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Abstract

Manual reviews and inspections of software artefacts are

time consuming and thus, automated analysis tools have

been developed to support the quality assurance of software

artefacts. Usually, software analysis tools are implemented

for analysing only one specific language as target and for

performing only one class of analyses. Furthermore, most

software analysis tools support only common programming

languages, but not those domain-specific languages that are

used in a test process. As a solution, a framework for

software analysis is presented that is based on a flexible,

yet high-level facade layer that mediates between analysis

rules and the underlying target software artefact; the analy-

sis rules are specified using high-level XQuery expressions.

Hence, further rules can be quickly added and new types of

software artefacts can be analysed without needing to adapt

the existing analysis rules. The applicability of this ap-

proach is demonstrated by examples from using this frame-

work to calculate metrics and detect bad smells in Java

source code, in UML models, and in test specifications writ-

ten using the Testing and Test Control Notation (TTCN-3).

1. Introduction

A multitude of software artefacts are created during the

different activities of software development, e.g. models,

source code, or test specifications. Reviews, walkthroughs,

and inspections [9, 12] are used to find flaws in software

artefacts even at an early stage; however, manual review is

time consuming and thus, automated analysis tools are used

to support and complement the quality assurance of soft-

ware artefacts [36].

When we wanted to assure the quality of test specifica-

tions that are specified using the standardised Testing and

Test Control Notation (TTCN-3) [7, 14], we experienced

that the available software analysis tools supported only

common programming languages, but not those domain-

specific languages that are used in a test process. Hence,

we started to implement our own analysis tool for TTCN-3

test specifications [20]. In that tool, the analysis rules were

hard-coded in Java involving low-level de-referencing of

pointers in a TTCN-3 syntax tree [19]: implementing new

analysis rules required considerable efforts and an easy ad-

dition of user-defined analysis rules was not possible. Thus,

we were looking for an approach that supports a high-level

specification of analysis rules that can easily be created by

an end-user.

This paper presents our solution to this problem: an

XML and XQuery-based framework for the automated

analysis of software artefacts. The framework is based on

an abstraction layer that decouples analysis rules from syn-

tactical details of the parsed target software artefact. This

makes it easy to add analysis rules as they are specified in

a high-level style. A welcome side affect is that the ab-

straction layer allows existing analysis rules to be re-used

without modification for different targets or to re-use the

abstraction layer for different classes of analyses. Hence,

it is easy to support domain-specific languages as analysis

targets.

The structure of this paper is as follows: following

this introduction, we provide in section 2 foundations of

software analysis, on the XML technologies used in our

framework, and on the representation of software artefacts.

Our main contribution can be found in sections 3 and 4:

section 3 explains the architecture of our analysis frame-

work, whereas section 4 describes results from validating

the framework by applying it for varying targets and classes



of analyses and by integrating it into an existing Integrated

Development Environment (IDE) for TTCN-3. Section 5

discusses related work. Finally, we conclude with a sum-

mary and outlook in section 6.

2. Foundations

The term “software artefact” relates to all items that

are created as part of a software development process, e.g.

documents containing requirements, models, source code,

scripts, or test specifications.

In this paper, we assume that a software artefact is ma-

chine processable, i.e. it adheres to a well-defined syntax

that has an associated semantics. This assumption allows

the analysis of software artefacts using automated tools.

2.1. Software analysis

Software artefacts can be analysed in various automated

ways to determine their properties: by dynamic analysis, by

static analysis, or, for example, by model checking. In this

paper, we restrict ourselves to static analysis.

Often, static analysis is related to the evaluation of

queries on software artefacts or to the detection of patterns

in software artefacts [6]. Thus, support for specifying pat-

terns and queries in software artefacts is a vital requisite for

software analysis. Other typical applications of automated

static analysis in the context of software quality assessment

are the calculation of product metrics [10] or the detection

of “bad smells in code”, i.e. certain structures in code (such

as duplicated code) that are indicators of bad internal qual-

ity and should thus be resolved by refactoring [11].

2.2. XML technology

The Extensible Markup Language (XML) [5] is a flexi-

ble text format for the exchange of any kind of data. As its

name implies, the language addresses the markup of data by

adding structural information to it. Essentially, XML pro-

vides elements that can be hierarchically nested resulting in

a tree-like structure, where the nodes are the XML elements.

Each element may optionally contain further attributes with

values. Between the opening and closing tags of an element,

some textual content may be stored. To illustrate the usage

of XML, an example of a new defined language is given in

listing 1 that structures a few seasons, episodes, and titles of

the TV sitcom “The Simpsons” as XML.

XQuery [28] is a standardised language for querying

XML documents. It is a functional and typed language [17]

which is Turing complete [15]. XQuery 1.0 is a superset

of the XPath 2.0 language providing more powerful capa-

bilities: while XPath only permits the selection of nodes

1 <?xml version="1.0" encoding="UTF-8"?>

2 <simpsons>

3 <season number="1">

4 <episode number="1" title="Simpsons Roasting on an

Open Fire"/>

5 <episode number="2" title="Bart the Genius"/>

6 </season>

7 <season number="19">

8 <episode number="401" title="He Loves to Fly and He

D’oh’s"/>

9 <episode number="402" title="The Homer of Seville"/>

10 </season>

11 </simpsons>

Listing 1. XML example: “The Simpsons”

1 for $episode in doc("simpsons.xml")//episode

2 let $title := data($episode/@title)

3 order by $title

4 return element simpsons-episode { $title }

Listing 2. Simple XQuery expression

from an XML document, XQuery supports the manipula-

tion, transformation, creation, and sorting of nodes. The

syntax of XQuery looks like a mixture of XPath and SQL

and is therefore easy to use for anyone who is familiar

with these languages. Listing 2 shows a sample XQuery

expression which queries some data from the XML doc-

ument shown in listing 1 and returns new XML elements

containing episode titles: The function doc() in line 1 of

listing 2 loads the XML document tree. Then, path expres-

sions can be used to navigate to nodes of the XML tree and

to subsequently select nodes: / separates the nodes of a path

expression, // allows the selection of nodes just by using

their element name without needing to provide a full path.

Hence, //episode selects all episode elements of the loaded

document. The function data() in line 2 retrieves values of

nodes: $episode/@title refers to the title attribute of ele-

ments stored in the variable $episode. The selected episode

nodes are ordered by their title (line 3) and returned as a set

of simpsons-episode XML elements whose tags enclose the

title of each episode (line 4).

More complex patterns can be matched by composing

queries. XQuery also allows the definition of user-defined

functions and modules for grouping related functions. An

example function that creates an XML element hello con-

taining the content Hello World! is shown in listing 3.

2.3. Representation of software artefacts

Software needs to be represented in varying ways to fulfil

different requirements: Software architects require a global

view of a system. Therefore, they require software repre-

sentations using abstract artefacts like models. In contrast,

source code analysis tools need to investigate all details of

a software to find design flaws or potential bugs and require



1 module namespace my-namespace = "foo-namespace";

2

3 declare function my-namespace:hello-world() {

4 element hello { "Hello World!" }

5 };

Listing 3. XQuery module and function

1 public class Person {

2 private String name;

3 public String getName() {

4 return name;

5 }

6 }

Listing 4. Java source to be encoded as XML

a representation of the source code artefact that reflects the

complete source code. Thus, different representations of

software artefacts are used in software development.

A model is an abstraction of the real world. A meta-

model defines a language for the specification of mod-

els [24]. Different metamodel approaches for software rep-

resentation can be differentiated by their granularity of the

representation of the underlying software. Some, for in-

stance the FAMIX metamodel [32], concentrate on the most

important object-oriented entities and their relationships.

Others provide a more detailed approach for the represen-

tation of Java source code as a metamodel [34]. Metamod-

els are, however, not limited to the representation of soft-

ware on a high-level view, but can also be used to represent

source code in depth like a metamodel that covers different

object-oriented languages [35].

The Unified Modeling Language (UML) [24] is a stan-

dardised general-purpose modelling language. It is used

to create abstract models of systems, called UML models.

UML has a major impact in the field of software engineer-

ing. However, in most cases, UML is used for designing

and representing software on an architectural level and not

as a representation format for source code.

The XML Metadata Interchange (XMI) [23] is a stan-

dardised XML language for serialising and exchanging

metadata information such as metamodels. XMI is com-

monly used as an exchange format for UML models and

metamodels.

XML is not only used for the exchange of XMI-based

models, metamodels, or other structured information but

also serves as a language for representation formats. In the

following, the usage of XML for the detailed representation

of software artefacts, e.g. source code, is presented. List-

ing 4 contains sample Java source code of a class that will

be encoded as XML in the following examples.

Listing 5 shows the encoded Java source code in an

XML representation called JavaML (Java Markup Lan-

guage) [4]. It maps all language constructs of Java to XML

1 <class name="Person" visibility="public">

2 <superclass name="Object"/>

3 <field name="name" visibility="private">

4 <type name="String"/>

5 </field>

6 <method name="getName" visibility="public">

7 <type name="String"/>

8 <formal-arguments/>

9 <block>

10 <return><var-ref name="name"/></return>

11 </block>

12 </method>

13 </class>

Listing 5. JavaML representation of listing 4

(some XML attributes stripped for reasons of

clarity)

1 <class><specifier>public</specifier> class <name>Person

</name> <block>{

2 <decl_stmt><decl><type>private <name>String</name>

</type> <name>name</name></decl>;</decl_stmt>

3 <function><type>public <name>String</name></type>

<name>getName</name><parameter_list>()

</parameter_list> <block>{

4 <return>return <expr><name>name</name></expr>;

</return>

5 }</block></function>

6 }</block></class>

Listing 6. srcML representation of listing 4

nodes. For example, the source code public class Person

(line 1 of listing 4) is mapped to the XML element class

(line 1 of listing 5) with the attributes name="Person" and

visibility="public". JavaML is also capable of encoding

information about the location of each statement in the orig-

inal source code (using line, end-line, column, and end-

column XML attributes).

Another example for the XML representation of source

code is srcML (Source Code Markup Language) [16]. List-

ing 6 contains the result of the annotation of the example

Java source code. All constructs and also the formatting of

the source code are preserved and XML elements are just

put around the Java constructs. In line 1 of listing 6, the

start of the Java class is marked-up using a class element,

the visibility of the class is marked-up with a specifier ele-

ment and the name of the class with a name element.

Another approach to encode source code as XML is the

mapping of an Abstract Syntax Tree (AST) to XML. As

an AST is abstract, it represents only semantically rele-

vant parts of the source code (like statements and identi-

fiers). Most ASTs contain the line numbers and offsets for

all statements of the underlying programming language, this

information can also be mapped to XML attributes.

Sometimes, it is even not necessary to encode a language

as XML: domain specific languages that are used in model-

driven engineering, testing, or for configuration manage-

ment often use XML as their native format.



As shown, XML can be used as a universal representa-

tion format for many kinds of software artefacts from ab-

stract high-level software models to fully detailed source

code, but XML is also used as graph representation format,

thus enabling the representation of, e.g., data and control

flow graphs. “This makes XML [. . . ] a natural choice to be

used as [. . . ] representation format for program representa-

tions” [1].

3. The XQuery-based Analysis Framework

For querying and detecting patterns in software arte-

facts on a high level, we have developed the XQuery-based

Analysis Framework (XAF) [22]. It is a highly flexible

framework that supports the automated static analysis of ar-

bitrary software artefacts. The framework is independent

of any concrete language to be analysed and can easily be

adapted to specific languages. Its most important features

are:

• generic pattern and query description on a high level

of abstraction, thus enabling the easy addition of new

analysis rules,

• extensibility regarding new types of patterns and new

analysis targets, and

• independency of the patterns and queries from specific

analysis targets like concrete programming or domain-

specific languages.

These goals are achieved through a layered and extensi-

ble framework design. The design makes use of the facade

design pattern [13] which intermediates between concrete

analysis targets and the actual analyses. The facade layer

serves as a fixed interface for the analysis layer and pro-

vides for each underlying analysis target a corresponding

implementation of the facade layer interface. The analysis

layer is designed as a plug-in architecture that allows the

framework user to easily add new analysis rules or classes

of analyses.

As discussed in section 2.3, XML can be used as an uni-

versal representation format for all kinds of software arte-

facts. Hence, XAF uses XML as internal representation of

any software artefact and thus, if the software artefact un-

der investigation has not XML as its native format (as it

is often the case for domain-specific languages), the soft-

ware artefact must be converted into an XML representa-

tion (for source code, e.g., by making use of one of the rep-

resentations presented in section 2.3; for models, e.g., by

using XMI). This permits the usage of XAF for the analysis

of various kinds of software artefacts independent of their

original syntax as long as a corresponding XML represen-

tation is available.

Analysis Target

(Java)

Analysis Target

(TTCN-3)

XML Representation XML Representation

Facade Layer Impl. Facade Layer Impl.

Facade Layer Interface

Metrics Analysis Plug-in Smell Analysis Plug-in

Figure 1. Framework design: plug-ins extend

the framework and are independent of analy-
sis targets

The rules for analysing a software artefact are described

as XQuery functions that query XML data. Hence, an

analysis plug-in for the analysis layer of XAF is composed

of XQuery functions that are specific to the kind of analy-

sis to be performed. The XQuery expressions do not op-

erate directly on the concrete XML representation of the

specific software artefact—instead they access the software

artefact through the XAF facade layer that converts between

the possibly varying XML representations of the software

artefacts and the fixed interface provided by the XAF facade

layer. Hence, an end-user only needs to know the fixed in-

terface instead of the concrete XML representation to write

new queries. The layered design of XAF allows the con-

struction of analysis plug-ins independent of any concrete

analysis target by having only a dependency to the fixed in-

terface of the facade layer. For example, a metrics analysis

plug-in could be used to calculate metrics for Java and for

TTCN-3 source code without any modifications—as the fa-

cade layer provides a unified access to the different analysis

targets.

We designed our own facade layer, because we experi-

enced that existing XML representations of software arte-

facts (see section 2.3) were either too specific to the par-

ticular type of artefact or too abstract to provide relevant

detailed information. Instead of creating the union of all re-

quired information (or alternatively only the intersection of

common concepts), the functionality and kind of abstrac-

tion that is currently provided by the XAF facade layer is

rather driven by the existing applications of the framework

(see section 4). Following the practise of extending a frame-

work interface as part of framework evolution, the interface

of the XAF facade layer is intended to be stable, but can be



1 module namespace example-facade = "facade-namespace";

2 declare variable $example-facade:input external;

3

4 declare function example-facade:get-functions() {

5 $example-facade:input//FunctionDefinition

6 };

Listing 7. Example XQuery module of the

facade layer (facade function for TTCN-3

using XML representation of an AST)

extended by additional functionality to broaden the applica-

bility of XAF as required.

Figure 1 illustrates the design of XAF by two exemplary

analysis plug-ins (one for the calculation of metrics and one

for the detection of bad smells) and two different analysis

targets (Java and TTCN-3 source code respectively) hav-

ing their own XML representation and thus their own cor-

responding facade layer implementations that provide the

common interface of the facade layer.

The XQuery technology is used for the facade and analy-

sis layer of XAF: For each analysis target—for example a

domain-specific language—an XQuery module is required

which implements the fixed interface of the facade layer

and provides the implementation towards the analysis plug-

in layer. An exemplary facade layer module is shown in

listing 7: The XML input is bound to the module vari-

able input in line 2 and one exemplary facade layer func-

tion is declared in the lines 4–6. The XQuery function

get-functions() allows the retrieval of all function defini-

tions. The function’s interface abstracts from the concrete

XML element name and thus provides an independence of

the concrete underlying XML representation (in the exam-

ple, the function implements access to an XML element

named FunctionDefinition (line 5) that is used in an XML

representation of a TTCN-3 function definition). However,

in those cases where the facade layer does not provide a

functionality required for a certain analysis, it is still pos-

sible for the analysis plug-ins to sacrifice the target inde-

pendence by directly accessing the XML representation of

a software artefact.

The XQuery modules that serve as plug-ins of the analy-

sis layer access the analysis target via the facade layer in-

terface. They are hence completely independent of the con-

crete analysis target and also of the XML representation of

the analysis target. For example, a simple metrics calcu-

lation XQuery module which contains an XQuery function

for counting the number of functions per class in a software

artefact is shown in listing 8. The module imports the fa-

cade layer interface module to make use of its functions like

get-classes() and get-functions(). The logic itself is com-

pletely encapsulated in the metrics module and can be re-

1 module namespace example-plugin = "plugin-namespace";

2

3 import module namespace facade =

4 "facade-namespace" at "facade.interfaces.xquery";

5

6 declare function example-plugin:functions-per-class() {

7 for $class in facade:get-classes()

8 return count(facade:get-functions($class))

9 };

Listing 8. Example XQuery module of the
analysis plug-in layer

used without modifications for any kind of analysis targets

for which a reasonable definition of the get-classes() and

get-functions() facade layer XQuery functions is possible.

The actual analysis is performed by executing the

XQuery expressions using an XQuery processor like

Saxon [29]. The result of an analysis consists of matches

which are instances of patterns detected in the XML rep-

resentation of the software artefact. These results should

be presented by the embedding application in the analysis

target and not in its XML representation format. Hence,

representation formats need to fulfil some requirements to

allow the mapping of matches from the representation for-

mat back to the original analysis target. The framework

takes care of this and returns matches according to an XML

schema definition (matches.xsd) in order to allow the em-

bedding application like an IDE to display the matches in

the underlying analysis target.

The framework also provides some additional features,

which ease the integration into an embedding application

like an IDE: An XML schema definition (hierarchy.xsd) is

provided for a further XML document that allows to enu-

merate and structure the available analysis plug-ins that

contain the XQuery analysis functions. Hence, XAF can

be extended with new analysis plug-ins and rules in a com-

pletely declarative way. Furthermore, XQuery library mod-

ules for commonly used tasks are offered by XAF, for ex-

ample to access symbol table or cross-reference informa-

tion, if the embedding application offers them. This library

includes also an infrastructure for the detection of dupli-

cated elements, e.g. duplicated code. This functionality is

implemented by matching XML sub-trees with each other,

mainly by using the XPath function deep-equals() which

determines whether two XML nodes and their children are

equal or not.

4. Applications of the framework

To evaluate the applicability of our XQuery-based

Analysis Framework, we have instantiated it in several ex-

periments. The goal of these experiments were



1. to validate the feasibility of the concepts provided by

XAF by demonstrating that the framework can be used

for realising the functionality of existing tools that are

specific for a certain artefact and class of analysis,

2. to substantiate the ease of exchangeability of the un-

derlying analysis target or classes of analysis,

3. to study the integration of XAF into existing IDEs,

4. to get an impression of the reduction of efforts for

specifying analysis rules using the high-level XQuery

style instead of implementing them on a low-level us-

ing a general purpose programming language.

In our experiments, we used XAF to analyse three dif-

ferent kinds of software artefacts and applied two differ-

ent classes of analyses to them. The analysed targets were:

programming language source code (Java), UML models

(given in XMI format), and test specifications (TTCN-3 tex-

tual core notation). The analysis classes were: detection of

bad smells [11] and calculation of product metrics [10].

Currently, the most extensive analysis plug-in for XAF

consists of XQuery modules that are able to detect vari-

ous bad smells in software artefacts: we provide a module

that supports the detection of generic bad smells that relate

to code duplication, long statement blocks, long parameter

lists, magic numbers, and nested conditionals. In addition,

we have developed a module that is able to detect instances

of 14 bad smells specific to TTCN-3 [22].

In the following, XQuery functions for the detection of

the bad smells Magic Number, Long Parameter List, and

Duplicate Code in Conditionals are presented in detail. The

bad smell Magic Number refers to the usage of hard-coded

numbers instead of symbolic constants. Long Parameter

List refers to confusingly long parameter lists and Dupli-

cate Code in Conditionals relates to conditional statements

containing the same branches more than once.

The bad smell Magic Number is detected by iterating

over all numeric values (listing 9, line 3). The following

where clause (lines 5 and 6) skips numeric values in con-

stant definitions and those values of an ignore list, which

was passed to the function as a parameter in line 1. Finally,

the found magic value is returned in line 7.

The second smell detection function (listing 10) searches

for instances of a Long Parameter List and makes use of

an XQuery for loop to iterate over all parameterisable con-

structs like functions or classes (lines 3 and 4). The param-

eters of such constructs are bound to an XQuery variable in

lines 5 and 6. The number of parameters required to qual-

ify a parameter list as too long is passed in as parameter

in line 1. It is compared to the number of parameters of

the current construct which is computed in line 7. If the

comparison evaluates to true, the construct having a long

parameter list is finally returned.

1 declare function smell:magic-number($ignore)

2 {

3 for $value in facade:get-numeric-values(())

4 (: skip constants and values in the ignore list :)

5 where not(facade:is-const-value($value)) and

6 not(functx:is-value-in-sequence($value, $ignore))

7 return $value

8 };

Listing 9. XAF smell detection function for

the smell Magic Number

1 declare function smell:long-parameter-list($floor)

2 {

3 for $parametrizable-construct in

4 facade:get-parametrizable-constructs(())

5 let $parameters :=

6 facade:get-parameters($parametrizable-construct)

7 where count($parameters) > $floor

8 return $parametrizable-construct

9 };

Listing 10. XAF smell detection function for

the smell Long Parameter List

Listing 11 shows a simplified version of the smell detec-

tion function to find Duplicate Code in Conditionals. Each

duplicate search starts with the definition of the scope for

the comparison—in this case all blocks (line 3). For each

block, all then and else branches are selected (lines 4–8)

to be checked for duplicate code. The actual comparison

is performed by the function find-duplicates() that is pro-

vided by an XAF library module as described at the end

of section 3. In line 9 of listing 11, this function is called

with the XML nodes that have been retrieved in lines 3–8.

Hence, the find-duplicates() function line 9 will return all

then and else branches that are exact duplicates in the XML

representation of the analysed software artefact.

A second class of analyses that has been realised using

XAF is the calculation of metrics. Listing 12 shows an ex-

ample that calculates the metric Lines of Code which counts

all non-empty and non-comment lines of a source code file.

Using XQuery and the facade layer interface, this is done

by iterating over all files (line 3) and returning for each file

an XML element lines-of-code (line 4). Each of these el-

ements contains the according filename as attribute (line 5)

and the number of lines of code as content. The calcula-

tion of the lines of code is based on the location informa-

tion contained in the XML document: the line information

where each entity of the source code starts and ends are

joined in one sequence (lines 7 and 8). The total number of

the distinct values of this sequence corresponds to the lines

of code (calculated using the XQuery functions count() and

distinct-values() in line 6).



1 declare function smell:duplicate-code-in-conditionals()

2 {

3 for $scope in facade:get-blocks(())

4 let $to-compare := (

5 let $if := facade:get-if-constructs($scope)

6 return (facade:get-if-branch($if) |

7 facade:get-else-branch($if))

8 )

9 return lib:find-duplicates($to-compare)

10 };

Listing 11. XAF smell detection function for

the smell Duplicate Code in Conditionals

1 declare function metric:lines-of-code()

2 {

3 for $file in facade:get-files(())

4 return element lines-of-code {

5 facade:get-filename($file),

6 count(distinct-values(

7 (facade:get-lines($file),

8 facade:get-line-ends($file))

9 ))

10 }

11 }

Listing 12. XAF metric calculation function

for the metric Lines of Code

Some analysis functions may make assumptions that are

not valid for all analysis targets: for example, a smell detec-

tion function that relates to the existence of goto statements

is not reasonable applicable for UML as the notion of goto

is not part of UML; it depends on the developer of the fa-

cade layer how these cases are handled: a facade layer func-

tion that just returns an empty result may be implemented

or—by not implementing a facade layer function—an error

may be thrown at run-time indicating that the corresponding

analysis is not applicable.

To support the detection of bad smells on different tar-

gets, we have developed corresponding facade layer mod-

ules for Java, UML, and TTCN-3. By providing the dif-

ferent facade layer modules, it was possible to re-use the

previously described analysis functions without changes.

The developed facade layer for Java artefacts expects

as XML representation the srcML format. This format

can automatically be generated from Java source code us-

ing the src2srcml tool from the srcML toolkit [16]. The

XQuery functions of the Java facade layer that are re-

quired for supporting the XQuery analysis function that de-

tects instances of the bad smell Long Parameter List (see

listing 10) are shown in listing 13. For reasons of clar-

ity, only functions are treated as parameterisable constructs

for the following facade implementations. Therefore, the

function in lines 1–3 of listing 13 just delegates calls to

1 declare function get-parametrizable-constructs($n) {

2 facade:get-functions($n)

3 };

4 declare function facade:get-functions($n) {

5 facade:get-node($n)//function

6 };

7 declare function facade:get-parameters($n) {

8 facade:get-node($n)//parameter_list/param

9 };

Listing 13. Facade functions for Java in
srcML flavour

1 declare namespace UML = "org.omg.xmi.namespace.UML";

2 declare function facade:get-functions($n) {

3 facade:get-node($n)//UML:Operation

4 };

5 declare function facade:get-parameters($n) {

6 facade:get-node($n)//UML:BehavioralFeature.parameter/

UML:Parameter

7 };

Listing 14. Facade functions for UML in XMI

flavour

get-functions(). Java functions correspond to function el-

ements in the srcML document (line 5 of listing 13). The

associated parameters can be found in the param sub-nodes

of parameter_list elements (line 8).

The facade layer for UML expects that UML models are

represented using the XMI format that is provided by mod-

ern UML tools. Listing 14 shows again the facade func-

tions that are required by the smell detection function for

Long Parameter List. The only kind of considered parame-

terisable constructs are UML operations (as, e.g., defined in

class diagrams) that are matched by the XQuery expression

in line 3 of listing 14. Line 6 navigates to the associated

parameters of the parameter list in the XMI representation.

The facade layer function get-parametrizable-constructs()

is the same for the srcML and UML facade and therefore

not repeated in listing 14.

The support for targeting TTCN-3 test specifications

has been realised by integrating XAF into the Eclipse-

based open-source TTCN-3 tool TRex [20, 21, 33]. TRex

provides advanced IDE functionality for the standardised

TTCN-3 language [7]. TTCN-3 has a textual C-like syntax

and TRex uses internally a TTCN-3 parser that creates an

AST and a symbol table from TTCN-3 files. The XAF in-

tegration into the TRex IDE includes the automatic conver-

sion of the TTCN-3 AST to XML. Listing 7 that has been

described in section 3 shows an excerpt of the TTCN-3 fa-

cade layer that operates on the XML representation of the

TRex TTCN-3 AST.



Figure 2. Integration of XAF into the TRex IDE

The user interface that has been created as part of the

integration of XAF into the TRex IDE supports the execu-

tion of analysis runs which consist of arbitrary numbers of

analysis functions from any analysis plug-in modules avail-

able, the structured display of analysis results, and the addi-

tion of user-defined XQuery analysis rules to extend the set

of 20 predefined smell detection functions. Figure 2 gives

an impression how the dialogue for the definition of user-

defined queries looks like and how search results are pre-

sented.

An evaluation of the XAF integration into the TRex IDE

revealed that the framework implementation satisfies the

most important requirements: the analysis results are cor-

rect, new user-defined rules can easily be added, and the

performance is satisfactory.

The instantiation of XAF for the detection of bad smells

in TTCN-3 test suites allowed the comparison with our pre-

vious TTCN-3 smell detection tool that was implemented

purely in Java [19]: The XAF-based approach detected the

same instances of bad smells in TTCN-3 test suites as the

Java-based tool that we used as reference did.

In terms of efforts, using XAF and high-level XQuery

expressions made it possible to implement more smell de-

tection functions in less time than using the low-level Java

approach. However, in terms of run-time, the Java im-

plementation performed better than the XAF approach: an

analysis run that included the detection of duplicated code

in 15,485 lines of TTCN-3 code took 2.4 seconds with the

Java-based approach while the same analysis with XAF

took 22.3 seconds. This performance loss seems to be

the price that needs to be paid for the high-level approach.

However, there is potential for increasing the performance:

The XML representation of the TRex TTCN-3 AST is quite

elaborate and thus, the resulting XML files are relatively

large (about 1.6 megabyte per thousand lines of TTCN-3

code). This leads to longer analysis time than necessary in

particular due to the creation of the XML file by TRex and

the subsequent import of the XML file by the XQuery pro-

cessor. Other XML representations similar to srcML would

be more appropriate as they are more compact and help to

save resources.

These experiments successfully demonstrate that the

goals of a high-level description of queries and patterns,

the target-independence of the analyses, and the extensibil-

ity towards new classes and targets of analyses have been

reached.

5. Related work

Several approaches are related to XAF. The work that

is discussed in the following has the outstanding property

in common to allow a software analysis (at least mostly)

independent of the target software artefact.

Some of the XML-based representation formats, such as

scrML [16] or OOML [18], allow a unified representation

of several programming languages and can be used together

with XQuery for analysing source code. However, they sup-

port only a set of closely related programming languages

and are thus not as independent of the target software arte-

fact as XAF.

TAWK [3] makes use of the core concepts of regular ex-

pressions. It is based on the AWK language and uses a

language-independent pattern syntax which combines the

lexical power of AWK with matching support for abstract

syntax trees. “Retargeting to a new language requires [. . . ]

no special effort [. . . ] to the pattern matcher itself, since it

is language independent” [3]. While TAWK’s patterns it-

self are language-independent, the queries are restricted to

ASTs. This allows the analysis of a wide range of program-

ming languages, but is still limited compared to XAF which

supports also the analysis of software artefacts that are not

necessarily represented as ASTs, but as XML.

The Generic Transformation Language (GenTL) [31]

is an approach for software analysis based on logic-meta

programming. Although its name states that GenTL is

a transformation language, it also provides analysis ca-

pabilities. GenTL extends the logic-based programming

by so-called Concrete Syntax Patterns (CSP). CSPs are

snippets of the programming language under investigation

containing meta-variables. Those meta-variable are logic

predicates and act as placeholders for expressions of the

underlying programming language. An example GenTL

pattern matching expression that finds all classes and

binds them to the user-defined meta-variable ?allClasses

is as follows: ?allClasses is [[ class ?classname

??class_members ]]. “Since CSPs match at the AST

level, matching is not restricted to lexical structures” [2].

Hence, the above example also matches abstract classes

even though this keyword is not contained in the pat-

tern. GenTL is adapted for Java but its core concepts are



language-independent [2]. However, the usage of concrete

syntax patterns complicates the adaptation towards new

analysis targets, in particular compared to approaches like

TAWK and XAF that avoid the usage of snippets from the

analysis target language for its own analysis rules.

The Source Code Algebra (SCA) [25, 26] follows the

idea of modelling source code using an algebra. Hence,

SCA plays the same role for source code as the relational

algebra plays for relational databases. The algebra is de-

veloped as a theoretical foundation for a powerful source

code query system. The benefits of using SCA include the

integration of structural and flow information and the abil-

ity to process high-level source code queries using SCA

expressions. The SCA query language itself is domain-

independent which is a valuable feature and means that

an implementation of an SCA query processor works un-

changed across different SCA domain models [25]. But

as SCA domain models vary from one programming lan-

guage to another, each model must be redesigned and im-

plemented to reflect the specifics of a given programming

language. Furthermore, while XAF is a generic analysis

framework which allows the analysis of source code as well

as other software artefacts, SCA is strictly bound to the

analysis of source code.

PMD [27] is a tool for scanning Java source code for

potential problems. Even though this approach is not lan-

guage independent at all, it is presented here as it makes

use of XPath to analyse software artefacts and therefore, it

is related to XAF. However, PMD is limited compared to

XAF as it is restricted to Java. Additionally, PMD makes

use of XPath 1.0 while XAF benefits from XQuery 1.0 that

includes XPath 2.0. A potential advantage of PMD over

XAF is its application programming interface which allows

also the addition of new powerful analysis rules in a proce-

dural way—compared to the pure XQuery-based approach

of XAF.

6. Summary and outlook

We presented our XQuery-based Analysis Framework

(XAF) for a flexible quality assurance of software artefacts:

analysis rules can be easily specified with a high-level ap-

proach based on queries and pattern matching expressions.

In contrast to comparable approaches, no proprietary rule

language needs to be learnt for XAF—instead the stan-

dardised XQuery language is used. The power of XQuery

removes the burden of implementing the actual low-level

matching of patterns.

Due to its layered design, XAF allows the creation of

analysis rules that are independent of the target software

artefact. Thus, it is easy to support domain-specific lan-

guages that are frequently used in software testing. A fa-

cade layer is used for the adaptation of the abstract XQuery

analysis rules to individual XML representations of the

target software artefacts. Thus, facade layer implementa-

tions and analysis rules can be independently re-used for

analysing different kinds of software artefacts or for differ-

ent classes of analyses respectively. XAF is available as

open-source software as part of the TRex TTCN-3 Refac-

toring and Metrics tool project [33].

Several instantiations of the framework for varying tar-

gets and analyses were used to validate the applicability

of XAF. Experiences with developing analyses for detect-

ing bad smells in TTCN-3 test specifications showed that it

is easier and faster to create analysis rules using high-level

XQuery expressions and the functionality provided by XAF

than implementing the same rules on a low-level in Java.

As future work, we would like to use XAF for further

classes of analyses, e.g. for the recovery of test patterns

in TTCN-3 test specifications and for supporting traceabil-

ity between test purposes and test cases by identifying sce-

narios specified with the semi-formal test purpose language

TPLan [8, 30] in TTCN-3 test case specifications, i.e. analy-

ses across the boundary of one language.
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