Towards the Generation of Distributed Test Cases
Using Petri Nets

Stefan Heymer and Jens Grabowski

Institute for Telematics, Medical University of Liibeck, Ratzeburger Allee 160, D-23538 Liibeck, Germany
phone +49 451 500 3724, fax +49 451 500 3722
email {heymer,grabowsk}@itm.mu-luebeck.de

Abstract. Test case generation is a means to validate the implementation of a system a posteriori
with respect to some given requirements imposed on the system. Current methods for the generation
of test cases often rely on an interleaving model of the system, which does not fully cover the situation
in reactive systems and systems with asynchronous communication. In this paper we present an
approach towards the generation of distributed test cases, using Petri nets as the class of models
for system, requirements and test case.

1 Motivation

Testing is an important part of system design. In most cases, it is used to check the
conformance of an implementation to a system specification. For communication protocols,
this type of testing is called Protocol Conformance Testing [4]. Conformance testing is
based on a set of requirements, the so—called test purposes, each of which has to be
checked during the procedure of testing. Test purposes are identified, specified and later
on implemented (in form of test cases) by hand.

With the increasing importance of distributed systems, there is also an increased
demand in distributed testing, and hence a demand for the generation of test cases for
distributed testing. Yet, most methods for test generation use interleaving models of
computation. These models are not faithful for distributed and communicating systems,
as they do not take possibly concurrent executions of actions into account.

Using Petri nets, it is possible to give a finite model for a system, even if this system
will show an infinite behaviour. Moreover, with special classes of nets like Timed Petri
nets, Algebraic nets or high—level Petri nets, also the incorporation of time and data
aspects is possible. There are two general views at the dynamic behaviour of such a net
model: the sequential semantics of a net looks at the set of its occurrence sequences, while
the causal semantics looks at the set of partially ordered runs or processes of the net.

In this paper, we provide a foundation for the generation of test cases for distributed
systems based on a Petri net model of a system. The net model of the system will be
open in the sense that the environment of the system will not be part of the model. As
the systems under consideration are reactive, i.e. continually communicating with their
environment, the test cases we are looking for will be (possibly distributed) models of
that environment. We will focus on the flow of control, but we will give some hints at the
incorporation of data and time into the process of test generation.

The remainder of this paper is organised in the following way: Section 2 gives some
preliminaries, providing the definitions of Petri nets, processes and components. Section

3 will give an account on our approach, first formulating the problem of test generation
as the finding the solution of an inequality, then showing how to arrive at such a solution
by a process of approximation. We close this paper with some conclusions and directions
for further work in Section 4.

2 Preliminaries

To generate test cases, we need to give a formal model for the system under test (SUT).
As systems communicate with their environment, we will use a modified form of the
components presented in [5]. Components are Petri nets with input and output places
acting as an interface between the component and its environment. So, we first give some
definition on Petri nets and a special variant of them we will be using, labelled Petri
nets. As our approach to test case generation will be based on processes, we will give
definitions for occurrence nets and processes. The main point of these preliminaries will
be the section on components and labelled components, which will play a central role in
our approach.

2.1 Petri nets

We first present the basic notions from Petri net theory. In this paper, we concentrate on
the flow of control in systems, and thus use place/transition systems without capacities
and arc-inscriptions and their processes [?] as basic formalism. We also restrict ourselves
to T-restricted nets of finite synchronisation [?].

We start with the definition of nets, markings and system nets.

Definition 1. A triple N = (P,T;F) is a net, if P and T are two disjoint sets, the
elements of which are called places and transitions, and F C (P x T) U (T x P), called
the flow relation.

A marking M of a net N is a mapping M : P — N such that >, M(p) € N.

A system net X = (N, My) is a net N equipped with a marking My of N. My is called
the initial marking of X.

As usual, elements of P, T and F are called places, transitions and arcs of the net,
respectively. A place or a transition of a net IV is called a node of N. Sometimes, we will
identify the flow relation F' of a net with its characteristic function.

Definition 2. Let N = (P,T; F) be a net and x € PUT be a node of N. We define the
preset ex of x to be
ox={2' e PUT|(2',2) € F}

and the postset xe of x to be
re={z'€e PUT|(z,2") € F}.

For a set of transitions 7" C T' we define 1" = | J,.,» ot and T"e = |, te.

The minimal and mazimal elements of N are defined by Min N = {z € PUT |ex = ()}
and Maz N = {xz € PUT | xe = (}}, respectively.

A net is T—restricted, if Min N U Maz N C P. A net N is of finite syncronisation, if
for each transition ¢t € T the preset and postset is finite.

For the dynamics of nets, we have to define the enabling and occurrence of transitions.
Definition 3. A transition ¢ is enabled under a marking M, if
Vp € P.F(p,t) < M(p).

If t is enabled under the marking M, it can occur, its occurrence leading to a new marking
M’ (denoted M [ty M'), which is defined as for each place p as

M'(p) = M(p) — F(p,t) + F(t,p).

Enabling and occurrence of transitions can be generalised to sets of transitions. A set
of transitions 7" C T is enabled under the marking M, if

Vp € P.Y F(p,t) < M(p).

teT"

The occurrence of a step T' C T enabled under a marking M then leads to the marking
M' (denoted M [T") M') defined for each place p € P by

M'(p) =M(p) = > _F(p,t) + > _ F(t,p).

teT’ teT’

Having presented these basic notions, we know go on to give a definition of processes
of Petri nets.

2.2 Occurrence Nets and Processes

A process of a system net is an occurrence net with a labelling function establishing the
correspondence between nodes of the occurrence net and nodes of the system net. First,
we give a definition for occurrence nets.

Definition 4. A net K = (B, F; F) is an occurrence net, if the following conditions hold:

— F is acyclic, i.e. the (irreflexive) transitive closure of F is a partial order, which will
be denoted <f,

— for each b € B holds |eb] <1,

— for each b € B the set {V' € B |l <k b} is finite (N is finitely preceeded), and

— °K is finite.

The elements of B and E are called conditions and events, respectively.

Branching processes are “unfoldings” of net systems containing information about
both concurrency and conflicts, and were introduced by Engelfriet in ??. Before defining
the notion of a process, we first give a definition for homomorphisms on nets.

Definition 5. Let Ny = (P, Ty; Fy) and Ny = (P, Ty; F) be two nets. A homomorphism
from N; to N, is a mapping h : P, UT} — P, UT; such that

- h(Pl) g h(PQ) and h(TI) g h(Tg), and
— for every t € Ty, the restriction of h to et is a bijection between et in N; and eh(t) in
N,, and similarly for te and h(t)e.

Thus, a homomorphism is a mapping that preserves the nature of nodes and the
environment of transitions.

Definition 6. A branching process of a net system X = (N, M) is a pair § = (N', p)
where N’ = (B, E; F) is an occurrence net, and p is a homomorphism from N’ to N such
that

1. the restriction of p to Min N’ is a bijection between Min N" and {p € P | M(p) > 0},
2. for every eq,es € E, if ee; = @ey and p(e;) = p(ez) then e; = es.

It has been shown in ?? that a net system has an unique maximal branching process
up to isomorphism. We call it the unfolding of the system. Let ' = (N, p') and g = (N, p)
be two branching processes of a net system. Then ' is a prefiz of 3 if N’ is a subnet of
N satisfying the following:

— If a condition belongs to N’, then its input event in N also belongs to N', and

— if an event belongs to N’, then its input and output conditions in N also belong to
N’, and furthermore

— p' is the restriction of p to N'.

2.3 Components

Yet to come. ..

3 Our Approach

After having given all necessary definitions, we are now able to present our approach. We
will first sketch the idea behind it, and will then give an step by step account on the
approximation process, leading from a system under test and a test purpose to a set of
test processes.

3.1 The Idea

In the following, we give a short account of our approach to the generation of test cases
from Petri nets. As was already mentioned in Section 2, we use open components as the
models of systems under test. This is the case as we are interested in the interaction of
the system with its environment.

For a SUT S, we also give a so—called test purpose P in the form of a closed component,
showing some behaviour we expect the SUT to show. This test purpose does not have to

contain a complete description of the behaviour the system has to show, but may detail
only some "areas of interest”. It is given as a component containing a Petri net process.

So what we are looking for is another component 7 for a test system, which composed
with the SUT &S should result in a closed component 7 o S. This closed component has
to show at least the behaviour of the test purpose. But what does this mean?

The behaviour of a system net can be given by its set of branching processes. This
description of behaviour is non—-interleaving, it reflects concurrency found in the system
under test S and possibly in the test system 7 . That is, we give the semantics of compo-
nents as its set of labelled open processes analogously to [3]. Moreover, for test generation
we consider isomorphism classes of such processes, that is, classes of processes that are
isomorphic with respect to net structure and labelling.

What we want to find is a set of processes that contain the behaviour required by the
test purpose P. To reach this goal, we use a method of approximation, starting out with
a process containing just the places marked in the initial marking of the test purpose P,
which also defines the points of control and observation used to test the system. From this
starting point, we add transitions and places to the processes in the current set which do
not violate the test purpose, follow the behaviour of the system under test and enhance
the behaviour of the test system.

This process of approximation will be terminated when a set of processes has been
found that completely contain the behaviour of the test purpose. From these processes,
we synthesize a so-called open branching process for the test system 7. This branching
process will be the solution to the inequality

ToSLC P,

where T is the unknown, and the relation C between nets is defined suitably.

3.2 Preparing the Way
3.3 Approximating Test Cases

We will now show how distributed test cases can be generated in a process of approxi-
mation. Our idea is the following: We take the model § and unfold it step by step. That
is, we successively generate prefixes S; of its unique branching process. For each of these
prefixes, we build a completion 7;, such that 7; o §; is a closed component. After each
step, we test whether the inequality

TioS;EP

holds — if it does, we have found a test case for P, if it does not, we proceed with the
next step in the unfolding of S.

For the unfolding of the component & we use an algorithm similar to the unfolding
algorithm given in [?]. We first define the notion of a possible extension of a branching
process with respect to a given system net.

Definition 7. Let 5 = (N, p) be a branching process of a component C = (X, I, O) with
Y = (N,My) and N = (P,T; F). A possible extension of (3 is a tuple (¢, B), where B is a
conflict—free set of conditions of 5 or nodes b mapping to places in I, and ¢ is a transition
of ¥ such that p(B) = et and (3 contains no event e satisfying p(e) = t and ee = B.
PE(f3) denotes the set of possible extensions of 3.

This definition deviates slightly from the one given for possible extensions in [?].
Basically, we allow tokens to “magically” appear at input places. With this definition, we
proceed to formulate the unfolding algorithm.

Definition 8. Let C = (X, 1,0) be a component with ¥' = (N, My) and N = (P, T; F).
Let 7y be the function projecting 2-tuples onto their first argument. We define the ith
unfolding of C, denoted C;, as C; = (X}, I;,0;) with X; = (N;, M!). The net of C; is
defined to be the net component of the branching process 5; = (NV;, p;), which is defined
recursively in the following way:

— Gy = (No,po), where Ny = (@,Pg,@) with Py = {(p, 0) € PxN | Mg(p) > 0} and

Po = 7TO|P0 .
— Bit1 = (Niy1, piy1), where Niyy = (Pig1, Tir; Fiy1) with

Pp=pPu |J (etyx{i+1})
(tj,B;)EPE(B;)
Tm=T0 |J A{ti+1)}
(tj,B;)EPE(B;)
Fu=FU [J {((b),(t,i+1) € Pyy x Ty | b € ot}
(tj,B;)EPE(B;)
U J {(ti+1),(bi+1)) € Pyy x Tiy | b € 0}
(tj,B;)EPE(B;)

and p;1 = 7r1|Pi+1

The initial marking M] of X; is defined as M!((p,0)) = My(p) and M!((p,j)) = 0 for
7> 0.

The interfaces I; and O; of the component C; are defined as I; = (I x N) N P; and
O; = (O x N) N P;, respectively.

The last two definitions can be completely analogously given for labelled branching
processes and unfoldings of labelled components.

So now, we are able to successively unfold the model of the system under test. These
unfoldings again will be (labelled) open components, which we have to combine with a
test component in order to arrive at a closed system. Again, we first give a definition for
possible extensions of a test 7.

Definition 9. Let S = (X, Is, Os, As) be asystem component, and let T = (X7, I, O7, A1)
be a test component. A possible input extension for T with respect to S is a tuple
(P, T, F,I,\) such that:

— P ={po, p1,p2}, where pg is a maximal place of X7, and py, p» are places not contained
in ET,
— T = {t}, with ¢ being a transition not contained in X,
= F={(po, 1), (p1,1), (t, p2)}
— there exists a place p in Og labelled pco : m, which is not in conflict with py,
— A (po) = te for some tc € TC, and
t — pco?m@Qtc
— A pi—=pco:m
Ppa — tC.

The set of all possible input extensions of a test 7 with respect to a system S is denoted

PI(T, S).

Possible output extensions of a test 7 with respect to a system S and the set PO(T, S)
of all possible output extensions are defined analogously.

A possible (input or output) extension simply defines an additional transition for a
test T, together with its pre- and postset, the flow relation around it and the labelling
of places and transition. The condition of the intended interface place of the system not
being in conflict with the place the new transition will attach to stems from the fact that
the nets of S and T are branching processes — the place to interface to in S could lie on
a branch different from those containing the remaining nodes that the transition would
be connected to in 7.

To generate a test fulfilling the given test purpose P, generate a sequence of test
components (7;);en based on the sequence of unfoldings (S;);eny we derived above. Each
of the tests 7; has to complement an unfolding S; such that the composition 7; o §; is
closed. Again, we define the sequence of test components recursively.

Definition 10. Let (S;);en be a sequence of unfoldings of a given system component S
as defined in Definition ??. Let n = |7 C|. We define a sequence of test components (7;);en
recursively:

- 76 = (20,10,00,)\0) where Zg = (No, Mo) and NO = (PO,TO; Fo), with
e Py={p1,p2,...,pn} being “fresh” places,
To=Fy=1,=00=10,
My (p) =1 for p € Py, and
A te; fori € {1,2,...,n}.
= Tig1 = (Zig1, Liv1, Oig1, Aig1), where Xy = (Nip1, Miyy) and Niy = (Pigy, Tigrs Figa),
where

_ D / /

¢ i+l — PZ U U(PIaleFlally)‘l)GPI(naSi‘Fl) P U U(P,’leFlyo,’A,)EPO(ﬁaSi‘Fl) P ’
_ 7 ' '

o it =TiVUp v v rwyerrrisiny T YU e onvyeromsin T

o ' /

E+1 o F1l U U(P,7TI,F,aI,aA,)€PI(7-iaSi+1) F U U(P’,T’,F’,O’,)\’)EPO(%,Si+1) F ’

!

IZ+1 - IZ U U(P,9T,aFlaI,a)‘,)€P](7,iaSi+l) I
— !
OZ+1 o OZ U U(P,aTlsF’9OI9A’)€PO(7;aSi+1) O ?
Y. / /
At = X UUprz o neprrsin A YU mo xerosi A and

o Mi(p) = {0, otherwise.

So by now we have two sequences of components (S;);en and (7;);en as approximations
for the behaviours of system under test and test system, respectively. But where do we
terminate this process of approximation? As our ondition for termination, we stated above
the inequality

TioS CP.

A suitable choice for the relation C is that P is embedded in the component 7; o S;.

Definition 11. Let C; = (X,1;,01,\) and Co = (X5, I5,05, X3) be two components
with X; = (N;, M;) and N; = (B, T;; F;) for i € {1,2}. Assuming that the transitive
closures of F} and F; are acyclic, we say that C; C Cy if there exists a morphism A :
P,UT, — P, UT] such that:

- h/(PQ) Q P1 and h(TQ) Q Tl,

- h([Q) g Il and h(OQ) g 01,

— Vp € P,.Ms(p) = Mi(h(p)) A X2(p) = Ai(h(p)), and

— Vny,ng € PyUTy.ng <p, ng = h(ng) <y, h(ny), where <y, is the partial order .

Hence, when we have 7; 0 S; T P, we know that the net of the test purposes’ com-
ponent P is embedded in the closed component 7; o S;, and we are able to terminate
the approximation. If the inequality does not hold, we proceed with the next level of
unfolding.

But as soon as the inequality holds, we do not have that 7; is a test case, as it still
can contain “dead branches” not leading to a state where the test purpose P has been
successfully completed. We have to prune out these branches to arrive at a suitable test
case.

Let h be a morphism proving 7; 0 S; C P with P = ((Np, Mp), Ip,Op, \p) . Further-
more, let P’ be the maximal set with respect to set inclusion for which h(P’) = Maz Np
holds. We define the test component 7 to be 7 = (X, I,0,)\) with ¥ = (N, M) and
N = (P, T;F), where P=PN | P, T=TN| P, F=FnN{ P'x|P), M= M{p,
I:Iiﬂipl, 0= Oiﬂipl and \ =)\i|¢p/.

By construction, the test component 7 exhibits the desired property.

4 Conclusions and Further Work

So far, we have provided an approach for the generation of distributed test cases from a
system specification and a requirement to be checked for. As the class of models we used
Petri nets for this. This decision opens up two different ways: On the one hand, we are
able to provide an interleaving semantics for Petri nets, giving an alternative approach to
the usual test case generation, on the other hand, we are able to use a non—interleaving
semantics for Petri nets to get to something new, while our approach remains invariant.
We have shown how to generate a test system by a process of successive approximations,

as we have already done in the case of an interleaving model in [1], and how to generate
a test case from this system.

How will we proceed from this point on? Our current approach focusses just on the
control flow of systems. But for practical test generation, also the communication of data
values plays an important role. Hence, we will try to extend our approach to also cover
data aspects of systems. For this, we will try to abstract from marking structure, token
structure and flow structure, as is shown in the Petri Net Cube of [2]. We do not expect
much difficulties with this, as up to now, our approach does only take the structure of the
net into account.

Also, with the increasing importance of real-time systems and the need for (auto-
mated) test generation for such systems, an extension of our approach to such systems
would be desirable. For this, we will try to use an Petri Net Cube extended with a further
dimension of timing information, to be as flexible as possible.

References

1. volume 0. Springer—Verlag, 1997.

2. volume 0. Springer—Verlag, 1998.

3. H. Ehrig, A. Merten, and J. Padberg. How to Transfer Concepts of Abstract Data Types to Petri Nets?
EATCS Bulletin, 1997(62):106-114.

4. ISO. Information Technology, Open Systems Interconnection, Conformance Testing Methodology and Frame-
work. International Standard IS-9646. ISO, Geneve, 1991.

5. E. Kindler. A Compositional Partial Order Semantics for Petri Net Components. In P. Azema and G. Balbo,
editors, Application and Theory of Petri Nets 1997, Proceedings, volume 1248 of LNCS. Springer—Verlag, 1997.

