
Georg-August-Universität
Göttingen
Institut für Informatik

ISSN 1611-1044
Nummer IFI-TB-2006–02

Technischer Bericht

TRex – The Refactoring and Metrics Tool for
TTCN-3 Test Specifications

Benjamin Zeiss, Helmut Neukirchen, Jens Grabowski,
Dominic Evans, Paul Baker

Technische Berichte
des Instituts für Informatik

an der Georg-August-Universität Göttingen

3. August 2006



Georg-August-Universität Göttingen
Institut für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.ifi.informatik.uni-goettingen.de



TRex – The Refactoring and Metrics Tool for
TTCN-3 Test Specifications

Benjamin Zeiss1

Helmut Neukirchen1

Jens Grabowski1

Dominic Evans2

Paul Baker2

1 Software Engineering for Distributed Systems Group,
Institute for Informatics, University of Göttingen, Lotzestr. 16-18, D-37083 Göttingen,
Germany.
{zeiss,neukirchen,grabowski}@cs.uni-goettingen.de

2 Motorola Labs, Jays Close, Viables Industrial Estate, Basingstoke, RG22 4PD, UK
{vnsd001,Paul.Baker}@motorola.com

Abstract

The comprehensive test of modern communication systems leads to large and complex
test suites which have to be maintained throughout the system life-cycle. Experience
with those written in the standardised Testing and Test Control Notation (TTCN-3) has
shown that the maintenance of test suites is a non-trivial task and its burden can be
reduced with appropriate tool support. To this aim, we have developed the TRex tool,
published as open-source tool under the Eclipse Public License, which supports the
assessment and automatic restructuring of TTCN-3 test suites by providing suitable
metrics and refactorings. This paper presents TRex, its functionality, and its implemen-
tation.

Keywords

Testing, TTCN-3, Tool, Eclipse, Refactoring, Metrics, Quality Assurance

A short version of this technical report has been published in the proceedings of the
TAIC PART (Testing: Academic & Industrial Conference – Practice And Research Tech-
niques) workshop 2006 [1].

1



1 Introduction

The Testing and Test Control Notation (TTCN-3) [6, 12] is a test specification and test
implementation language standardised by the European Telecommunications Stan-
dards Institute (ETSI) and the International Telecommunication Union (ITU). While
TTCN-3 has its roots in functional black-box testing of telecommunication systems,
it is nowadays also used in other domains such as Internet protocols, automotive,
aerospace, or service-oriented architectures. TTCN-3 can be used not only for specify-
ing and implementing functional tests, but also for scalability, robustness or stress tests.
TTCN-3 is based on a textual core notation and several presentation formats [7, 8].
Commercial TTCN-3 tools [14, 17, 18] and in-house solutions support editing test suites
and compiling them into executable code. By implementing the interfaces of the stan-
dardised TTCN-3 runtime environment [9, 10], these tools also allow TTCN-3 test cam-
paigns to be managed and executed.
Experience within Motorola has shown that not only editing and executing TTCN-3 test
suites, but also maintenance of TTCN-3 test suites is an important issue which requires
tool support [2]. For example, the conversion of a legacy test suite for a UMTS based
component to TTCN-3 resulted in 60,000 lines of code which were hard to read, hard
to (re-)use, and hard to maintain.
Currently, no tools for assessing and improving the quality of TTCN-3 test suites exist.
To this end, Motorola has collaborated with the University of Göttingen to develop a
TTCN-3 refactoring and metrics tool, called TRex. The initial aims of TRex were to:
(1) enable the assessment of a TTCN-3 test suite with respect to lessons learnt from
experience, (2) provide a means of detecting opportunities to avoid any issues, and
(3) a means for restructuring TTCN-3 test suites to improve them with respect to any
existing issues. To let others participate in our tool and to participate in contributions
from others, we have made TRex a general open-source quality assurance and quality
improvement tool for TTCN-3 test suites.
This paper is structured as follows: In the next section, we will give an overview of
TRex’s functionality following with a description of the implementation in Section 3. In
Section 4 we explain the open-source availability of TRex before concluding with a
summary and outlook.

2 Functionality of the TRex tool

TRex is implemented as an Eclipse plug-in and therefore, everyone who has experience
with the Eclipse Platform [5], e.g. by using the popular Java Development Tools (JDT),
will immediately feel comfortable with TRex. The TTCN-3 perspective of TRex (Fig-
ure 1) allows editing of TTCN-3 core notation as well as assessing and improving the
quality of TTCN-3 test suites.

2.1 Editing

The individual files of a TTCN-3 test suite are organised into projects. The Navigator
view (left hand side of Figure 1) allows these projects to be explored and files to be

2



Figure 1: The TRex TTCN-3 perspective

selected for editing. TRex provides an editor (centre of Figure 1) with syntax highlighting
and syntax checking1 which is performed on-the-fly while typing. Syntax errors are
listed in the Problems view (bottom of Figure 1) and as error markers within the editor
window itself. In addition, the Outline view (right hand side of Figure 1) provides a
tree representation of the TTCN-3 structure for the currently edited file and supports
navigation by double-clicking on its elements.
To facilitate typing of descriptive but long identifiers, a Content Assist functionality (cen-
tre of Figure 1) can be used. Content Assist makes suggestions to complete identifiers
based on the typed prefix which is used to match identifiers declared in the test suite.
Further assistance on identifiers is provided by a Text Hover 2 which is activated if the
mouse pointer is moved over an identifier: in this case, type and scope information for
that identifier is displayed. If this information is not sufficient, TRex provides the Open
Declaration2 functionality to jump to the location where the corresponding element is
declared. To identify all locations where a certain element is referenced, the Find Ref-
erences2 functionality can be used; all found referencing locations for the given element
being displayed in the TTCN-3 References view.
Finally, to ease proper formatting of TTCN-3 core notation, a Formatter may be run to
beautify existing TTCN-3 files and can be configured to use different coding styles.

1TRex supports the latest available version of the TTCN-3 core language specification (v3.1.1).
2For Text Hover, Open Declaration, and Find References, no screenshot is provided.

3



2.2 Compiler integration

To allow the edited tests to be compiled and run either against a real or an emulated
system under test, it is necessary to provide integration between TRex and a suitable
TTCN-3 to target language (C, Java, etc.) compiler. In order to provide a consistent user
experience, the chosen external compiler simply has to support commandline usage
and provide a defined and regular format for any error messages that might arise. Cur-
rently, we have included support for invoking the Telelogic Tau G2/Tester [17] analyser
and compiler t3cg from within the TTCN-3 perspective. Warnings and errors generated
by this process are collated into the Problems view whilst all generated files appear in
the Navigator view (see Figure 1 for default view locations).

2.3 Refactoring

As a powerful means for improving the quality of TTCN-3 test suites, TRex is able to
restructure test suites in an automated way. This is achieved by using refactoring which
is defined as “a change made to the internal structure of software to make it easier
to understand and cheaper to modify without changing its observable behavior ” [11].
While refactoring is well known for implementation languages like Java, it has not been
systematically studied for TTCN-3. Thus, we developed a catalogue of 49 refactorings
applicable for TTCN-3 [20, 21]. In TRex, we have begun implementing those refactor-
ings which we believe would improve the maintainability of Motorola’s test suites and
have so far completed the Inline Template, Inline Template Parameter, and Rename
refactorings. As an example, we will describe the Inline Template refactoring in detail.
For specifying test data, TTCN-3 uses so called templates. A template may either be
defined as a named entity on its own or “on-the-fly” using an inline template notation.
The first way promotes re-use since a template definition may be referenced at several
locations. In contrast, test behaviour may be easier to understand if it uses inline tem-
plates, since inline templates define test data at the same location where it is actually
used for sending or receiving.
The Inline Template refactoring allows a template reference to be transformed into its
semantically equivalent inline template notation. The application of this refactoring is
particularly reasonable if a template is only referenced once. When applying this refac-

Figure 2: Wizard for the configuration of the Inline Template refactoring

4



Figure 3: Wizard for the preview of the Inline Template refactoring

toring to a template reference, TRex opens a wizard dialogue which offers configuration
for the Inline Template refactoring. As shown in Figure 2, it is possible to remove the
declaration of a template if it was referenced only once and the Formatter may addition-
ally be used to obtain a pretty-printed template. Before a refactoring is actually applied,
the refactoring wizard displays a preview of all resulting changes (Figure 3).
These refactorings are typically semi-automated, since the user still has to identify lo-
cations where they should be applied (as known from JDT for example). However, as
shown in the next section, TRex can also automatically identify such locations.

2.4 Metrics

As part of TRex we are investigating the application of metrics to give an indication
of both the overall quality of a TTCN-3 test suite and any locations where it might be
beneficial to apply a particular refactoring. For this we have defined several TTCN-3
specific examples, based on well-known software metrics, which will be briefly outlined
below (full description is available in our previous paper on TTCN-3 refactoring [21]).
We have implemented basic linguistic metrics in the TRex tool, including Number of . . .
and References to . . . for various definitions and types as well as a measure, labelled
Template coupling, of the dependency between test behaviour and test data (in the form
of template definitions). Figure 4(a) shows the TTCN-3 Metrics view.
Based on these metrics, we have defined several rules [21] by which the templates
of a TTCN-3 test suite can be analysed, e.g. looking at number of references, use of
parameters, commonalities, etc. From these, TRex is able to identify problematic code
fragments and to suggest suitable refactorings. For example, templates which could be
removed, inlined, or merged into a common parametrised version. These suggestions

5



(a) TTCN-3 Metrics view (b) TRex’s Quick Fix suggestion

(c) TRex’s rule-based refactoring suggestions

Figure 4: TRex’s Metrics-based functionality

are displayed in the Problems view as warnings (Figure 4(c)) and can either be treated
merely as indicators that should be taken into account whilst working on the test suite,
or an associated Quick Fix can be invoked via the context menu to perform a suggested
refactoring automatically (Figure 4(b)).

3 Implementation of the TRex tool

TRex is implemented in Java as a set of plug-ins for the Eclipse Platform [5]. Building
on Eclipse is attractive from the developer’s point of view as it is well documented
and supported, and provides many ready-to-use components for the implementation
of an Integrated Development Environment (IDE). Such components include project
and file management (workspace) and a graphical user interface (workbench) which
can be configured to match the typical layout of an IDE. In fact, the majority of TRex’s
functionality is built upon abstract implementations provided by Eclipse.

6



(3) Quality Assessment (2) Automated Refactorings

(1) Static Analysis

Eclipse Platform User
Interface

Resource
Management

Text
Editor

Language
Toolkit

...

TTCN-3
Core

Notation

ANTLR
Lexing,
Parsing

Refactoring 
Processor

Refactored
TTCN-3

Core
Notation

Transformed 
Subtree of the
Syntax Tree

Pretty Printer

Change 
Weaver

Syntax Tree /
Symbol Table

Metrics

Rule-Based Refactoring Suggestions

Figure 5: The TRex tool chain

Figure 5 shows the TRex tool chain: the Eclipse Platform provides the basic IDE in-
frastructure. The TRex components build on top of the Eclipse Platform. They are
explained in the subsequent sections.

3.1 Static analysis

The foundation for most functionality in TRex is the TTCN-3 parser and the resulting
syntax tree3. For building up the syntax tree for a test suite we use ‘ANother Tool
for Language Recognition’ (ANTLR) [15], a parser generator which supports lexing,
parsing, and syntax tree creation and traversal. For tree traversal, ANTLR uses tree
grammars (e.g. the pretty printer uses a tree grammar enriched with semantic actions
for the syntax reconstruction).
Most of the advanced functionality of TRex requires additional information for TTCN-3
identifiers, such as the identifier’s type, or the syntax tree node of its declaration. To eas-
ily find this information, a symbol table was implemented. Its underlying data structure
is a red-black tree. Although symbol tables commonly use hash tables, the red-black
tree provides a more efficient way to implement the Content Assist feature while retain-
ing a generally good performance. As TRex uses multiple passes, the symbol table
is stored statically. Each symbol table is part of its scope and the scopes are again
organised as a tree.
The syntax tree and the symbol table provide the basis upon which most of TRex’s
present functionality is implemented, e.g. the metrics and refactoring implementations
both use them. For the quality assessment and the automated refactorings, the source
files in TTCN-3 core notation are analysed first (Block (1) in Figure 5). In this step, the
lexer creates a token stream which is used by the parser for syntactical validation and
for building the syntax tree. In addition, the symbol table is also created here.

3An alternative approach would be to build up a TTCN-3 meta model [16] representation of a TTCN-3
test suite and to use this representation instead of the syntax tree.

7



3.2 The refactoring implementation in general

The refactoring implementations make use of the Eclipse Language Toolkit (LTK) which
provides abstract classes for semantic preserving workspace transformations and cus-
tomisable wizard pages for the user interaction. The benefit of such wizard pages is, for
example, an integrated preview pane that can be used to compare the original source
to the refactored source side by side. Most automated refactorings in TRex currently
involve the selection of the concerned identifiers (e.g. the identifier to be renamed in the
case of the Rename refactoring) or code parts in the editor. Therefore, a data structure
(called rangemap) is needed to find the syntax tree nodes which are associated to ed-
itor cursor positions or selections. In TRex, every interaction between the syntax tree,
the symbol table and the editor is based on text offset positions rather than lines and
columns. This is because Eclipse interprets tab stops differently in offsets and columns.
Each identifier which should be stored in the rangemap data structure is identified by a
range: a start offset and an end offset. The data structure chosen for the rangemap is
again a red-black tree and the offset ranges are used as keys.
Block (2) in Figure 5 depicts how the automated refactorings are realised. On the basis
of the static analysis step (Block (1)), the workspace transformations can be calculated
once the concerned syntax tree node (or nodes respectively) has been found through
the identifier rangemap and the user entered any required information in the refactoring
wizard.
The transformation of the workspace resources (i.e. text files) is realised with a pro-
grammatic text editor provided by the Eclipse Platform. It supports copy, paste, move,
delete, insert, and replace operations. These operations are used to weave only the
textually changed parts into the original TTCN-3 source files. Therefore most of the
original formatting is preserved. In some cases an intermediate step involving a syntax
tree transformation may become necessary, in order to calculate the required changes.
In this case, the TTCN-3 core notation to be weaved into the original TTCN-3 source
files is obtained by the pretty printer. Applying multiple changes to a single file is sup-
ported by the programmatic editor by automatically tracking changing offset positions.

3.3 Individual TTCN-3 refactorings

The Rename refactoring is based on a reference finder algorithm which traverses all
visible syntax subtrees of a symbol declaration and uses the symbol table to detect
whether every reference found with the same name also has the same declaration.
This algorithm is highly reusable and is also an essential part of the TTCN-3 References
view, the Inline Template refactoring and rule-based refactoring suggestions.
The Inline Template refactoring uses the symbol table to obtain the declaration of a
template reference and the pretty printer to generate a template body for the inline tem-
plate. This template body is rewritten into a syntactically correct inline template which
means that its type description is added. Templates using the TTCN-3 modifies con-
cept require a different inline template syntax which is also supported by TRex. In the
case of parametrised templates, the template parameters are inlined into the template
body first. Since inlining of template parameters is also required for the Inline Template
Parameter refactoring, the implementation of this refactoring works in a similar way.

8



3.4 Metrics and rule-based refactoring suggestions

Metrics are measured immediately after the syntax tree for a test suite has been built or
updated (Block (3) in Figure 5). The tree is then fully traversed; all definitions that met-
rics will be calculated for (e.g. altstep, function, template, etc.) are recorded and all com-
munication statements (send and receive) are processed to derive Template coupling
scorings. References to all of these are calculated in a further pass of the tree, hence
giving enough information for the basic linguistic metrics (described in Section 2.4) to be
displayed. Then all templates found in the first step are processed one-by-one against
the analysis rules, using the previously calculated referencing information as well as
further inspection of their structure.
Once this has completed, the rule findings are associated with the templates in the form
of customised Eclipse marker objects which are automatically displayed in the Prob-
lems view. Quick Fixes are resolved for each of them based on extended attributes
which indicate the detected situation and hence some corresponding suggestion(s)
from the rule set.

4 Open source availability

TRex is released under the Eclipse Public License (EPL) [4] and is publicly available at
its website [19]. Since most TTCN-3 tools are either commercial or in-house solutions,
we hope that TRex makes TTCN-3 more popular (e.g. for educational purposes).
In addition to the University of Göttingen, Motorola UK has already contributed huge
development efforts into TRex. We invite interested Java programmers to contribute as
well to the development of TRex. Due to the nature of the EPL, the development of
in-house extensions or commercial third-party plug-ins for TRex is possible as well. For
such purposes, further TRex specific extension points can be introduced.

5 Summary and outlook

We presented TRex, a general open-source quality assessment and quality improve-
ment tool for TTCN-3 test suites. TRex is implemented as an Eclipse plug-in and pro-
vides metrics and refactoring for TTCN-3. Furthermore, special rules, which interpret
metric values, support an automatic refactoring of TTCN-3 test suites.
Future versions of TRex will include enhanced editing functionality and further metrics,
refactoring, and analyses for TTCN-3 test suites. Therefore, we have started to im-
plement control-flow- and call-graphs for TTCN-3 behaviour [22]. These graphs will be
used, for example, to provide complexity metrics and to allow the detection of anomalies
in the control- and data-flow.
Besides these improvements to the existing functionality, we plan to add two major
components to TRex:
Firstly, the use of metrics to assess the quality of TTCN-3 test suites and to suggest
appropriate refactorings is only one possible approach. A further approach, which we
would like to pursue, is to identify anti-patterns [3], i.e. inappropriate usage of TTCN-3

9



(so called “bad smells”). In contrast to the calculation of metrics, this requires a pattern-
based approach to be implemented, e.g. to identify duplicate code.
Secondly, in contrast to the application of automated refactorings, manual refactoring of
tests suites is error prone. To additionally support manual refactoring of test suites, we
would like to add a component which allows the observable behaviour of a test suite to
be verified as being the same before and after a refactoring is performed. This will be
done by implementing a bi-simulation [13] tool, which executes and compares the two
variants of the test suite in parallel.
In addition to the tool development, we have also started to analyse existing real-world
TTCN-3 test suites in order to determine appropriate boundary values for our metrics.
Without these, the interpretation of metric findings may be very difficult.
TRex is an open-source tool and freely available under the Eclipse Public License. We
invite the TTCN-3 community to use the tool, share their experience, and participate in
the future development of TRex.

6 Bibliography

[1] P. Baker, D. Evans, J. Grabowski, H. Neukirchen, and B. Zeiß. TRex – The Refac-
toring and Metrics Tool for TTCN-3 Test Specifications. In Proceedings of TAIC
PART 2006 (Testing: Academic & Industrial Conference – Practice And Research
Techniques), Cumberland Lodge, Windsor Great Park, UK, 29th-31st August 2006.
IEEE Computer Society, August 2006.

[2] P. Baker, S. Loh, and F. Weil. Model-Driven Engineering in a Large Industrial
Context – Motorola Case Study. In L. Briand and C. Williams, editors, Model
Driven Engineering Languages and Systems: 8th International Conference, MoD-
ELS 2005, Montego Bay, Jamaica, October 2-7, 2005, volume 3713 of Lecture
Notes in Computer Science (LNCS), pages 476–491. Springer, May 2005.

[3] W.J. Brown, R.C. Malveau, and H. McCormick. Anti-Patterns. Wiley, 1998.

[4] Eclipse Foundation. Eclipse Public License – Version 1.0. www.eclipse.org/

legal/epl-v10.html.

[5] Eclipse Foundation. Eclipse. http://www.eclipse.org, 2006.

[6] ETSI European Standard (ES) 201 873-1 V3.1.1 (2005-06): The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language. European Telecom-
munications Standards Institute (ETSI), Sophia-Antipolis, France, also published
as ITU-T Recommendation Z.140, 2005.

[7] ETSI European Standard (ES) 201 873-2 V3.1.1 (2005-06): The Testing and
Test Control Notation version 3; Part 2: TTCN-3 Tabular Presentation For-
mat (TFT). European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France, also published as ITU-T Recommendation Z.141, 2005.

10



[8] ETSI European Standard (ES) 201 873-3 V3.1.1 (2005-06): The Testing and Test
Control Notation version 3; Part 3: Graphical Presentation Format for TTCN-
3 (GFT). European Telecommunications Standards Institute (ETSI), Sophia-
Antipolis, France, also published as ITU-T Recommendation Z.142, 2005.

[9] ETSI European Standard (ES) 201 873-5 V3.1.1 (2005-06): The Testing and
Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI). Eu-
ropean Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France,
also published as ITU-T Recommendation Z.144, 2005.

[10] ETSI European Standard (ES) 201 873-6 V3.1.1 (2005-06): The Testing and Test
Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI). European
Telecommunications Standards Institute (ETSI), Sophia-Antipolis, France, also
published as ITU-T Recommendation Z.145, 2005.

[11] M. Fowler. Refactoring – Improving the Design of Existing Code. Addison-Wesley,
1999.

[12] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, and C. Willcock.
An Introduction into the Testing and Test Control Notation (TTCN-3). Computer
Networks, 42(3), June 2003.

[13] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science (LNCS). Springer, 1980.

[14] OpenTTCN Oy OpenTTCN Tester for TTCN-3. http://www.openttcn.com/

Sections/Products/OpenTTCN3, 2006.

[15] T. Parr. ANTLR parser generator. http://www.antlr.org, 2006.

[16] I. Schieferdecker and G. Din. A Meta-model for TTCN-3. In M. Núñez, Z. Maamar,
F.L. Pelayo, K. Pousttchi, and F. Rubio, editors, Applying Formal Methods: Testing,
Performance and M/ECommerce, FORTE 2004 Workshops, Toledo, Spain, Octo-
ber 1-2, 2004, volume 3236 of Lecture Notes in Computer Science (LNCS), pages
366–379. Springer, 2004.

[17] Telelogic Tau/Tester. http://www.telelogic.com/corp/products/tau/tester/

index.cfm, 2006.

[18] Testing Technologies TTworkbench. http://www.testingtech.de/products/

ttwb_intro.php, 2006.

[19] TRex Website. http://www.trex.informatik.uni-goettingen.de, 2006.

[20] B. Zeiss. A Refactoring Tool for TTCN-3. Master’s thesis, Institute for Informatics,
University of Göttingen, Germany, ZFI-BM-2006-05, March 2006.

[21] B. Zeiss, H. Neukirchen, J. Grabowski, D. Evans, and P. Baker. Refactoring for
TTCN-3 Test Suites. In Proceedings of SAM’06: Fifth Workshop on System Anal-
ysis and Modelling, May 31–June 2, 2006, University of Kaiserslautern, Germany,

11



2006. (Extended version to appear as Refactoring and Metrics for TTCN-3 Test
Suites in the Lecture Notes in Computer Science (LNCS) series published by
Springer).

[22] B. Zeiß, H. Neukirchen, J. Grabowski, D. Evans, and P. Baker. TRex – An Open-
Source Tool for Quality Assurance of TTCN-3 Test Suites. In Proceeedings of
CONQUEST 2006 – 9th International Conference on Quality Engineering in Soft-
ware Technology, September 27–29, Berlin, Germany. dpunkt.Verlag, Heidelberg,
September 2006.

7 Authors’ biographies

Benjamin Zeiss

Benjamin Zeiss is a doctoral student (Siemens scholarship) at the Software Engineer-
ing for Distributed Systems group at the Institute for Informatics at the Georg-August
University of Göttingen. His research interests are refactoring and quality assessment
of functional tests for reactive systems. He holds a Master of Science degree in Applied
Computer Science.

Helmut Neukirchen

Dr. Helmut Neukirchen works at the Software Engineering for Distributed Systems
group at the Institute for Informatics at the Georg-August University of Göttingen. He
defended his PhD thesis on “Languages, Tools and Patterns for the Specification of Dis-
tributed Real-Time Tests”. His research combines agile methods and test specification.
Helmut Neukirchen is heading the ETSI work item “Patterns in Test Development”.

Jens Grabowski

Prof. Dr. Jens Grabowski works at Institute for Informatics at the Georg-August Uni-
versity of Göttingen, where he is head of a research group on software engineering
for distributed systems. His research interests include automatic test generation, test
specification, test languages and test methodology. Jens Grabowski is an active mem-
ber in the standardisation of TTCN-3 by ETSI and of the UML 2.0 Testing Profile by
OMG.

Dominic Evans

Dominic Evans joined the Motorola UK Research Lab as a contractor in July 2005
and has contributed to several research projects since this time. He was awarded the
degree of Master of Engineering in Computer Engineering with first-class honours from
the University of Southampton and has experience with numerous programming tools
and techniques. His current interests include software quality assurance and model-
driven engineering.

12



Paul Baker

Paul Baker is the manager of Motorola’s European System and Software Engineering
Research laboratory. He completed his MSc in Software Engineering at the University
of Oxford during which he studied formal semantics for scenario-based specification
languages and automatic test generation algorithms. Since working at Motorola, Paul
has been involved in model-driven development techniques, such as automatic code
and test generation and more recently advanced techniques for system and software
validation and verification. To support this work he has been involved in the standard-
isation of Message Sequence Charts (ITU Z.120), the graphical format for TTCN-3,
and the OMG’s UML 2.0 Test Profile. Paul has a number of patents in the area of test
generation, and the analysis of partial specifications.

13


