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t. Test 
ase generation is a means to validate the implementation of a system a posterioriwith respe
t to some given requirements imposed on the system. Current methods for the generationof test 
ases often rely on an interleaving model of the system, whi
h does not fully 
over the situationin rea
tive systems and systems with asyn
hronous 
ommuni
ation. In this paper we present anapproa
h towards the generation of distributed test 
ases, using Petri nets as the 
lass of modelsfor system, requirements and test 
ase.1 MotivationTesting is an important part of system design. In most 
ases, it is used to 
he
k the
onforman
e of an implementation to a system spe
i�
ation. For 
ommuni
ation proto
ols,this type of testing is 
alled Proto
ol Conforman
e Testing [4℄. Conforman
e testing isbased on a set of requirements, the so{
alled test purposes, ea
h of whi
h has to be
he
ked during the pro
edure of testing. Test purposes are identi�ed, spe
i�ed and lateron implemented (in form of test 
ases) by hand.With the in
reasing importan
e of distributed systems, there is also an in
reaseddemand in distributed testing, and hen
e a demand for the generation of test 
ases fordistributed testing. Yet, most methods for test generation use interleaving models of
omputation. These models are not faithful for distributed and 
ommuni
ating systems,as they do not take possibly 
on
urrent exe
utions of a
tions into a

ount.Using Petri nets, it is possible to give a �nite model for a system, even if this systemwill show an in�nite behaviour. Moreover, with spe
ial 
lasses of nets like Timed Petrinets, Algebrai
 nets or high{level Petri nets, also the in
orporation of time and dataaspe
ts is possible. There are two general views at the dynami
 behaviour of su
h a netmodel: the sequential semanti
s of a net looks at the set of its o

urren
e sequen
es, whilethe 
ausal semanti
s looks at the set of partially ordered runs or pro
esses of the net.In this paper, we provide a foundation for the generation of test 
ases for distributedsystems based on a Petri net model of a system. The net model of the system will beopen in the sense that the environment of the system will not be part of the model. Asthe systems under 
onsideration are rea
tive, i.e. 
ontinually 
ommuni
ating with theirenvironment, the test 
ases we are looking for will be (possibly distributed) models ofthat environment. We will fo
us on the 
ow of 
ontrol, but we will give some hints at thein
orporation of data and time into the pro
ess of test generation.The remainder of this paper is organised in the following way: Se
tion 2 gives somepreliminaries, providing the de�nitions of Petri nets, pro
esses and 
omponents. Se
tion



3 will give an a

ount on our approa
h, �rst formulating the problem of test generationas the �nding the solution of an inequality, then showing how to arrive at su
h a solutionby a pro
ess of approximation. We 
lose this paper with some 
on
lusions and dire
tionsfor further work in Se
tion 4.2 PreliminariesTo generate test 
ases, we need to give a formal model for the system under test (SUT).As systems 
ommuni
ate with their environment, we will use a modi�ed form of the
omponents presented in [5℄. Components are Petri nets with input and output pla
esa
ting as an interfa
e between the 
omponent and its environment. So, we �rst give somede�nition on Petri nets and a spe
ial variant of them we will be using, labelled Petrinets. As our approa
h to test 
ase generation will be based on pro
esses, we will givede�nitions for o

urren
e nets and pro
esses. The main point of these preliminaries willbe the se
tion on 
omponents and labelled 
omponents, whi
h will play a 
entral role inour approa
h.2.1 Petri netsWe �rst present the basi
 notions from Petri net theory. In this paper, we 
on
entrate onthe 
ow of 
ontrol in systems, and thus use pla
e/transition systems without 
apa
itiesand ar
-ins
riptions and their pro
esses [?℄ as basi
 formalism. We also restri
t ourselvesto T{restri
ted nets of �nite syn
hronisation [?℄.We start with the de�nition of nets, markings and system nets.De�nition 1. A triple N = (P; T ;F ) is a net, if P and T are two disjoint sets, theelements of whi
h are 
alled pla
es and transitions, and F � (P � T ) [ (T � P ), 
alledthe 
ow relation.A marking M of a net N is a mapping M : P ! N su
h that Pp2P M(p) 2 N .A system net � = (N;M0) is a net N equipped with a markingM0 of N . M0 is 
alledthe initial marking of �.As usual, elements of P , T and F are 
alled pla
es, transitions and ar
s of the net,respe
tively. A pla
e or a transition of a net N is 
alled a node of N . Sometimes, we willidentify the 
ow relation F of a net with its 
hara
teristi
 fun
tion.De�nition 2. Let N = (P; T ;F ) be a net and x 2 P [ T be a node of N . We de�ne thepreset �x of x to be �x = fx0 2 P [ T j (x0; x) 2 Fgand the postset x� of x to bex� = fx0 2 P [ T j (x; x0) 2 Fg:For a set of transitions T 0 � T we de�ne �T 0 = St2T 0 �t and T 0� = St2T 0 t�.



The minimal and maximal elements of N are de�ned by Min N = fx 2 P [T j�x = ;gand Max N = fx 2 P [ T j x� = ;g, respe
tively.A net is T{restri
ted, if Min N [Max N � P . A net N is of �nite syn
ronisation, iffor ea
h transition t 2 T the preset and postset is �nite.For the dynami
s of nets, we have to de�ne the enabling and o

urren
e of transitions.De�nition 3. A transition t is enabled under a marking M , if8p 2 P:F (p; t) �M(p):If t is enabled under the markingM , it 
an o

ur, its o

urren
e leading to a new markingM 0 (denoted M [tiM 0), whi
h is de�ned as for ea
h pla
e p asM 0(p) =M(p)� F (p; t) + F (t; p):Enabling and o

urren
e of transitions 
an be generalised to sets of transitions. A setof transitions T 0 � T is enabled under the marking M , if8p 2 P:Xt2T 0 F (p; t) �M(p):The o

urren
e of a step T 0 � T enabled under a marking M then leads to the markingM 0 (denoted M [T 0iM 0) de�ned for ea
h pla
e p 2 P byM 0(p) =M(p)�Xt2T 0 F (p; t) +Xt2T 0 F (t; p):Having presented these basi
 notions, we know go on to give a de�nition of pro
essesof Petri nets.2.2 O

urren
e Nets and Pro
essesA pro
ess of a system net is an o

urren
e net with a labelling fun
tion establishing the
orresponden
e between nodes of the o

urren
e net and nodes of the system net. First,we give a de�nition for o

urren
e nets.De�nition 4. A net K = (B;E;F ) is an o

urren
e net, if the following 
onditions hold:{ F is a
y
li
, i.e. the (irre
exive) transitive 
losure of F is a partial order, whi
h willbe denoted <K,{ for ea
h b 2 B holds j�bj � 1,{ for ea
h b 2 B the set fb0 2 B j b0 <K bg is �nite (N is �nitely pre
eeded), and{ ÆK is �nite.The elements of B and E are 
alled 
onditions and events, respe
tively.Bran
hing pro
esses are \unfoldings" of net systems 
ontaining information aboutboth 
on
urren
y and 
on
i
ts, and were introdu
ed by Engelfriet in ??. Before de�ningthe notion of a pro
ess, we �rst give a de�nition for homomorphisms on nets.



De�nition 5. Let N1 = (P1; T1;F1) and N2 = (P2; T2;F2) be two nets. A homomorphismfrom N1 to N2 is a mapping h : P1 [ T1 ! P2 [ T2 su
h that{ h(P1) � h(P2) and h(T1) � h(T2), and{ for every t 2 T1, the restri
tion of h to �t is a bije
tion between �t in N1 and �h(t) inN2, and similarly for t� and h(t)�.Thus, a homomorphism is a mapping that preserves the nature of nodes and theenvironment of transitions.De�nition 6. A bran
hing pro
ess of a net system � = (N;M0) is a pair � = (N 0; �)where N 0 = (B;E;F ) is an o

urren
e net, and � is a homomorphism from N 0 to N su
hthat1. the restri
tion of � to Min N 0 is a bije
tion between Min N 0 and fp 2 P jM(p) > 0g,2. for every e1; e2 2 E, if �e1 = �e2 and �(e1) = �(e2) then e1 = e2.It has been shown in ?? that a net system has an unique maximal bran
hing pro
essup to isomorphism. We 
all it the unfolding of the system. Let � 0 = (N 0; �0) and � = (N; �)be two bran
hing pro
esses of a net system. Then � 0 is a pre�x of � if N 0 is a subnet ofN satisfying the following:{ If a 
ondition belongs to N 0, then its input event in N also belongs to N 0, and{ if an event belongs to N 0, then its input and output 
onditions in N also belong toN 0, and furthermore{ �0 is the restri
tion of � to N 0.2.3 ComponentsYet to 
ome. . .3 Our Approa
hAfter having given all ne
essary de�nitions, we are now able to present our approa
h. Wewill �rst sket
h the idea behind it, and will then give an step by step a

ount on theapproximation pro
ess, leading from a system under test and a test purpose to a set oftest pro
esses.3.1 The IdeaIn the following, we give a short a

ount of our approa
h to the generation of test 
asesfrom Petri nets. As was already mentioned in Se
tion 2, we use open 
omponents as themodels of systems under test. This is the 
ase as we are interested in the intera
tion ofthe system with its environment.For a SUT S, we also give a so{
alled test purpose P in the form of a 
losed 
omponent,showing some behaviour we expe
t the SUT to show. This test purpose does not have to




ontain a 
omplete des
ription of the behaviour the system has to show, but may detailonly some "areas of interest". It is given as a 
omponent 
ontaining a Petri net pro
ess.So what we are looking for is another 
omponent T for a test system, whi
h 
omposedwith the SUT S should result in a 
losed 
omponent T Æ S. This 
losed 
omponent hasto show at least the behaviour of the test purpose. But what does this mean?The behaviour of a system net 
an be given by its set of bran
hing pro
esses. Thisdes
ription of behaviour is non{interleaving, it re
e
ts 
on
urren
y found in the systemunder test S and possibly in the test system T . That is, we give the semanti
s of 
ompo-nents as its set of labelled open pro
esses analogously to [3℄. Moreover, for test generationwe 
onsider isomorphism 
lasses of su
h pro
esses, that is, 
lasses of pro
esses that areisomorphi
 with respe
t to net stru
ture and labelling.What we want to �nd is a set of pro
esses that 
ontain the behaviour required by thetest purpose P. To rea
h this goal, we use a method of approximation, starting out witha pro
ess 
ontaining just the pla
es marked in the initial marking of the test purpose P,whi
h also de�nes the points of 
ontrol and observation used to test the system. From thisstarting point, we add transitions and pla
es to the pro
esses in the 
urrent set whi
h donot violate the test purpose, follow the behaviour of the system under test and enhan
ethe behaviour of the test system.This pro
ess of approximation will be terminated when a set of pro
esses has beenfound that 
ompletely 
ontain the behaviour of the test purpose. From these pro
esses,we synthesize a so-
alled open bran
hing pro
ess for the test system T . This bran
hingpro
ess will be the solution to the inequalityT Æ S v P;where T is the unknown, and the relation v between nets is de�ned suitably.3.2 Preparing the Way3.3 Approximating Test CasesWe will now show how distributed test 
ases 
an be generated in a pro
ess of approxi-mation. Our idea is the following: We take the model S and unfold it step by step. Thatis, we su

essively generate pre�xes Si of its unique bran
hing pro
ess. For ea
h of thesepre�xes, we build a 
ompletion Ti, su
h that Ti Æ Si is a 
losed 
omponent. After ea
hstep, we test whether the inequality Ti Æ Si v Pholds | if it does, we have found a test 
ase for P, if it does not, we pro
eed with thenext step in the unfolding of S.For the unfolding of the 
omponent S we use an algorithm similar to the unfoldingalgorithm given in [?℄. We �rst de�ne the notion of a possible extension of a bran
hingpro
ess with respe
t to a given system net.



De�nition 7. Let � = (N 0; �) be a bran
hing pro
ess of a 
omponent C = (�; I; O) with� = (N;M0) and N = (P; T ;F ). A possible extension of � is a tuple (t; B), where B is a
on
i
t{free set of 
onditions of � or nodes b mapping to pla
es in I, and t is a transitionof � su
h that �(B) = �t and � 
ontains no event e satisfying �(e) = t and �e = B.PE(�) denotes the set of possible extensions of �.This de�nition deviates slightly from the one given for possible extensions in [?℄.Basi
ally, we allow tokens to \magi
ally" appear at input pla
es. With this de�nition, wepro
eed to formulate the unfolding algorithm.De�nition 8. Let C = (�; I; O) be a 
omponent with � = (N;M0) and N = (P; T ;F ).Let �0 be the fun
tion proje
ting 2{tuples onto their �rst argument. We de�ne the ithunfolding of C, denoted Ci, as Ci = (�i; Ii; Oi) with �i = (Ni;M 0i). The net of Ci isde�ned to be the net 
omponent of the bran
hing pro
ess �i = (Ni; �i), whi
h is de�nedre
ursively in the following way:{ �0 = (N0; �0), where N0 = (;; P0; ;) with P0 = f(p; 0) 2 P � N jM0(p) > 0g and�0 = �0jP0{ �i+1 = (Ni+1; �i+1), where Ni+1 = (Pi+1; Ti+1;Fi+1) withPi+1 = Pi [ [(tj ;Bj)2PE(�i)(�tj � fi+ 1g)Ti+1 = Ti [ [(tj ;Bj)2PE (�i)f(tj; i+ 1)gFi+1 = Fi [ [(tj ;Bj)2PE (�i)f((b; i); (tj; i+ 1)) 2 Pi+1 � Ti+1 j b 2 �tjg[ [(tj ;Bj)2PE (�i)f((tj; i+ 1); (b; i+ 1)) 2 Pi+1 � Ti+1 j b 2 tj�gand �i+1 = �1jPi+1The initial marking M 0i of �i is de�ned as M 0i((p; 0)) = M0(p) and M 0i((p; j)) = 0 forj > 0.The interfa
es Ii and Oi of the 
omponent Ci are de�ned as Ii = (I � N) \ Pi andOi = (O � N) \ Pi, respe
tively.The last two de�nitions 
an be 
ompletely analogously given for labelled bran
hingpro
esses and unfoldings of labelled 
omponents.So now, we are able to su

essively unfold the model of the system under test. Theseunfoldings again will be (labelled) open 
omponents, whi
h we have to 
ombine with atest 
omponent in order to arrive at a 
losed system. Again, we �rst give a de�nition forpossible extensions of a test T .De�nition 9. Let S = (�S ; IS; OS; �S) be a system 
omponent, and let T = (�T ; IT ; OT ; �T )be a test 
omponent. A possible input extension for T with respe
t to S is a tuple(P; T; F; I; �) su
h that:



{ P = fp0; p1; p2g, where p0 is a maximal pla
e of �T , and p1; p2 are pla
es not 
ontainedin �T ,{ T = ftg, with t being a transition not 
ontained in �T ,{ F = f(p0; t); (p1; t); (t; p2)g{ there exists a pla
e p in OS labelled p
o : m, whi
h is not in 
on
i
t with p0,{ �T (p0) = t
 for some t
 2 TC , and{ � : 8<: t 7! p
o?m�t
p1 7! p
o : mp2 7! t
:The set of all possible input extensions of a test T with respe
t to a system S is denotedPI (T ;S).Possible output extensions of a test T with respe
t to a system S and the set PO(T ;S)of all possible output extensions are de�ned analogously.A possible (input or output) extension simply de�nes an additional transition for atest T , together with its pre- and postset, the 
ow relation around it and the labellingof pla
es and transition. The 
ondition of the intended interfa
e pla
e of the system notbeing in 
on
i
t with the pla
e the new transition will atta
h to stems from the fa
t thatthe nets of S and T are bran
hing pro
esses | the pla
e to interfa
e to in S 
ould lie ona bran
h di�erent from those 
ontaining the remaining nodes that the transition wouldbe 
onne
ted to in T .To generate a test ful�lling the given test purpose P, generate a sequen
e of test
omponents (Ti)i2N based on the sequen
e of unfoldings (Si)i2N we derived above. Ea
hof the tests Ti has to 
omplement an unfolding Si su
h that the 
omposition Ti Æ Si is
losed. Again, we de�ne the sequen
e of test 
omponents re
ursively.De�nition 10. Let (Si)i2N be a sequen
e of unfoldings of a given system 
omponent Sas de�ned in De�nition ??. Let n = jT Cj. We de�ne a sequen
e of test 
omponents (Ti)i2Nre
ursively:{ T0 = (�0; I0; O0; �0) where �0 = (N0;M0) and N0 = (P0; T0;F0), with� P0 = fp1; p2; : : : ; png being \fresh" pla
es,� T0 = F0 = I0 = O0 = ;,� M0(p) = 1 for p 2 P0, and� � : pi 7! t
i for i 2 f1; 2; : : : ; ng.{ Ti+1 = (�i+1; Ii+1; Oi+1; �i+1), where �i+1 = (Ni+1;Mi+1) andNi+1 = (Pi+1; Ti+1;Fi+1),where� Pi+1 = Pi [S(P 0;T 0;F 0;I0;�0)2PI (Ti;Si+1) P 0 [S(P 0;T 0;F 0;O0;�0)2PO(Ti;Si+1) P 0,� Ti+1 = Ti [S(P 0;T 0;F 0;I0;�0)2PI (Ti;Si+1) T 0 [S(P 0;T 0;F 0;O0;�0)2PO(Ti;Si+1) T 0,� Fi+1 = Fi [S(P 0;T 0;F 0;I0;�0)2PI (Ti;Si+1) F 0 [S(P 0;T 0;F 0;O0;�0)2PO(Ti;Si+1) F 0,� Ii+1 = Ii [S(P 0;T 0;F 0;I0;�0)2PI (Ti;Si+1) I 0� Oi+1 = Oi [S(P 0;T 0;F 0;O0;�0)2PO(Ti;Si+1)O0,� �i+1 = �i [S(P 0;T 0;F 0;I0;�0)2PI (Ti;Si+1) �0 [S(P 0;T 0;F 0;O0;�0)2PO(Ti;Si+1) �0, and



� Mi+1(p) = �Mi(p); if p 2 Pi0; otherwise:So by now we have two sequen
es of 
omponents (Si)i2N and (Ti)i2N as approximationsfor the behaviours of system under test and test system, respe
tively. But where do weterminate this pro
ess of approximation? As our ondition for termination, we stated abovethe inequality Ti Æ Si v P:A suitable 
hoi
e for the relation v is that P is embedded in the 
omponent Ti Æ Si.De�nition 11. Let C1 = (�1; I1; O1; �1) and C2 = (�2; I2; O2; �2) be two 
omponentswith �i = (Ni;Mi) and Ni = (Pi; Ti;Fi) for i 2 f1; 2g. Assuming that the transitive
losures of F1 and F2 are a
y
li
, we say that C1 v C2 if there exists a morphism h :P2 [ T2 ! P1 [ T1 su
h that:{ h(P2) � P1 and h(T2) � T1,{ h(I2) � I1 and h(O2) � O1,{ 8p 2 P2:M2(p) =M1(h(p)) ^ �2(p) = �1(h(p)), and{ 8n1; n2 2 P2 [ T2:n1 �N2 n2 ) h(n1)�N1 h(n2), where �Ni is the partial order .Hen
e, when we have Ti Æ Si v P, we know that the net of the test purposes' 
om-ponent P is embedded in the 
losed 
omponent Ti Æ Si, and we are able to terminatethe approximation. If the inequality does not hold, we pro
eed with the next level ofunfolding.But as soon as the inequality holds, we do not have that Ti is a test 
ase, as it still
an 
ontain \dead bran
hes" not leading to a state where the test purpose P has beensu

essfully 
ompleted. We have to prune out these bran
hes to arrive at a suitable test
ase.Let h be a morphism proving Ti Æ Si v P with P = ((NP ;MP); IP ; OP ; �P) . Further-more, let P 0 be the maximal set with respe
t to set in
lusion for whi
h h(P 0) = Max NPholds. We de�ne the test 
omponent T to be T = (�; I; O; �) with � = (N;M) andN = (P; T ;F ), where P = Pi\ # P 0, T = Ti\ # P 0, F = Fi \ (# P 0� # P 0), M = Mij#P 0,I = Ii\ # P 0, O = Oi\ # P 0 and � = �ij#P 0.By 
onstru
tion, the test 
omponent T exhibits the desired property.4 Con
lusions and Further WorkSo far, we have provided an approa
h for the generation of distributed test 
ases from asystem spe
i�
ation and a requirement to be 
he
ked for. As the 
lass of models we usedPetri nets for this. This de
ision opens up two di�erent ways: On the one hand, we areable to provide an interleaving semanti
s for Petri nets, giving an alternative approa
h tothe usual test 
ase generation, on the other hand, we are able to use a non{interleavingsemanti
s for Petri nets to get to something new, while our approa
h remains invariant.We have shown how to generate a test system by a pro
ess of su

essive approximations,



as we have already done in the 
ase of an interleaving model in [1℄, and how to generatea test 
ase from this system.How will we pro
eed from this point on? Our 
urrent approa
h fo
usses just on the
ontrol 
ow of systems. But for pra
ti
al test generation, also the 
ommuni
ation of datavalues plays an important role. Hen
e, we will try to extend our approa
h to also 
overdata aspe
ts of systems. For this, we will try to abstra
t from marking stru
ture, tokenstru
ture and 
ow stru
ture, as is shown in the Petri Net Cube of [2℄. We do not expe
tmu
h diÆ
ulties with this, as up to now, our approa
h does only take the stru
ture of thenet into a

ount.Also, with the in
reasing importan
e of real{time systems and the need for (auto-mated) test generation for su
h systems, an extension of our approa
h to su
h systemswould be desirable. For this, we will try to use an Petri Net Cube extended with a furtherdimension of timing information, to be as 
exible as possible.Referen
es1. volume 0. Springer{Verlag, 1997.2. volume 0. Springer{Verlag, 1998.3. H. Ehrig, A. Merten, and J. Padberg. How to Transfer Con
epts of Abstra
t Data Types to Petri Nets?EATCS Bulletin, 1997(62):106{114.4. ISO. Information Te
hnology, Open Systems Inter
onne
tion, Conforman
e Testing Methodology and Frame-work. International Standard IS{9646. ISO, Geneve, 1991.5. E. Kindler. A Compositional Partial Order Semanti
s for Petri Net Components. In P. Azema and G. Balbo,editors, Appli
ation and Theory of Petri Nets 1997, Pro
eedings, volume 1248 of LNCS. Springer{Verlag, 1997.


