈ Pλ if s

g/a−−→ s′ ∈Mλ and a ∈MA\NA,

– (s, t)
g/a−−→ (s, t ′) ∈ Pλ if t

g/a−−→ t ′ ∈ Nλ and a ∈ NA\MA,

– (s, t)
g∧g′/τ−−−−→ (s′, t ′) ∈ Pλ if s

g/a−−→ s′ ∈Mλ ,a ∈MAi
O

and t
g′/a−−→ t ′ ∈ Nλ ,a ∈

NAi
I
.

• Ps0 = (Ms0 ,Ns0).

2.2.3. Queues

In practice, we often deal with systems that do not block when an output is sent. That
way, the sending system does not have to wait for a confirmation from the receiver, but
it can directly proceed with its behavior. We call this requirement for the receiver input-
enabledness [95, 141].

Definition 2.10 (Input-Enabled) A model M is input-enabled if all input actions are en-
abled in all states and thus inputs are non-blocking. More formally: ∀s ∈ S : enabled(s)⊇
AI .

There are various different ways to model the input-enabledness requirement. One possi-
bility is to model all possible inputs as self-loops in each state, i.e., the state does not change
and the input is effectively discarded. In this case, the behavior does not advance. A sec-
ond possibility is that undefined inputs lead to an error state where behavior halts. Another
common solution is the usage of input queues. In the following we present input queues in
more detail.

Figure 2.3 illustrates a simple case of a queued test system. The test system receives
incoming messages on a single port by its input queue which is represented by a separate



23 2.2. Formal Notations for Transition Systems

Test 
System SUT

Figure 2.3.: Test System Input Queue

transition system. The input queue must always accept messages from the SUT and forward
them to the test system in First In, First Out (FIFO) order. In our case, we focus on the
behavior of the test system and thus disregard whether the SUT is queued or not. Implicitly,
we assume that the SUT will always accept outputs from the test system. A technique
to model this behavior in the test system is to create the queue as a separate model and
then apply parallel composition to interleave the queue model and the test system model.
A general problem is the fact that unbounded queues have infinite behavior. Hence, it is
common practice to bound the queue in order to have a finite number of states. A behavioral
model composed with a bounded queue model, however, still grows exponentially with its
queue length.

The construction principle of the queue model is as follows: a queue of length one is
modeled. This model is characterized by a start state and m number of states, where m also
denotes the number of messages that can be accepted by the queue. The start state is then
connected by an input transition to each state and each of these states is connected with
an output transition to the start state. This initial queue, we call it BUF (see Definition
2.11), is then recursively interleaved with further copies of this queue, where the output
actions of the recursive result are synchronized with input actions of BUF and then hidden
in the result (or more compact: they are composed with the queue composition operator
of Definition 2.12). Each subsequent interleaving extends the length of this queue by one.
Figure 2.4 illustrates a queue of length two that receives and forwards messages r and s. In
the illustration, we have merged states that are only reachable from a previous state by a
single τ transition.

Definition 2.11 (Queue) For the set actions A that shall be receivable on the port to be
queued, we create an intermediate model called BUF. BUFS consists of |A|+ 1 states,
i.e., one state for each possible output message s1,s2, . . . ,s|A| ∈ BUFS and a start state
s0 ∈BUFS. For each state (and message) si,0 < i≤ |A|, there is one input action ?ai ∈BUFAI

and a corresponding output action !ai ∈ BUFAO with the transitions s0
?ai−→ si ∈ BUFλ and

si
!ai−→ s0 ∈ BUFλ . Based on BUF, the queue Q is recursively defined as follows:

Q1 = BUF (2.2.1)

Qn = (BUF ‖Q Qn−1) (2.2.2)
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Figure 2.4.: Queue of Length 2 Accepting Messages r and s

Note that the number of actions |QA| does not change with growing queue length and
corresponds to the number of initial action |A| from which the queue is constructed. The
recursive definition as given has infinite length and behavior. A bounded queue stops the
recursion at a predefined point. The queue length then corresponds to recursion level n.
Also, the definition states that the queue accepts a set of actions A. Having an infinite set A
would lead to infinite behavior as well—independently from the queue length.

In order to define queued behavior of a model, we define a special queue composition op-
erator that synchronizes output actions with their corresponding queue input actions. This
operation can also be accomplished by using the already defined synchronous parallel com-
position operator (Definition 2.8). However, relabeling operations (Definition 2.7) would be
necessary to match corresponding input and output actions. As the notation with relabeling
operations becomes verbose very quickly, we define a custom composition operator that
fulfills this purpose and that keeps the overall notation more compact and less complex.
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Definition 2.12 (Queue Composition Operator) Given two models M and Q, with Q de-
noting a queue, the queue composition P = M‖QQ is defined as follows:

• PS = MS×QS.
• PV = MV .
• PA = MA∪QA.
• PG = MG.
• Pλ is defined by the following inference rules:

– (s, t)
g/a−−→ (s′, t) ∈ Pλ if s

g/a−−→ s′ ∈Mλ and a ∈MA\QA,

– (s, t)
g/a−−→ (s, t ′) ∈ Pλ if t

g/a−−→ t ′ ∈ Qλ and a ∈ QA\MA,

– (s, t)
g/τ−−→ (s′, t ′)∈ Pλ if s

g/a−−→ s′ ∈Mλ ,a∈MAI and t
g′/a−−→ t ′ ∈Qλ ,a∈QAO .

• Ps0 = (Ms0 ,Ns0).

A queue does not contain any variables. Consequently, we ignore the set of variables
from the queue N in the composition. Also, queues should not have any guards. Therefore,
we ignore the g′ guard in the third inference rule.

To finally create an non-blocking model M′ of a test system model M using a queue Q that
has been constructed from the set of actions MAI , these two models have to be interleaved:
M′ = M ‖Q Q.

2.2.4. Implementation and Equivalence Relations

In this subsection, we introduce equivalence and implementation relations needed for the
discussion in Chapter 4.5. Implementation relations are preorders described in the context
of testing: they relate models of implementations and specifications. An implementation
I conforms to a specification S only if the implementation relation relates I to S. Such
relations are used to describe the generation of test cases.

Probably the most straightforward implementation relation is trace preorder ≤tr [17]
which relates two labeled transition systems. Trace preorder requires the inclusion of trace
sets and is formally defined as follows:

Definition 2.13 (Trace Preorder) Let I, S be LTSs having a common set of actions A. Then,
I ≤tr S if traces(I)⊆ traces(S).

Another well-known implementation relation is the ioco relation [139]. In this relation,
an implementation I is conformant to a specification S when a subset of the outputs (i.e.,
the responses of I and S) that can be produced in a state after each possible trace in the
specification is present in the implementation as well.
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Equivalence relations on the other hand are relations specify a partitioning that decides
when two models are considered to be equal, i.e., they are considered equal when they
belong to the same partition. In terms of models, an equivalence relation describes when
we consider models to be equal. Especially when comparing behavior, defining such a
relation is not always trivial as there are often many ways to express semantically identical
behavior.

The most intuitive way to deal with this problem is to require trace equivalence, i.e.,
traces(I) = traces(S). However, a restriction of trace equivalence is that it is not able
to deal with non-determinism. For that purpose, the bisimulation relation [104] has been
defined which is able to deal with this limitation. We differentiate between strong and weak
bisimulation. Strong bismulation relates all transitions in a transition system, whereas the
weak bisimulation relation relates only observable actions. We provide a definition of weak
bisimulation defined for two separate transition systems (whereas the usual definition is
given over a single transition system).

Definition 2.14 (Weak Bisimulation) Given two LTSs T1 and T2, a binary relation R ⊆
T1S ×T2S is a weak bisimulation iff the following conditions hold for every (s, t) ∈ R and an
action a ∈ (T1A ∪T2A):

• s a−→ s′ ∈ T1λ
implies that there is a t ′ in T2S such that t a=⇒ t ′ ∈ T2λ

and (s′, t ′) ∈ R.

• Symmetrically: t a−→ t ′ ∈ T2λ
implies that there is an s′ in T1S such that s a=⇒ s′ ∈ T1λ

and (s′, t ′) ∈ R.

We call two states s and t weakly bisimilar or s≈ t iff (s, t) ∈ R. Similarly, we call two LTSs
T1 and T2 weakly bisimilar, or T1 ≈ T2, iff for every s ∈ T1S , there exists a t ∈ T2S such that
s≈ t and for every t ∈ T2s , there exists an s ∈ T1S such that s≈ t.

2.3. Model Checking

Model checking is a method pioneered by Clarke, Emerson, Queille, and Sifakis [34, 35, 36,
47, 122], in which a model is automatically verified against a specification. The model M
is a simplified and possibly partial behavioral description and the specification is a formula
φ phrased in a temporal logic. Model checking then verifies whether for a given model M
and a logical property φ , M satisfies φ , i.e., M |= φ . The model is described in a language
that is usually formally similar to an Extended Finite State Machine (EFSM). The formula
to be checked is described in a temporal logic like Linear Temporal Logic (LTL) [121] or
Computation Tree Logic (CTL) (introduced in [35] as well).

Model checking is faced with a problem called the state space explosion problem. This
problem is especially evident with largely independent parallel behavior where behavior
can be interleaved in a huge number of combinatorial variations. The more complex a state
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machine gets in number of states and transitions and the more state machines are interleaved
in parallel, the more transitions and states exist in the composite machine combinatorially.
If this problem was left unconsidered, model checking would not be computationally appli-
cable in practice. Modern model checking methods mitigate this problem for many cases:
symbolic algorithms avoid to build the complete interleaved graph for the overall state ma-
chine [99], partial-order reduction [66] reduces the number of possible interleavings by re-
moving irrelevant permutations that do not affect the verification of the formula, or bounded
search ensures that the model checking procedure will eventually terminate, albeit with a
less strong validity about the result.

2.3.1. Temporal Logic

To verify that a formula φ does or does not hold for a model M, the formula is described in a
temporal logic. LTL is a modal logic with operators allowing us to refer to the future. Here,
time can be regarded as a sequence of states that will be visited in time and the sequence of
states can be regarded as a computation path. When we apply model checking, the model
checking method takes control over determining which paths are visited. In an LTL formula,
we are working with atoms (or propositional variables) which are facts that may hold in a
system. An atom a might represent the fact “resource is busy” while atom b might represent
the fact “resource is free”. What kind of atoms we use and what kind of atoms we define
depends on our verification interest. Our propositional variables are connected with usual
logic operators such as ¬ (not), ∨ (or), ∧ (and), → (implies) and temporal operators: ◦
(for next), � (for always), ♦ (for eventually), U (for until), W (for weak until), and R (for
release). The ◦ and � operators are unary, i.e., they have one operand, while ♦, U, W, and
R are binary, i.e., they require two operands. The binding priorities are as follows: unary
operators (i.e., ¬, ◦, ♦, and �) have that tightest binding, next in order are U, W, and R

followed by ∨ and ∧. The → operator has the weakest binding. A simple example for a
LTL formula would be:

φ := ♦a∧�b→�c.

In natural language, this formula would roughly translate into: if in some state a becomes
true and b is always true implies that c is always true in all states. Logically, this means that
the formula is always true except for the case when the statement “in some state a becomes
true and b is always true” is true and the statement “c is always true in all states” is false.

There are various other temporal logics other than LTL. Also widely used is CTL. Even
though CTL and LTL look roughly similar, the logics are incompatible to each other. Some
formulas can be expressed in CTL that cannot be expressed in LTL and vice-versa. Both
logics have strengths and weaknesses and there is essentially no correct choice for one of
them as a formalism as long as the differences do not limit the expressiveness that the author
needs. In the remainder of this thesis, we will use LTL as temporal logic.
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2.3.2. Properties

With the term properties, we mean those properties of a software system that we intend to
check with our analysis. We differentiate between safety properties and liveness properties.
A safety property expresses that an event never occurs under certain conditions or that
something bad never happens. An example for a safety property is negative invariants.
Imagine an ATM, then a safety invariant would be that money is never withdrawn if an
incorrect PIN has been entered. Liveness properties on the other hand state that some event
will ultimately occur under certain conditions, i.e., something good will happen eventually
and if the event has not happened yet, it will happen in the future. For example, at the ATM,
money will be handed out once a correct PIN has been entered. In that sense, liveness
properties require some kind of progress.

2.3.3. Property Patterns

Likely reasons for the slow adoption of verification techniques involving temporal logic
are simple barriers, such as a lack of good tool support, little expertise, or hard to under-
stand training materials [126]. A lot has changed since Rosenblum’s article was written
over ten years ago, for example, training materials have improved drastically and several
well-written books covering this subject have been published (e.g., [14, 15, 16, 79, 129]).
However, there is still some truth to the article: while there are well performing tools, it is
still not very easy to use them and experts in this area are still rare. In particular, formulas in
temporal logics may be precise, but they can be relatively hard to understand for non-trivial
cases. A very useful means to create formulas in temporal logics are specification patterns
as presented by Dwyer, Avrunin, and Corbett [45].

A specification pattern is a high-level and formalism independent specification abstrac-
tion. This is useful as problems that regard the description of temporal logic formulas are
recurring. Rather than getting lost in the expressiveness of the logic, the practitioner can
look for the right kind of specification pattern and use the formula template provided by this
pattern to express it. And indeed, we notice that the properties that we present in the sub-
sequent sections are often repetitive in their nature and that they match to the specification
patterns identified by Dwyer et al. This reduces the complexity of the formula descriptions
to the extent that the practitioners have to understand the pattern and that we can simply re-
fer to the specification pattern name for them to immediately understand what is happening
in the formula.

Dwyer et al. describe the following specification patterns:

• Absence (Occurrence): A given event does not occur within a scope.
• Existence (Occurrence): A given event must occur within a scope.
• Bounded Existence (Occurrence): A given event must occur k times within a scope.
• Universality (Occurrence): A given event occurs throughout a scope.
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• Precedence (Order): An event P must always be preceded by events Q1,Q2, . . . ,Qn.
• Response (Order): An event P must always be followed by an event Q within a

scope.
• Chain Precedence (Order): A sequence of events P1,P2, . . . ,Pn must always be pre-

ceded by a sequence of events Q1,Q2, . . . ,Qn.
• Chain Response (Order): A sequence of events P1,P2, . . . ,Pn must always be fol-

lowed by a sequence of events Q1,Q2, . . . ,Qn.

Here, all patterns are categorized into Occurrence patterns and Order patterns (denoted
in parentheses). For each of these patterns, temporal logic formula templates (for various
kinds of temporal logics, including LTL) are provided for a set of given parameters in a
given scope. As an example, for the Absence pattern, they provide the following LTL
formula templates for “P is false”:

• Globally: � (¬P).
• Before R: ♦ R → (¬P U R).
• After Q: � (Q → �(¬P)).
• Between Q and R: � ((Q ∧ ¬R ∧ ♦ R) → (¬P U R)).
• After Q until R: � (Q ∧ ¬R → (� ¬P ∨ (¬P U R))).

Similarly, the other patterns provide similar temporal logic templates. The complete
specification pattern catalog can be found on a website dedicated to this catalog [4].

2.3.4. Analysis Classification

There are controversial discussions as to whether formal methods, such as model checking,
abstract interpretation, which are based on models of the software product under analysis
are considered static or dynamic analyses. On the one hand, the analysis of formal models as
in model checking does not involve the actual execution of the real software product. They
deal with simplified models of the actual system. Also, the execution does not take place
in the same way as it is the case with actual code: the execution is optimized towards the
verification of specific properties, allowing the execution engine to optimize the execution
and, for example, skip certain permutations of the parallel behavior that do not have any
influence on the outcome of the property to be verified (partial order reduction [66]). On
the other hand, the models are still derived from the software product and the model checker
still in essence executes the model in some sense to check the properties—real compilers
optimize the code and the execution as well. These formal methods are somewhere on the
borderline between static and dynamic, and it is not easy to draw a clear line. In this thesis,
we consider such formal methods to be part of the dynamic analysis.



3. A Quality Model for Test Specifications

Analytical quality assurance is reactive, i.e., software—in our case test specifications—is
developed and its quality is evaluated and improved after it has been written or while it
is being written. To perform analytical quality assurance, two central questions need to
be answered: the first question is what exactly we want to assess, measure, and evaluate.
Once we are clear with the subject of the analysis, we can deal with the question of how
we actually assess, measure, evaluate, and possibly improve. This chapter deals with the
question what needs to measured.

In the assessment and evaluation, we differentiate between the terms validation and ver-
ification2. The differentiation was provided by Boehm in 1979 [22] by the questions he
phrased to which the respective actions should provide answers:

• Validation: “Are we building the right product?”.
• Verification: “Are we building the product right?”.

With other words, verification is the checking whether the subject conforms to its specifi-
cations, regulations and whether it realizes its functional and non-functional requirements
correctly and well. Validation on the other hand is more general and is more concerned
with the satisfaction and acceptance of the product by the customer. A quality model for
test specifications can be regarded as a building block for the verification of quality require-
ments as it provides a model for the subdivision of quality requirements and the answer to
the question what needs to be measured.

In the context of the subsequent discussion, we use the terms adaptation and instan-
tiation3. Quality models for software products are abstract, i.e., they are designed to be
applicable to any software product no matter what its domain is. In order to make it suit-
able and more concrete for a specific domain, such as the testing domain, a quality model
needs to be adapted. In the adaptation, the described attributes of the quality model are
reinterpreted for this specific domain and possibly changed. In addition, there may be cases
where the quality attributes of the respective model do not apply. The term instantiation on
the other hand describes how a quality model or an adapted quality model is used for the
quality assessment. The instantiation takes place by the definition of metrics that support

2The term verification has a different meaning in the context of the formal methods field. We refer to Boehms
definition of verification by default and will use the term formal verification otherwise.

3We use the term instantiation in two contexts. First, an abstract test specification can be instantiated to make
it executable. Second, a quality model can be instantiated with metrics for the concrete assessment of a
software product. In this chapter, we discuss the instantiation of a quality model.



31 3.1. Software Quality Models

Quality Model
Adapted

Quality Model for 
Test Specifications

Instantiated 
Quality Model for 
Test Specifications

Test Specification
Assessment

Figure 3.1.: Quality Model Adaptation Procedure

the assessment of the respective quality attributes. Here, the defined metrics are not gen-
eral, but project-specific or even specific to the language that is used within a project. In
this regard, we present in this chapter the adaptation of the model, describe the reinterpreted
quality attributes of the adapted model, discuss how this adapted model can be instantiated
in general terms, and finally provide a concrete example instantiation for a TTCN-3 project.
Figure 3.1 illustrates the quality model adaption procedure as performed in this chapter.

This chapter is divided as follows: Section 3.1 discusses the currently available mod-
els for describing software quality, especially regarding the available standards. Section
3.2 discusses how we have adapted the ISO/IEC 9126 model for software quality for test
specifications. Section 3.3 provides a detailed description for every characteristic and sub-
characteristic of our adapted quality model for test specifications. The assessment and qual-
ity model instantiation methodology for the quality assessment is discussed in Section 3.4.
Subsequently, we provide an example instantiation of the adapted quality model for test
specification in Section 3.5. We conclude the chapter with a discussion on related work
on quality assessment and measurement for test specifications, especially based on static
analyses, in Section 3.6.

3.1. Software Quality Models

Quality models help to answer the first question, i.e., what the subject of our assessment is
or what it should be. A variety of suggestions for software quality models have been made
in the past. Well-known and established quality models are hierarchical models, so called
Factor-Criteria-Metrics (FCM) models. The factors describe the relevant main quality char-
acteristics that are subject of the evaluation. The criteria subdivide the characteristics into
measureable attributes. Finally, metrics are mappings of a quantifiable quality attribute to a
symbol or value on a specific measurement scale. Due to the dependency between charac-
teristic and attributes and attributes and metrics, such models are regarded as hierarchical.
However, depending on the concrete model, different characteristics may share the same
quality attributes. Similarly, certain aspects of differing quality attributes may be measured
with the same metrics. Therefore, the dependencies among factors, attributes, and metrics
can have a structure of a net or graph rather than only the structure of a tree.

Prominent examples for these models are the McCall model [97] (that coined the term
FCM), the Boehm model [23], and the ISO/IEC 9126 software quality model [88]. While
all quality models are based on a hierarchy of different quality levels, their differences
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Figure 3.2.: ISO 9126 Quality Model

primarily lie in where they focus their measurements. For example, Boehm’s quality model
is based on a wider range of characteristics with a focus on maintainability when compared
to McCall’s model.

3.1.1. The ISO/IEC 9126 Standard

The ISO/IEC 9126 standard is based on the McCall and Boehm models and is very simi-
lar in its structure. The ISO/IEC 9126 standard describes a generic model for the internal
and external quality of a software product and a model for the quality in use of a software
product. Internal quality is obtained by reviews of specification documents, by checking
models, by static analysis of source code, or by testing. External quality refers to proper-
ties of software when interacting with its environment. In contrast, quality in use refers to
the quality perceived by an end user who executes a software product in a specific context.
These product qualities at the different stages of the development are not completely inde-
pendent, but influence each other. Thus, internal metrics may be used to predict the quality
of the final product—even in early development stages.

For modeling internal quality and external quality, the ISO/IEC 9126 standard defines
the same model. This generic quality model can then be instantiated as a model for internal
quality or for external quality by using different sets of metrics that measure the respective
characteristics and subcharacteristics. The model itself is based on the six characteristics
functionality, reliability, usability, efficiency, maintainability, and portability. Figure 3.2
illustrates the hierarchical ISO/IEC 9126 quality model.

The model for quality in use is based on the characteristics effectiveness, productivity,
safety, and satisfaction and does not elaborate on further subcharacteristics. Furthermore,
the ISO/IEC 9126 standard defines metrics which are intended to be used to measure the
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attributes of the respective quality models. However, the provided metrics are quite abstract
and they cannot be applied without further refinement.

3.1.2. The FUPRS, FURPS+, and Dromey Quality Models

Other, not so well-known quality models are the FURPS/FURPS+ models [68] which orig-
inate from Robert Grady. In the FURPS model, characteristics are decomposed into two re-
quirement categories: functional requirements (F) which are defined by input and expected
output and non-functional requirements (URPS) that consist of usability, reliability, perfor-
mance, and supportability. The main characteristics are very similar to the ISO/IEC 9126
model. FURPS+ additionally considers design requirements, implementation requirements,
interface requirements, and physical requirements. Furthermore, Dromey [44] presents a
quality model that recognizes that quality evaluation differs for each product. He attempts
to connect software product properties with quality attributes and concentrates on the re-
lationship between quality attributes and their subattributes and proposes a more dynamic
idea for modeling the process.

3.1.3. Related Software Quality Standards

Other standards relevant to software quality, but not necessarily to FCM models are
ISO/IEC 14598 (software product evaluation) [87], IEEE standard 1061-1998 [109], and
ISO/IEC 25000 SQuaRE (software product quality requirements and evaluation) [90]. The
ISO/IEC 14598 is more focused on the process of the evaluation rather than the product.
The previously described ISO/IEC 9126 standard does not provide any description of how
the evaluation should take place. The ISO/IEC 14598 standard fills this gap. The IEEE
standard 1061-998 describes a methodology for establishing quality requirements and how
the process is identified, implemented, analyzed, and validated as well as product software
quality metrics. Finally, the ISO 25000 series will provide a new generation of standards
for software product quality requirements and evaluation in the future. It is planned to in-
clude terms and definitions, reference models, and standards for requirements specification,
planning, management as well as measurement and evaluation. The ISO/IEC 9126 and
ISO/IEC 14598 are planned to be transitioned to the newer line of SQuaRE standards. This
transitioning process is, however, not yet complete.

3.2. Adapting the ISO 9126 Quality Model for Test Specifications

The quality models presented in the previous section are models for assessing general-
purpose software. Test specifications on the other hand can be regarded as software spec-
ifications for a specific domain—the testing domain. While generic models for general-
purpose software might be applied to test specifications as well, an adapted quality model
for this special domain is more natural to work with and it avoids different vocabulary or
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interpretations of characteristics that might be ambiguous in this domain. In addition, we
can remove characteristics that do not play a role in this domain. In fact, the ISO/IEC 9124
standard clearly states that “other ways of categorizing quality may be more appropriate in
particular circumstances” (clause 5.4, paragraph 1). As the ISO/IEC 9124 model allows and
encourages this kind of adaptation and due to the fact that this model is standardized, intu-
itive, and well-known, we have proposed to adapt this model for test specifications [156].

Figure 3.3 illustrates our test specification quality model. The model is divided into
seven main characteristics: test effectivity, reliability, usability, efficiency, maintainability,
portability, and reusability. Each main characteristic is structured into several subcharac-
teristics. To indicate the relationship of our test specification quality model (Figure 3.3) to
the original ISO/IEC 9126 model (Figure 3.2), we provide the corresponding name of the
ISO/IEC 9126 characteristics in parentheses. Test quality characteristics are printed in bold
letters. Characteristics which have no corresponding aspect in ISO/IEC 9126, are denoted
by the minus sign ( – ). The seven characteristics are explained in more detail in Section 3.3.
The two most notable changes in the adapted quality model for test specifications are the
new main characteristic reusability and the extraction of the compliance subcharacteristic
to a more general all-encompassing subcharacteristic.
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3.2.1. New Characteristics

The main characteristic reusability (right-hand side of Figure 3.3) is not covered in
ISO/IEC 9126. We added it to our model as test specifications and parts of them are often
reused for different kinds of testing, e.g., test cases and test data for system level testing
may be reused for regression testing, performance testing, or testing different versions of
the SUT. Thus, design for reusability is an important quality criterion for test specifications.

3.2.2. Changed Characteristics

In the original ISO/IEC 9126 model, each main characteristic contains a compliance sub-
characteristic which denotes the degree to which the test specification adheres to potentially
existing standards or conventions concerning this aspect. Since such conventions also exist
for test specifications, they are also included in our model. However, as compliance is part
of every quality characteristic, we feel that its inclusion in each set of subcharacteristics
distracts from those subcharacteristics that are actually unique for each quality character-
istic. As a result, we have moved it into a section of all-encompassing subcharacteristics.
As compliance primarily alludes to conventions and standards that are mostly company or
project-specific, we do not cover them any further.

Other changes include the renaming of the functionality characteristic to test effectiv-
ity and its subcharacteristics suitability and accuracy are characterized by the terms test
coverage and test correctness. The reason for changing the term functionality is that test
specifications do not have concrete functionality per se. Their functionality in essence is to
find faults or problems in a piece of software. The difference lies in the way (or method)
of how they attempt to fulfill their specific purpose (e.g., system testing or performance
testing). Such methods can be, for example, structure-based or specification-based meth-
ods. However, the choice of methods in combination with their purposes and the degree to
which a test realizes both methods are decisive for the usefulness and thus the effectiveness
of a test. In that sense, the term functionality is misleading for test specifications, whereas
the term test effectivity captures the quintessence of what can be interpreted from this cat-
egory in the context of test specifications. Analogously, test coverage and test correctness
are more suitable terms in the context of test effectivity.

3.2.3. Removed Characteristics

Various subcharacteristics have been removed from the adapted quality model as they are
not applicable for test specifications. Their intent is covered by a different characteris-
tic, or they have been moved to a different set of subcharacteristics. In the functionality
characteristic, the interoperability and security subcharacteristics have been removed. The
interoperability characteristic has been omitted from the test specification quality model as
test specifications are too abstract for interoperability to play any role, i.e., interoperability
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plays no role between multiple test specifications. This is not to be confused with interoper-
ability testing between multiple systems that should be interoperable, for example, devices
implementing the same specification, but which are built by different providers or hardware
manufacturers. Within the context of tested systems, interoperability is an important aspect
that is actively examined in research. The security aspect has been moved to the reliability
characteristic, as it fits more appropriately to the term reliability than test effectiveness after
renaming the main characteristic.

In the usability quality characteristic, the attractiveness subcharacteristic has been re-
moved as it is not relevant for test specifications. Attractiveness may play a role for test
execution environments and tools, but for plain test specifications, there is no user interface
involved that could be attractive or not attractive to the end user.

In the maintainability quality characteristic, the testability subcharacteristic has been re-
moved. The testability subcharacteristic describes the capability of a test specification to be
validated after a modification. Design for testability, the main intent of this subcharacteris-
tic in the original ISO/IEC 9126 quality model, is usually not relevant for the specification
of tests as test specifications are tested technically differently than a general-purpose soft-
ware product. Validating test specifications implies checking of either generic properties
that need to be fulfilled or checking against a higher-level test purpose description. Both
of these points are covered by the test correctness subcharacteristic. In order to allow such
analyses, the used test specification language must be sufficiently formal. For example, an
informal natural language test specification is harder to analyze than a formal test specifica-
tion. The evaluation whether this kind of analysis is possible, is covered by the analyzability
subcharacteristic. Hence, testability with its primary criterion “design for testability” does
not play a role for test specifications.

Finally, in the portability quality characteristic, the subcharacteristic installability, co-
existence, and replaceability have been removed. Test specifications are abstract. Therefore,
installability (ease of installation in a specified environment), co-existence (with other test
products in a common environment), and replaceability (capability of the product to be
replaced by another one for the same purpose) are often too concrete for the concept of a
test specification. Subcharacteristics that have been added are discussed in next section for
each quality characteristic.

3.3. Quality Characteristics of the Quality Model for Test
Specifications

In the following, we provide a discussion on the meaning of each characteristic and sub-
characteristic of the quality model for test specifications.
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3.3.1. Test Effectivity

The test effectivity characteristic describes the capability of a test specification to fulfill a
given and specified test objective.

Test coverage constitutes a measure for test completeness and can be measured on various
levels, e.g., the degree to which the test specification covers system requirements, the system
specification, or test purpose descriptions. We roughly differentiate between specification-
based, structure-based, and defect-based techniques for testing. Specification-based tech-
niques are often based on system specifications or software requirements specifications.
Here, coverage is determined, for example, by the degree to which requirements are cov-
ered by the test specification. Common techniques in this field are equivalence partitioning,
boundary value analysis, cause-effect graphing, state transition tables (testing all valid states
and transitions of a system modeled as an automaton), or pairwise testing (summaries for
these methods are provided, for example, by Bath or Spillner [9, 134]). In structure-based
testing, we deal with white-box criteria like statement testing, branch/decision testing, con-
dition testing, or path testing. In defect-based testing, test specifications are developed
against specific defect taxonomies (e.g., the defect taxonomy from Beizer [13]) that clas-
sify possible types of defects using knowledge about these specific defect categories. Each
of these testing techniques specify criteria that test developers should aim to maximize. For
example, in branch/decision testing, test developers should aim to test all branches of the
tested behavior. In requirements based specification testing, the test developer should aim
to cover all requirements of the requirements specification. The degree to which the criteria
are fulfilled is determined by this subcharacteristic.

The test correctness characteristic denotes the correctness of the test specification with
respect to the system specification or the test purposes. It describes states the degree to
which a test specification realizes the test purposes and specifications that it is supposed to
test. When test specifications are developed manually from such purposes or specifications,
insufficient correctness may be a result of human mistakes in development, hard to under-
stand specifications, or even ambiguous specifications. When test specifications are derived
from specifications using model-based testing and automatic test generation, insufficient
correctness may be the result from unsound test generation techniques or generally wrong
assumptions. Furthermore, a test specification is correct only when it always returns correct
test verdicts and when it has reachable end states.

The fault-revealing capability is a new item that has been added to the list of subchar-
acteristics. Obtaining a good coverage with a test suite having correct test cases does not
make any statement about the capability of a test specification to actually reveal faults. The
usage of cause-effect analysis [105] for test creation or mutation testing [40] help to assess
the fault-revealing capability of test suites.
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3.3.2. Reliability

The reliability characteristic describes the capability of a test specification to maintain a
specific level of performance under different conditions. In this context, the word “per-
formance” expresses the degree to which specific needs and requirements towards the test
specification are satisfied. The reliability subcharacteristics maturity, fault-tolerance, and
recoverability of ISO/IEC 9126 apply to test specifications as well. However, new subchar-
acteristics test repeatability and security have been added.

Test results should always be reproducible in subsequent test runs. Otherwise, debugging
the SUT to locate a defect becomes hard or even impossible. Therefore, an important re-
quirement for test specifications is test repeatability: a test specification should be designed
to produce the same result, outcome, or verdict when executed multiple times against an
SUT that is expected to be in the same state for each repeated test run. An important re-
quirement towards this property of a test specification is that a test specification should be
deterministic and, if possible, anticipate potential non-determinisms of the SUT. In that
context, it is valuable to note that test specifications designed with parallel independently
running test components that are not consequently synchronized always introduce some
kind of non-determinism into tests due to different possible interleavings in the parallel
behavior. Depending on how the SUT reacts to such different event orders introduced by
parallel test components, such a test specification design (that is often chosen primarily for
abstraction reasons) may already introduce problems regarding the test repeatability.

The maturity subcharacteristic denotes the capability of a test specification to deal with or
avoid internal errors, e.g., a function returning out of bounds results. A test specification is
mature when such errors on the one hand do not influence the execution of subsequent test
cases and follow-up behavior, i.e., the test case is able to lead the SUT back into a known
state when such an error occurs and the error or problem has not further influence on the
remaining tests that follow. On the other hand, in order to achieve this level of stability,
i.e., leading the SUT back into an expected state requires a very careful specification of
the tests, a high degree of awareness for errors that could possibly occur, and appropriate
verdicts need to be set accordingly. One aspect to achieve a mature test specification is to
make it recoverable (see below).

Fault-tolerance describes the capability of a test specification to deal with or avoid ex-
ternal errors (e.g., from the SUT). For example, timers and corresponding timeouts are
necessary to handle situations where the SUT does not respond. A fault-tolerant test case
is not necessarily mature. For example, a test case might handle timeouts appropriately in
order to terminate the test case. However, if the SUT is not reverted to the expected next
state after the timeout occurs, subsequent test cases may be influenced due to the outcome.

The security subcharacteristic has been moved from the functionality characteristic. This
subcharacteristic covers issues that are related to the protection of information or data that
unauthorized persons may not be allowed to access. For example, the inclusion of plain-
text passwords may play a role in the security aspect when test specifications with such data
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are made publicly available or exchanged between development teams. Similarly, modern
services often allow access to their interfaces only using cryptographically signed requests.
The inclusion of private keys required to sign service requests is highly critical.

Finally, the recoverability subcharacteristic describes the capability to re-establish stable
states when failures occur. A frequent architectural element used in test specifications to
achieve this is the usage of preambles and postambles. They establish consistent and sta-
ble states before and after actual test behavior is executed. The maturity and recoverability
aspect go hand in hand. Without good recoverability, a high level of maturity is not achiev-
able. One aspect of maturity is the necessity that a test specification is recoverable also
when something unexpected happens.

3.3.3. Usability

The usability attributes characterize the ease of actually instantiating or executing an instan-
tiated test specification. This explicitly does not include usability in terms of difficulty to
maintain or reuse parts of the test specification, which are covered by other characteristics.
The original definition of usability described the “capability of the software product to be
understood, learned, used and attractive to the user, when used under specified conditions”.
However, a test specification is not used like an usual software product. Rather, it is an ab-
stract document that describes formally how to test a software system. Only if instantiated,
it can be executed against the system. Therefore, the following subcharacteristics relate to
how well this abstract document can be handled by the developer and how well it is prepared
for a test specification instantiation.

Understandability is important since the test users must be able to understand whether a
test specification is suitable for their needs. Documentation and description of the overall
purpose of the test specification are key factors—also for finding suitable test selections.

The learnability of a test specification pursues a similar goal as understandability. To
properly use and instantiate a test suite, the user must understand how it is configured, what
kind of parameters are involved, and how they affect test behavior. Proper documentation
or usage of style guidelines have positive influence on this aspect.

A test specification has a poor operability if it, for example, lacks appropriate default
values, or a lot of external, i.e., non-automatable actions are required in the test execution.
Such factors make it hard to setup a test suite for execution or they make execution time
consuming due to a limited degree of automation. Note that the operability aspect (as well as
all other descriptions for this quality model) still regard the test specification as an abstract
specification. In particular, this means that possible aspects in the sense of controlling
an actual test execution do not play a role. Such aspects would refer to the test and test
tool implementations that are not subject of the examination in the quality model for test
specifications.

A new test-specific subcharacteristic in usability is test evaluability. The test specification
must make sure that the provided test results are detailed enough for a thorough analysis of
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an instantiated test specification. An important factor is the degree of detail richness in the
specification of test logging. A test case that, for example, only specifies the report of a
verdict answers the question of what happened, but it does not answer the question why it
happened. The test evaluability subcharacteristics pay respect to the why question.

3.3.4. Efficiency

The efficiency characteristic relates to the capability of a test specification to provide accept-
able performance in terms of speed and resource usage. The ISO/IEC 9126 subcharacteris-
tics time behavior and resource utilization apply without any considerable change in their
interpretation.

The time behavior subcharacteristic describes the capability of a test specification to pro-
vide appropriate response and processing times, as well as throughput rates, when it is
instantiated. In testing, this includes especially the necessity to use proper testing and test
selection techniques. For example, using a time consuming structural coverage criterion like
path coverage can take infinitely long to execute (due to combinatorial explosion), while it
does not have any qualitative meaning for the effectiveness of the test.

The resource utilization describes the capability of a test specification to utilize appro-
priate amounts of resources when it is instantiated. Such resources include, for example,
human resources necessary in the instantiation. In that sense, the description of test specifi-
cations where human interaction is needed can be regarded as bad for the resource utilization
and the test specification developer should try to find ways to automate these interactions.

3.3.5. Maintainability

Maintainability of test specifications is important when test developers are faced with
changing or expanding a test specification. It characterizes the capability of a test spec-
ification to be modified for error correction, improvement, or adaption to changes in the
environment or the requirements. The analyzability, changeability, and stability subcharac-
teristics from ISO/IEC 9126 are applicable to test specifications as well.

The analyzability aspect is concerned with the degree to which a test specification can
be diagnosed for deficiencies or general properties. For example, test specifications should
be well-structured to allow code reviews. Test architecture, style guides, documentation,
and generally well-structured code are elements that have influence in the quality of this
property. The choice of the specification language plays a role for the analyzability as well.
In order to allow easy machine automation of the analysis, the specification language should
have a clear and non-ambiguous syntax and its semantics should not be too complex. For
example, strongly typed specification eases the automatic analysis as types do not need to
be inferred.

The changeability subcharacteristic describes the capability of the test specification to
enable necessary modifications to be implemented. For instance, badly structured code or
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a test architecture that is not extensible may have negative impact on this quality aspect.
One example for bad changeability is the usage of magic values, i.e., concrete values in
test specifications that occur more than once. If this value would have to be changed as
well, all locations where this value occurs need to be changed. A more sensible way to
approach such a problem is the use of language elements like constants (if they exist in the
specification language).

Unexpected effects due to a modification have negative impact on the stability aspect. The
stability subcharacteristic is strongly related to the comprehensibility and the analyzability
subcharacteristics. The reason is that instabilities due to modifications generally occur if
the modified part of a test specification is not well understood by the person who modified
it or if the analysis fails and does not uncover the deficiency produced by the modification.

3.3.6. Portability

Portability, the capability of a software product to be transferred from one environment to
another, plays only a limited role in the context of test specifications as they are not yet
instantiated and thus are neither executable nor bound to a specific platform that they can
be transferred from.

Adaptability, however, is relevant to the degree that test specification should be abstract,
i.e., it should not be designed for a specific target environment or target SUT. Adaptability
prevents the developer, for example, from hardcoding environment specific data, such as IP
addresses, port numbers, or login data into the test specification. Similarly, different SUTs
may implement different parts, subsets, or extensions of a system specification. Therefore,
the test specification must be configurable to allow adaptability regarding such differences.

3.3.7. Reusability

Reusability is the degree to which the test specification or parts of it are reusable to allow
easier development of the test specification itself as well as usage for related purposes.

The coupling degree is arguably the most important subcharacteristic in the context of
reuse. Coupling can occur between test behavior, between test data, and between test be-
havior and test data. For example, if there is a function call within a test case, the test case
is coupled to this function. To make test specifications reusable, the goal is loose coupling
and strong cohesion.

The flexibility of a test specification is characterized by the length of a specification sub-
part and its customizability regarding unpredictable usage. For example, if fixed values
appear in a part of a test specification, a parameterization may likely increase its flexibility.

Parts of a specification can only be reused if there is a good understanding of the reusable
parts, i.e., the comprehensibility of the reusable parts must be appropriate. Good documen-
tation, comments, and style guides are necessary to achieve this goal. Interestingly, a high
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degree of reusability using techniques like parameterization can sometimes imply less com-
prehensibility when parts of a specification are expressed in a flexible way. Generalized
parts are often more abstract and used more widely. To this extent, quality characteristics
that contradict each other have to be balanced well.

3.4. Towards an Instantiation of the Quality Model for Test
Specifications

The presented test specification quality model abstracts from the determination of the qual-
ity of a test specification with respect to each characteristic and subcharacteristic. To eval-
uate and assess the quality of a test specification according to the quality model, metrics
are associated to the respective characteristics and subcharacteristics for quantification. Re-
lated to metrics are bad smells, i.e., patterns of inappropriate code usage. Bad smells are the
patterns used to find locations in the test specification with possible problems while metrics
are the means to quantify them, for example, the number of inappropriate patterns. To im-
prove those locations of possible misusage, we can apply refactoring. Metrics, bad smells,
and refactorings, however, are only the methodical tools needed to recognize, assess, and
improve quality problems. They do not provide a methodology that clarifies which metrics
to use for the quality assessment. This methodology for metric selection is provided by the
Goal-Question-Metric approach. The measurements, i.e., the calculation of metrics and the
detection of bad smells in test code, can be performed on two different levels: static analyses
refer to analyses and measurements that are performed by looking at the test specification
without any form of execution. Dynamic analyses on the other hand attempt to execute
the analysis subject in some way in order to analyze properties that cannot be measured
statically.

In the following, we introduce methodical tools needed for the quality assessment and
metric selection. In addition, we provide a discussion on the difference between static and
dynamic analysis for the measurement of software quality.

3.4.1. Software Metrics

The essence of metrics is described in two well-known citations. The first citation was
written by Lord Kelvin in 1891:

“When you measure what you are speaking about, and express it in numbers,
you know something about it; but when you cannot measure it, when you can-
not express it in numbers, your knowledge is of a meager and unsatisfactory
kind; it may be the beginning of knowledge, but you have scarcely, in your
thoughts, advanced to the stage of science.” [91]
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The second citation manages to extract the essence out of Lord Kelvins statement and
was phrased by Tom DeMarco in 1982:

“You cannot control what you cannot measure.” [39]

A metric can be regarded as a measurement on a measurement scale—a mapping of a soft-
ware property into a numerical value or symbol of the measurement scale. A well-known
classification for metrics in software development is given by Fenton and Pfleeger [61].
They differentiate between the following kinds of metrics:

• Process Metrics.
• Resource Metrics.
• Product Metrics.

Process metrics are quantifications regarding the process. For example, a metric predicting
in how many days a certain milestone is reached concerns the process. Resource metrics
concern the resources that are used within the project. One such common resource is the
human developer. If the manager tried to measure the productivity of the developer, they
would be measuring a resource metric. Product metrics are concerned with assessing the
actual software product. As we are concerned with assessing test specifications, product
metrics are the most relevant kind of metrics. They are subdivided into metrics that describe:

• Internal Attributes.
• External Attributes.

External attributes are features that are externally visible and can only be measured with
respect to how a product relates to its environment. For example, the mean time to failure
is an external attribute. Internal attributes can be measured in terms of the product itself,
e.g., by looking at the code, its structure or its attributes. A metric is descriptive when
its value can be objectively derived from the code or the specification being measured.
By additionally using threshold values, this metric becomes also prescriptive [59], i.e., a
violated metric threshold indicates a possible quality problem, whereas a metric value below
the threshold value is considered to be within acceptable limits.

A vast amount of product metrics of different uses have been proposed in the past. Among
them, the well-known Lines of Code (LOC) metric that counts the number of code lines with
or without comments and empty lines depending on its variant. Other well-known metrics
are the cyclomatic complexity from McCabe, which measures the degree to which a piece
of code branches in its structure [96] or cohesion and coupling metrics which quantify
dependencies between different components or measure the degree to which elements of a
code unit belong together [32].

When the goal is to measure and assess test specifications, the product metrics that ana-
lyze the test specification prior to its actual instantiation are of special interest, i.e., metrics
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that help with the quality assessment early in the development process when an SUT im-
plementation may not be available. Early detected problems can be regarded as predictors
or indicators for the problems that can be anticipated when the test specification is instan-
tiated. This can be achieved with metrics that are objective and reproducible. The metrics
must have a valid scale and the data must be obtained empirically, i.e., from observations
rather than opinion, for example. We assume that problems which are detected and fixed
early in the development process (due to measurements) can prevent problems in an in-
stantiated test. For the most part, these metrics are product metrics that measure internal
attributes. Such metrics can be generic, test-specific, or language-specific. Generic metrics
are applicable to any typical software product no matter which language it is written in. An
example for such a metric is the cyclomatic complexity metric, which is applicable to any
software product that models a behavioral control-flow. Test-specific metrics refer to prop-
erties that are inherent to the nature of test specifications, e.g., metrics that refer to a test
verdict. Language-specific metrics are defined with respect to a specific language construct
of the language under analysis. For example, metrics measuring properties of templates in
TTCN-3 are regarded as TTCN-3-specific.

3.4.2. Software Metrics Selection

The selection of metrics is always a project-specific task, as the concrete measurements de-
pend on the environment, the development process, business goals, or simply how different
aspects are emphasized. However, even finding sets of metrics that measure a specific char-
acteristic is not an easy task. In general, the goal is to apply measurements that are both
technically and economically easy to achieve. The metrics should be preferably widely ac-
cepted. However, especially when weighting different metrics, a common problem is that
correlations between metrics are not always evident. Using several non-orthogonal metrics
in an evaluation scheme to measure a subcharacteristic may give more weight to certain as-
pects of the subcharacteristic than using others, and thus subtly influence the objectiveness
of the measurement.

For that purpose, different methods have been introduced to evaluate the orthogonality of
metrics or metric sets. There are numerous publications that try to tackle the orthogonality
problem of software metrics, i.e., they try to identify the measures in a set of metrics that
do not deliver any additional meaningful information. One early work of Henry et al. [75]
demonstrated the high-degree relationship between the cyclomatic complexity [96] and Hal-
stead’s complexity measures [71] by means of Pearson’s correlation coefficients. A good
overview on further related work is provided by Fenton et al. [61]—they list approaches
to investigate the correlation of metrics using Spearmans rank correlation coefficient [133]
and Kendall’s tau rank correlation coefficient [92]. To express the nature of the associations,
regression analysis (e.g., [30]) has been suggested. Furthermore, principal component anal-
ysis [118] has been used to reduce the number of necessary metrics by removing principal
components that account for little of the variability. A more recent approach tries to tackle
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this problem using machine learning [152]. In that method, tuples of a metric set are first
used to classify each measured entity of the software under investigation as either “good”
or “bad”. This classification is determined by threshold values for each metric in the set.
The approach then attempts to approximate the same classification with a smaller set of
metrics to reduce the number of necessary metrics in this set and to identify metrics with
overlapping information.

Selection of non-orthogonal metrics can still be considered a theoretical problem though
that has not been solved for practical purposes. Also, while orthogonality between metrics
has been successfully proven, the actual influence or the actual amount of error introduced
by intuitively chosen metrics for evaluating certain measureable characteristics remains un-
known. Nevertheless, as ISO/IEC 9126 suggests, it is recommended to choose easy to
measure, simple, and widely accepted metrics rather than inventing complicated new ones.

A concrete and pragmatic method to determine metrics for the measurement of qual-
ity characteristics or subcharacteristics is the Goal Question Metric (GQM) approach [8].
GQM is a measurement model that defines three different levels:

1. Goal (the conceptual level): The definition of the goal provides the aim that should
be achieved.

2. Question (the operational level): The definition of the question (or questions) pro-
vides what should be measured or what questions or properties of the subject the
measurement should answer.

3. Metric (the quantitative level): the metric definition provides the solution how to
quantify the measurements that answer the questions.

However, GQM continues with three additional steps that provide the actual application,
interpretation, and a feedback loop for future improvement:

4. Development of methods and mechanisms for the data collection.

5. Collection, analysis, and interpretation of the data.

6. Post-mortem assessment whether the results conform to the goals. Application of the
accumulated experience in future assessments.

Each goal in GQM should be expressed by five different aspects: the object of the mea-
surement (e.g., a test specification module), the aim or purpose of the measurement (e.g.,
test specification should be future-proof), the quality focus (e.g., reusability), the viewpoint
(e.g., perspective of the project manager or the test developer), and the environment (e.g.,
project or company division). These goals are recorded on so called abstraction sheets,
which hold additional information, such as quality factors that directly influence the goal,
or a hypothesis on quality factors in the assessment subject.

GQM also further specifies detailed items that should be taken into consideration when
finding questions for the goal. For example, GQM suggests identifying the meaning of an
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answer to a specific question and its possible reactions. Other examples are: weighting the
cost/use relationship between the data acquisition or to limit the number of questions to a
manageable amount (between three and seven questions).

The GQM approach is pragmatic and easy to understand and apply. When instantiating
a quality model according to the GQM approach, the goals are defined on the basis of the
nature of the project and its environment. Each project is free to emphasize these quality
aspects that are of particular importance. The presented quality model for test specifications
provides the necessary model to define the quality factors and the quality focus of the goal.
In the following, we present a concrete example of the instantiation of the quality model by
applying the GQM method.

3.4.3. Bad Smells

A bad smell in software (also called code smell) is a term that was first coined by Martin
Fowler. Bad smells can be regarded as patterns of possibly inappropriate code usage. Fowler
described bad smells as

“Certain structures in the code that suggest (sometimes they scream for) the
possibility of refactoring.” [64]

Bad smells are not about errors or bugs in software, but about working pieces of code
that are poorly structured. As opposed to a software error where its improvement is a fix
of the problem, the improvement of a bad smell in code involves a semantics preserving
restructuring or refactoring (see below).

The term bad smell is diffuse in that a location that may be regarded as smelling, may
still be the best solution for particular reasons. A good example is code that is optimized for
performance. An example for a classic performance optimization is loop unrolling to avoid
repeated checks of loop conditions and jumps. While this is an optimization that is usually
performed by the compiler today, there are still rare cases where it is still applied manually
to code. However, when such code is analyzed, it might be regarded as badly smelling
code due to its repetitive nature. Thus, there is still the possibility that certain pieces of
code are considered to smell when analyzed even though there may be good reasons why
they should not be changed. There may be a cost/benefit analysis involved in the decision
whether a smell is to be removed or whether a detected smell is even considered to be one
in a project-specific setting.

The notion of metrics and bad smells is not completely disjoint. The occurrences of a bad
smell can be counted and thus be interpreted as a metric. On the other hand, if we measure a
metric and determine specific threshold values for this metric, a violation of such boundary
values may give us a hint regarding a bad smell. Bad smells are usually detected statically,
i.e., they are based on the analysis of data structures that are derived from the grammatical
structure of the code. However, smell detection and guideline detection (which are relatively
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similar, however, guidelines do not try to find code locations that scream for restructuring,
but rather check the compliance to certain project standards) can both exhibit cases where
the problem is not decidable by static analysis.

3.4.4. Refactoring

Refactoring is the method to improve code or documents that are considered to smell.
Refactoring involves the restructuring of this problematic subject without changing the ob-
servable behavior. Martin Fowler defines refactoring as follows:

“A change made to the internal structure of software to make it easier to under-
stand and cheaper to modify without changing its observable behavior.” [64]

The foundation of a refactoring is its systematic description of how a refactoring should
be applied. This is achieved by a very strict structure, in which a refactoring is described
as well as a mechanical step-by-step instruction for the actual restructuring procedure. The
structure of a refactoring description is defined by:

• A name (for building a common vocabulary).
• A summary (for quickly finding refactorings for a specific purpose).
• A motivation (a more detailed description when the refactoring should be applied).
• Mechanics (a systematic procedure how to apply the refactoring).
• Examples.

The mechanics have a particular importance as their intention is to minimize any ac-
cidental changes in the semantics. Nowadays, modern Integrated Development Environ-
ments (IDEs) implement the mechanical steps in order to make the application of refactor-
ings easier, straightforward, and less error-prone. The Java Development Tools (JDT) of the
Eclipse SDK [46], for example, is well-known for its refactoring capabilities.

3.4.5. Static Analysis

Metrics and bad smells can be determined and analyzed by two different techniques that
are as applicable to test specifications as they are general-purpose code: static analysis and
dynamic analysis. Static analysis never involves the execution or simulation of a program.
Rather, it makes use of code by analyzing the artifacts in their structured form. In the case
of programming or textual testing specifications, this structured form is the grammatically
structured tree of the software—the abstract syntax tree or any other representation of its
abstract syntax.

There are generally two different layers where static analysis can take place: at the level
of the specification at hand or using compiled lower-level intermediate code representations,
such as byte codes. Lower-level representations are semantically easier to analyze, but they
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are more verbose in their form and harder to understand. Also, it is not always easy to draw
conclusions from already translated low-level code back to the high-level code. If a problem
is found in the low-level code representation, the problem has to be translated back to the
terms of the high-level language to enable the identification of the problem.

The most common uses for static analysis within the analytical quality assurance are
guideline checking, calculation of metrics, and smell detection. Typical examples for such
guidelines are: every function should have an explaining comment, definitions have to take
place in a specific order, and similar. Examples for statically measurable metrics are: lines
of code, number of statements, counting of syntactical elements (such as functions), or
structural measures like the intra-procedural cyclomatic complexity.

Analyzing the abstract syntax of a test specification, or code in general, is influenced
by our current theoretical knowledge about computational limits, i.e., certain classes of
analyses are reducible to the halting problem [124, 140] and, therefore, cannot be detected
using static analysis. In these cases, we are limited to approximations and dynamic analysis
approaches.

3.4.6. Dynamic Analysis

Dynamic analysis requires that the software product is executed in some way. Typical
use-cases for dynamic analysis are the detection of memory leaks, resource leaks, pointer
problems, performance measurements, or even coverage analyses. In general, dynamic
analysis opens the possibility to find problems that could be hard or impossible to find by
using static analysis.

Technically, there are mainly three distinct ways to dynamically analyze a system:

• Observation of the system at its interfaces or logging facilities.
• Instrumentation of the system.
• Usage of a special-case virtual machine, interpreter, compiler, or processor simulator.

In the first case, the analyzer monitors interfaces or logs facilities for necessary analyses.
The analyzer is placed as a man-in-the-middle, i.e., it acts as the software product by pro-
viding its interfaces to the environment, intercepting the communication, and forwarding
the data to the real software product. The observations are then assessed either on-the-fly
(passive testing [10, 31]) or after the execution has finished.

Instrumentation means that the source code of the software product is altered to record
additional information about the state of the system in specific parts of the code. What
information is recorded and where it is stored depends on the concrete purpose of the in-
strumentation. Due to the overwhelming amount of work instrumentation would involve
when done manually, instrumentation is nearly always performed automatically by a tool.
A recent trend is to use the aspect-oriented paradigm to separate instrumentation code from
the product code into aspects (for example, [74]).
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The third possibility is to move the analysis into the compiler or interpreter that actually
runs the code or by in fact simulating the processor that runs the code. Such approaches
are useful, for example, to detect memory errors due to misused malloc or free calls (in C
software) or race conditions in multithreaded programs.

There are several different ways to drive dynamic analysis. Some kinds of dynamic analy-
sis are supposed to run in the background and check security constraints or properties while
an actual user is interacting with the system. The same can be done in a more target oriented
fashion: the developers manually drive the system into states where they expect problems
and use the dynamic analysis to support their work. For other purposes, the dynamic analy-
sis often requires that the software product under analysis executes as much different code
as possible. A common way to drive the analysis is the execution of test suites against the
analyzed software product, as test suites are often developed with some coverage criterion
in mind. In these cases, the quality of the analysis result then depends on the quality of the
test suite and how well the analysis is tailored for the coverage criterion of the test suite.
Model checking can also be regarded as a special kind of dynamic analysis. Here, the be-
havior of the software under analysis is analyzed for properties in as many execution paths
as possible, while trying to minimize the actual number of analyzed paths that are probed.

Dynamic analysis (except for model checking) suffers from the problem that only ex-
ecutes the code that it is targeted to execute. In particular, when parallel and distributed
software is analyzed dynamically, there is no guarantee that the same behavior is executed
as in previous runs, even if the stimuli that are sent to the analyzed system are the same.
Even if the timing is different, we are in practice already dealing with different global states.
This exposes the problem that on the one hand it might not be easy to reproduce occurring
problems for the dynamic analysis and on the other hand, it may be hard to repeat a dynamic
analysis.

3.5. An Instantiation for TTCN-3 Projects

The instantiation of the test specification quality model requires a set of metrics for each
subcharacteristic that adequately capture the different quality aspects of a project in num-
bers. There are various ways to obtain these numbers: static analysis, dynamic analysis
on the specification level, but also results from manual reviews of specification documents.
The latter may include the comparison of different kinds of test specification documents to
assess the degree of consistency between them or the coverage of specifications.

Following the GQM approach, we define the goal to be the improvement of the respective
quality characteristics. In the following, we provide an exemplary instantiation of the qual-
ity model for test specifications for a test project using the TTCN-3 language for a selection
of characteristics and subcharacteristics. Figure 3.4 depicts what quality characteristics and
subcharacteristics have been selected for the exemplary instantiation. It is structured as fol-
lows: each section instantiates a specific characteristic and subcharacteristic denoted by the
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Figure 3.4.: Instantiated Parts of the Quality Model for Test Specifications

notation characteristic / subcharacteristic. For each subcharacteristic, we provide a number
of questions. Finally, we provide metric definitions that deliver answers to the questions on
a concrete scale. These can be either generic, test-specific, or specific to the TTCN-3 lan-
guage. The exemplary instantiation will show that the actual determination of the metrics
is not hard once the goal has been specified and the right questions have been asked. As
mentioned before, the instantiation is project-specific and therefore, this concrete instantia-
tion is not a generalization that applies to all projects even though the questions and metrics
have been chosen to be rather general. Based on the results of the assessments, refactorings
can be applied to improve the quality characteristic.

3.5.1. Characteristic: Test Effectivity / Test Coverage

Answers to the following questions deliver an assessment for the test coverage subcharac-
teristic of the test effectivity characteristic:

• To what degree are the test purposes covered by the test specification?
• How well does the test specification test the SUT?

The following metrics provide answers to these questions:
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Definition 3.1 (Metric: Test Purpose Coverage)

test purpose coverage :=
number of test purposes covered by TTCN-3 test cases

overall number of test purposes

The number of test purposes covered by test cases specified in a TTCN-3 test suite is com-
pared to the number of test purposes contained in a corresponding test purpose specification.
The metric is test specific.

Definition 3.2 (Metric: System Model Coverage)

system model coverage :=
test coverage of system model

possible coverage of system model

Several different coverage criteria like path coverage, branch coverage, etc. are applicable.
This metric determines the test coverage with respect to a model of the SUT. The metric is
test specific.

3.5.2. Characteristic: Test Effectivity / Test Correctness

Answers to the following questions deliver an assessment for the test correctness subchar-
acteristic of the test effectivity characteristic:

• Does the test case deliver consistent test verdicts?
• Does the test case terminate?

The following metrics provide answers to these questions:

Definition 3.3 (Metric: Test Verdict Completeness)

σ = number of paths in TTCN-3 test cases setting no

test verdict

test verdict completeness :=

{
1 if σ > 1
0 otherwise

It is assessed whether there are any paths that do not set a test verdict. The metric is test
specific.
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Definition 3.4 (Metric: Early Test Verdict)

σ = number of paths in TTCN-3 test cases setting

a test verdict before any communicating behavior

early test verdict :=

{
1 if σ > 1
0 otherwise

It is assessed whether test verdicts are set prior to any communication. This may indicate a
possible problem or design weakness, especially if the test verdicts are not pass. The metric
is test specific.

Definition 3.5 (Metric: Test Termination)

test termination :=
number of paths in TTCN-3 test cases terminating correctly

overall number of paths in TTCN-3 test cases

It is assessed whether all paths of the test cases terminate correctly. The metric is test
specific.

3.5.3. Characteristic: Test Effectivity / Fault-Revealing Capability

Answers to the following questions deliver an assessment for the fault-revealing capability
subcharacteristic of the test effectivity characteristic:

• Is the test data thoroughly evaluated?
• Are all effects of the system covered?

The following metrics provide answers to these questions:

Definition 3.6 (Metric: Template Transmissibility)

σ = number of wildcard-only-covered elements in type

definitions used by receiving templates

ρ = overall number of elements in type definitions

used by receiving templates

template transmissibility := 1− σ

ρ
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SUT responses might never be properly evaluated when the corresponding receiving tem-
plates are too transmissible due to wildcards. This metric measures to what degree the
elements of received data are at least covered once by a non-wildcard expected value. As
the template concept is specific to the TTCN-3 language, the metric is TTCN-3-specific.

Definition 3.7 (Metric: Effect Coverage)

effect coverage :=
number of effects tested by a TTCN-3 test suite

overall number of effects possible in the system specification

This metric uses cause-effect analysis to determine the degree to which each effect is at
least tested once. The metric is test specific.

3.5.4. Characteristic: Test Reliability / Maturity

An answer to the following question delivers an assessment for the maturity subcharacter-
istic of the test reliability characteristic:

• Are there multiple timeout branches in an alt-statement where one timeout is concrete
and the other is an any timeout?

The following metric provides an answer to this question:

Definition 3.8 (Metric: Timeout Inconsistency)

σ = there is a path where a timer is started and

where subsequently a directly referenced timeout

branch takes place

ρ = there is a corresponding path where

in the same branch an any timeout branch exists

timeout inconsistency := σ ∧ρ

In particular, when defaults are activated that globally catch all timeouts using the any timer
reference, it is not clear to developers that this implicit timeout exists due to the default
exists and they implement their own timeouts. The implementation of an explicit timeout
referencing the timer may be developed on purpose, for example, because the verdict han-
dling or follow up behavior must be different, or it is a redundancy due to the developer not
realizing that such a default is activated. As the timer concept is specific to the TTCN-3
language, the metric is TTCN-3-specific.
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3.5.5. Characteristic: Maintainability / Analyzability

An answer to the following question delivers an assessment for the analyzability subchar-
acteristic of the maintainability characteristic:

• How complex is the test case?

The following metric provides an answer to the questions:

Definition 3.9 (Metric: Complexity Violation)

σ = number of behavioral entities violating upper bound of

complexity

ρ = overall number of behavioral entities

complexity violation := 1− σ

ρ

This metric measures the number of TTCN-3 testcases, functions, and altsteps which violate
a defined boundary value of a complexity measure in comparison to the overall number of
testcases, functions, and altsteps. Several complexity measures may be used, e.g., McCabe’s
cyclomatic number [96], the nesting level, the call-depth, or the number of statements. The
metric is generic.

3.5.6. Characteristic: Maintainability / Changeability

Answers to the following questions deliver an assessment for the changeability subcharac-
teristic of the maintainability characteristic:

• How often is the same code repeated?
• How strongly is a given entity coupled to other test code pieces in the test specifica-

tion?
• Are there unused or rarely referenced definitions?
• Are there similar test data definitions?

The following metrics provide answers to these questions:

Definition 3.10 (Metric: Code Duplication)

code duplication := 1− entities containing duplicated code
overall number of entities
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Since changes to duplicated code require changing all locations of duplication, this metric
determines the portion of duplicated code in terms of, e.g., LOC or statements. The metric
is generic.

Definition 3.11 (Metric: Maximum Number of References Violation)

σ = number of entities which are referenced

more times than an upper bound allows

ρ = overall number of entities

maximum number of references violation := 1− σ

ρ

This metric determines how often an entity is referenced and penalizes the violation of an
upper boundary value. When applying changes to entities which are referenced very often,
a developer needs to check each reference whether a change may have unwanted side effects
or whether it requires follow-up changes. The metric is generic.

Definition 3.12 (Metric: Removable Definition)

removable definition :=

{
0 number of references to the definition > 1
1 definition is not referenced or referenced only once

This metric determines whether a definition is never referenced or referenced only once. A
definition that is never referenced may be removed. A definition referenced only once may
be inlined, for example. The metric is generic.

Definition 3.13 (Metric: Similar Template)

similar template :=

{
1 percentage of differing fields < 25%
0 otherwise

This metric determines whether two template definitions are similar. As the template con-
cept is specific to the TTCN-3 language, the metric is TTCN-3-specific.
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3.5.7. Characteristic: Maintainability / Stability

Answers to the following questions deliver an assessment for the stability subcharacteristic
of the maintainability characteristic:

• Are there any global variables?
• Are there possible side effects?

The following metrics provide answers to this question:

Definition 3.14 (Metric: Global Variable and Timer Usage)

σ = number of component variables and timers

referenced by more than one behavior

ρ = overall number of component variables

and timers

global variable and timer usage := 1− σ

ρ

Global variables promote side effects. In TTCN-3, component variables and timers are
global to all behavior running on the same component. This metric measures the number
of all component variables and timers referenced by more than one function, testcase, or
altstep and relates them to the overall number of component variables and timers. As the
timer concept is specific to the TTCN-3 language, the metric is TTCN-3-specific.

Definition 3.15 (Metric: Parameter Amount with Possible Side Effects)

parameter amount with possible side effects :=1− number of out and inout parameters
overall number of parameters

Any modification of parameters which are passed into a testcase, a function, or an altstep as
out or inout parameter may lead to side effects. Hence, this metric measures the possibility
of side effects regarding the parameters by relating the number of out and inout parameters
to the overall number of parameters. The metric is generic.

3.5.8. Characteristic: Reusability / Coupling

Answers to the following questions deliver an assessment for the coupling subcharacteristic
of the reusability characteristic:
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• To what degree is a module coupled to other modules?
• To what degree can existing behavior be generalized?

The following metrics provide answers to these questions:

Definition 3.16 (Metric: Coupling to Other Modules)

coupling to other modules :=
number of modules importing from other modules

overall number of modules

The reusability of the modules of a test suite depends on how tightly each module is cou-
pled to other modules. Hence, this metric counts the number of modules coupled to other
modules and relates this to the overall number of modules. In TTCN-3, coupling between
modules is introduced by the import construct. As many languages provide some sort of
import mechanism, the metric can be considered to be generic.

Definition 3.17 (Metric: Coupling to Overspecialized Components)

σ = number of behavioral entities unnecessarily

running on a specialized component

ρ = overall number of behavioral entities

running on components

coupling to overspecialized components :=
σ

ρ

Reusability is reduced if a function, a testcase, or an altstep running on a component would
run on a parent component as well, but is bound to a more specialized component. Hence,
this metric relates the number of such cases to the overall number of functions, testcases,
and altsteps which are coupled to components in general. As the component specialization
concept is specific to the TTCN-3 language, the metric is TTCN-3-specific.

3.5.9. Characteristic: Reusability / Flexibility

An answer to the following question delivers an assessment for the flexibility subcharacter-
istic of the reusability characteristic:

• Does the current implementation of a behavioral entity endanger its reuse?
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The following metrics provide an answer to this question:

Definition 3.18 (Metric: Entity Shortness)

entity shortness :=
number of behavioral entities violating a given size limit

overall number of behavioral entities

The shorter an entity is, the higher the probability is that it is flexible enough to be reused
in a different context. Hence, this metric measures the number of testcases, functions, and
altsteps whose LOC or number of statements violate a defined boundary value. The metric
is generic.

Definition 3.19 (Metric: Parameterization Degree)

parameterization degree :=
number of formal parameters

number of formal parameters+number of hardcoded values

Reuse is hindered by hard-coded values and promoted by parameterization. Hence, this
metric values parameterization and penalizes hard-coded values. The metric is generic.

3.5.10. Characteristic: Reusability / Comprehensibility

Answers to the following questions deliver an assessment for the comprehensibility sub-
characteristic of the reusability characteristic:

• How well are entities documented?
• How well are the entities structured?

The following metrics provide answers to these questions:

Definition 3.20 (Metric: Annotation Degree)

annotation degree :=
number of commented entities

overall number of entities

The number of entities, e.g., testcases, functions, or altsteps, whose interface is properly
documented in comparison to the overall number of considered entities. The metric is
generic.
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Definition 3.21 (Metric: Groupedness)

groupedness :=1− number of ungrouped elements
overall number of elements

In TTCN-3, grouping is a means to structure the elements of a module. Hence, this metric
calculates the degree of structuredness by penalizing unstructured elements. As the group
concept is specific to the TTCN-3 language, the metric is TTCN-3-specific. However, other
languages may provide similar concepts.

3.5.11. Characteristic: Compliance

An answer to the following question delivers an assessment for the compliance characteris-
tic:

• How many non-timeout paths set a verdict before stopping the timer?

The following metric provides an answer to this question:

Definition 3.22 (Metric: Verdict/Timer Inconsistency Degree)

σ = number of non-timeout paths where a verdict

is set before the timer is stopped

ρ = overall number of non-timeout paths

verdict/timer inconsistency degree :=
σ

ρ

If there are paths where a timer is started and in which the timer does not timeout, we expect
that this timer is stopped prior to the determination of any test verdict.

3.6. Related Work

So far, there is no holistic approach towards the quality assurance of test specifications. For
the most part, there are only techniques and mechanisms that address step 4 of the GQM ap-
proach, without a predefined goal. Vega, Din, and Schieferdecker have worked on guideline
checking of TTCN-3 test suites in order to improve the maintainability of test suites [43].
They classify guidelines for TTCN-3 on three different levels: the architectural level, the
language level, and the physical level. The architectural level refers to information related
to the SUT, e.g., interfaces, use-cases, or roles. A guideline for this level would be, for
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example, to group together definitions belonging to an SUT interface, specific roles, or use-
cases. The language level refers to the definition of test constructs of TTCN-3, such as types,
components, test cases, and similar. Guidelines for this level are formatting rules, naming
conventions, and structural rules. The physical level deals with file system information such
as files and folders. Guidelines for this level may, for example, provide information on how
to structure the test suite in folders within the file system. Information from the architectural
level can be propagated to the language level and from there to the physical level. Informa-
tion from the language level can be propagated to the physical level. Some guidelines can
be interpreted as metrics with predefined threshold values. Even the guideline checking of
naming conventions can be interpreted as metrics—they measure the amount of violations
where specific identifiers do not fulfill a convention and report the affected locations within
the test specification. These three specified levels are also valid from the point of view of the
quality model presented in this chapter. These three levels are arranged on a different axis
than the quality characteristics specified in the quality model for test specifications, i.e., any
quality characteristic or subcharacteristic of the quality model for test specifications may be
assessed on these three different levels. Therefore, the classification into architectural level,
language level, and physical level is relevant also for the instantiation of the quality model.

Besides guideline checking, the same authors have worked on quality measures for test
data [147, 149]. This first work on test data quality discusses test data variance as a mea-
sure for test data quality, where test data variance is defined as the test data distribution
over the system interface data domain. The underlying idea is that a higher degree of test
data variance implies also a higher test quality. In other work on test data, they evaluate the
quality of test data stimuli. For that, a data clustering method to partition types and subse-
quently measure the coverage related to the data clusters is presented. They have applied
this technique to TTCN-3 types and used constraint programming over the control-flow
graph to deal with variable templates. In this thesis, we will not deal with test data and
how it related to the quality of a test specification, but concentrate on behavioral aspects of
test quality. However, it is true that test data is a very important factor in the assessment
of test quality and, therefore, these results are very relevant for the quality assessment of
test specifications in general. Vega, Din, Schiefedecker et al. have also suggested concrete
TTCN-3-specific quality metrics [148]. However, they do not provide an underlying qual-
ity model. With the TRex tool [154], there exists a refactoring catalog and prototype for
improving issues in TTCN-3 test suites. Sneed, Baumgartner, and Seidl published a book
on system testing [132] which briefly mentions the topic of quality assurance for test cases.
Several metrics for test case quality are proposed in this work such as test case complexity
based on the density of test data, test data complexity, test data volume, or test case density.
To measure test quality, they propose metrics for test case impact (i.e., which entities are
affected by the test), test case modularity, test case completeness, and test case reusability.
These kinds of test metrics are defined in more general terms and in fact rather define the
questions that need to be asked within the GQM approach than providing answers to con-
crete questions. Interpreted as questions though, the metrics are relevant and can be related
to characteristics and subcharacteristics of our quality model.
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Mutation testing approaches (such as the more recent work from Schuler and
Zeller [130]) can be considered as an analytical approach for the assessment of the
fault-revealing capability of test suites and can, therefore, be related to our quality model.
By changing the SUT with non-equivalent mutants, the idea is to uncover these mutants
with the test suite. If all mutants are uncovered by the test suite, it can be considered of high
quality. If a mutant slips through and is not detected, the test developers gain knowledge
where they may extend their test suite and where test cases are missing. So far, mutation
testing has only been applied in very small scale case studies. Schuler and Zeller are among
the first who have applied mutation testing to projects of realistic size and complexity.

Tool support for static analysis is well developed for many commonly used languages. In
particular, there is a strong support for strongly typed languages, like Java or C#, regarding
static analysis tools. Popular tools for Java are FindBugs [7], PMD [120], or Checkstyle [1].
All these tools perform static analysis and have sets of predefined rules and guidelines. Typ-
ical examples are the checking of naming conventions and formatting guidelines, but also
data-flow analyses to identify locations where an uninitialized variable may be referenced.
Most of these tools include some kind of integration into popular IDEs, such as Eclipse [46],
that allow continuous on-the-fly observation of the code for possible problems by running
transparently in the background and alerting when problems are found. It is noteworthy that
all these tools are practically usable in everyday work and have matured well. However, be-
sides our own TRex tool, we are currently not aware of any other tooling that supports static
test quality analysis for test-specific properties. Related work regarding dynamic analysis
and dynamic analysis of test specifications is discussed in Section 4.6.



4. Model-Based Analysis of Test
Specifications

Dynamic analysis requires that the software product is executed in some way. Use-cases
for dynamic analysis are the detection of memory leaks, resource leaks, pointer problems,
performance measurements, or even coverage analysis. An observation is that the uses for
dynamic analysis are often of a more technical nature although there are also attempts to use
dynamic analysis to generate models for documentation purposes [62]. In general, dynamic
analysis opens the possibility to find problems that could be hard or impossible to find using
static analysis.

In the following chapter, we describe dynamic analyses for test specifications. These dy-
namic analyses are all based on models that are constructed from test cases. Such analyses
can be considered as a special form of testing of test specifications. In practice, we can
only check certain aspects of the test behavior. Even though test specifications may contain
errors like any other kind of software specification, it is common sense that it is not feasible
to write test specifications for test specifications. After all, we would be stuck in a vicious
circle as test specifications for test specifications could be again error-prone. Instead, we
need to find ways to check the test specification in a more generic way. For this purpose,
we define generic properties that should always or never be true for test behavior models.

Figure 4.1 depicts the overall analysis method presented in this chapter. First, a test case
specification is simulated. The events produced during the simulation are the input for a re-
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Figure 4.1.: Dynamic Analysis Methodology
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verse engineering algorithm that produces model increments for each set of events coming
from the test case simulator. If the test case simulation is finished, we consider the cur-
rent model increment to be the completely reconstructed model. This model is then model
checked for certain properties, for example, test-specific properties that analyze the consis-
tency of test verdicts. The model checking then concludes either that the property holds or
that it fails. In the latter case, the model checker delivers a failing trace that describes the
behavior where the property does not hold. This information can then be mapped back to
the test case specification to examine the possible problem in the test specification language.
The presented method is general, i.e., it can be applied to TTCN-3, but it does not make use
of any specific TTCN-3 features and we expect the method to work for other languages as
well.

In the first section of this chapter, we discuss reverse engineering (Section 4.1). Sub-
sequently, we present a formal model for describing test specifications (Section 4.2). Our
model reconstruction4 method is described in Section 4.3. The reconstructed models are
then analyzed. A catalog of generic properties that can be applied to test specifications can
be found in Section 4.4. Following our test case analysis, we shift our focus to test suite
properties and discuss one specific test suite anomaly that we call response consistency.
Finally, we conclude with a discussion of related work (Section 4.6).

4.1. Reverse Engineering

Reverse engineering in general is the process of analyzing an object in order to find out
how it works. Reverse engineering, however, is a very diverse term and while the generic
meaning of it almost always is true to some degree, people may understand vastly different
things confronted with this term, depending on what their expertise and domain are. One
group of people might associate the term to reversing a binary program from machine code
into more readable (albeit still very low level) assembler code—possibly with the goal to
patch a small part of it. Other persons might associate the term with building UML class
diagrams from their Java code. Chikosfky tried to solve the confusion by defining key terms
in 1990 [33]. He defines reverse engineering as follows:

“Reverse engineering is the process of analyzing a subject system to

• Identify the system’s components and their interrelationships and
• Create representations of the system in another form or at a higher level

of abstraction.”

Reverse engineering never involves the alteration of a system, it is merely an examination
process that usually involves the extraction of designs and building less implementation-
dependent abstractions of it. A common use for reverse engineering is, for example, the

4We use the terms model reconstruction and model reverse engineering synonymously.
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generation of documentation in order to make a system (or legacy system) easier to under-
stand for people who did not develop it. It can be performed on any level of abstraction in
any phase of the software development process.

4.1.1. Documentation and Design Recovery

Two common areas of reverse engineering are documentation and design recovery. The goal
of documentation recovery is the automatic recreation of the documentation for a system
that should have existed in the first place. The documentation represents a different view
towards the system which is oriented towards a different audience than someone who works
with the actual code. For example, the generation of UML diagrams from code is such a
documentation recovery application of reverse engineering. Another different use would be
the generation of cross-reference documentation [115, 145].

In design recovery, in addition to the actual observations or code from the object, several
sources of knowledge (for example, documentation, personal knowledge about the object)
may be combined to deduce and reason about higher level abstractions. It aims at recovering
as much information about a system beyond the information that is directly provided from
the object.

4.1.2. Reengineering

An important term that needs to be clearly distinguished from reverse engineering is reengi-
neering. The terms reverse engineering and reengineering are sometimes confused with
each other or even used interchangeably. Chikovsky defines reengineering as follows:

“Reengineering, also known as both renovation and reclamation, is the exam-
ination and alteration of a subject system to reconstitute it in a new form and
the subsequent implementation of the new form.” [33]

Reengineering may include reverse engineering within the process to reconstitute a sys-
tem in a new form, for example, to extract information from a legacy system. Using the
extracted information and parts of the old system, reengineering denotes the restructuring
of the old system with possibly some forward engineering. Here, reverse engineering helps
in the creation of a system that is modern or that may be changed to realize new require-
ments that are not met by the original system.

4.1.3. Recovering and Reengineering Artifacts of Development Phases

Figure 4.2 illustrates the mapping of forward and reverse engineering to the development
phases (in this case, the phases from the V-Modell 97 [60] with an additional binary code
layer). In the direction of the left hand side to the right hand side, the conventional kind of
development takes place in the form of forward engineering. The direction from right hand
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Figure 4.2.: Forward and Reverse Engineering in the V-Modell 97 Phases

side to left hand side is the reverse engineering direction. For example, if people intend
to get the implementation from binary code, they reverse engineer the binary code using
a disassembler. The artifacts produced in other phases can be reversed comparably. The
result is always the artifact of the phase on the left side of artifacts’ phase that we reverse. If
some kind of change, alteration, or any other kind of forward engineering takes place with
the help of a reverse engineered artifact, we calling it reengineering.

The work on reverse engineering is as manifold as the different interpretations of the
term. We have disassemblers for binary code like IDA Pro [127], decompilers for Java
bytecode like the Java Decompiler [2], UML tools like Magicdraw [107] which create class
and sequence diagrams from code in different languages, the Javadoc tool [115], or work
where object state machines are reverse engineered from branch-covering unit test execu-
tions [153].

4.2. A Formal Model for Describing Test Case Specifications

In Section 2.2, we introduced formal notations for describing transition systems. However,
it is not yet clear how we model test cases and test suites in terms of these definitions. As a
formal model is required for the analyses in this chapter, this section provides the missing
link between the formal model notations of Section 2.2 and the model that we will use to
actually represent the test cases and test suites that we intend to analyze. In this section, we
first provide a formal definition for test case and test suite models. Afterwards, we provide
an example how these kinds of models look like, also in relation to TTCN-3 test cases, and
discuss the adequacy of these models for the analysis of test behavior in general and for
representing TTCN-3 behavior in particular.
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4.2.1. Test Case Model

The kinds of test cases that we intend to represent have the following properties:

• The test cases may have multiple components with behavior that may run in parallel.
• The test cases communicate with each other and the SUT by means of messages sent

via channels.
• The communication is non-blocking, i.e., a message sent to another system is always

received in an input queue and the sending component can immediately carry on with
its behavior.

With these preconditions in mind, we can define a test case as follows:

Definition 4.1 (Test Case) A non-blocking test case T with queues is a tuple (C,P,ρ) where

• C is the set of test components modeled as LTS or EMIOTS that each describe the
behavior of one test component in a test case.
• P is a set of ports.
• ρ is a relation that assigns ports to a test component C, i.e., ρ ⊆ P×C where (p,c) ∈

ρ implies that there is no c′ with (p,c′) ∈ ρ .

The composite behavior of the test case is then defined as (c1 ‖Q q1) ‖M

(c2 ‖Q q2) ‖M . . . ‖M (cn ‖Q qn) with ci ∈ C, 0 ≤ i ≤ n. The queues
q1, . . . ,qn are defined by the ports assigned to each component, i.e., for each (p j,ci) ∈ ρ ,
there must be a queue q j that accepts messages on port p j. The overall queue behavior qi

of a component ci is then defined by the parallel composition of all q j.

Example: we have a test case with two test component EMIOTS c1 and c2. We have
a total of three ports p1, p2, and p3. Port p1 and p2 are assigned to component c1
and port p3 is assigned to component c2. We then have EMIOTS queues q1, q2, and
q3 corresponding to each port. The overall behavior of this system is then described by
(c1 ‖Q (q1 ‖M q2)) ‖M (c2 ‖Q q3)).

Having defined and described what a test case is, we can complete our set of definitions
by defining a model for test suites.

Definition 4.2 (Test Suite) A test suite is a set T S of test case models T .

In some cases, it might be useful to define the test suite as an ordered set rather than an
unordered set. For our purposes, an unordered set is sufficient.
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1

2

var default myDefault := activate(catchUnexpected());

3

p.send(myMessage);

4

p.receive(expectedMessage);

5

setverdict(pass);

6

deactivate(myDefault);

7

p.receive

8

stop;

V = {none = true, pass = false, inconc = false, fail = false,

myDefaultActive = false}

none = false,

pass = true

myDefaultActive = true

[myDefaultActive == true]

myDefaultActive = false

Figure 4.3.: Example: TTCN-3 Test Case to EMIOTS Component Mapping

4.2.2. Test Case Model Example

In the following, we present an example of what a test case model looks like and how it
may relate to a piece of TTCN-3 code. For that purpose, we show how to represent the
test case depicted in Listing 2.2 of Section 2.1.6. Figure 4.3 illustrates a mapping of the
behavior of the test case running on one component to an EMIOTS (also representing the
behavior of one test component of the test case model). In essence, the inter-procedural
control-flow of the TTCN-3 test case is modeled. In this example test case, we model two
kinds of data: the verdicts and the default. In this case, it is sufficient to model the data using
boolean variables. In the start state, the none verdict is set to true while all other verdicts
are initialized to false. The variable describing the default activation myDefaultActive is
initialized to false. Upon activation, its value is changed to true. Similarly, the verdict
variables are changed in the setverdict(pass) action between state 4 and 5. Finally, the
transition from state 3 to state 7 is guarded by the value of the myDefaultActive value.
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The example presents an intuitive mapping of TTCN-3 behavior to an EMIOTS. We
describe a thorough model reconstruction method in Section 4.3. The overall model de-
scribing the complete test case behavior is in fact more complex than the model presented
in the figure. The reason is that the illustration omits the parallel composition with the queue
model for port p. As parallel compositions yield very complex models, we present for the
most part only models representing isolated test components of composite test case models
for our discussions in this thesis. In subsequent illustrations, we also use the shortcuts for
describing message-based communication, for example, we use p?expectedMessage instead
of p.receive(expectedMessage).

Note that the test case terminates without a verdict if an unexpected message is received—
as no verdict is set, the resulting verdict would be none. This is clearly not a desirable result
for a test case and likely a mistake that the test developer made. Nevertheless, the problem
is not that easy to detect: first, we need an interprocedural analysis of the behavior as the
altstep is not part of the actual test case. Second, it is statically not decidable whether
the default altstep is attached to the alt-statement or not for all behavioral cases. With the
method presented in this chapter, we intend to make such cases visible, where a specific
property—in this case, a missing test verdict in case of unexpected behavior—is violated.

4.2.3. Test Case Model Adequacy and Abstraction

In the previous two subsections, we have defined a test case model. However, it is unclear
at this point to which degree the model is suitable for representing test case behavior in
general and TTCN-3 behavior, the language that we later use in our case study, in particu-
lar. In general, the operational semantics of program behavior is typically described using
a transition system to which syntactical constructs of the language are mapped. One such
formalism that is based on transition systems is the Structural Operational Semantics (SOS)
pioneered by Plotkin [119]. As both the LTS and EMIOTS models, on which the test case
model is based, are supersets of a classic transition system (consisting only of configura-
tions and transitions), by only carrying additional information, the models are suited for the
representation of program behavior in general. The test case model is specified on a higher
level than the classic transition system (by usage of variables and guards) and describes how
the message-based communication paradigm and the non-blocking behavior are composed
using multiple such models. However, the result is still an LTS or EMIOTS respectively.

The test case model has been designed to cover the main paradigms of the communicating
behavior of TTCN-3. The TTCN-3 behavior itself is described using a kind of high-level
transition system, a flow graph, in the respective operational semantics document [56]. The
TTCN-3 behavior is defined by nodes which carry attributes, such as lists with the active
default altsteps, timer states, or value stacks. A set of dependent rules then describe how
syntactical elements modify the attributes in these nodes, as well as how and when different
paths in the flow graph are taken. Like other operational semantics formalisms, it describes
how the complete set of syntactical elements of TTCN-3 has to be interpreted at runtime.
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The flow graph of the operational semantics of TTCN-3 is different from the test case model
that we use in this thesis to represent test case behavior. The first difference is that the
EMIOTS model is rather low-level and its semantics essentially amount to the evaluation
of boolean variables in the transition guards. The TTCN-3 flow graph on the other hand
is a higher-level model that includes structural features, such as reference nodes, which are
effectively mapped to lower level constructs. For example, in case of a node reference, it
is replaced by the respective graph segment that it references. The semantics also has its
own formalism attached to the nodes and specifies how attributes are manipulated. The way
the flow graph semantics is described eases the understandability of the TTCN-3 program
execution in comparison to a formal semantics description. Yet, it is a theoretic construct
that supports language engineers in writing tools for the language. On the other hand, the
EMIOTS test case model does not describe how to interpret TTCN-3 behavior, rather it
presents the structure of the behavior—not for a specific execution, but as a representation
of the overall behavior.

Dynamic properties, as presented in this chapter, could in fact be expressed over the entity
states of the operational semantics in TTCN-3. However, this would bind the expression of
the dynamic properties to TTCN-3, whereas the properties that we present later, may also
be applied to other testing languages with similar paradigms. The presented test case model
is abstract enough to fit other languages as well. To model data, we augment the model
with those attributes (in our case variables in the EMIOTS) that we are interested in. When
we analyze TTCN-3, the EMIOTS variables in fact refer to attributes of the entity states of
the TTCN-3 operational semantics. The amount to which entity state attributes are mapped
to the EMIOTS variables determines the level of abstraction involved. In the following
sections, we map the control-flow of the test behavior completely to the EMIOTS, whereas
the data-flow will be mapped partially. In that sense, we deal only with data abstraction.

The data-flow information is necessary for variable-based verification and behavior re-
strictions. One the one hand, data-flow is used for checking actual properties that are re-
lated to the data values and their flow through the behavior. On the other hand, they restrict
behavior. For example, when the value of a variable is checked by a guard, conditional
behavior, or even a loop, then this variable check reduces the amount of possible behavior
through its dependence on the data values. As a result, disregarding data-flow in behav-
ior implies an abstraction to the behavior, in the sense that more behavior is available as
opposed to when data-guarded behavior restrictions apply.

If we introduce abstractions that allow more behavior (e.g., by disregarding certain data-
flows and data-based guards), a safety property that does not hold on the reconstructed
model does not make any statement about the original behavior (so called false positives).
On the other hand, if a safety property holds on a model that has more behavior than the
original model, then it a fortiori holds for the behavioral subset as well. The terms logical
soundness and logical completeness deliver important aspects for this discussion.
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Definition 4.3 (Logical Soundness) An abstraction α is logically sound with respect to a
behavioral model M and a property φ if for any execution σ of M violating φ , there exists
a corresponding execution σ ′ in α(M) that violates φ .

Definition 4.4 (Logical Completeness) An abstraction α is logically complete with re-
spect to a behavioral model M and a property φ if for any execution σ ′ of the abstract
model α(M) violating φ , there exists a corresponding execution σ in M that violates φ .

In this chapter, we concentrate on a model that is adequate for structural analyses, i.e.,
analyses that are somehow related to the flow of events that are occurring within the control-
flow, for example, specific event orders. We, to some degree, reduce the amount of data that
can possibly influence the behavior and thus make concessions regarding the analysis preci-
sion in order to enable practical feasibility. The actual abstraction degree is implementation-
specific. We always require logical soundness for our abstractions though, but not necessar-
ily logical completeness. As a result, we may get false positives in our analysis results. To
what degree these abstractions influence the analysis results is discussed in Chapter 5.

Note that the test case model is only concerned with the abstract test case specification.
For instance, in testing with TTCN-3, the involved artifacts are the abstract test specifica-
tion, as well as an adaption layer that, for example, maps abstract messages to concrete
messages and sends these concrete messages through a non-abstract medium. Such adap-
tion layers as found in the TTCN-3 architecture, do not play a role for the analyses presented
in this chapter, i.e., we only deal with the analysis of the abstract artifact. Therefore, possi-
ble anomalies in the adaption layer cannot be analyzed using the methods presented in this
thesis.

In comparison to a static grammatical model of the syntax, i.e., a metamodel representing
the language structure, also called the abstract syntax of the language [128], our test case
model is also different. The test case model represents the actual behavior of the analyzed
behavior. However, from an abstract syntax model and possibly a corresponding binding
data structure, we cannot directly derive what the overall behavior looks like, i.e., including
the behavior that is included due to function calls, for instance. To achieve that, we have
to interpret and follow the paths and references of the abstract syntax, which essentially
equates to a special-case execution of the behavior. Exactly this kind of special-case execu-
tion (or simulation) over the abstract syntax of the analyzed language is what we perform
in order to gather the relevant log data.

4.3. Model Reconstruction

When we analyze test specifications, we have a test specification available in a concrete
language, such as TTCN-3. These test specifications are then the subject of the analysis.
However, they do not have the form of a model as presented in Section 2.2. For that purpose,



71 4.3. Model Reconstruction

a method is necessary that reconstructs (or reverse engineers) the internal model of the test
specification using the formal model that we have in our mind—in our case, an EMIOTS
model. In general, there are two approaches to obtain such a behavioral model:

• Abstractly simulating the behavioral control-flow and data-flow and using this inter-
nal information to build the model (model reconstruction by abstract interpretation).
• Monitoring the actual execution of instantiated test specifications and using logged

information from these executions to reconstruct the model (model reconstruction
from observations).

The challenge of the first approach is the fact that it must respect the operational seman-
tics of the language under investigation to some degree. In essence, such a method can be
regarded as special-case interpretation. The second approach on the other hand requires an
actual execution of the test specification under analysis. The observations necessary to build
the model are either inferred from the executions, or the test specification is instrumented
to log the necessary information. Here, we can rely on existing compilers for instantiated
test specifications and as a result, it is only necessary to handle the language semantics to
a limited degree on the user level. We can assume that existing compilers implement the
language semantics correctly.

For both methods, the completeness of the reconstructed model depends on the amount of
distinct traces gathered and which coverage criteria they represent. When system models (as
opposed to test models in our case) are reconstructed from observations, the logs are often
collected when the system is responding to stimuli of black-box tests. This method is based
on the assumption that the tests provide some sufficient means of behavioral coverage (such
as branch coverage) of the system under analysis. Naturally, this approach is not possible
or feasible when a test behavior model should be reconstructed: there are no tests that can
be executed against the test behavior under analysis. An execution of tests against a real
SUT is not be sufficient: when a test case passes, we do not have the failure case covered.
Likewise, we do not have the passing behavior covered if a test case fails. Other behavior
might not be covered due to external configurations or because additional error behavior
(making the test behavior more robust) did not happen. Running test cases against a system
can generally never represent all behavioral possibilities of a single test case. Furthermore,
we presume that the actual SUT is not available for the model reconstruction as our goal is
the verification of properties prior to the execution against a real SUT.

To solve the problem that an SUT is not available and that a specific amount of behavior
must be covered for a model reconstruction, we present a model reconstruction method
based on abstract interpretation. This method is essentially performed in two steps:

• The test case under analysis is abstractly interpreted (or simulated) until a coverage
criterion is met. During these simulations, events of a specific format are logged.
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• The logged events are passed to the model reconstruction algorithm that incrementally
builds a model from these sets of events. When the simulator is finished, our model
is complete.

In the following, we present these two steps. First, we present the information that needs
to be logged. Afterwards, we demonstrate how to use this information to reconstruct mod-
els.

4.3.1. Logging

The first vital part of our model reconstruction method is determining exactly what informa-
tion and events should be traced or logged5 to reconstruct a behavioral EMIOTS model. For
that purpose, we define a log tuple ρ that captures event information, i.e., it represents a sin-
gle observation. One simulation captures a sequence of log tuples ρ := ρ0,ρ1, . . . ,ρm. The
actual reconstruction is performed over a sequence of log sequences λ0,λ1, . . . ,λn. Each log
sequence λi adds additional information to the reconstructed model and refines it.

On the one hand, the EMIOTS model of one process or component represents the inter-
procedural control-flow of its sequential behavior. On the other hand, the set of variables
and the update actions that manipulate variables represent the data-flow. We intuitively need
to log:

• Structural information.
• The communicating events.
• Information about the data-flow.

For the construction of the interprocedural behavioral control-flow, the log must contain
branch events for decision points, such as if-statements or loop-conditions, as well as cor-
responding join (or meet) events where multiple branched paths of behavior coincide. Es-
sentially, these are often points within the behavior where new scopes are introduced and
closed. Unique event identifiers are used to distinguish every scope start and scope end
event. In addition, a scope event can be marked as an event that prematurely ends a recorded
complete scope stack and where no further join events are expected. An example for such a
case is a return statement, as found in many languages.

The second kind of events that are recorded are communicating events, i.e., input actions
and output actions. They are used to express dependence between multiple test processes
and are decisive for where the behavior of these components is synchronized. Also, they
can be used for message-flow based verifications, for example, for checking certain message
orders.

5In the remainder, we use the terms logs and logging instead of traces and tracing in order to avoid misunder-
standings with Definition 2.4.
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Given the formal definition of the log sequences above, we define the tuple ρ as one event
in a sequence of events that represent one path of the test behavior.

ρ := (pid, id,ss,se, l, i,o,d, pn, pv). (4.3.1)

Each undefined tuple element is denoted by an ε . The respective tuple elements are
defined as follows:

• pid ∈ N∪{ε} refers to a process identifier on which the event happened,
• id ∈ N∪{ε} refers to an event identifier local to the pid,
• ss ∈ {ε,1} is a flag indicates the start of a new scope if ss = 1,
• se ∈ {ε,1,2} refers to an event that indicates the end of a scope if se = 1 and a

premature scope stack closure if se = 2,
• l ∈ {ε,1} is a flag that indicates whether an event is an actual event (l = ε) or a

look-ahead event (l = 1),
• i refers to a message input event (p,m) including a target port p and a message label

m. We also use the notation p?m to describe such an event,
• o refers to a message output event (p,m) including a target port p and a message label

m. We also use the notation p!m to describe such an event,
• d denotes an event description string,
• pn refers to the name of a data identifier (data name),
• pv ∈ {ε,0,1} refers to the boolean value of a data value corresponding to pn.

The tuple represents multiple different types of events. We effectively deal with six dif-
ferent concrete event types. The event type of an event ρ can be identified by the etype
function that identifies the message type by case differentiation of consistency rules. For
better readability, we assign symbolic names and shortcuts as results of the etype function.

• etype(ρ) = scopeStartEvent (ss),
• etype(ρ) = scopeEndEvent (se),
• etype(ρ) = messageInputEvent (mie),
• etype(ρ) = messageOutputEvent (moe),
• etype(ρ) = dataEvent (de),
• etype(ρ) = internalEvent (ie), and
• etype(ρ) = invalidEvent

Table 4.1 lists the consistency rules for each tuple field that need to be fulfilled for
certain event types. The consistency rules can be used to identify a certain event and
to validate whether an event tuple is consistent. For example, if we receive an event
(3,ε,1,ε,ε,ε,ε,ε,ε,ε,ε), it matches a scopeStartEvent. That way, all six different event
types are encoded in the ρ tuple.
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Timer T;

map(self:p, system:p);

p!msg_a

T.start(maxReceivalDelay)

var default failCheckDefault := activate(failCheck(T));

T.timeoutp?*p?msg_b

setverdict(pass); setverdict(fail); setverdict(fail);

deactivate
(failCheckDefault);

stop; stop;

V = {pass = false, fail = false, inconc = false, none = true}

pass = true, none = false fail = true, none = false fail = true, none = false

τ

Figure 4.4.: Example: Mapping Log Events to a Model
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etype(ρ) pid id ss se l i o d pn pv
scopeStartEvent 6= ε ε 1 ε ε ε ε ε ε ε

scopeEndEvent 6= ε ε ε 1∨2 ε ε ε ε ε ε

messageInputEvent 6= ε 6= ε ε ε ε ∨1 6= ε ε ε ε ε

messageOutputEvent 6= ε 6= ε ε ε ε ∨1 ε 6= ε ε ε ε

dataEvent 6= ε 6= ε ε ε ε ∨1 ε ε ε 6= ε 6= ε

internalEvent 6= ε 6= ε ε ε ε ∨1 6= ε ε 6= ε ε ε

invalidEvent Otherwise

Table 4.1.: Log Consistency Rules

The scope start event and the scope end event are used to log structural information for
the control-flow, for example, when a scope begins and when it ends. The message input
event and the message output event are used to log message-passing events between the test
processes. The data event is used to reconstruct the data-flow of boolean variables regarding
the data values of interest. Finally, the internal event is used to identify basic blocks in the
control-flow graph, i.e., behavioral pieces without any jumps or jump targets where no
communicating or data events occur. Their description can be found in the d-element of the
logging tuple.

All events, except for the scope start event and the scope end event, may be flagged as
look-ahead events. Multiple subsequent look-ahead events announce a set of events that
may occur next, but only one actually occurs within a single test run. This information
allows the model reconstruction algorithm to see different routes through the behavior in
advance allowing it to take action at the decision point if necessary.

Table 4.2 depicts an example log for a single test run λi. The example log essentially
represents what could become the leftmost path of Figure 4.4. The events ρ0, . . . ,ρ3 are
initialization events where the data entities are assigned an initial value. Events ρ9, . . . ,ρ11
are look-ahead events which announce possible next events. The event ρ13 (as opposed to
ρ9, . . . ,ρ11 actually takes place and it corresponds to ρ9.

4.3.2. Behavior Model Reconstruction

The prerequisite or input for the model reconstruction algorithm is a sequence of logs
λ0,λ1, . . . ,λn each with events ρi,0 < i < m where all n logs representing executions are
expected to represent a complete branch coverage of the test specification under analysis.
Each log λ j,0 < j < n is processed successively, where each iteration of the algorithm re-
sults in an increment of a partial model. Missing parts of the model are added successively.
The model reconstruction is exact regarding the information the logs provide, i.e., each
event has its clear and unambiguous place in the model. Due to the recording of look-ahead
events, the algorithm offers the possibility to take action towards the concerned test com-
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event etype pid id ss se l i o d pn pv
ρ0 de 1 1 ε ε ε ε ε ε pass 0
ρ1 de 1 2 ε ε ε ε ε ε fail 0
ρ2 de 1 3 ε ε ε ε ε ε inconc 0
ρ3 de 1 4 ε ε ε ε ε ε none 1
ρ4 ie 1 5 ε ε ε ε ε Timer T; ε ε

ρ5 ie 1 6 ε ε ε ε ε map (self:p,
system:p);

ε ε

ρ6 moe 1 7 ε ε ε ε p!msg_a ε ε ε

ρ7 ie 1 8 ε ε ε ε ε T.start
(maxRe-
ceivalDe-
lay);

ε ε

ρ8 ie 1 9 ε ε ε ε ε var default
failCheck-
Default :=
activate(
failCheck(T)
);

ε ε

ρ9 mie 1 10 ε ε 1 p?msg_b ε ε ε ε

ρ10 mie 1 11 ε ε 1 p?* ε ε ε ε

ρ11 ie 1 12 ε ε 1 ε ε T.timeout ε ε

ρ12 ss 1 ε 1 ε ε ε ε ε ε ε

ρ13 moe 1 10 ε ε ε p?msg_b ε ε ε ε

ρ14 ie 1 13 ε ε ε ε ε setverdict
(pass);

ε ε

ρ15 de 1 14 ε ε ε ε ε ε pass 1
ρ16 de 1 15 ε ε ε ε ε ε none 0
ρ17 ie 1 16 ε ε ε ε ε deactivate

(failCheck-
Default);

ε ε

ρ18 se 1 ε ε 1 ε ε ε ε ε ε

Table 4.2.: Example: a Test Run Log λ
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ponent at each decision point, for example, to steer the behavior of the test component in
some way. This means, we can not only create the partial model from the behavior that has
been executed and recorded in the log, but we may also use look-ahead events for making
decisions in the simulation process.

The formal description of the model reconstruction algorithm can be found in Ap-
pendix A.1. An example in Appendix A.2 demonstrates how the algorithm is applied. In the
following, we informally present the basic idea of the algorithm and refer to the appendix
for more details. The intuition behind the model reconstruction algorithm is the conversion
of events ρi of an execution log λ j into actions of the EMIOTS model and to insert states
before and after each action. By using a combination of the scope ids, the scope id history,
and event ids, we are able to identify unique positions within the overall control-flow of the
behavior. By using this information, we are able to identify equal transitions and, therefore,
match them to existing transitions in our model. That way, we add states and transitions that
are not already part of the model and match these transitions that exist already. Depending
on the event type (and thus the information that the event carries), the model reconstruction
algorithm behaves differently and updates its internal state. Therefore, we differentiate the
algorithm behavior for each event type:

• Scope Start Event: The scope id is pushed on a scope stack that is used to track the
scope history (from this stack, we create unique event identifiers).
• Scope End Event: The scope id is popped from the scope stack. The new state

position in the target EMIOTS is determined. Either it is identified by matching the
scope history after the scope stack has been popped or a new state is introduced if no
match is found.
• Message Input/Output Event: If the message input or output event can be matched

against the current model, we proceed to the next state that has been identified as the
target state of the matching transition. If no match is found, a new state and transition
are created for the event and data structures are updated to match the new transitions
when queried. We move forward to the new state or the matched target state if the
event was not a look-ahead event.
• Data Event: The overall behavior is comparable to the message input/output event.

However, the data event carries information about data and its manipulation. There-
fore, the actions are variable-updating actions in the set AU .
• Internal Event: Like a data event, but no data manipulation takes place and the

actions are part of the set AN .

In a certain way, the behavior of the message input/output event, the data event and the
internal events is somewhat similar. Thus, the algorithm seems like a straightforward event-
matching algorithm, and in fact, the model reconstruction algorithm does not contain a lot of
complexity or logic. However, there are a various fine-grained details of the algorithm that
are not immediately apparent from the simplified description above—especially regarding
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the realization of the matching. Therefore, we refer the reader to Appendix A.1 for these
details.

The model reconstruction algorithm itself only performs constant time O(1) operations to
process the event log. Computational complexity is introduced by the test case simulation
or, in other words, by the amount of event logs that need to be created and processed to
achieve the desired coverage criterion.

Our criterion to create complete models of the behavior under analysis is that in each set
of event logs, every behavioral branch must be covered at least once. Ensuring that every
branch is covered means that every branch in the original behavior has a corresponding
branch in our model. Similarly, as we model only variables and their manipulations as
opposed to concrete variable values, it is sufficient to cover the branches due to the fact that
once we visited every branch, we have seen all variable manipulations that are reachable
within the behavior. The only behavior that we do not be able to find in our models is
behavior that is unreachable from our start state. Due to these facts, branch coverage of the
test behavior that we intend to reverse engineer is sufficient. Increasing the coverage criteria
does not yield any additional benefit in this case.

4.3.3. Test Case Simulation

The previous two subsections explained the kind of information we need to log and the
use of this log information to reconstruct a behavioral model for a sequence of logs
λ0,λ1, . . . ,λn. In a testing environment, tests are executed against an SUT. In order to an-
alyze quality aspects of the test suite, however, we do not want to depend on the existence
of an SUT. Instead, we want to analyze test cases before an actual execution against the
SUT. Therefore, we perform an abstract interpretation over the test case specification. This
abstract interpretation is driven by our incrementally reconstructed partial models.

Figure 4.5 depicts how the abstract interpretation works in the context of the model re-
construction. The abstract interpretation is performed in the simulated tester component.
This simulated tester executes the abstract test specification. From this execution, event
logs are produced and then processed by the model reconstruction algorithm.

In fact, the abstract interpretation of the test behavior executes the test behavior, but only
in the way necessary to gather the required log data. For this purpose, the abstract inter-
pretation does not evaluate variables or data in general, but merely chooses different paths
in the control-flow to cover as many branches of the behavior as possible and thereby also
neglecting whether the chosen execution is a valid execution of the test behavior in terms
of its data-flow. The strategy is to visit as many different branches of each test component
behavior as quickly as possible. Other properties, such as port mappings and connections
are established just like in a normal test case execution. Actual communication among the
test components or between the test components and the SUT does not take place. Paral-
lel properties such as synchronization points are evaluated later-on in the model checking
stage. Hence, the method allows a special-case execution of the abstract test specification
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Simulated
Tester

branch selection

(branch coverage strategy)

Reconstructed 
test specification model

Event
logging

Figure 4.5.: Test Behavior Simulation

without the appropriate test environment. The execution retains some properties (such as
port connections or default activations in TTCN-3) of a real test case execution while ne-
glecting others (such as data-flow based conditions). It is tailored for the production of the
necessary log events that allow an accurate reconstruction of the test case model.

The model reconstruction algorithm creates a partial model increment from the informa-
tion received from the simulated tester. In this model, every state that is executed in the
abstract interpretation is colored with color c1. When the abstract interpretation detects a
branch where a choice can be made within the behavior, it chooses transitions to not yet
colored nodes first, transitions to c2 colored nodes second, or chooses an arbitrary transi-
tion otherwise. After the partial model increment and the abstract interpretation iteration is
finished, a second coloring is performed on the partial model: starting from the last reached
state, we go backwards in the model choosing backward transitions which have the c1 color.
For every transition we go backwards, we color the reversed state with color c3. We con-
tinue backward traversal until we reach a state that has children that are not yet colored with
c3 or until we reach the start state. Afterwards, we recolor all states with c1 or c2. In other
words, the c1 color marks the nodes of a current execution, c3 marks branch nodes that have
been visited already and c2 is the overall color for nodes that have been visited at some
point. This whole coloring procedure makes sure that in each iteration of the abstract inter-
pretation, we choose new behaviors that we have not yet covered in our model. A detailed
description of the coloring algorithms can be found in Appendix A.3.

The backwards coloring after an iteration essentially amounts to complexity O(n) with
n being the length of the execution trace. To actually achieve branch coverage for the
complete model reconstruction, we would have, in the worst case, one simulation iteration
for each branch in the model. Therefore, the total computational complexity of the model
reconstruction and the simulation together is linear with respect to the amount of branches
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in the test behavior. To some degree, the problem has similarities to a classic backtracking
algorithm, as we essentially explore the model like maze. However, each choice taken
within the algorithm actually amounts to a part of the solution. Therefore, as opposed to
backtracking, we make progress in each iteration.

4.4. Test Case Analysis

Following the definition of our formal model and the description of the model reconstruction
method which we use to reconstruct our test models from test specifications, we can finally
deal with the actual application or purpose of the effort we have put in creating the model.
While the model is certainly useful for understanding and documenting the test behavior
as well, our primary goal is to use the model to check specific properties on it. These
properties are mostly generic descriptions of what should and should not happen in the test
behavior. In the context of testing, for example, we expect that at some point the test makes
a decision about the test verdict. Here, we deal especially with properties that cannot be
analyzed using static analysis and where a dynamic analysis provides an advantage (e.g.,
the dynamic analysis may provide detailed execution trace of the detected problem). For
the sake of simplicity and to differentiate these properties clearly from the ones that can be
analyzed statically, we refer to them as dynamic properties.

The properties that we present are based on the EMIOTS model representing abstract test
cases. We deal especially with issues that are caused by human mistakes, i.e., anomalies
that occur when the test developer (of manually written test cases) does not pay attention to
some particular detail. We do not attempt to cover all kinds of imaginable dynamic anoma-
lies, but the ones that are related to specific orderings of certain events in the behavior and
that are behavior-locking. We differentiate between generic properties that can be detected
in models of communicating systems, properties that can be analyzed in test models, i.e.,
models that specifically represent test cases, and finally we present properties that are spe-
cific to the TTCN-3 test specification language. We present each anomaly in a fixed format.
This fixed format consists of a name, a description, an example, and an analysis description
about the necessary variables, as well as a generic LTL formula using these variables where
applicable. In the following sections, we present four test-specific anomalies, four TTCN-3-
specific anomalies, and five generic anomalies, i.e., a total of 13 anomalies. In each analysis
description that can be achieved using property descriptions in LTL, we refer to the nature
of each possible temporal logic formula, i.e., whether it describes correct behavior or error
behavior. Furthermore, the variables for modeling events refer to their true value when used
in temporal logic formulas. While the example models are supposed to be generic and not
language-specific, the actions syntactically refer mostly to TTCN-3 statements to make the
examples easier to understand. Note that the example models only represent possible ex-
cerpts of a test case for demonstrational purposes. Note: in some anomaly descriptions, we
will refer to the concept of an interruption event. An interrupt event is an event that resets
the value of a variable right before it is set. For example, when a variable value is true and
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V = {none = true, pass = false, inconc = false, fail = false}

none = false
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Figure 4.6.: Example: Missing Test Verdict

in some follow-up transition is again set to true, we have to insert such an interruption event
to actually notice this subsequent value change to the same value. We will refer to these
events when they become necessary.

4.4.1. Test-Specific Anomalies

In the following sections, we present test-specific anomalies, i.e., anomalies that somehow
include concepts that are specific to test specifications. We primarily deal with anomalies
that are related to test verdicts.

4.4.1.1. Missing Test Verdict

Description: In the test model, there may be a path in which no verdict is set. Such a path
is likely to be unintentional as a test is always supposed to end in a verdict, either pass, fail,
or possibly inconclusive. An unset verdict indicates that a specific behavioral path remained
unconsidered by the test developer and that the path does not have a sensible result.

Example: The model in Figure 4.6 depicts a message passing test case behavior. In this
test case, a stimulus !a is sent to the SUT. The reaction to this stimulus in state 2 can be
threefold: either a message ?b is received from the SUT and the verdict is set to pass, any
other message is received, the test case ignores the message and returns to the state 2, or
timeout happens.

The verdicts are modeled using four boolean variables each of which represents the state
of a possible verdict, i.e., there are variables pass, f ail, inconc (for inconclusive), and none
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for an unset verdict. The variables pass, f ail, inconc are initialized with a false value. The
variable none is intialized with a true value.

In fact, only the first alternative is actually dealing with the verdict. The timeout case is
particularly critical as it provides an exit point from the test case behavior, but does not set
a test verdict.

Analysis: We can express an LTL formula (describing correct behavior) that checks
whether the verdict is initialized with no verdict and whether the verdict will change at
some point to either pass, inconclusive, or fail. The following formula makes sure that
there is no path where the verdict is explicitly unhandled:

φ :=(¬pass ∧ ¬inconc ∧ ¬ f ail) U (pass ∨ inconc ∨ f ail) (4.4.1)

4.4.1.2. Fail/Inconc Verdict Decision Before Communication

Description: In manually written tests, it is sometimes practice to initialize the verdict
of a test case to pass prior to any behavior—especially communicating behavior or behavior
requiring user interaction (such as the action statement in TTCN-3)—that takes place in
tests. The idea is that the verdict is then only overwritten when erroneous or inconclusive
behavior occurs and thus the missing verdict anomaly can be avoided. A similar string of
arguments can be used to set default verdicts to a failing or inconclusive verdict: rather than
having a test case pass unexpectedly, it might be sensible to let a test case fail in case of
doubt (i.e., human mistakes for example) since in that case, the results would be checked,
whereas a pass verdict commonly does not cause any action.

However, depending on the language or test framework used for describing the test spec-
ification, this idea might be bad: TTCN-3, for example, does not allow to overwrite fail or
inconclusive verdicts with pass verdicts. Therefore, such default initializations to non-pass
verdicts prior to any communicating behavior should be avoided in all situations.

Example: Figure 4.7 illustrates a variant of Figure 4.6 where a default fail verdict (the
transition from state 1 to state 2) is set prior to any communication taking place (i.e., before
the !a stimulus is sent to the SUT). We model the first point of communication with an
additional boolean variable comm which is changed from false to true on the initial commu-
nicating events.

Analysis: The following formula (describing correct behavior) ensures that a communi-
cating event takes places prior to the first change to fail or inconclusive verdicts:

φ :=(none ∧ ¬ pass ∧ ¬ inconc ∧ ¬ f ail) U comm (4.4.2)
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Figure 4.7.: Example: Fail/Inconc Verdict Decision Before Communication

4.4.1.3. Illegal Verdict Overwrite

Description: When a fail or inconclusive verdict is set in a test, the decision is supposed
to be immutable. The reason is that once faulty behavior or data is diagnosed, changing
this fault diagnosis to a pass verdict is irrational: there is nothing that can repair wrong
behavior or data once it is diagnosed. Chances are that setting a pass verdict after a fail
or inconclusive verdict conceals the previous fault diagnosis and hides it. For that reason,
languages such as TTCN-3 prohibit overriding inconclusive or fault verdicts. This, however,
is not always be the case. With this anomaly, we describe the case where the test framework
or language semantics do not catch this kind of misbehavior.

Example: For this property, we reuse the example from Figure 4.7. In this example, a
verdict is not only set prior to any communication, but it is also initialized to fail (transition
from state 1 to state 2) and may be overwritten in the transition from state 4 to state 5. In
this case, the left-most path would contain an invalid illegal verdict overwrite. Whether or
when communication takes place for the first time does not play a role for this anomaly.
Therefore, the comm variable is not necessary for the analysis.
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1

2

V = {none = true, pass = false, inconc = false, fail = false}

none =false

pass =false

inconc =true

fail =true

Figure 4.8.: Example: Verdict Consistency

Analysis: The formula (describing correct behavior) essentially requires that a fail ver-
dict cannot be overwritten and that an inconclusive verdict can only be overwritten by a fail
verdict.

φ :=� (( f ail → � f ail) ∧ (inconc → (� inconc∨ (inconc U � f ail)))) (4.4.3)

4.4.1.4. Verdict Consistency

Description: Test verdicts in EMIOTS models as presented in the anomalies before are
modeled using four variables, where the variables each models none, pass, inconclusive,
and fail verdicts. A test verdict in such a model is consistent only when one of these four
variables is true exclusively, i.e., there may not be a state where the value of more than
one variable is true. Such situations can nevertheless occur, for example, if the model
construction is faulty.

Example: The example shown in Figure 4.8 is a straightforward inconsistency: an
EMIOTS model with two states and one transition where the variables are directly altered
in an inconsistent way in this single transition. Here, two variables are changed to the value
true, where only one is consistent.

Analysis: Model consistency regarding verdicts can be verified with the following for-
mula describing correct behavior:

φ :=� ((none∧¬pass∧¬inconc∧¬ f ail)∨ (4.4.4)

(¬none∧ pass∧¬inconc∧¬ f ail)∨
(¬none∧¬pass∧ inconc∧¬ f ail)∨
(¬none∧¬pass∧¬inconc∧ f ail))
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4.4.2. TTCN-3 Specific Anomalies

In this section, we present anomalies that refer to concrete features and language constructs
of TTCN-3. In some cases, the anomalies refer back to Section 4.4.3 where the TTCN-3
anomalies are instances of a generic anomaly or an anomaly pattern.

4.4.2.1. Idle PTC

Description: In TTCN-3, the action to create and start a test component with parallel test
behavior is separated. As a result, there is the possibility that a test component is created,
but never started. Such a component is called an Idle PTC [18] and is a component that,
albeit created, never contributes to the test verdict of the test that is executed since no test
behavior is ever executed on it. In this scenario, the test developer either never intended
the PTC to run in the first place and the concerned code pieces can be regarded as clutter
that can be removed, or the developer actually intended to run this parallel test component,
but missed or forgot to start it. More generally, this smell can be regarded as Event Pair
Asymmetry (see Section 4.4.3).

Example: Figure 4.9 shows an example model where the second event pair, i.e., the
start component event is missing. This means that a component is created, but not started.
Here, the variable event_a represents the occurrence of the component creation, whereas
event_b represents the occurrence of the corresponding start component event. Each state-
ment changes to true when the corresponding statement is executed. Thus, only the event_a
variable is actually manipulated within the model and the second event pair is missing.

Analysis: As stated before, the analysis is an instance of the Event Pair Asymmetry
anomaly analysis. The formula (describing correct behavior) is as follows:

φ := � (event_a → ♦ event_b) (4.4.5)

4.4.2.2. Default Asymmetry

Description: Default altsteps can easily cause unexpected behavior when test developers
do not handle them with the required consistency. Activated defaults which have not been
deactivated, not only stay active until the end of the scope unit, but they stay active until
the corresponding test case terminates. In addition, their functionality is not limited to the
activation scope level, but activated defaults are executed in any alt-statement or altstep
following their activation until they are deactivated. This includes altsteps in dependent
function calls and similar. As a result, defaults should always be deactivated as soon as they
are not needed or wanted any more.

Missing deactivate statements possibly conceal where exactly the default behavior is at-
tached to in which case the test developer may misinterpret the test code at hand. The test
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1

V = {event a = false, event b = false}

2

3

.

.

.

var PTCType exampleComponent := PTCType.create;

map(self:p, system:p);

4

5

connect(self:anotherPort, exampleComponent:aPort);

p!messageA

event a = true

Figure 4.9.: Example: Idle PTC

code becomes hard to understand and the developer may not even notice the difficulties that
are possibly involved.

Example: In fact, the altstep asymmetry is also an Event Pair Asymmetry like the Idle
PTC anomaly. Here, we have two events activation and deactivation where deactivation
is required to occur at some point after activation took place. Figure 4.10 illustrates the
analogous behavior. The figure shows that a corresponding deactivate statement is missing.

Analysis: The altstep asymmetry is an instance of the Event Pair Asymmetry anomaly
analysis. The formula (describing correct behavior) is as follows:

φ := � (activation → ♦ deactivation) (4.4.6)
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1

V = {activation = false, deactivation = false}

2

3

.

.

.

var default failOrInconcDefault := activate(failOrInconc());

map(self:ISAP, system:ISAP);

4

5

map(elf:MSAP, system:MSAP);

ISAP!ICONreq

activation = true

Figure 4.10.: Example: Altstep Asymmetry

4.4.2.3. Send/Receive on Unconnected/Unmapped Ports

Description: Ports of components must be connected either to the TSI or to ports of PTCs
before send or receive operations can take place. Therefore, send and receive statements are
illegal if no proper connections have been established prior to the communication.

In this anomaly, we analyze the relationship between the connection of a port and its use.
We model this problem with two variables: one variable pConnected describes the event
when a port p of a component is connected, whereas the other variable pMessage describes
whether a message is sent or received through port p. At each send or receive statement
where this port is referenced, we need to assert that the variable representing the referenced
port has a true value, i.e., it is connected or mapped.

Example: Figure 4.11 illustrates an example of the anomaly. There are two paths in the
model that lead to the message p!message being sent on the transition between states 4 and
5. The left-hand path does not connect or map the port p, whereas the right-hand path of
the model does map port p. Thus, the left-hand path of the model represents a path with an
anomaly as a message is sent through p when p is not yet connected.
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1

2 3

4

5

V = {pConnected = false, pMessage = false}

τ

τ

τ

pConnected = true

pMessage = true

map(self:p, system:p)

p!message

.

.

.

Figure 4.11.: Example: Send/Receive on Unconnected/Unmapped Ports

Analysis: The analysis can then be expressed in LTL as follows (describing correct
behavior):

φ :=�(pMessage → pConnected) (4.4.7)

The formula ensures that whenever a message is sent, the pConnected variable must
be set to true, thus ensuring that the port under analysis is connected or mapped. Note:
interruption events must be set for each pMessage event.

4.4.2.4. Send/Receive on Stopped/Halted Ports

Description: TTCN-3 port operations such as send and receive are only allowed when
the port is listening. When a component is started, the start command is executed implicitly
and the ports can be used for send and receive operations. However, the halt and stop
commands on a port disallow any further communication on it. Hence, communicating
operations on a stopped or halted port lead to behavior that is either badly designed or
faulty.

Example: The anomaly is a variant of the Send/Receive on Unconnected/Unmapped
Ports anomaly. Instead of a variable pConnected as illustrated in Figure 4.11, we imagine
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a variable pHalted (where a corresponding transition would halt a port instead). Unlike
in the situation of unconnected and unmapped ports, the correct behavior is a false value
for pHalted instead of true, i.e., the communication operations pMessage are valid only if
pHalted is false instead of true. The initial value of the pHalted variable is f alse.

Analysis: The analysis can then be expressed in LTL as follows (describing correct
behavior):

φ :=�(pMessage → !pHalted) (4.4.8)

The formula is essentially the same formula as the formula for the Send/Receive on Un-
connected/Unmapped Ports anomaly. However, pHalted and pConnected are switched and
pHalted is negated. As before, subsequent pMessage events need interruption events.

4.4.3. Generic Anomalies

The subsequent anomaly descriptions are generic, i.e., they refer to anomalies that may
be applicable in any software system that is constructed as a model. The anomalies are
not specific to the fact that we deal with tests. In fact, some of these anomalies are well-
known (for example, data-flow anomalies), but they—to our knowledge—have not yet been
described in the cataloged manner using LTL specification patterns (where applicable). In
this regard, this section about generic anomalies is of common interest for anyone dealing
with quality assurance of software systems and not just testing experts.

4.4.3.1. Data-Flow Anomalies

Description: Data-flow anomalies [63] are issues that are related to a sequence of vari-
able definition (d), undefinition (u) and referencing (r) operations:

• A variable is referenced before its definition (ur).
• A defined variable is redefined before it is referenced (dd).
• A variable is defined and gets undefined before it is referenced (du).

Such operation sequences can identify unintentional, problematic, or even erroneous code.
While it is possible to statically identify whether a data-flow anomaly might happen, a
dynamic analysis is needed to pinpoint when and where exactly a data-flow anomaly might
occur.

Example: Figure 4.12 illustrates a model that contains dd and du anomalies. We repre-
sent each variable in the test specification with three different boolean event variables in the
EMIOTS model, where one event variable d represents the definition, one event variable u



Model-Based Analysis of Test Specifications 90

V = {d = false, u = true, r = false}

1

2

p!msg_a

3 4 5

p?msg_b p?msg_c p?msg_d

2

var integer myValue := componentVariable + 2;
u = false
d = true

6

otherValue := myValue * 2;
r = true

7 8

myValue := 5;
d = true

τ

Figure 4.12.: Example: Data-Flow Anomalies

represents the undefined state of the variable, and the event variable r represents the ref-
erencing of the variable. In the example, the three variables represent the integer variable
myValue.

In the example, a stimulus p!msg_a is sent to the SUT. Following this stimulus, the
integer variable myValue is initialized. As a response to the stimulus, the test case expects
either p?msg_b, p?msg_c, or p?msg_d. In the first case, the variable myValue is referenced
for another statement. In the second case, myValue is redefined although it has not been
referenced before (dd anomaly). In the third case, only the message p?msg_d is received,
but the variable is neither redefined, or referenced. Therefore, myValue is not needed for this
case (du anomaly). Therefore, we have data-flow anomalies when either a timeout happens
or when p?msg_c arrives.

Analysis: The following formula (describing correct behavior) ensures that the ur
anomaly does not occur in the desired behavior. The formula expresses this by demanding
that if a variable is referenced, the undefined variable must be defined and then referenced.

φ :=�(r → ((u∧¬d∧ ¬r) U (¬u ∧ d ∧ ¬r) U (¬u ∧ ¬d ∧ r))) (4.4.9)
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The second formula (describing correct behavior as well) ensures that the dd anomaly
and du anomalies do not occur. The formula here demands that a variable that is defined
shall be referenced at some point after the definition. Any other action, the undefinition or
redefinition imply the dd or du anomalies.

φ :=�(d → ((u ∧ ¬d ∧ ¬r) U (¬u ∧d ∧ ¬r) U (¬u ∧ ¬d ∧ r))) (4.4.10)

Note: we have to insert interruption events, for example, to notice dd anomalies.

4.4.3.2. Illegal Deadlocks

Description: One characteristic of a test is that unlike a non-terminating reactive system,
a test should always end. Two anomalies that usually occur in concurrent contexts are
deadlocks and livelocks.

Deadlocks are anomalies where the behavior gets stuck and cannot continue, for example,
because a test component is waiting for a message of another test component which will not
provide the required message for some reason. In fact, deadlocks in test cases are formally
valid in terms of LTSs: test cases must terminate and, therefore, by Definition 2.5, they
must have states with no outgoing transitions enabled. Therefore, we need to differentiate
between illegal and legal deadlocks and mark these states which legally deadlock.

Example: The classical example for a deadlock is the dining philosophers problem [41]
which can in fact also be modeled for communicating message-passing systems. However,
for demonstrational purposes a smaller example is sufficient.

Figure 4.13a illustrates three test components. The two components on the left send
messages whereas the right-most component receives messages. The composite of the two
sending components (Figure 4.13b) can send !a and !b in any order while the receiving com-
ponent expects !a first. A composition of the overall is represented in Figure 4.13c. Here,
we omit all states that are of no interest and unreachable in our scenario. The transitions
without the ! or ? signs as prefixes are synchronized transitions between the components,
i.e., they represent the behaviors where a message is sent and directly consumed from the
queue. Obviously, if the order is !a!b for the sending components, the transition can be syn-
chronized and they reach a state that is marked as a final state (note: to identify valid from
invalid end states, we must additionally mark valid end states). On the other hand, if !b is
sent first, the behavior continues also without synchronization due to the queued behavior.
If we assume a queue size of 1, message !a will arrive after !b without consumption and
the !b entry will be lost. Once the behavior reaches state (2,2,1), the behavior deadlocks,
since the !b message was dropped—the ?b transition cannot take place anymore (hence, the
transition is illustrated in a dotted notation). If we assume queue sizes greater than one,
the deadlock can occur earlier: If !b is sent first, it cannot be received on the receiving
component as it expects ?a first. Therefore, the behavior deadlocks right after !b has been
sent.
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?a

2 2
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!b
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a

?b

(a) Component models

1,1 2,2

2,1 2,2

!a

!a

!b !b

(b) Composition of the sending
components

1,1,1 2,1,1!b 2,2,1

1,2,2 2,2,3

a

b

a

?b

(c) Overall composition

Figure 4.13.: Example: Deadlock

Analysis: The deadlock analysis is solved by state space exploration of the parallel be-
havior. States that have no outgoing transitions are deadlock states.

4.4.3.3. Livelocks

Description: Like deadlocks, livelocks also cause processes to get stuck. However, when
a livelock occurs, the test components are not waiting for other test components in a single
state, but they are continuously working and move forward all the time. However, the work
they do in their behavior will never terminate and they are not progressing.

Example: The classical example for a livelock is two people meeting in a narrow corridor.
Each one is trying to be polite and steps aside to let the other pass. However, both people
end up being polite and move aside again and again at the same time. The situation can only
be resolved with one person giving up the politeness.

The same situation can be translated to the context of communicating systems. Imagine
a setup of three components A (Figure 4.14a), B (Figure 4.14b), and C (Figure 4.14c).
Components A and B both want to send a message to component C: component A wants to
send message a through port p3 to C and component B wants to send message b through port
p3 to C. For component C, it does not make any difference whether A or B send a message
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first. However, A and B must coordinate among each other who goes first, because the
messages should not be sent at the same time. We can imagine a situation where the queue
length of C is limited and we want to avoid an overflow—whichever component sends its
message as second has to wait for a few seconds. For that coordination, both components A
and B send requests to each other asking for permission to send. After that, the components
either expect a request from the other component or a grant message allowing to send the
message to component C. Both components prioritize the answer of send requests over
accepting grant permissions. Therefore, both components A and B keep granting each other

1

2

53

4 6

p2!req

p1?req p1?grant

p3!ap2!grant

p1?*

restart

(a) Component A

1

2

53

4 6

p1!req

p2?req p2?grant

p3!bp1!grant

p2?*

restart

(b) Component B

1

2 3

4

p3?a p3?b

p3?b p3?a

(c) Component C

Figure 4.14.: Example: Livelock
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permission to send messages to C and repeat this process indefinitely. Note: the self-loop
in state 4 indicates the consumption of remaining queue items in case the components are
composed with queues.

Analysis: The livelock analysis is dealt with by state space exploration. For that kind
of liveness analysis, it is necessary to mark certain transitions as progressing transitions.
Otherwise, it is impossible for the analysis to figure out when it is stuck in a loop. In the case
of the example, such progressing transitions are the transitions (5, p3!a,6) in component A
and (5, p3!a,6) in component B.

4.4.3.4. Illegal Double Calls

Description: Specific kinds of subsequently following events of the same kind may in-
dicate misusage in specific contexts. In principle, this a generalized form of the dd anomaly
which can also play a role for events that do not necessarily represent data manipulations.
Certain other events have the capability to reset the situation.

Example: It is a good idea to have a look at a concrete testing language to find a rea-
sonable example for this anomaly. In TTCN-3, for instance, among events that should not
directly occur subsequently are start statements if there is no done statement in between.
Another example is timer handling on alive components. If a TTCN-3 alive component is
started multiple times subsequently, there could be the requirement that possible component
timers are reset in between in order to avoid unexpected timeouts as component timers keep
running on alive components even when its behavior terminates.

Figure 4.15 illustrates such a scenario. Two boolean variables are used to model this
problem: the e variable models the event that should not occur multiple times subsequently.
The r variable represents the event that resets the scenario, i.e., an e event may take place
again after the r event happened. In the figure, a component is defined, created, and then
started. Depending whether some condition holds, either the left or right branch is chosen.
In the left branch, the same component is started again and afterwards, the done statement is
called. If the someCondition does not hold, the done statement is called and the component
is started again. The left branch represents the kind of illegal double call that we want to
avoid, whereas the right branch represents a valid sequence regarding the illegal double call
property.

Analysis: The LTL formula (describing correct behavior) for the analysis essentially
describes that whenever we find a state where an event e takes place, for a following state
event r must occur or e must remain true.

φ :=� (e → ♦ r ∨ � e) (4.4.11)
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V = {e = false, r = false}

1

5

var MyComponentType MyNewComponent;

6

[someCondition]

8

2

myNewComponent.create

4
myNewComponent.start(someBehavior());

myNewComponent.start(someBehavior());

7

myNewComponent.done;

myNewComponent.done;

e = true

r = false

r = true

9

myNewComponent.start(someBehavior());
e = true

r = false

e = true

r = false r = true

Figure 4.15.: Example: Illegal Double Calls

Just as in the dd anomaly, every e = true event must be directly preceded by an interrup-
tion event that sets e to false. Otherwise, we are not able to determine if another e event
takes place. The interruption events are not illustrated in the example figure.

4.4.3.5. Event Pair Asymmetry

Description: When a certain event a occurs, it is required that always an event b follows
eventually.

Example: For a motivation and an example for this generic anomaly, please refer to the
Idle PTC anomaly in Section 4.4.2.

Analysis: The proposed LTL formula (describing correct behavior) analyzes that if a
certain event a occurs, then b must always occur eventually. The formula corresponds to
the global response specification pattern [45].

φ := � (a → ♦ b) (4.4.12)
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4.4.4. Limitations

The test case reconstruction and analysis method presented here is practically applicable.
The complexity of the model reconstruction method is of linear nature and, therefore, not an
issue. Constraints regarding computational limits can only be found in the model checking
technology used. Whether this presents a problem depends on the behavior that is analyzed.

The degree of abstraction of the reverse engineered model plays a significant role for the
results that can be provided by an application of the presented methods. As more abstraction
is introduced, the more we have to deal with false positives, i.e., detected anomalies that are
no anomalies in fact. Luckily, when black-box testing communicating systems, the role of
internal data of tests seems to be not as big as for general-purpose software. We expect that
there is a number of false positives. However, it is likely that this number is not too huge
and easy to check manually. Additional tool support to display the faults within the code
itself can make the review of the analysis results easier and quicker.

The choice to model events using only boolean variables surprisingly works for a lot of
different dynamic anomalies that may occur—despite its minimalistic approach. However,
not all problems can be covered easily that way. For example, if we want to analyze TTCN-3
connection violations prior to any execution, it would certainly be possible to model each
situation with boolean variables, but the notation would become very complex. A model
extension to handle arrays would allow such scenarios to be defined in a more compact
way. Chapter 5 describes a observations made when applying an prototype implementation
of this approach to standardized test suites of industrial size.

4.5. Response Consistency

The anomalies in the previous section are related to the behavior of single test cases. Test
suites are composed of multiple test cases and it is thus interesting to take a look at the big
picture as well. The analysis of test suites can have many purposes. One popular analysis
target is the extraction of information from test suites in order to select a subset of an existing
test suite (test selection). The intention for such an analysis might be the focus on specific
feature sets that might have been the subject of change or the reduction of test execution
time when the execution of the complete test suite is not feasible with respect to the time
that it would require. Such analyses often try to optimize a coverage criterion while keeping
the number of test cases minimal.

Another approach to test suite analysis is to look for similarities in different test cases
in an attempt to find behaviors that contradict each other or that may indicate a contradic-
tion. Response consistency violations are situations that arise when multiple test cases in a
test suite have the same stimuli sequences, but expect different responses after the stimuli
have been sent. Using this response consistency criterion, we identify test cases that are
contained in each other or that expect completely different responses despite their equiv-
alent stimuli sequences. We use the LTS model to describe this criterion and discuss the
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examples. Note that in this analysis, we are only interested in consistency issues regarding
the communicating behavior of the test specifications. For that purpose, we make use of a
test-specific behavioral pattern that tests for communicating systems typically follow. This
repeating pattern is that stimuli are sent and certain responses are expected. Adding verdicts
to these kinds of analysis leads to different kinds of analysis (see Section 6.2).

4.5.1. Introductory Example

The intuition of a response consistency violation is the following: two communicating mod-
els T1 and T2 representing the communicating behavior of abstract test cases have some
common action sequence σ such that s0

σ=⇒ s can be found in T1 and s0
σ=⇒ s′ can be found in

T2. When s and s′ respectively are states that expect only responses, they should expect the
same responses—after all, the preceding action sequence between T1 and T2 matched and
thus the responses should be the same.

Take for instance the models illustrated in Figure 4.16a and 4.16b. Both models start with
a stimulus !a and thus have the same observable prefix. However, in T1, messages ?b,?c,
or ?d are expected, while T2 only expects messages ?b or ?c. T2 expects a subset of the
messages that T1 expects and is essentially contained in T1. In this situation, it is unclear
why T2 does not handle a possible incoming message d. It may simply be a consistency
violation due to a human mistake. We assume that our test cases are written by hand and
not generated automatically. On the other hand, assuming that we always begin in the same
start state, models T1 and T3 (Figure 4.16c) have again the same stimulus !a. However, even
being in the same state, both test cases expect entirely different responses. Finally, models
T1 and T4 (Figure 4.16d) have the same stimulus !a and expect the same messages ?b,?c,
and ?d, but T4 continues with additional behavior once ?b is received.

In general, such models with the same preceding stimulus sequence may differ in a re-
ceiving state in three distinguishable ways:

• The test cases expect the same follow-up responses (models T1 and T4).
• One test case handles a subset of the expected messages of another test case (models

T1 and T2).
• One test case expects completely different messages than another test case. The re-

ceive sets are disjoint (models T1 and T3).

The first case presents a response consistent scenario. The second and third case present
a response consistency violation. The general underlying assumption, in this local scenario,
is that a test case is initiated by stimuli, responses follow in answer to the stimuli, and
then again possibly a new stimuli–response sequence is initiated or the test case ends. In
other words, we assume that we deal with test cases that have a repeating stimuli–response
pattern. Within these patterns, we want to find contradictions in the responses by comparing
test case pairs. Of course, the scenarios presented in Figure 4.16 are simple cases. In
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Figure 4.16.: Example: Response Inconsistency
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practice, we deal with test cases that may also have varying response orders or concurrent
behavior.

4.5.2. Response Consistency Definition

For the purpose of identifying response consistency or its violation by a test case pair, we
define a binary relation that describes response consistency of a test case pair. Informally,
two distinct cases are distinguished:

• The test cases are observationally equivalent in their communicating behavior. This
situation may happen, for example, when different aspects of the message exchange
are checked in two separate test cases.
• The test cases have coinciding stimuli sequence prefixes and the stimuli responses

within this prefix are consistent (models T1 and T4).

If two test cases are observationally equivalent, there are no contradictions in the re-
sponses. The traditional relations to describe such kinds of observational equivalence are
trace equivalence or bisimulation [104] (Section 2.2.4). Both relations describe systems
whose observable moves cannot be distinguished from each other. The bisimulation re-
lation, is also able to distinguish non-deterministic systems, which the trace equivalence
relation cannot. A third undefined case for response consistency is when two test cases
have entirely different stimuli sequences (models T1 and T5 in Figure (Figure 4.16e)). In
this case, the test cases are strictly no candidates for the analysis.

For establishing a notion of response consistency, we relate test cases in a symmetric
fashion, i.e., if a test case A is response consistent to a test case B, then B is also response
consistent to A. Thus, preorders such as trace preorder (Definition 2.13) are insufficient. Ar-
guably, for test cases it may be enough to establish trace equivalence due to the assumption
that test cases are supposed to be deterministic. Bisimulation on the other hand primarily
overcomes the limitations of trace equivalence when non-determinism must be taken into
consideration. In that sense, bisimulation is a stronger, but also a more exact criterion.

We assume that response contradictions only occur when the stimuli sequences
coincide—assuming that the SUT behaves deterministically in case it is initialized to
the same start state and the same stimuli sequence is consumed. By stimuli sequences, we
formally mean rewritten traces where only these actions are concatenated that are outputs
from the test case. For this purpose, we define the stimuliseq operator that essentially slices
all actions from a trace except for the stimuli.

stimuliseq(a1 ·a2 · . . . ·an) := ∀ai,a j ∈ AO, i < j : ai ·a j

After defining the stimuliseq operator, we can provide a definition for response consis-
tency.
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Definition 4.5 (Response Consistency (reco)) Let T1 and T2 be two LTSs. Then T1 and
T2 are response consistent, or T1 reco T2, iff ∃s0

σ=⇒ s,σ ∈ traces(T1) and ∃t0
ς
=⇒ t,ς ∈

traces(T2) : stimuliseq(σ) = stimuliseq(ς) and the following conditions hold:

• for all s a=⇒ s′ with a ∈ AT1
I , there exists a t a=⇒ t ′ with a ∈ AT2

I and

• vice versa: for all t a′=⇒ t ′ with a′ ∈ AT2
I , there exists an s a=⇒ s′ with a ∈ AT1

I .

If there are no matching stimuli sequences, the response consistency is undefined.

In comparison to an observational equivalence relation such as the weak bisimulation
relation, the reco relation is weak in its condition. It essentially demands that the stimuli
sequences are entirely different or that for all states in a test case T1 reachable by a common
stimuli sequence and with an outgoing response transition, there must be a corresponding
response transition in T2 to a state that is reachable by the same stimuli sequence and vice
versa. In addition, the matching stimuli sequence condition implies that test cases can be
response consistent even if they drift apart in their stimuli at some point. The consistency
criterion is only concerned with those states that are reachable by coinciding stimuli se-
quences. The weak bisimulation or trace equivalence relations are essentially borderline
cases of the reco condition. Two response consistent test cases are weakly bisimilar when
the stimuli sequences for all traces symmetrically match and the response orders are the
same [155].

If we again take a look at the examples depicted in Figure 4.16, we notice that
T1 reco T2 is false. The test cases have an equivalent stimulus prefix !a and, therefore,
the reco condition must hold. But it fails. There are no traces with the same stimulus
sequence where the responses between the stimuli match completely. The traces where the
stimuli sequence matches reach state 2,3,4, or 5 in T1. However, a corresponding transition
in T2 for ?d is missing. For T2, however, there are corresponding response transitions in
state T1. As the reco condition is symmetric, the condition does not hold and T1 and T2 thus
violate the response consistency criterion. Similarly, T1 reco T3 is false (the reco condition
fails), T1 reco T4 is true (the reco condition holds) and T1 reco T5 is undefined.

The notion of the reco relation disregarding all transitions in between the stimuli (i.e.,
responses and internal transitions) is based on the assumption that the SUT behaves deter-
ministically to the stimuli and that, always starting in the same start state, the same stimuli
sequences steer the SUT into the same SUT state. Two test cases might theoretically have
the same stimulus, the same responses to this first stimulus and then again the same stimu-
lus, but attached as transitions to states reached by different responses. While this situation
may seem awkward, the reco relation in fact considers these two test cases to be response
consistent if the responses after the second coinciding stimulus are again consistent. The
reason is that we will not be confronted with a follow-up comparison of responses after a
second stimulus when the responses to the first stimulus are different if the SUT responds
deterministically. For non-deterministic SUTs, a stronger condition than reco is needed
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that somehow respects the fact that the responses between the stimuli must match as well in
some way. Such a relation for non-deterministic SUTs can be found in [155].

4.5.3. Response Consistency Detection Algorithm

The following algorithm detects whether two test cases T1 and T2 are response consistent
and the direction of possible response consistency violations.

Algorithm 4.1 Given are two models T1 and T2. Let aseq := ai ·ai+1 · . . . ·a j with ai, . . . ,a j ∈
TiAO

be sequence of output actions in Ti and ASEQTi be the set containing all aseq in Ti.
Furthermore, let SSEQTi ⊆ ASEQTi × STi be a relation that relates sequences of actions in
Ti to states STi in Ti. Perform the following steps to detect whether T1 violates response
consistency regarding T2 or the other way round:

• For T1 and T2, perform a depth-first search (outer search) that cancels on visited nodes.
During the search, track the stimuli so that all sequences aseqTi

are identified and that
a mapping to the respective target state s′ after transitions (s,a,s′),a ∈ TiAO

are stored
in SSEQTi .
• If @νi,ν j with νi = ν j and (νi,s) ∈ SSEQT1

,s ∈ T1S and (ν j, t) ∈ SSEQT2
, t ∈ T2S , then

the consistency between T1 and T2 is undefined. Stop the algorithm.
• Otherwise, for each νi with (νi,s)∈ SSEQ1S

and ν j with (ν j, t)∈ SSEQ2S
and νi = ν j,

perform the following steps:

– For T1 and T2, perform a depth-first search (inner search) starting in state s ∈ T1
and t ∈ Tj, with (νi,s)∈ SSEQ1S

and (ν j, t)∈ SSEQ2S
, that cancels the traversal

when the transitions to be traversed are not internal or input transitions.
– Collect each input action that takes place in a transition visited during the search

in sets RESPONSESνi and RESPONSESν j .
– If RESPONSESνi = RESPONSESν j , the responses for the stimulus sequence

are consistent. Continue with the next pair νi,ν j with νi = ν j.
– If RESPONSESνi ⊂ RESPONSESν j or RESPONSESν j ⊃ RESPONSESνi , then

the responses are inconsistent. Stop the algorithm.

• If the algorithm terminates and has not been stopped early, then T1 and T2 are response
consistent.

The inner depth-first searches do not necessarily have to be performed separately, but
can be incorporated into the outer search as well. Therefore, the overall complexity of the
response inconsistency detection of two test cases has the worst case performance of two
times a depth-first search, i.e., O(|S|+ |λ |). However, in practice, we will probably compare
all test cases of a test suite among each other.
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4.5.4. Scenario: Sequential Models with Different Response Orders

The provided examples so far always assumed that the response events of the compared
models are ordered in the same way. Similarly, we have only discussed local models with-
out concurrent behavior. In general, we need to distinguish the following cases when we
compare models for response consistency violations:

• We compare a local model to another local model where both have the same response
orders.
• We compare a local model to another local model where both have different response

orders.
• We compare a concurrent model to a local model.
• We compare two concurrent models.

The differentiation already indicates that there is a high degree of variety how test cases
and their models can be built even though they essentially provide the same behavior. For
example, models with concurrent behavior can produce the same behavior as a local model.
Similarly, deterministic local models can systematically regard different message reception
orders. We explicitly want to state that we do not find every kind of test design mentioned
above and in the following reasonable for real-world testing. However, they may occur and
are practically possible.

We continue the discussion by relating models T6 and T7 (Figures 4.17a and 4.17b) re-
garding inconsistent responses. Both are local models which have the same stimuli se-
quences (!s1a, !s1a·!s2b, and !s1a·!s2b·!s2e), but with a different response order in between.
T6 sends the first two stimuli !s1a·!s2b subsequently and then expects the responses ?s1c,
?s2c, ?s1 f , and ?s1g. If either ?s1b or ?s2c is received, the respective other message is
expected right afterwards (i.e., the order of ?s1b and ?s2c does not matter) and a third !s2e
stimulus is sent. In T7, first the !s1a stimulus is sent and ?s1b, ?s1 f , and ?s1g are expected.
Only if ?s1b is received, a second !s2b is sent and the response ?s2c is expected. If ?s2c is
received, the third stimulus !s2e is sent.

A more intuitive study of the models T6 and T7 might lead to the conclusion that they
essentially do the same, that the stimuli !s1a and !s2b are in fact independent, and that
causal relationships only exist between the respective stimuli and responses. However,
such intuitive assumptions might be misleading. For example, the transitions ?s1 f and
?s1g cannot be consumed in T6 if ?s2c is received first. We have to be careful and as-
sume that T6 and T7 model in fact different things for a reason. Hence, the reco relation
fails for T6 and T7: both models have the same stimuli sequence !s1a, but reaching state
2, there is a mismatch as T6 has no transitions for the responses that take place in T7.
Applying the response consistency detection algorithm yields the comparisons between
νi =!s1a,(νi,2) ∈ SSEQT6

and ν j =!s1a,(ν j,2) ∈ SSEQT7
where RESPONSESνi = {} and

RESPONSESν j = {?s1b,?s1 f ,?s1g}. As RESPONSESνi 6= RESPONSESν j , the models
violate response consistency and further algorithm iterations are not necessary.
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Figure 4.17.: Local Test Cases with Different Response Orders
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The situation is different for models T8 and T9 (Figures 4.19 and 4.17d). They have again
the same stimulus sequences !s1a, !s1a·!s2b, and !s1a·!s2b·!s2e. After the !s1a stimulus,
there are no responses in both models, but a second stimulus !s2b is sent immediately, i.e.,
the responses match after the first stimulus. After the second stimulus, T8 expects ?s1b,
?s1 f , and ?s1g. If ?s1b is received, ?s2c is expected next. In T9, ?s2c is expected first and
only when it arrives are ?s1b, ?s1 f , and ?s1g expected. T8 and T9 are in fact reco as the
responses after !s1a are in both cases none and the responses after the second stimulus !s2b
can be reached respectively. Finally, both test cases again do not expect any responses after
!s1a·!s2b·!s2e. Applying the response consistency detection algorithm yields the compar-
isons:

• νi =!s1a,(νi,2) ∈ SSEQT8
and ν j =!s1a,(ν j,2) ∈ SSEQT9

with RESPONSESνi = {}
and RESPONSESν j = {}, i.e., RESPONSESνi = RESPONSESν j .
• νi =!s1a·!s2b,(νi,3) ∈ SSEQT8

and ν j =!s1a·!s2b,(ν j,3) ∈ SSEQT9
with

RESPONSESνi = {?s1b,?s1 f ,?s1g,?s2c} and
RESPONSESν j = {?s2c,?s1b,?s1 f ,?s1g}, i.e., RESPONSESνi = RESPONSESν j .
• νi =!s1a·!s2b·!s2e,(νi,6) ∈ SSEQT8

and ν j =!s1a·!s2b·!s2e,(ν j,8) ∈ SSEQT9
with

RESPONSESνi = {} and RESPONSESν j = {}, i.e.,
RESPONSESνi = RESPONSESν j .

The latter example illustrates nicely how reco disregards structural properties among the
response receival orders.

4.5.5. Scenario: Concurrent Models

Test cases are often written with the help of test components that are executed concurrently.
Here, the determination of response consistency violations is not as intuitive since the be-
havior is defined by composite models where non-determinisms can occur easily due to
their interleaving structure.

Figure 4.18 illustrates an example for such a concurrent model. Figures 4.18a and 4.18b
show the local behavior of two test component models. T10b can only send the message !s2e
when its behavior is synchronized with T10a through p?d and p!d, i.e., the message must
only be sent if ?s1b was received in T10a . The composite model T10 = T10a‖T10b according
to Definition 2.8 is presented in Figure 4.18c. To reduce the size of the figure, we omitted
all states and transitions that are not reachable from the start state. The order of the events
depends on which events are independent from each other and which events are dependent.
For example, !s1a must take place before ?s1b or ?s1g, but !s2b may take place any time in
between. Furthermore, in the composite model, we have non-determinisms between inputs
and outputs (e.g., in state (2,1)) and also between multiple outputs (e.g., in state (1,1)).

Based on the observations discussed in Section 4.5.4, we can test cases with local or
local with different response orders designs against test cases with a concurrent design as
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well. There is no limitation in the applicability of the reco relation. We demonstrate this by
example.

We compare test cases T6 and T10. Both contain the stimuli sequences !s1a, !s1a·!s2b, and
!s1a·!s2b·!s2e. T10 contains the additional stimuli sequences !s2b, !s2b·!s1a, !s2b·!s1a·!s2e
that are not part of T6 and hence are left disregarded as the reco relation only regards traces
that exhibit equal stimuli sequences. In every observable trace having the stimulus prefix
!s1a in T6, there are no corresponding responses. After the !s1a·!s2b stimuli sequence
in T6, there are states where every response can be consumed, i.e., ?s1b,?s1 f ,?s1g, and
?s2c. Finally, after the ?s1a·!s2b·!s2e stimuli sequence, there are again no states in which
responses are consumable. In T10, the consumable responses are quite different. After !s1a,
there are states in which ?s1b and ?s1g are expected. The stimuli sequence !s1a·!s2b leads
to states that can consume ?s1b,?s1g, and ?s2c. Finally, after !s1a·!s2b·!s2e, there may be
no more responses in T10. When evaluating the possible responses after traces with the same
stimuli, we notice that the !s1a sequence delivers a response mismatch where the response
sets contradict each other, i.e., the response set for T6 is empty while it is non-empty for T10.
Therefore, T6 is not reco with T10.

The comparison between T6 and T10 indicates that the comparison between local and
concurrent test cases often exhibit inconsistencies and they are not necessarily consid-
ered a possible anomaly from the point of view of the test developer. Testers who write
test cases with concurrent test behavior accept or even disregard the fact that the traces
in subsequent executions of the same test may vary. For T6, a possible interpretation
is that the stimuli are independent from each other and the responses on s1 and s2 are
independent from each other as well. However, the test case design is to send both
stimuli !s1a and !s2b before expecting the responses for both stimuli rather than send-
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ing !s1a, then handling the responses for !s1a, and then sending !s2b before handling
the responses for !s2b (this is what test case T7 in Figure 4.17b illustrates). Applying
the response consistency detection algorithm yields at the very beginning the comparison
νi =!s1a,(νi,2) ∈ SSEQT6

and ν j =!s1a,(ν j,(2,1)) ∈ SSEQT10
with RESPONSESνi = {}

and RESPONSESν j = {?s1g,?s1b}, i.e., RESPONSESνi 6= RESPONSESν j . Further algo-
rithm iterations are not necessary.

We conclude the discussion with a comparison between two concurrent test cases. T11
(Figure 4.19) is essentially the composition of test cases T10a and T10b without the p!d and
p?d transitions that synchronize the behavior. The purpose of this synchronization is to wait
with the !s2e transition in T10b until ?s1b or p!d respectively took place in T10a . Removing
this synchronization essentially means that !s2e can take place any time after ?s2c was
received in T10b . As a result, the ?s1b and ?s1g responses may still take place after the !s2e
transition took place in T11 and thus the response set of the !s1a·!s2b·!s2e stimuli sequence
is not empty for T11, but there exist states which consume the responses ?s1b and ?s1g
after the stimuli sequence took place. In T10, such states do not exist after the same stimuli
sequence and thus, the reco condition for T10 and T11 does not hold. Applying the response
consistency detection algorithm yields the comparisons:

• νi =!s1a,(νi,(2,1)) ∈ SSEQT10
and ν j =!s1a,(ν j,(2,1)) ∈ SSEQT11

with
RESPONSESνi = {?s1g,?s1b} and RESPONSESν j = {?s1g,?s1b}, i.e.,
RESPONSESνi = RESPONSESν j .
• νi =!s1a·!s2b,(νi,(2,2)) ∈ SSEQT10

and ν j =!s1a·!s2b,(ν j,(2,2)) ∈ SSEQT11
with

RESPONSESνi = {?s1g,?s1b,?s2c} and RESPONSESν j = {?s1g,?s1b,?s2c}, i.e.,
RESPONSESνi = RESPONSESν j .
• νi =!s1a·!s2b·!s2e,(νi,(4,5)) ∈ SSEQT10

and
ν j =!s1a·!s2b·!s2e,(ν j,(2,4)) ∈ SSEQT11

with RESPONSESνi = {} and
RESPONSESν j = {?s1g,?s1b}, i.e., RESPONSESνi 6= RESPONSESν j .

Thus, the last comparison indicated an inconsistency and further algorithm iterations are
not necessary (checking the stimuli permutations). The example with T10 and T11 illus-
trates that even small changes in concurrent behavior can have a huge impact regarding the
overall behavior. In this case reco conforms to the intuition that the model behavior is in
fact different. T10 implies some causal relation between the !s2e message and the behavior
that precedes it on both test components, whereas in T11 this is not the case and the causal
relationships are only defined by the respective local test components.

4.5.6. Limitations

The detection of response consistency violations is practically feasible and can be applied to
the models as we extract them in our case study (Chapter 5). However, there are two things
to keep in mind when applying it. First, the reco relation assumes that the SUT behaves
deterministically regarding the stimuli. For non-deterministic SUTs, the responses do not
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necessarily depend on the stimulus sequence alone, but the reactions may also depend on
other factors. For non-deterministic SUTs, a different approach towards the detection of
response consistency violations has to be taken.

The comparison of concurrent models may not always exhibit the behavior that the test
developer anticipates. Concurrent behavior often introduces additional responses and re-
sponse orders that are not available in local models. The local models may imply causal
relationships between behaviors that cannot be ignored in an analysis and yet may not have
any meaning and simply exist due to the sequential nature of the test case. Therefore, the
detection of response consistency violations may correctly classify test cases as inconsistent
whereas their test developer would consider them to be actually consistent, ignoring the fact
that these different response orders are possible in the concurrent behavior as well.

4.6. Related Work

In general, there is no known work on the reverse engineering of behavioral models of test
case behavior. This aspect of this thesis is unique so far. However, there is a great amount of
work regarding reverse engineering of behavioral and structural models (design recovery)
and the reverse engineering of models for the purpose of model checking, of which we
present a selection in the following.

Briand et al. [25] present an approach for the reverse engineering of UML sequence
diagrams from execution traces using formal transformation rules. The execution traces
are gathered from the execution of system level test cases against the system whose model
is the target of the reverse engineering. From these executions, information is logged by
means of instrumented system code. The purpose of their design recovery is to improve the
understandability of the reverse engineered artifacts.

A similar approach to reverse engineer structural diagrams is taken by Flanagan
et al. [62]. They reverse engineer structural object models also by instrumenting the
Java classes under analysis and then executing unit tests against the system under analy-
sis. Their particular focus is the extraction of properties from analyzing heaps of object
allocations.

Hamou-Lhadj et al. [72] recover use-case maps from execution traces. Use-case maps are
high-level behavioral models which focus on causal sequences of responsibilities and ab-
stract from message exchanges in comparison to UML sequence diagrams. They suggested
the removal of utility components to reduce the verbosity of the reverse engineering models,
thus allowing an easier understanding. Walkinshaw et al. [151] use symbolic execution to
reverse engineer state transitions and how states are related from Java source code. Their
proof of concept implementation is an extension of the Java Pathfinder [101].

More related to our work are reverse engineering methods that have the verification of
properties of software as target (software model checking). Holzmann and Smith [80, 81]
describe a model extraction tool from a modified C parser that extracts the control-flow
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graph of the C code and performs data-dependency analysis in addition to generate the
verification model.

Corbett [37] describes a method to extract finite state machines statically from program
source code. The reverse engineering models are specialized directly for the properties
that should be verified later, i.e., their reverse engineering abstraction is tailored towards
the verification properties and they slice behavior that is unnecessary. Havelund presents a
translation from Java to Promela [73]. His work does not involve an intermediate model, but
is a direct translation into the input language of the Spin model checker [79]. Later versions
of the Java Pathfinder perform model checking directly on models derived from the Java
bytecode.

Ulrich, Petrenko, Boroday, and Hallal have published several papers and articles on the
reverse engineering of models from traces of distributed systems [69, 70, 142]. The model
reconstruction is achieved by inferring causal relationships between events in the traces. The
reverse engineered models are then verified for certain properties using a model checker.

Work on the analysis of test suites, as opposed to test cases, is rare as well. Test selection
can be regarded as a method that involves the analysis of test cases in a test suite, as there
must be some specific similarity measure between them that allows a decision whether
to omit a test case from an test execution or whether a test case should be included in
a test run. The available work on test selection as a topic is enormous. For example,
Cartaxo et al. [29] describe a similarity function based on the observed number of identical
transitions. Similarly, Alilovic-Curgus and Vuong [5] have proposed a distance metric that
penalizes mismatching symbols in execution sequences. The overall number of proposals
to measure test case similarity for test case selection is too high to list individually. Utting
and Legeard [144] provide a general overview of the criteria involved and the corresponding
literature. To our knowledge, there is no work that bases a similarity measure on equivalent
stimuli sequences though. Equivalent stimuli sequences, however, are primarily interesting
for analyzing inconsistencies in a test suite rather than being a generic similarity measure
which is not the goal of the test selection methods.

The test suite consistency description by Boroday, Petrenko, and Ulrich [24] is related
to the work in this chapter. The paper describes mutual consistency criteria on test cases.
In their description, two test cases are inconsistent when the expected SUT outputs for one
state of their product are different. In our work, we deal with cases that they call strongly
inconsistent and define a consistency relation.

As far as tools are concerned, there is a huge and diverse number of software that dy-
namically analyze code in general. The tools are generically applicable, but none of them
concentrate on the quality analysis of tests and its peculiarities and specific properties. In the
following, we restrict our tool examples to Java where applicable in order to limit the num-
ber of tools to a manageable amount. A well-known and very sophisticated tool for finding
memory leaks by simulating the processor is Valgrind [131]. The IBM Rational Purify tool
works in a similar way [82]. The jTracert [12] is among the dynamic analysis tools that
are meant for program understanding: it generates sequence diagrams from the execution
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of Java programs. It does so by monitoring the Java Virtual Machine. Another interesting
use is presented by the Daikon tool [48] which generates invariants from its analysis that
should hold over the executions it observed. The Runtime Reflection Project [10, 136] al-
lows passive testing of reactive distributed systems by generating runtime monitors from
LTL specifications that can be used to monitor arbitrary C++ programs where the C++ code
is instrumented. For model checking, probably the best known tools are NuSMV [3], Up-
paal [143], and Spin [79]. NuSMV is a symbolic model checker where the input is a network
of automata described in the SMV language and the temporal logic is CTL. Uppaal allows
analyzing networks of timed automata with binary synchronization. The timed processes
can be described using a graphical editor or a textual description. These models can then
be simulated or verified. Because the automata in Uppaal are timed, the temporal logic is
a timed variant of CTL called Timed Computation Tree Logic (TCTL). Finally, Spin uses
explicit model checking (as opposed to symbolic model checking) using LTL formulas and
communicating EFSMs. The models are described in its own input language called Promela
which is an imperative language that looks similar to languages like C. For the communi-
cation, the processes may use FIFO queued channels, rendezvous, or shared variables. It
allows to simulate the model and to verify it.

All of the mentioned approaches here have in common that they are either generic, i.e.,
not tailored to any specific language by providing their own abstract input language (as it is
the case with model checkers) or they are language-specific for a general-purpose language,
i.e., in any case they do not respect the specific properties of test specifications, such as test
verdicts, either. Also we do not know any approach that relates its analyses to a specific
quality model. Rather, the approaches concentrate on very specific aspects of a quality
analysis without relating them to the big picture. Nevertheless, the underlying theory and
tools, especially in the model checking area, are very important for our test case analyses
and form one important foundation of this work.



5. Applied Automated Test Quality
Assessment

So far, we have presented a quality model for test specifications with examples of how to
instantiate the model to assess quality characteristics. Subsequently, we introduced meth-
ods to analyze property violations in test cases and response inconsistencies in test suites.
The presented analysis methods are in fact approaches that are needed to assess certain
quality characteristic in a practical instantiation of the quality model. In fact, in Chapter
3.4, we have already presented metrics that require the kind of dynamic analysis that we
presented in Chapter 4.4. For example, in Section 3.5.2, we instantiated the test correct-
ness subcharacteristic by metrics measuring the number of paths where no test verdict is
set (Definition 3.3) and whether test verdicts are set prior to any communicating behavior
(Definition 3.4). The methods from Chapter 4.4 allow an effective automated analysis of
such metrics where otherwise a manual review would have been required. With this section,
we demonstrate how to measure test suites and test cases for an instantiated quality model
in an automated manner.

The chapter is divided into three parts: in the first part (Section 5.1), we discuss the
underlying implementation used for the measurement and analysis of the test cases. This
includes implementations for both the static and dynamic analysis of TTCN-3 test cases. In
the second part (Section 5.2), we apply the prototype implementation on TTCN-3 test suites
in two different experiments. The first experiment (Section 5.2.2) applies static analysis and
test case improvement. We concentrate on the TTCN-3 template structure to first assess
and then improve the changeability quality subcharacteristic of the quality model for test
specifications. The results do not only demonstrate how static analysis is applied in practice
to practically instantiate the quality model, but they also indicate how improvements made
based on the prior assessment influence the compactness of the test code. In the second
experiment (Section 5.2.3), we present and discuss how we applied model-based test case
analysis to existing TTCN-3 test cases. The experiment demonstrates the feasibility of the
presented approach and provides a discussion on how development guidelines for test suites
influence quality characteristics.

5.1. Test Specification Analyzer Implementation

For the experiments performed in this chapter, we have created two software pieces: one
performs static analysis and refactoring. In the static analysis, we calculate metrics, ana-
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lyze violating thresholds for these metrics, detect patterns within the analyzed syntax tree,
and finally, restructure the test code. The other performs dynamic model-based analysis as
presented in Chapter 4.4. For the model-based analysis, we have reused the infrastructure
created for the first software, but also implemented a behavior simulation engine (or ab-
stract interpreter), which produces event traces that are used for reverse engineering of the
behavioral model of the test case under analysis. This model is then verified for specific
properties using model checking.

5.1.1. Static Analysis and Refactoring

Our software tool, called TTCN-3 Refactoring and Metrics Tool (TRex) [154], provides
TTCN-3 tools for the Eclipse Platform [46]. Its underlying infrastructure is powerful and
comprises essentially the front-end of a compiler, providing an abstract syntax tree, symbol
table, and convenience tools for working with grammatical structures of TTCN-3. Fig-
ure 5.1 illustrates the TRex tool chain: the Eclipse Platform provides the basic IDE infras-
tructure. The TRex components build on top of the Eclipse Platform.

The foundation for most functionality in TRex is the TTCN-3 parser and the resulting
syntax tree. For building up the syntax tree for a test suite we use ANother Tool for Lan-
guage Recognition (ANTLR) [117], a parser generator which supports lexing, parsing, and
syntax tree creation and traversal. The syntax tree and the symbol table provide the basis
upon which most of the functionality is realized, e.g., the metrics and refactoring imple-
mentations both use them. As shown in Block (1) of Figure 5.1, the lexer creates a token
stream from the TTCN-3 Core Notation which is used by the parser for syntactical valida-
tion and for building the syntax tree. The syntax tree is a homogeneous tree data structure
using instances of one single class as a node as opposed to a heterogeneous abstract syn-
tax model where each node is represented by a specific class for its type. In addition, the
symbol table, also created here, provides additional information for identifiers, such as type
information or the syntax tree node of its declaration. As TTCN-3 declarations need no
forward declaration, the symbol table is created in a second traversal pass over the syntax
tree.

Metrics are collected after the syntax tree for a test suite has been built or updated (Block
(3) in Figure 5.1). The metrics are calculated during the traversal of the syntax tree (and
its possible dependencies). Simple size metrics are calculated by simply counting the num-
ber of occurrences of a syntactical element on tree traversal. Other metrics, such as the
cyclomatic complexity, require the creation of a different data structure (such as the intra-
procedural control-flow graph) during the traversal or various symbol table lookups, count-
ing or resolving of identifier references and similar. The derived metrics are then processed
against analysis rules that are essentially a set of metrics with correspondingly carefully
chosen threshold values. Violated analysis rules indicate the possible need for a refactoring.
From the user’s point of view, markers are displayed in the IDE and associated quick fixes
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can be invoked to automatically apply a refactoring that has been associated to the violations
of such an analysis rule.

Block (2) in Figure 5.1 depicts how the automated refactorings are realized. On the basis
of the static analysis step (Block (1)), workspace resources (i.e., the text files containing the
test code) are transformed by means of a programmatic text editor. This programmatic text
editor supports operations such as insertion or replacement while tracking text locations to
allow multiple subsequent text edits. It is used to weave only the textually changed parts into
the original TTCN-3 source files. Therefore, most of the original formatting is preserved.
In some cases, an intermediate step involving a syntax tree transformation may become
necessary in order to calculate the required changes. In this case, the TTCN-3 core notation
to be weaved into the original TTCN-3 source files is obtained by the TRex pretty printer.

A fully automated application of refactorings to code is not always unambiguous. Met-
rics of the analyzed code change, once a refactoring has been applied. In some cases, the
application of multiple refactorings subsequently can lead to the suggestion to reverse a
refactoring. Thus, a fully automated assessment and improvement method can lead to loops
within the process. In TRex, the refactoring suggestions are applied manually under re-
view of the test developer. Therefore, such loops regarding the application and reversal of
refactorings cannot happen.

5.1.2. Model-Based Analysis

The overall tool workflow of the implementation of the model-based analysis of test cases
is illustrated in Figure 5.2. The front-end including lexer, parser, syntax tree, symbol table,
and various other tools is again performed by the TRex infrastructure. On top of this infras-
tructure, a new component for the simulation of behavior was implemented. This behavior
simulator is a TTCN-3 execution engine as described in Section 4.3.3 and Appendix A.3.

(3) Quality Assessment (2) Automated Refactorings

(1) Static Analysis
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It is able to steer the control-flow independently from the actual data values of the execu-
tion to cover as many behavioral branches as quickly as possible. The simulator steers into
any available behavior in the test case according to a branch coverage strategy. The actual
execution is also a tree traversal, where we start in a test case and make sure that at each
decision point, only one concrete decision is made. On function, test case, or altstep calls,
the simulator remembers its position and jumps to the called structural element. To visit dif-
ferent branches in each simulation iteration, the simulator builds an internal data structure
(essentially a graph) that keeps track of the branches that have been visited already to make
decisions which not yet visited behavior to execute next. On this graph, we perform the
node coloring. In addition to steering the behavior of the test case, the simulator produces
the log messages described in Section 4.3.1.

For modeling the properties under analysis (e.g., test verdict events), a strategy for the
simulation visitor must be implemented in order to allow the production of the necessary
property events. Events such as input and output events are always logged by default. The
logged events are passed in an Extensible Markup Language (XML) format to a messag-
ing middleware—in the case of this implementation to Apache ActiveMQ [6]. ActiveMQ
is an open source message broker implementing the Java Message Service (JMS) [114], a
Message Oriented Middleware (MOM) API. The reasons for using a messaging middleware
are manifold. It allows an easy decoupling of the simulator component from the reverse
engineering component, easy monitoring of the events, language independence for the con-
suming components, and the possibility to physically distribute the components in case of
scalability problems. Each XML event produced by the simulator is passed individually as
one message to the messaging middleware. The reverse engineering component continu-
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ously listens for new messages that are received through the messaging middleware. Thus,
the architecture allows the processing of the events at the consuming component while the
simulation is still in progress, i.e., the simulation and the reverse engineering are actually
performed in parallel.

The reverse engineering component consumes each XML event passed by the messag-
ing middleware and parses the events using an XML parser using the Simple API for
XML (SAX) [100], i.e., the partial XML event strings are directly processed without the
construction of a complete syntactical model of the event log in memory. Constructing a
Document Object Model (DOM) representation would be unnecessary and inefficient as the
XML events can be directly processed by the reverse engineering algorithm. The events
are processed by the reverse engineering algorithm (see 4.3.2 and Annex A.1) and par-
tial Labeled Transition System Markup Language (LTSML) models are created from the
processed events. Here, the actual construction of the model takes place by using classes
generated from the LTSML XML schema using the XML Binding framework Java Archi-
tecture for XML Binding (JAXB) [113]. The LTSML model is essentially an XML-based
metamodel (Eclipse Modeling Framework (EMF) conformant) of the EMIOTS representa-
tion. A more detailed presentation of the metamodel can be found in Appendix A.4. Due to
the use of JAXB, the actual creation of an LTSML conformant file need not be implemented
manually. Rather, by using the JAXB generated classes, the framework is able to serialize
the JAXB model automatically to a conformant XML representation. Each sequence of
processed log events leads to a partial model that contains the actual execution path of the
last simulation iteration, as well as the not yet visited branches that have been colored by
the node coloring algorithm to find the path for the next simulation iteration. Thus, the
(colored) LTSML model increment is also the input for the next iteration of the behavior
simulation.

If the coloring algorithm indicates that all nodes have been visited and no branch is left
to be visited, the simulator indicates that it is finished with its branch coverage strategy and
that the reverse engineered model is considered to be complete. After that JAXB is used
to generate an LTSML conformant textual representation of the LTSML model. For further
processing of this textual LTSML representation, multiple Extensible Stylesheet Language
Transformations (XSLT) style sheets are available. The first XSLT style sheet converts the
LTSML representation to the Graphviz Dot [123] format. This allows an easy visualization
of the models and the possibility to inspect their correctness during the development of this
reverse engineering software system. A second style sheet converts the LTSML model to
Promela, the input language of the Spin model checker [79]. The converted Promela model
can then be model checked using user-specified LTL formulas, such as those presented in
Section 4.4, using the Spin tool. Due to the approach with the intermediate LTSML format,
it is easily possible to translate the reverse engineered model to other model checking en-
gines as well: it is just a matter of providing a different style sheet for the different input
language.
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When we apply the model checker with the appropriate LTL formula to the reverse en-
gineered and then converted model, the output is that either the checked property holds
or that it does not hold. If it does not hold, a failing trace is provided. While it is not a
part of the prototype implementation, the Promela conversion style sheet and the LTSML
model include references to the respective TTCN-3 line numbers. Thus, it would be easy
to map the failing trace back to TTCN-3 line numbers to allow an easier analysis of the
underlying problem. Details regarding the LTSML metamodel and the LTSML to Promela
transformation can be found in [106].

In the following, we present a small example of how the results and intermediate results
of the involved steps look like. We begin with a listing of a TTCN-3 module. Listing 5.1
depicts an example test case in TTCN-3 that exhibits a Fail/Inconc Verdict Decision Before
Communication anomaly (Section 4.4.1.2). As a first step in the test case, a local port p1
is mapped to a system port. After that, the verdict is initialized with fail, i.e., due to the
TTCN-3 semantics, the subsequent behavior is not able to overwrite this verdict anymore.
This is considered an anomaly since setting a verdict prior to any message exchange or
conditional behavior is not a useful test case. After setting the verdict, the test case proceeds
by sending a stimulus a through port p1. As a response to the stimulus, the test case expects
in an alt-statement either a message b on port p1, where it tries to set the verdict to pass
(which does not work in this case), or if any other message is received, the alt-statement is
repeated, or if a timeout on timer T occurs, the test case simply terminates by doing nothing.

1 testcase test() runs on MyComponent {
2 map(self:p1,system:p1);
3 setverdict(fail);
4 p1.send(a);
5 alt {
6 [] p1.receive(b) {
7 setverdict(pass);
8 }
9 [] p1.receive {

10 repeat;
11 }
12 [] T.timeout {
13 }
14 }
15 }

Listing 5.1: Example: Verdict Before Communication (TTCN-3)

After the reverse engineering, we gain an LTSML result model in a textual XML rep-
resentation. Listing 5.2 illustrates the beginning of the LTSML representation. After the
XML header and the reference to its name space, one model called p0 is specified. If we
had a TTCN-3 test case with parallel behavior distributed on multiple test components,
the reverse engineering algorithm would have respectively created multiple models with
the lts tag in the same file. Following the beginning of the model definition, the initial
state of the variables in use is defined. In this case, we only deal with verdict variables
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vpass,v f ail,vinconc,vnone and a variable vstimulus which indicates the first communica-
tion event in the test case.
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <ltsml xmlns="http://www.trex.informatik.uni-goettingen.de/ltsml">
3 <lts id="p0">
4 <variables>
5 <variable init="false" name="vpass" id="vpass"/>
6 <variable init="false" name="vfail" id="vfail"/>
7 <variable init="false" name="vinconc" id="vinconc"/>
8 <variable init="true" name="vnone" id="vnone"/>
9 <variable init="false" name="vstimulus" id="vstimulus"/>

10 </variables>

Listing 5.2: Example: Verdict before Communication (LTSML) - Part 1/6

Following the initial definitions of the available variables of the model, the states are
defined (Listing 5.3). Each state is identified by an id tag which contains the reference to
the model identifier and the state number. State numbers are labeled in an ascending order.
States p0s1 to p0s14 have been omitted from the listing.
1 <states>
2 <state id="p0s0"/>
3 <!−− ... −−>
4 <state id="p0s15"/>
5 </states>

Listing 5.3: Example: Verdict before Communication (LTSML) - Part 2/6

Following the state definitions, the actions are defined (Listing 5.4). An action may have
the type input, output, or internal, which refers to the partitioning of the action set. The
identifiers for the actions are labeled analogously to the states. Furthermore, they may have
descriptions which essentially correspond to the labels in the LTS definition. Here, the re-
spectively processed TTCN-3 statements are mapped to the labels. Transitions may also
alter the set of variables. This is indicated by the changeVariable blocks that assign new
values to the variables. The varref attribute references the respective variable by its iden-
tifier. Input and output actions additionally carry the attribute portRef, in which a channel
identifier must be provided.
1 <actions>
2 <action type="internal" id="p0a0"><description>map(self:p1, system:p1)</description></action>
3 <action type="internal" id="p0a1"><description>setverdict(fail)</description></action>
4 <action type="internal" id="p0a2"><description>varaction</description>
5 <changeVariables>
6 <changeVariable value="false" varRef="vpass"/>
7 <changeVariable value="true" varRef="vfail"/>
8 <changeVariable value="false" varRef="vinconc"/>
9 <changeVariable value="false" varRef="vnone"/>

10 </changeVariables>
11 </action>
12 <action type="internal" id="p0a3"><description>p1.send(a)</description></action>
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13 <action type="internal" id="p0a4"><description>varaction</description>
14 <changeVariables>
15 <changeVariable value="true" varRef="vstimulus"/>
16 </changeVariables>
17 </action>
18 <action type="output" portRef="0" id="p0a5"><description>a</description></action>
19 <action type="internal" id="p0a6"><description>T.timeout</description></action>
20 <action type="tau" id="p0a7"><description>tau</description></action>
21 <action type="input" portRef="0" id="p0a8"><description>b</description></action>
22 <action type="internal" id="p0a9"><description>setverdict(pass)</description></action>
23 <action type="internal" id="p0a10"><description>varaction</description>
24 <changeVariables>
25 <changeVariable value="true" varRef="vpass"/>
26 <changeVariable value="false" varRef="vfail"/>
27 <changeVariable value="false" varRef="vinconc"/>
28 <changeVariable value="false" varRef="vnone"/>
29 </changeVariables>
30 </action>
31 <action type="input" portRef="0" id="p0a11"><description>∗</description></action>
32 <action type="internal" id="p0a12"><description>repeat</description></action>
33 </actions>

Listing 5.4: Example: Verdict before Communication (LTSML) - Part 3/6

Following the action definitions, ports are defined (Listing 5.5). They are numbered in
an ascending order. If two ports in a multiple-model definition carry the same identifier,
the corresponding transformation style sheets associates them with a channel, i.e., the test
configuration is static.
1 <ports>
2 <port id="0"><description>0</description></port>
3 </ports>

Listing 5.5: Example: Verdict before Communication (LTSML) - Part 4/6

The transition definitions (Listing 5.6) are defined by specifying attributes for referencing
the source state, the target state, and the corresponding action. The transitions themselves
again carry an identifier with a naming scheme, similar to states and transitions.
1 <transitions>
2 <transition targetRef="p0s1" sourceRef="p0s0" actionRef="p0a0" id="p0t0"/>
3 <transition targetRef="p0s2" sourceRef="p0s1" actionRef="p0a1" id="p0t1"/>
4 <transition targetRef="p0s3" sourceRef="p0s2" actionRef="p0a2" id="p0t2"/>
5 <transition targetRef="p0s4" sourceRef="p0s3" actionRef="p0a3" id="p0t3"/>
6 <transition targetRef="p0s5" sourceRef="p0s4" actionRef="p0a4" id="p0t4"/>
7 <transition targetRef="p0s6" sourceRef="p0s5" actionRef="p0a5" id="p0t5"/>
8 <transition targetRef="p0s7" sourceRef="p0s6" actionRef="p0a6" id="p0t6"/>
9 <transition targetRef="p0s8" sourceRef="p0s7" actionRef="p0a7" id="p0t7"/>

10 <transition targetRef="p0s9" sourceRef="p0s8" actionRef="p0a7" id="p0t8"/>
11 <transition targetRef="p0s10" sourceRef="p0s9" actionRef="p0a7" id="p0t9"/>
12 <transition targetRef="p0s11" sourceRef="p0s6" actionRef="p0a8" id="p0t10"/>
13 <transition targetRef="p0s12" sourceRef="p0s11" actionRef="p0a9" id="p0t11"/>
14 <transition targetRef="p0s13" sourceRef="p0s12" actionRef="p0a10" id="p0t12"/>
15 <transition targetRef="p0s8" sourceRef="p0s13" actionRef="p0a7" id="p0t13"/>
16 <transition targetRef="p0s14" sourceRef="p0s6" actionRef="p0a11" id="p0t14"/>
17 <transition targetRef="p0s15" sourceRef="p0s14" actionRef="p0a12" id="p0t15"/>
18 <transition targetRef="p0s6" sourceRef="p0s15" actionRef="p0a7" id="p0t16"/>
19 </transitions>

Listing 5.6: Example: Verdict before Communication (LTSML) - Part 5/6
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The LTSML model definition concludes by providing a start state and possible end states
(in case we need valid end states for deadlock analyses). Both states are defined by provid-
ing a reference to their respective state in the set of states. Listing 5.7 depicts this last part
of the LTSML definition.
1 <startState stateRef="p0s0"/>
2 <endStates>
3 <endState stateRef="p0s10"/>
4 </endStates>
5 </lts>
6 </ltsml>

Listing 5.7: Example: Verdict before Communication (LTSML) - Part 6/6

Based on the LTSML definition, we can apply XSLT style sheets to visualize the model
and to transform it to an input language of a model checker—in our case Promela. Fig-
ure 5.3 illustrates the resulting Dot model when transforming the LTSML representation to
a Graphviz digraph. Note that we do not provide the textual presentation of the transformed
Dot input notation here.

The Promela transformation yields the result in Listings 5.8, 5.9, and 5.10. The trans-
formation to Promela is not entirely straightforward. A question is how to deal with com-
municating events between the SUT and among the test components. Promela supports
message based communication among its processes. However, we do not have the behavior
of the SUT specified in the TTCN-3 test case and also do not want to model it. The an-
swer to this problem is to map SUT communication to internal events while we preserve the
message-based paradigm among the communication between internal test components. We
can differentiate SUT ports from internal ports by checking whether ports with the same
identifiers exist in the respective model. If there are matching identifiers, the channel is
internal between test components. Otherwise, it is a channel to the SUT. As there is no
communication among multiple test components in the example, all message-based com-
munication is treated as SUT communication.

The Promela model starts by defining internal actions (Listing 5.8). We model these
internal actions by means of predefined integer values within the Promela code that are
replaced using the C pre-processor. Normally, the mtype types in Promela would be more
appropriate for this purpose. However, there is an upper limit of 255 to the number of
mtype definitions. Therefore, we map internal actions directly to integer values which allow
a considerably higher number of internal actions.
1 #define p0a0_map___self_p1__system_p1__ 1
2 #define p0a1_setverdict___fail__ 2
3 #define p0a2_varaction 3
4 #define p0a3_p1_send___a__ 4
5 #define p0a5_a 6
6 #define p0a6_T_timeout 7
7 #define p0a7_tau 8
8 #define p0a8_b 9
9 #define p0a9_setverdict___pass__ 10

10 #define p0a11__ 12
11 #define p0a12_repeat 13

Listing 5.8: Example: Verdict before Communication (Promela) - Part 1/3



Applied Automated Test Quality Assessment 120

�����

�����

����������	�
�����
��	�
��

�����

��
������
���������

�����

�����
����������������������
�����������������������������

�����

�
�����������

�����

�����
������
�������
���

���	�

���

���
�

��
�����


������

���

������

���

�����


��

�����


��

������


��

������

��
������
���������

������

�����
����������
�����������������������������������������


��

������

�����



��

Figure 5.3.: Example: Verdict before Communication (Dot Visualization)
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Listing 5.9 provides the necessary Promela code before the actual proctype definition is
provided. This includes the channel ch0 corresponding to the channels defined in LTSML.
The transformation style sheet defaults to a queue length of two to limit the complexity of
the verification. Subsequently, we define the variables. These definitions directly match the
variable definitions in the LTSML model. However, the variables in Promela are global over
all proctypes, whereas in LTSML the variables are local to the model. Finally, we define
integer guard variables for each transition in the model. These guard variables are used as
a workaround to problem that occurs due to missing end conditions in the Promela model
(more details on this workaround can be found in the paragraph below).
1 chan ch0 = [2] of {int};
2
3 /∗ Variables ∗/
4 bool vpass = false;
5 bool vfail = false;
6 bool vinconc = false;
7 bool vnone = true;
8 bool vstimulus = false;
9

10 /∗ Transition Guard Variables (to disable unwanted acceptance cycles)∗/
11 int p0t0 = 0;
12 // ...
13 int p0t16 = 0;

Listing 5.9: Example: Verdict before Communication (Promela) - Part 2/3

Listing 5.10 depicts the actual process definition of the test case behavior. The behav-
ior is modeled using label and goto statements. While such constructs are considered to
be problematic in general-purpose code, the Promela code in generated and will never be
maintained by a developer. Therefore, the use of these constructs does not present any prob-
lem. Each state is marked by a label. The end state is mapped to the special label end. The
actual transitions are defined by the behavior following the state label. States with only one
outgoing transition provide their action (mostly by means of simply specifying the prede-
fined integer value that is defined using the pre-processor). If a state has multiple outgoing
transitions, an if-statement in Promela follows. The actions defined in the transitions then
take place after the guard.

The provided guards are the only unintuitive mapping of the LTSML model to Promela.
The reason for this are acceptance cycles. For example, in the TTCN-3 behavior, the repeat
statement creates a cycle within the behavior and, in fact, no proper termination criterion is
provided within this behavior. This is the case, since in this kind of message-based commu-
nication, we simply expect that either another message arrives or a timeout occurs. How-
ever, the Promela model would not know when a message from an SUT can be expected or
not—as previously stated, we do not model the SUT. Also, we do not model time so that all
our models are untimed. As a result, the verification engine of Spin would detect an accep-
tance cycle for the repeat statement, i.e., there is the possibility that the behavior gets stuck
and always chooses the branch where any message other than message b is received on p1.
There is no easy way to work around this problem. To trick this behavior of Spin, we have



Applied Automated Test Quality Assessment 122

inserted counters for each transition as guards which are non-deterministically incremented
if the transition is chosen. When it is incremented, the guard is blocked. However, it can be
released non-deterministically again at any time when the artificial else branch of the same
condition is chosen where the counters are set back to zero. Using this workaround, we
avoid the problem with the acceptance cycles, while not limiting the behavior in an invalid
way. However, such cycles generally create infinite behaviors and so does the workaround.
If such cycles occur, the model checking engine has to terminate to some search depth with-
out looking further. This is not a problem due to the workaround, but it is inherent to the
behavior that is analyzed.

Finally, if variables are altered, the alterations are realized in an atomic block to avoid
property violations within the same transition.

1 active proctype p0(){
2 start: goto p0s0;
3 p0s0: p0a0_map___self_p1__system_p1__;
4 goto p0s1;
5 p0s1: p0a1_setverdict___fail__;
6 goto p0s2;
7 p0s2: atomic { vpass = false; vfail = true; vinconc = false; vnone = false; };
8 p0a2_varaction;
9 goto p0s3;

10 p0s3: p0a3_p1_send___a__;
11 goto p0s4;
12 p0s4: atomic { vstimulus = true; };
13 p0a2_varaction;
14 goto p0s5;
15 p0s5: p0a5_a;
16 goto p0s6;
17 p0s6: if
18 :: p0t6 < 1 −> if :: p0t6++; :: else −> skip; fi; p0a6_T_timeout; goto p0s7;
19 :: p0t10 < 1 −> if :: p0t10++; :: else −> skip; fi; p0a8_b; goto p0s11;
20 :: p0t14 < 1 −> if :: p0t14++; :: else −> skip; fi; p0a11__; goto p0s14;
21 :: else −>
22 p0t6=0;
23 p0t10=0;
24 p0t14=0;
25 goto p0s6;
26 fi;
27 p0s7: p0a7_tau;
28 goto p0s8;
29 p0s8: p0a7_tau;
30 goto p0s9;
31 p0s9: p0a7_tau;
32 goto p0s10;
33 p0s10: goto end; /∗ end state ∗/
34 p0s11: p0a9_setverdict___pass__;
35 goto p0s12;
36 p0s12: atomic { vpass = true; vfail = false; vinconc = false; vnone = false; };
37 p0a2_varaction;
38 goto p0s13;
39 p0s13: p0a7_tau;
40 goto p0s8;
41 p0s14: p0a12_repeat;
42 goto p0s15;
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43 p0s15: p0a7_tau;
44 goto p0s6;
45 end: skip;
46 }

Listing 5.10: Example: Verdict before Communication (Promela) - Part 3/3

Having seen the transformations for a small example in detail, we now present case stud-
ies applying static and dynamic analysis techniques to test specifications.

5.2. Case Study

In the following, we present the experiments that we have performed with our implemen-
tations for the static and dynamic analysis for TTCN-3 test cases. We start this section by
giving a description of the test suites that were subject of the analyses.

5.2.1. The ETSI SIP, IPv6, and HiperMAN Test Suites

The experiments in this chapter have been performed primarily on three Abstract Test Suites
(ATSs) that have been developed by ETSI, i.e., the test suites originate from standardization.

The Session Initiation Protocol (SIP) ATS [50] is a conformance test specification for
the Internet Engineering Task Force (IETF) Request for Comments (RFC) 3261 [125]. It
is the basis for the conformance testing of SIP equipment. The ATS is designed in such
a way that equipment passing this conformance test should have a higher probability of
interoperability, in particular between SIP equipment of different manufacturers. To achieve
that, the test suite takes multiple roles: the user agent, registrar in the outbound proxy, or
the registrar in the redirect server.

The Internet Protocol Version 6 (IPv6) core protocol ATS [51] is a conformance test spec-
ification for the core function of the Internet Protocol, version 6 as defined in IETF RFCs
1981 and 3513 [76, 98]. It is also the purpose of this ATS to ensure a higher probability of
interoperability between IPv6 equipment from different manufacturers. The ATS tests hosts
and routers. Either a one-to-one connection between the tester and the SUT is established
or the SUT is connected to two PTCs that act as router and host respectively.

The Worldwide Interoperability for Microwave Access (WiMAX)/High Performance
Metropolitan Area Network (HiperMAN) Subscriber Station ATS [49] is a conformance test
specification to ensure the interoperability of Broadband Radio Access Network (BRAN)
HiperMAN/WiMAX equipment from different manufacturers over the air, according to the
ETSI standards on the HiperMAN Data Link Control Layer and System Profiles [53, 54]
and IEEE standards 802.16-2004 and 802.16e-2005 [83, 84]. The IEEE 802.16-2004
standard and the ETSI HiperMAN specification are compatible due to the fact that there is
a mapping between the ETSI specifications and corresponding IEEE components. The ATS
tests the Data Link Control (DLC) layer of the protocol, in particular the subscriber station
and the base station.
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All three specifications follow the ISO standard for the methodology of conformance
testing ISO/IEC 9646 [85], as well as ETSI rules for conformance testing [52] as basis for
their test methodology. Some basic size measures of these test suites can be found in Table
5.1.

SIP 4.2.5 SIP 4.1.1 IPv6 1.1 HiperMAN 2.2.1

Lines of code 61989 61282 41801 22803
Number of templates 381 383 148 456
Number of test cases 608 609 286 72

Table 5.1.: Size of ETSI Test Suites

5.2.2. Static Assessment and Improvement

The motivation for this experiment is the observation that, especially in TTCN-3 test suites,
test data definitions play an important role and present a significant part of what needs to be
maintained. Hence, in this study, we concentrate on the maintainability quality aspect—in
particular the changeability subcharacteristic—of TTCN-3 templates by (1) detecting op-
portunities to avoid changeability issues in templates and (2) by applying automatic refac-
toring to restructure the templates in order to avoid the detected issues and improve the
quality for the changeability subcharacteristic.

For assessing the quality of TTCN-3 test suites in terms of analyzability and change-
ability, we have chosen metrics from our exemplary quality model instantiation in Chap-
ter 3.5.2. For that purpose, we measure those metrics that relate to templates and that have
been derived from applying the GQM approach:

• Removable Definition (Definition 3.12).
• Similar Template (Definition 3.13).

The refactorings are applied according to the following principle rules:

• A template definition that is not referenced (number of references to a template = 0)
should be removed.
• A template definition that is referenced once (number of references to a template = 1)

should be inlined and its definition should be removed (application of the Inline Tem-
plate refactoring that, for parameterized templates, includes the inlining of parame-
ters).
• If two or more template definitions exist for the same type and template values differ

for the same template fields and these differing fields account for a percentage of at
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Figure 5.4.: LOC Before and After Applying Refactorings

least 30% of the overall fields of the template definition, then the templates should
be reduced to a single parameterized definition (application of the Parameterize Tem-
plate refactoring).

By removing unused template definitions and inlining singular referenced ones, code
clutter is reduced. By merging templates, changeability is enhanced due to greater flexi-
bility and less duplication. By reducing the volume of the test suite source code through
parameterization, the analyzability quality subcharacteristic may also benefit.

The charts in Figures 5.4 and 5.5 visualize the effect of these refactorings on the ATSs
in terms of the Number of lines of TTCN-3 source code metric (physical lines of code) and
the Number of templates metric. The measurements indicate that results certainly depend
on how much a test suite has already been optimized with respect to the factors mentioned.
For the SIP ATS, for example, the effect is less noticeable—especially in terms of lines of
code, since the template definitions do not constitute the majority of the test suite volume.
The effect on the IPv6 ATS on the other hand is clearly visible. The number of template
definitions could be reduced to less than half the original number so that more than 5000
lines of code could be saved. It should be noted that the number of inlined templates can be
neglected in this case. The impact originates from removing unused and merging similar or
duplicate templates. The WiMAX/HiperMAN ATS yields a similar result. The number of
templates could be reduced by approximately a third and the test suite size could be reduced
by more than 2000 lines of code.

When taking into account that these are the results of merely three refactoring rules which
have been applied, a higher number of implemented rules and refactorings, also supporting
behavioral and structural quality aspects, is likely to have an even more noticeable impact
on the test suite source code.
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Figure 5.5.: Number of Templates Before and After Applying Refactorings

5.2.3. Model-Based Assessment of Dynamically Detectable Properties

In the second case study, we performed dynamic analyses as presented in Chapter 4.4 to as-
sess quality attributes of an industrial-size test suite. Subject of this experiment is the ETSI
conformance test specification for SIP [50]. The goal of the experiment was comprised by
the following items:

• To show that an automated dynamic analysis is practically feasible and applicable to
test cases of a real-world test suite.
• To find an indication regarding the precision of the analysis results.
• To detect possible anomalies in the analyzed test cases.

For these purposes, we chose to analyze aspects of the reliability, compliance, and test
correctness quality attributes of the quality model for test specifications. Following the
GQM approach and the exemplary quality model instantiation of Chapter 3.4, we evaluated
the reliability subcharacteristic with the following metric:

• Timeout Inconsistency (Definition 3.8).

For the compliance subcharacteristic, we used the following metric:

• Verdict/Timer Inconsistency Degree (Definition 3.22).

For the test completeness subcharacteristic, we used the following metrics:

• Test Verdict Completeness (Definition 3.3).
• Early Test Verdict (Definition 3.4).
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For conducting the case study, we selected a subset of the SIP ATS (version 4.1.1 unless
stated otherwise) that on the one hand covered different functional areas of the test suite and
on the other hand also test cases which are variants of others. Table 5.2 lists the analyzed
test cases with some basic metrics about their reverse engineered models to indicate their
respective sizes. The goal of this particular experiment was not only to find anomalies in
this test suite, but also to check the recall and precision of the analysis approach presented
in this thesis using a verifiable small-scale example. Recall and precision are terms from
information retrieval theory [146]: let R be the set of relevant hits and P be the set of
positively identified hits. Recall is defined as |R∩P|

|R| and can empirically be interpreted as the
probability that an anomaly present in a test case will be detected. Precision is defined as
|R∩P|
|P| and can empirically be interpreted as the probability that a detected anomaly is a real

anomaly (and not a false positive). We evaluated recall and precision as follows: from our
test case set, we considered P to be the set of test cases that have been identified to contain
an anomaly by our automated anomaly detection software prototype. The set R is then
the set of test cases that in fact contained an anomaly as identified by manual verification
performed by a human reviewer. While the model checker delivers failure traces to identify
where an anomaly may occur, we did not use these traces to measure the precision regarding
false failure traces. The reverse engineering algorithm must perform some abstractions on
the TTCN-3 specification in order to fit the TTCN-3 test behavior into the formal model.
Therefore, we anticipate the possibility of false positives in the delivered failure traces.

5.2.3.1. Test Reliability Assessment

To exemplarily assess the test reliability, we chose to analyze the test cases for paths in
which a timer is started and where subsequently a timeout event on the timer is caught by
referencing the timer directly, while at the same time the test case contains a path where
the timer is caught implicitly using the any timer.timeout statement. Such any timer.timeout
branches are often found in activated defaults. This is considered a possible anomaly as a
directly referenced timer is superfluous unless the follow-up behavior is different from the
follow-up behavior of the alt-branch in the default. We consider this anomaly analysis to be
a rather project-specific than generic. Therefore, we explain the analysis method here rather
than in Chapter 4.4.

The actual analysis setup was to some extent different from the generic properties that we
have presented in Chapter 4.4. The properties we have presented so far verify behavior that
should hold in all executions (desired behavior). For this analysis, it is easier to express the
properties in the form of error behavior, i.e., we specify exactly what must not happen in
any path rather than what must hold in all paths.

For the actual analysis, we ran two model checking passes: the first pass checked whether
there exists a path in which a timer is started followed by a timeout event on the timer which
is caught by an any timer.timeout statement. The second pass checked whether there exists a
path in which a timer is started and then caught by a directly referenced timer. Intuitively, we
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Test case Number of
States

Number of
Actions

Number of
Transitions

SIP_CC_OE_CE_TI_001 290 106 330
SIP_CC_OE_CE_TI_006 238 110 280
SIP_CC_OE_CE_TI_008 246 107 291
SIP_CC_TE_CR_V_016 3060 247 3201
SIP_MG_RT_I_001 117 75 137
SIP_MG_RT_I_003 141 86 169
SIP_MG_RT_I_005 114 72 135
SIP_MG_RT_V_001 131 83 155
SIP_MG_RT_V_002 131 83 153
SIP_MG_RT_V_008 466 158 564
SIP_QC_OE_TI_001 185 77 209
SIP_QC_OE_TI_005 184 78 208
SIP_QC_OE_TI_007 165 73 184
SIP_QC_OE_V_002 212 107 251
SIP_QC_OE_V_004 205 103 241
SIP_QC_OE_V_009 185 98 218
SIP_RG_RT_TI_001 143 73 164
SIP_RG_RT_TI_004 153 67 174
SIP_RG_RT_TI_007 153 68 175
SIP_RG_RT_V_001 100 69 118
SIP_RG_RT_V_002 115 71 136
SIP_RG_RT_V_016 100 69 118

Table 5.2.: The Analyzed Test Cases

can express this with formulas such as the following (corresponding to the global existence
specification pattern for the timer start—timer timeout sequence):

• ♦ (timerStart U anyTimerTimeout), and
• ♦ (timerStart U directTimerTimeout).

However, we need to extend these formulas to consider the respective timer analysis blocks.
After all, we need to make sure that we analyze blocks that are comparable for both passes.
Otherwise, the model checker result might refer to different alt-blocks in both passes. To
ensure this, we apply a variant of the Existence property pattern. The required variant checks
whether a P becomes true after a property Q becomes true:

� (¬ Q)∨♦ (Q ∧ ♦P) (5.2.1)



129 5.2. Case Study

The variables P and Q are then assigned as follows:

• The variable P is timerStart U anyTimerTimeout for the first pass.
• The variable P is timerStart U directTimerTimeout for the second pass.
• Q is the respective enabling event for the analysis block.

The model checking then verifies whether this property is violated: if a violation occurs,
there exists a path in the analysis block where a timer is started and then timeouts either
due to any timer or a direct timer reference. We deal with a possible inconsistency if both
the first and the second model checking pass deliver a property violation as a result. We
analyzed the first behavioral block of the selected test cases for such timer anomalies to
allow a manageable verification by hand. Performing the automatic reverse engineering and
verification with our prototype tool yielded that all of our selected test cases contained this
possible anomaly. As a result, the test developers would have to check by hand whether this
behavior is intended or whether they possibly missed the any timer timeout-branch due to
the implicitly attached default behavior which is easy to overlook. The result also matched
our manually performed analysis, i.e., all blocks where this situation happens had been
identified by the tool and all positively identified blocks were in fact blocks that exhibited
the anomaly.

5.2.3.2. Compliance Assessment

As stated above, we investigated if any non-timeout paths in the test suite where a verdict
would be set before a corresponding stop statement of a timer existed. To set verdicts after
a timer has been stopped is a behavioral pattern found in the ETSI test suite that we have
identified while manually inspecting it. Like the reliability assessment before, we consider
this analysis to be rather project-specific and, therefore, explain the analysis here instead of
Chapter 4.4. To express this property, we have to cover the following two conditions which
have to apply for paths in which a verdict is set:

• A timeout variable is set to true.
• A timer stop variable is set to true which has been started before.

This can be expressed by the Precedence specification pattern. In our case, the pattern
variant S precedes P before Q applies which is represented by the following LTL formula:

� ¬Q∨ ♦(Q∧ ((� ¬P) ∨ (¬P U S))) (5.2.2)

We model our situation with the following variables:

• The variable tstart indicates whether a timer has been started.
• The variable tstop indicates whether this timer has been stopped.
• The variable ttimeout indicates whether this timer had a timeout.
• The variables vpass, vfail, vinconc, and vnone represent their respective test verdicts.
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For the analysis, we assign S, P, and Q to the following variable expressions:

• S is represented by tstop∨ ttimeout.
• P is represented by vpass∨vfail∨vinconc.
• Q is represented by tstart.

In natural language, we therefore check whether a timer stop statement or a timer timeout
precedes a verdict change to any verdict (except for none) if the corresponding timer has
been started.

We applied this analysis to both version 4.1.1 and version 4.2.5 of the SIP ATS targeting
the respective timers that are active within the test behavior of the respective tests with the
applied formula. While we did not find any anomaly in our selected test case subset of ver-
sion 4.1.1, we identified the test case SIP_CC_TE_CR_V_016 as test case in version 4.2.5
which had the setverdict statement switched with the timer stop statement. A manual in-
spection of the TTCN-3 test case confirmed that this pattern violation is indeed the case and
a text file differencing tool also confirmed that this test case had been changed in this subse-
quent version of the SIP ATS. We did not have any false positives and a manual inspection
of the other test cases also yielded that the anomaly only happens in the test case that we
detected.

5.2.3.3. Test Correctness Assessment

Our measurement of the test correctness characteristic consisted of two separate sub-
experiments. The first experiment consisted of measuring whether any paths with missing
verdicts or verdicts set before any kind of communication with the SUT using the property
descriptions from Sections 4.4.1.1 and 4.4.1.2 existed. All 21 test cases were hand-
checked for these properties before applying the prototype tool for the recall and precision
assessment.

Interestingly, the result of the manual analysis for paths with problematic test verdicts
in the SIP ATS yielded the result that none of the checked test cases in fact exhibited the
two analyzed anomalies. In all the selected test cases (and additional hand-picked sample
test cases of the SIP ATS) were no cases where verdicts would not be set or set before
any communication or trigger. The tool reported no false positive test cases and, therefore,
detected correctly that these anomalies did not exist.

After manually checking other test cases from the SIP ATS as well as a number of test
cases from other ATSs from ETSI, we determined that it is not useful to search for vio-
lations of the missing verdict property in test suites that probably had been reviewed and
validated for such anomalies. Also, going back in the version history of the same test suite
did not exhibit new problems. Most changes regarding corresponding test cases involved the
renaming of identifiers, inlining of behavior from elsewhere, adding new behavior, refine-
ments regarding the logging, or other editorial-type changes that do not drastically change
the semantics of the behavior.
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As a result, the new experiment was to mutate the same subset of test cases from the first
experiment regarding paths with missing verdicts. The mutation of these test cases itself
was performed by third party researchers with a good degree of TTCN-3 knowledge. They
hand-picked an arbitrary number of test cases among the test suite subset and changed their
behavior in such a way that the missing verdict property is violated. After that, they handed
over the modified test suite to the persons running the model-based analysis implementation
on the test suite without telling them what has been altered and what the respective effects
are (i.e., a double-blind experiment in the sense that neither the implementation nor the
researcher running the analysis implementation know what the correct outcome should be).
After applying the tool, a set of test cases with missing verdicts and a set of test cases with
no missing verdicts were identified and compared against the notes that the researcher who
mutated the test cases made. All altered test cases that affect the verdicts were positively
identified. In addition, no false positives were reported in the sense that the implementation
detected a test case with a missing verdict where no such path was present. Consequently,
our experiment yielded perfect recall and precision.

It is interesting to note that the number of failing traces provided by the model checker
indicated for some test cases an infinite amount of paths that violate the properties. The
numbers provided by the model checker are absolute, but the model checker limits the
number of search paths using an upper bound for the amount of memory that it may use.
Therefore, the interpretation is that the model checker had to terminate the verification. The
reason for these infinite amounts of failing traces is the fact that the verified model is an
abstraction. For the same reason, we did not bother to manually identify the number of
paths that lead to a missing test verdict in the mutated test cases—in many cases, the actual
number of paths is infinite.

5.2.3.4. Conclusions

The value of the experiments and their empirical meaning is limited by their rather small
scale. As the reverse engineered models are designed to be logically sound, we expect the
recall to be perfect. Nevertheless, the performed experiments do not exhibit the weakness of
our approach regarding the fact that the method is not logically complete—a circumstance
that exists due to our negligence of various data manipulations in the TTCN-3 behavior. This
fact may be a weak indicator for the hypothesis that black-box test cases such as the SIP
ATS are primarily stimulating the SUT and evaluating the incoming messages rather than
dealing with a huge amount of data manipulations. As a result, the experiments confirm
the intuition that data abstractions in test cases have rather weak repercussions when model
checking test case behavior.

The overall effort for automatically checking a test case is relatively low. The test
cases verified using the automated analysis tool were always reverse engineered and model
checked in less than 30 seconds each (modern dual-core machine with 3Ghz and 4GB of
RAM)—depending on the test cases analyzed. This fact also reinforces the intuition that
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the behavioral test case complexity is often rather low and well suited for automatic verifi-
cation. The performed experiments suggest that automatic model-based test case analysis
using model checking is in fact a feasible way to check specific properties over test cases
in a test suite. On the one hand, the method positively identifies test cases candidates that
violate a property and thus may exhibit the problem under analysis. On the other hand, the
computational effort and time needed to apply the prototype implementation is low enough
to be practical.

The fact that the analyzed parts of the ETSI SIP test suite did not expose any anomalies
regarding the verdicts, however, provokes a discussion for its reasons. The ETSI test suites
are developed using a set of guidelines. The technical specification of the SIP conformance
test suite itself formally only defines naming conventions and implementation conventions.
The naming conventions specify how type definitions, template definitions, constants, and
other TTCN-3 constructs must be named. The implementation conventions specify how
elements of the SIP protocol have been mapped to TTCN-3 definitions and how they are
supposed to be used. Nevertheless, the behavior itself exhibits repeating patterns how the
test case behavior is constructed. Examples for such patterns are the following:

• Following the variable declarations, the ports are mapped and connected first.
• Following the port connections and mappings, one single default is activated that

receives any message on the respective port that is subject of the test case and that
catches timeouts of any timer. In both cases, the test verdict is defined as a failing
verdict and the test case is terminated.
• There is only one default activated in the test case behavior and defaults are only

activated in test cases and not in functions or altsteps.
• In each branch of an altstep, the first thing that is done after possible variable decla-

rations is the stopping of timers.
• Every alt-branch of test case behavior sets a test verdict after the timer has been

stopped.
• In a timeout-branch, the timers are not explicitly stopped and the test verdict can be

set independently from a stop timer statement.
• If the alt-branch contains a repeat statement, there may not be setverdict statements.
• After a verdict has been set to fail, the test case is terminated using the stop statement.

These are just a few examples for guideline patterns that have been followed in the de-
velopment of the test suite. Applying such guidelines in the development of a test suite
prevents problems such as the missing verdict anomaly from happening. In this concrete
case, the rule that each alt-branch in a test case must set of test verdict prevents the missing
verdict anomaly from happening. A test developer who strictly adopts these rules produces
considerably less anomalies of the kinds that we have presented before. The case study
therefore nicely demonstrates the value of constructive quality assurance in contrast to an-
alytical quality assurance: while we identified the anomalies after mutating the test suites
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and therewith validated that our approach works, the value of the analytical approach to
quality assurance is most apparent when the constructive quality assurance lacks, for exam-
ple, when test specifications are developed ad-hoc without such a set of strict guidelines or
when the test developers are inexperienced or non-attentive.

Another observation is that the enforcement of such guidelines can also be checked by
tools. In contrast to our approach to dynamic analysis, the tool-based enforcement of such
guidelines is often less complex as the rules have a rather local scope. Thus, they often
require only static analysis. Nevertheless, the model-based approach to dynamically ana-
lyze test cases is a commendable additional measure to check certain properties that may
have slipped through despite the utilization of constructive measures such as guidelines and
guideline checkers.



6. Conclusion

In this last chapter, we summarize the thesis and its contributions (Section 6.1). Beyond that,
we state possible research items which extend or refine the results and methods presented
in this thesis (Section 6.2).

6.1. Summary

The general purpose of this work was to show that systematic machine-based analytical
quality assurance using both static testing and dynamic testing respecting test-specific char-
acteristics is possible and feasible. To allow a systematic analytical quality assurance,
we first defined a quality model for test specifications based on the ISO/IEC 9126 qual-
ity model. The presented quality model provides a framework in which analytical quality
assurance takes place and describes characteristics and subcharacteristics relevant for the
quality of abstract test specifications. We as well described how to instantiate this quality
model for a concrete project and a concrete language, in our case TTCN-3. To develop ap-
propriate quality metrics, we suggested the application of the GQM method. This method
ensures the modeling of goal-oriented metrics, guaranteeing that each metric measure has a
meaning for the assessment at hand.

Having established a framework for classifying test specification quality, we presented a
method for the dynamic analysis of test cases. This included a reverse engineering algorithm
and a number of generic, test-specific, and TTCN-3-specific properties. The properties are
presented in the form of a catalog and the analysis is expressed in the form of temporal logic
formulas in LTL.

The dynamic test case analysis followed the response inconsistency analysis which takes
a more global view on the test suite. With the help of this method, we were able to detect
test cases which are inconsistent regarding their responses to equal stimuli prefixes. After an
introductory example, we presented the reco relation, which defines response consistency
for two test case models. Moreover, we presented an analysis algorithm and discussed a
few scenarios for this relation that are not self-explanatory.

Finally, we have validated our approach to analytical quality assurance in a case study. We
have measured quality attributes of an industrial-size standardized test specification using
static analysis and dynamic analysis. In one experiment, we have measured bad smells in
test specification, i.e., locations in the test specification presenting possible problems, and
have associated refactorings to them. This allowed the automatic restructuring of the test
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suite. The results indicated that a noticeable effect can be achieved already with a small
number of metrics and refactorings. The other experiment, in which we performed model-
based analysis, has validated that our approach to the dynamic analysis of test specifications
is feasible in practice and that the amount of false positives is low.

6.2. Outlook

The work of this thesis presents a first step towards the actual application of systematic an-
alytical quality assurance for test specifications. We have shown that the methods presented
in this thesis are practically applicable. However, at the same time new research questions
and ideas for extensions of this work have become apparent.

Our method for the dynamic analysis of test specifications can be extended in various
ways. First, the model can be refined to include more complex data types, such as arrays.
This makes the semantics of the model more complicated, but allows a more compact for-
mulation of certain properties. One example for such a property would be the violation
of connection rules in TTCN-3. In general, the simpler the model is, the more verbose
the phrasing of some properties on the model is. On the other hand, extending the model
definition and its semantics has negative influence on the complexity of the reverse engi-
neering algorithm. Therefore, the actual model definition is always a tradeoff between the
complexity and the expressiveness or compactness of the model.

The second possible refinement concerns the reverse engineering itself. It can be ex-
tended to record more information about data and data-flow. That way, we are able to
reduce the amount of abstraction and the amount of false positives in the analysis results.
As the results from the case study have indicated, false positives do not seem to be a big
problem for the kinds of TTCN-3 test specifications that we have analyzed. But the situation
may be different for other languages or test development methodologies.

The specification of property-based events that need to be logged during the test speci-
fication simulation is currently realized by enriching the tree traversal code in our imple-
mentation. This is not intuitive from a user’s point of view, especially, if the person is not
familiar with the reverse engineering method or code. Therefore, we suggest the design and
creation of a dedicated Domain Specific Language (DSL) that describes declaratively how
and where exactly the test specification should produce property events, allowing the user to
use only this DSL to produce different property events for analyzing different properties. In
fact, such a DSL could be designed to be a generic instrumentation DSL for tree traversals
which could be applicable to other uses as well.

An evolutionary analysis could provide more information about certain aspects of the
test case, for example, how stable the test case is in its current state. For that purpose, the
history of test cases derived from version control systems can be incorporated in the analysis
interpretation. Similarly, a correlation between data of bug databases, the test specification
code, and the version history would be very interesting. We expect that this additional data
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can be very valuable for assessments, especially regarding qualitative statements about the
current state of a test case and its future.

Finally, there certainly are other properties that can be analyzed using our methodology.
It is likely that these are derived from actual practical needs and demands. Therefore, our
property catalog is of introductory nature and we expect it to grow as experience shows
what the actual demands are.

The response consistency criterion that we presented works well for the case that the
SUT behaves deterministically. If this is not the case, we are confronted with the situation
that responses are not necessarily the direct result of the stimuli, but also other factors may
influence the responses. Therefore, the approach only to regard the stimuli may not be
always enough in this case and the relation has to be refined.

Further possible improvements of the response inconsistency analysis are optimizations
for the analysis of the test suite as a whole: the relation relates two test cases, but if we
need to analyze a test suite completely for such inconsistencies, we need to compare every
test case in the test suite to all the others. This is computationally expensive and can be
improved, for example, by predetermining possible candidates by only partial analyses that
take place before the actual comparison is started. We expect that the amount of compar-
isons can be reduced drastically using such methods, making the overall approach more
feasible.

Response inconsistencies are only one specific kind of possible anomalies that test suites
may exhibit when we analyze test cases to all the others. There are various other possible
test suite anomalies that could extend the work of this thesis, such as verdict inconsistency.
Verdict inconsistency implies that test cases set different test verdicts despite the fact that
their observable traces match. Here, we assume that the same observable traces that are
produced from the same initial state in the SUT must also lead to the same test verdicts.

Another kind of analysis is the identification of test case behavior duplications. Here, we
could attempt to find behavior duplication either between two test cases as a whole in order
to remove redundant test cases, or behavior parts, to find candidates for the application of
extract refactorings. Such analyses may also regard different behavioral orderings that do
not change the semantics of the test cases in order to identify test cases that do the same
things.

Just as for the test case analysis, a further step would be to incorporate the history of
different test specification versions into the analysis to derive trends from the past and to
predict trends about the future of the test suite.

The work of this thesis followed the vision of a more rigorous and systematic analytical
quality assurance for test specifications. Unfortunately, the systematic quality assurance of
test specifications is still in the fledgling stages, even though test specifications grow rapidly
in size and the importance of more robust and dependable systems is growing. We observe
that the awareness about test specification quality and the need for active quality control of
active test specification quality assurance in currently changing. Test specification devel-
opment teams at ETSI, for example, actively seek tools that support them in the checking
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of coding guidelines. We are confident that this kind of awareness is growing and hope
that the results of this thesis provide a solid foundation for a more rigorous approach to the
systematic automated analytical quality assurance in the everyday life of a test developer.
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A. Appendix

The appendix complements the thesis with more detailed descriptions of algorithms and
examples that we felt were too detailed, complicated, or formal for the main text. Never-
theless, the contents are important results of the thesis and form a considerable part of the
overall contribution.

A.1. Model Reconstruction Algorithm

In the following, we present the model increment reconstruction algorithm. It takes as input
a log λi with events ρi,0 < i < m. The model increment reconstruction is applied to all
λ0,λ1, . . . ,λn where all n logs represent executions and are expected to have a complete
branch coverage of the test specification under analysis. The result after each increment is
an EMIOTS model which is refined according to the new information that is provided in
each log.

Algorithm A.1 (Model Increment Reconstruction) Each log λi representing a test exe-
cution may contain events of multiple test processes 1, . . . , l (due to the pid field in the
event) that are each represented by the target EMIOTS models M j,1≤ j ≤ l.

1. Create subsets for each process log j := {ρk|ρ pid
k = j} and sequences logseq j : N→

log j, i 7→ logseq j
i that are partitioned according to the process ids while retaining the

order of their event occurrences.

2. Let scurrent ← ε and snext ← ε be uninitialized state variables.

3. Let proctrans⊆ S×A×S×N×N, proctrans = /0 be an initially empty set of tuples
containing a transition, a scope id, and an event id. It will be used to identify which
transition have been processed already.

4. Let ζ ← ε denote an uninitialized stack of natural numbers and ζseq denote the se-
quence of natural numbers that have been pushed on to the stack.

5. Let sval be an injetive function sval : K→N that maps a sequence of integers K to one
value. In practice, sval could be a hash function with as few collisions as possible.

6. For each logseq j
i ,0 < i < |logseq j

i |, repeat the following steps:
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• Set event ← logseq j
i and eventnext ← logseq j

i+x. Where x > 0 represents
the nearest possible event that is not a scope start event, i.e. NEXT :=
{logseq j

i+x|etype(logseq j
i+x) 6= scopeStartEvent,x > 0},x ∈ NEXT and ∀y ∈

NEXT : x≤ y.
• If MS

j = /0, create a start state s0 and add it to MS
j . Set scurrent ← s0.

• If etype(event) = scopeStartEvent, then push id(event) on to the stack ζ .
• If etype(event) = scopeEndEvent, then

– Pop the stack zeta.
– If {s′|(scurrent ,τ,s′,sval(ζseq), id(event)) ∈ proctrans} 6= /0, then set

scurrent ← s′ and skip to the next iteration of 6.
– If there is an action a′ corresponding to eventnext and
{a′|(s′′,a′,s′′′,sval(ζ ′seq), id(eventnext)) ∈ proctrans} 6= /0, set state
snext ← s′′ where ζ ′seq = ζseq if etype(eventnext) 6= scopeEndEvent and
ζ ′seq = ζ .pop()seq if etype(eventnext) = scopeEndEvent. Otherwise, create
a new state snext .

– Add snext to MS
j , add (scurrent ,d(event),snext) to Mλ

j . Add
(scurrent ,τ,snext ,sval(ζseq), id(event)) to the proctrans.

• If etype(event) = messageInputEvent∨ etype(event) = messageOutputEvent,
then

– If etype(event) = messageInputEvent, then set a← (i(event)), otherwise
set a← (o(event)).

– If {s′|(scurrent ,a,s′,sval(ζseq), id(event)) ∈ proctrans} 6= /0, then set
scurrent ← s′ and skip to the next iteration of 6.

– If there is an action a′ corresponding to eventnext and
{a′|(s′′,a′,s′′′,sval(ζseq), id(eventnext)) ∈ proctrans} 6= /0, set state
snext ← s′′. Otherwise, create a new state snext .

– Add snext to MS
j , add (scurrent ,a,snext) to Mλ

j , and add a to MAI or MAO

respectively. Add (scurrent ,a,snext ,sval(ζseq), id(event)) to proctrans.
– If l(event) = 0, set scurrent ← snext .

• If etype(event) = dataEvent, then
– Data events are found in event sequences which are combined into a single

transition. Therefore, we find the last data event eventl prop← logseq j
k that

directly follows event.
– If there is is an action a∈MAU and {s′|(scurrent ,a,s′,sval(ζseq), id(event))∈

proctrans} 6= /0 where the variable update for vi corresponds to pn(logseq j
l )

and sets the value pv(logseq j
l ), i ≤ l ≤ k, then set scurrent ← s′ and skip to

the next iteration of 6 and skip the index i to k +1.
– If there is an action a′ corresponding to event logseq j

k+1 and
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{a′|(s′′,a′,s′′′,sval(ζseq), id(eventnext)) ∈ proctrans} 6= /0 , set state snext ←
s′′. Otherwise, create a new state snext .

– Add snext to MS
j , add (scurrent ,a,snext) to Mλ

j , and add a to MAU . Add
(scurrent ,a,snext ,sval(ζseq), id(event)) to proctrans. Skip the index i to
k +1.

– If l(event) = 0, set scurrent ← snext .
• If etype(event) = internalEvent, then

– If there is is an action a in MAN that matches d(event) and
{s′|(scurrent ,a,s′,sval(ζseq), id(event))∈ proctrans} 6= /0, then set scurrent←
s′ and skip to the next iteration of 6.

– If there is an action a′ corresponding to eventnext and
{a′|(s′′,a′,s′′′,sval(ζseq), id(eventnext)) ∈ proctrans} 6= /0, set state
snext ← s′′. Otherwise, create a new state snext .

– Add snext to MS
j , add (scurrent ,d(event),snext) to Mλ

j , and add a to MA. Add
(scurrent ,d(event),snext ,sval(ζseq), id(event)) to the proctrans.

– If l(event) = 0, set scurrent ← snext .

Intuitively, we convert the events into actions and insert states before and after the action.
We identify equal transitions by the proctrans set which contains tuples with transitions,
scope ids, and event ids. The stack zeta tracks scopes and by pushing and popping the
current concrete event id. Thus, the whole stack in its order represents a scope history. This
is important for the following reason: a code location, for example, identified by a line
number is ambiguous in the context of program behavior. A code position can be executed
from multiple other code locations, e.g., by procedure calls or jumps within the code. What
makes a code location unique in its behavioral context is its scope history. Whenever a
code location is executed in a different context, the scope history must always be different.
By mapping each scope history to a unique value using sval and regarding both scope
history and the event id, we can identify unique control-flow positions and reconstruct an
interprocedural model. Identical states are identified by looking into the next event and its
corresponding action. If it exists in the set proctrans, we need to connect the existing next
state with the current state using the current event action. Finally, look-ahead events are also
added to the incremental model, but ignored when stepping into a next state/event analysis.
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A.2. Model Reconstruction Example

To illustrate the algorithm on a small example, we reconstruct the model based on one test
component from the logs of Tables A.1 and A.2 step by step. The frame boxes denotes the
current state of the variables of interest. We will omit the notation of Mλ

1 as it is effectively
as subset of proctrans with less information.

A.2.0.5. Preparations

• The events are partitioned into sequences logseq j according to the component on
which the event took place. In our case, we deal with one component only and thus
have a single sequenc logseq1 that needs to be processed.
• scurrent and snext are uninitialized, the set proctrans and stack ζ are empty.
• For the sval function, we choose a very simple solution for this example to keep the

calculation easy: each value on the stack is assigned a prime factor and the stack
value represents its respective multiplicity. For example, a if ζseq = (3,2,2), then
sval(ζseq) = 23 + 32 + 52 = 42. This ensures unique prime factorizations for each
stack configuration by definition and thus also unique value mappings of ζseq. In
practice, a better solution would be to use common hash functions that are nearly
collision free.
• The set of variables is (v1,v2,v3,v4) ∈MV

1 where v1 represents v_pass, v2 represents
v_ f ail, v3 represents v_inconc, and v4 represents v_none.

A.2.0.6. Example Log 1

• MS
j is empty, so we create a start state s0 with scurrent ← s0.

ζseq = {},
proctrans = {},
sval(ζseq) = 0,
scurrent = s0,
MS

1 = {s0},
MA

1 = {}

• The first event is a scope start event so we push 1 on to ζ .

ζseq = {1},
proctrans = {},
sval(ζseq) = 21,
scurrent = s0,



155 A.2. Model Reconstruction Example

event type pid id ss se l i o d pn pv
1 ss 1 1 1 - - - - - - -
2 pe 1 2 - - - - - - v_pass 0
3 pe 1 3 - - - - - - v_fail 0
4 pe 1 4 - - - - - - v_inconc 0
5 pe 1 5 - - - - - - v_none 1
6 moe 1 6 - - - - !p1.m1 - - -
7 mie 1 7 - - 1 ?p1.m2 - - - -
8 mie 1 8 - - 1 ?p1.* - - - -
9 mie 1 7 - - - ?p1.m2 - - - -
10 ss 1 9 1 - - - - - - -
11 pe 1 10 - - - - - - v_pass 1
12 pe 1 11 - - - - - - v_fail 0
13 pe 1 12 - - - - - - v_inconc 0
14 pe 1 13 - - - - - - v_none 0
15 se 1 14 - 1 - - - - - -
16 ss 1 15 1 - - - - - - -
17 moe 1 16 - - - - !p2.m3 - - -
18 mie 1 17 - - 1 ?p1.m4 - - - -
19 mie 1 18 - - 1 ?p1.* - - - -
20 mie 1 17 - - - ?p1.m4 - - - -
21 ss 1 19 1 - - - - - - -
22 pe 1 20 - - - - - - v_pass 1
23 pe 1 21 - - - - - - v_fail 0
24 pe 1 22 - - - - - - v_inconc 0
25 pe 1 23 - - - - - - v_none 0
26 se 1 24 - 1 - - - - - -
27 se 1 25 - 1 - - - - - -
28 se 1 26 - 1 - - - - - -

Table A.1.: Example Log 1

MS
1 = {s0},

MA
1 = {}

• Events 2 to 5 are a sequence of proposition events. We create a new state s1
with snext ← s1, an action a0 ∈ AU reflecting the variable updates (v1,v2,v3,v4)→
(0,0,0,1), a transition (s0,a,s1) adds them to their respective model sets. We update
proctrans by adding (s0,a0,s1,21,2) and move forward by setting scurrent ← s1.

ζseq = {1},
proctrans = {((s0,a0,s1,2,2))},
sval(ζseq) = 21,
scurrent = s1,
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MS
1 = {s0,s1},

MA
1 = {a0}

• Event 6: Create a1←!p1.m1 ∈ AO, create a new state s2 with snext ← s2, a transition
(s1,a1,s2) and add them to their respective model sets. We update proctrans by
adding (s1,a1,s2,2,6) and move forward by setting scurrent ← s2.

ζseq = {1},
proctrans = {(s0,a0,s1,2,2),(s1,a1,s2,2,6)},
sval(ζseq) = 21,
scurrent = s2,
MS

1 = {s0,s1,s2},
MA

1 = {a0,a1}

• Events 7 and 8 are message input look-ahead events. This means, they are processed
like the other events, but scurrent is not altered.

ζseq = {1},
proctrans = {(s0,a0,s1,21,2),(s1,a1,s2,21,6),(s2,a2,s3,21,7),(s2,a3,s4,21,8)},
sval(ζseq) = 21,
scurrent = s2,
MS

1 = {s0,s1,s2,s3,s4},
MA

1 = {a0,a1,a2,a3}

• Event 9 is a concrete message input event which has been announced by a look-
ahead event already. As a result, we find out that there is an s3 for which an element
(s2,a2,s3,21,7) ∈ proctrans exists. Thus, we set scurrent ← s3 and proceed to the next
event without any updates.
• Events 10–28 are handled in a similar way as the previous ones without any special

cases as this is only the first iteration. The only noteworthy ones are events 15, 26,
27, 28 where τ transitions are inserted in order to model join points correctly within
the control-flow. We only provide the end state for the remainder.

ζseq = {},
proctrans = {(s0,a0,s1,21,2),(s1,a1,s2,21,6),(s2,a2,s3,21,7),(s2,a3,s4,21,8),
(s3,a4,s5,21 +39,10),(s5,τ,s6,21 +39,14),(s6,a6,s7,21 +315,16),
(s7,a7,s8,21 +315,17),(s7,a8,s8,21 +315,18),(s8,a9,s10,21 +315 +519,20),
(s10,τ,s11,21 +315 +519,24),(s11,a11,s12,21 +315,25),(s12,τ,s13,21,26)},
sval(ζseq) = 0,
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event type pid id ss se l i o d pn pv
1 ss 1 1 1 - - - - - - -
2 pe 1 2 - - - - - - v_pass 0
3 pe 1 3 - - - - - - v_fail 0
4 pe 1 4 - - - - - - v_inconc 0
5 pe 1 5 - - - - - - v_none 1
6 moe 1 6 - - - - !p1.m1 - - -
7 mie 1 7 - - 1 ?p1.m2 - - - -
8 mie 1 8 - - 1 ?p1.* - - - -
9 mie 1 8 - - - ?p1.* - - - -
10 ss 1 27 1 - - - - - - -
11 pe 1 28 - - - - - - v_pass 0
12 pe 1 29 - - - - - - v_fail 1
13 pe 1 30 - - - - - - v_inconc 0
14 pe 1 31 - - - - - - v_none 0
15 se 1 32 - 1 - - - - - -
16 ss 1 15 1 - - - - - - -
17 moe 1 16 - - - - !p2.m3 - - -
18 mie 1 17 - - 1 ?p1.m4 - - - -
19 mie 1 18 - - 1 ?p1.* - - - -
20 mie 1 18 - - - ?p1.* - - - -
21 ss 1 33 1 - - - - - - -
22 pe 1 34 - - - - - - v_pass 0
23 pe 1 35 - - - - - - v_fail 1
24 pe 1 36 - - - - - - v_inconc 0
25 pe 1 37 - - - - - - v_none 0
26 se 1 38 - 1 - - - - - -
27 se 1 25 - 1 - - - - - -
28 se 1 26 - 1 - - - - - -

Table A.2.: Example Log 2

scurrent = s13,
MS

1 = {s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13},
MA

1 = {a0,a1,a2,a3,a4,a6,a7,a8,a9,a11,a12}

A.2.0.7. Example Log 2

• In events 1–8, we detect that all potential transitions are already part of the model and
the proctrans set. Thus, up to event 8, we essentially only “track” the log within our
model such that scurrent = s2.
• Event 9 is the first new message input event in the second log, but the corresponding

state s4 and transition (s2,a3,s4) have been added already. Thus, only scurrent moves
forward to s4.
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• Event 10 introduces a new scope, but no new model elements so that ζseq = {27,1}
and sval(ζseq) = 21 +327.
• Event 11–14 is a sequence of proposition events that have not been added to the model

already within this new scope.

ζseq = {27,1},
proctrans = {(s0,a0,s1,21,2),(s1,a1,s2,21,6),(s2,a2,s3,21,7),(s2,a3,s4,21,8),
(s3,a4,s5,21 +39,10),(s5,τ,s6,21 +39,14),(s6,a6,s7,21 +315,16),
(s7,a7,s8,21 +315,17),(s7,a8,s8,21 +315,18),(s8,a9,s10,21 +315 +519,20),
(s10,τ,s11,21 +315 +519,24),(s11,a11,s12,21 +315,25),(s12,τ,s13,21,26),
(s4,a13,s14,21 +327,28)},
sval(ζseq) = 21 +327,
scurrent = s14,
MS

1 = {s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s14},
MA

1 = {a0,a1,a2,a3,a4,a6,a7,a8,a9,a11,a12,a13}

• Event 15 is the first ocurring merge event. A look-ahead to the next event respecting
the future stack state identifies that (s6,a6,s7,21 +315,16) already exists in proctrans.
As a result, the next transition (a τ transition due to the scope end event) must lead
from scurrent(s14) to s6.

ζseq = {27,1},
proctrans = {(s0,a0,s1,21,2),(s1,a1,s2,21,6),(s2,a2,s3,21,7),(s2,a3,s4,21,8),
(s3,a4,s5,21 +39,10),(s5,τ,s6,21 +39,14),(s6,a6,s7,21 +315,16),
(s7,a7,s8,21 +315,17),(s7,a8,s8,21 +315,18),(s8,a9,s10,21 +315 +519,20),
(s10,τ,s11,21 +315 +519,24),(s11,a11,s12,21 +315,25),(s12,τ,s13,21,26),
(s4,a13,s14,21 +327,28),(s14,τ,s6,21 +327,32)},
sval(ζseq) = 21 +327,
scurrent = s2,
MS

1 = {s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13},
MA

1 = {a0,a1,a2,a3,a4,a6,a7,a8,a9,a11,a12,a13}

• Events 16–20 are again tracked within the model up until scurrent = s9.
• Event 21 again introduces a new scope such that ζseq = {33,16,1} and sval(ζseq) =

21 +316+533.
• Events 22–28 operate like the previous excerpts. We provide the end state after event

28 has been processed.
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ζseq = {},
proctrans = {(s0,a0,s1,21,2),(s1,a1,s2,21,6),(s2,a2,s3,21,7),(s2,a3,s4,21,8),
(s3,a4,s5,21 +39,10),(s5,τ,s6,21 +39,14),(s6,a6,s7,21 +315,16),
(s7,a7,s8,21 +315,17),(s7,a8,s8,21 +315,18),(s8,a9,s10,21 +315 +519,20),
(s10,τ,s11,21 +315 +519,24),(s11,a11,s12,21 +315,25),(s12,τ,s13,21,26),
(s4,a13,s14,21 +327,28),(s14,τ,s6,21 +327,32),(s9,a15,s15,21 +315 +533,34),
(s15,τ,s11,21 +315 +533,38)},
sval(ζseq) = 0,
scurrent = s2,
MS

1 = {s0,s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12,s13,s15},
MA

1 = {a0,a1,a2,a3,a4,a6,a7,a8,a9,a11,a12,a13,a15}

A.2.0.8. Resulting model

As we can see, the behavior of the example has been covered by branch coverage. Because
the logs were covering all branches in two passes, we are able to reconstruct the model with
two passes of our model reconstruction algorithm as opposed to a reconstruction requiring
path coverage, which would have needed four passes. This saving effect is more drastic the
more branches exist in the behavior that is reconstructed—path coverage becomes infeasible
already with a realistic amount of branches due to exponential combinatorial growth of
possible paths that would need to be processed. However, an important disadvantage of
this approach is that literally everything that is part of the analysis must be logged. We
currently disregard the data-flow and introduce non-determinisms that effectively lead to
false positives in the analyses performed later. If we want to reduce these false positives,
we have to symbolically log data operations and map them to the target concept. It is not
possible to simply evaluate data values at specific behavioral points as the execution history
up to each such behavioral point may be different and untraced.

The resulting model from exemplary model reconstruction is depicted in Figure A.1. The
actions, transitions, and states that are added in the second pass of the algorithm are marked
grey. From this figure, it is clearly visible that branches are always constructed completely
also during the first pass due to the look-ahead events. These merely hinted branches will
be of use for the test case simulation.
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Figure A.1.: Reconstructed Model
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A.3. Simulation Coloring

Given colors C = {c1,c2,c3} and the relation COL⊆ S×C, the following three steps provide
descriptions for the simulation steps for the model reconstruction algorithm.

Algorithm A.2 (State Processing) Before the model increment reconstruction algorithm
alters scurrent to move to the next state, perform the following steps:

• Add (scurrent ,c1) to COL.

In the following, we provide the extension that is responsible for choosing new branches
in the abstract execution of the test specification.

Algorithm A.3 (Transition Selection) After a sequence of message input events and di-
rectly before a new event is processed by the model increment reconstruction algorithm,
perform the following steps.

• Find a transition (scurrent ,a,s′) ∈ λ where (s′,ci),1≤ i≤ 3 /∈COL.
• If there is no such transition, then find a transition where (s′,c2) /∈COL.
• If there still is no s′ selected, then choose an arbitrary s′ with (scurrent ,a,s′) ∈ λ .
• Set scurrent ← s′.
• Execute a and move forward.
• Add (scurrent ,c1) to COL.

Finally, we need to reverse track our graph and mark states with the c3 color.

Algorithm A.4 (Post Processing) The post processing step is essentially where the back-
tracking is happening. We can follow the executed path backwards by looking which nodes
are marked with c1. When this part of the simulation is executed, scurrent is located on a
final state.

• Loop over the following steps until scurrent = s0.

– Add (scurrent ,c3) to COL.
– Find a state s′ with (s′,a,scurrent) where (s′,c1) ∈COL.
– If there are transitions (s′,a,s′′) ∈ λ with (s′′,c3) /∈COL, exit the loop.
– Otherwise, set scurrent ← s′.

• Recolor all states s with (s,c1) ∈COL: find all s with (s,c1) ∈COL, for each of these
s add (s,c2) to COL and remove (s,c1) from COL.

The simulation and model reconstruction is complete when all test components have
marked their respective initial states s0 with c3.
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A.4. The LTSML Metamodel

The LTSML Metamodel is essentially a direct translation of the formal EMIOTS model
defined in Ecore [102] and XML Schema [137]. Figure A.2 illustrates the metamodel. In
addition to the EMIOTS model, it contains additional information, such as optional color
values (for visualization purposes) or line numbers (for mapping back the model checking
output to TTCN-3).
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Figure A.2.: LTSML Metamodel
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