
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-BSC-2009-01

Bachelorarbeit
im Studiengang "Angewandte Informatik"

Refinement of Anguin’s Machine
Learning Algorithm to learning

models from TTCN-3 Test Cases

Christian Otto

am Lehrstuhl für

Lehrstuhl für Software Engineering

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

September 21, 2009

Georg-August-Universität Göttingen
Zentrum für Informatik

Goldschmidtstraße 7
37075 Göttingen
Germany

Tel. +49 (5 51) 39-17 20 10

Fax +49 (5 51) 39-1 46 93

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den September 21, 2009

Georg-August-Universität Göttingen

Bachelorarbeit

Refinement of Anguin’s Machine
Learning Algorithm to learning

models from TTCN-3 Test Cases

Christian Otto

September 21, 2009

Betreut durch Prof. Dr. Jens Grabowski und Dipl.-Inf. Edith Werner
Lehrstuhl für Software Engineering

Georg-August-Universität Göttingen

Abstract
When developing software, software tests and structured proceeding is essentially needed.

Often, because of financial restrictions, the budget to plan, analyze, design and test the soft-
ware will be reduced. A consequence of this restrictions will be an incomplete specification
of the software. Incomplete specifications can also occure if software updates were not or
not completely documented. In most cases it is not easy to reconstruct these software spec-
ifications. In summer term 2008, S. Polonski wrote a masters thesis called “Learning of
protocol-based automata“ (5). This thesis worked on the using the learning algorithm of
Angluin to learn potocol-based automata that can be used to restore software specifica-
tions. This bachelors thesis will discuss enhancements of the programm of S. Polonski. We
will discuss the use of the data format of the TTCN-3 test suite, the handling of TTCN-3
verdicts, ”any“ statements and loops.

Kurzbeschreibung
In der Softwareentwicklung sind Softwaretests und ein strukturiertes Vorgehen essen-

tiell notwendig. Oft wird auf finanziellen Gründen an Planung, Analyse, Design und
Softwaretests gespart, so dass oft nur unvollständige Softwarespezifikationen vorhanden
sind. Ebenso können die Unvollständigkeiten von Softwarespezifikationen von nicht oder
nicht ausreichend dokumentierten Aktualisierungen herrühren. In solchen Fällen ist es oft
nur schwer möglich eine korrekte Softwarespezifikation wieder her zu stellen. Im Som-
mersemester 2008 befasste sich die Masterarbeit “Learning of protocol-based automata“
von S. Polonski (5) mit diesem Thema und entwickelte einen Ansatz zum Lernen pro-
tokollbasierter Automaten. Dieser Ansatz wird in dieser Bachelorarbeit erweitert, so dass
eine Anbindung an das Datenformat der TTCN-3 Test Suite erreicht wird und die Behand-
lung von TTCN-3 Verdicts, “any”-Statements und Schleifen erreicht wird.

Danksagung
Ich möchte mich bei Edith Werner bedanken, die mich bei der Bearbeitung der Bachelo-

rarbeit immer tatkräftig unterstützte und immer nützliche Tipps parat hatte.

Contents

List of Figures 5

1 Glossary 6

2 Introduction 7

3 Foundations 9
3.1 TTCN-3 . 9

3.1.1 Verdicts . 10
3.1.2 “Any” statement and default altsteps 10
3.1.3 Ltsml data format . 11

3.2 Angluin’s Learning Algorithm . 13
3.2.1 Definitions . 13
3.2.2 The algorithm . 16

3.3 Graph walk and tree walk . 18
3.4 TraceTree data structure . 18

4 The “any” statement 20
4.1 The “any” statement in the LTSML . 20
4.2 Import of the “any” statement . 20
4.3 Handling of the “any” statement . 21

5 Handling and representation of verdicts 23
5.1 Verdicts in the ltsml . 23
5.2 Importing verdicts to the TraceTree . 23
5.3 Changes related to the algorithm . 24

6 Loop detection and handling 26
6.1 Loop detection and handling in ltsml data format 26
6.2 Loop handling in TraceTree data structure . 28

6.2.1 TraceTree data structure . 28
6.2.2 Generatig traces in TraceTree data structure using loops 29

3

Contents

7 Implementation 30

8 Case study 32
8.1 Example: The coffee machine . 32

9 Summary and outlook 39
9.1 Summary . 39
9.2 Outlook . 39

A Appendix 41
A.1 XSD specification of LTSML . 41
A.2 LTSML sample . 45
A.3 Case study example: The coffee machine . 48
A.4 Case study example 1 generated traces . 54

Bibliography 57

4

List of Figures

3.1 Base hypothesis automaton . 15
3.2 Classification tree example . 15
3.3 TraceTree example . 18

4.1 TraceTree holding an any signal example 1 21
4.2 TraceTree holding an any signal example 2 22
4.3 TraceTree holding an any signal example 3 22

6.1 Example: TraceTree with loops . 28

7.1 Basic structure of the programm . 31

8.1 Coffee Machine: Automata represented by the LTS’ 32
8.2 Coffee Machine: TraceTree sample without the use of loops 35
8.3 Coffee Machine: TraceTree created by LTSML import 36
8.4 Coffee Machine: hypothesis automaton and classification tree after one iter-

ation . 36
8.5 Coffee Machine: hypothesis automaton and classification tree final steps

(part 1/2) . 37
8.6 Coffee Machine: hypothesis automaton and classification tree final steps

(part 2/2) . 38

5

1 Glossary

ASN.1 Abstract Syntax Notation One - This is a flexible notation to describe data struc-
tures for representing, encoding, transmitting and decoding data

CSV Comma Seperated Value - A file type. The values are seperated by “,”.
DFA Deterministic finite automaton
LTS Labeled Transition System
LTSML Labeled Transition System Markup Language
MTC Master test component of an TTCN-3 test case
TRex TTCN-3 Refactoring and Metrics Tool, http://www.trex.informatik.uni-goettingen.de
TTCN-3 Testing and Test Controll Notation Version 3 - TTCN-3 is an internationally stadard-

ized language for defining test specifications
XML eXtensible Markup Language
XSD XML scheme definition

6

2 Introduction

The development process of software engineering consists of four turns. It starts by “an-
alyzing” the project and afterwards “designing” the software specifications. Now we will
have a turn of “implementation” and finally the “test” of the software. In this model, the
software tests base on the specifications created in the “analysis” and “design” phases.

In times like today, if there is a world wide economic crisis, companies will have to watch
their budgets. Because of this project managers will have to manage projects of equal size
as before the crisis started having less budget. Because of this, they often will try to reduce
the development costs as much as possible. They often try to reduce the time and costs of
the first two phases. This results often in incomplete specifications. Even, regarding the
time before this economic crisis, often specifications were not complete. Sometimes they
were not up to date or even missing completely. When using lightweight software de-
velopment processes, e.g. eXtreme programming (XP), or when not using a development
process, they will only create the documents elementary needed. Often these won’t be a
complete specification of the software.

Especially when handling with old or updated software, we will have problems find-
ing a complete specification. Old software may never had a complete specification and
if there was initially a specification, it could be lost or if this software was updated, the
specification often would be forgotten.

Incomplete of not existing specification and documentation often results in much higher
error rates and more chances to develop incompatible modules needing to be modified
again. This will cause a unnessassary need of time and budget. Often because of missing
specifications the costs of a project may increase dramatically and will need much more
time to test and after sales management.

Reconstructing these specifications of a given software is a very difficult job. Sometimes
it may be impossible because we do not have the chance to get access to the source code of
the software. In summer term 2008, S. Polonski discribed in his masters thesis “Learning
of protocol-based automata” (5) a possible attempt to use the learning algorithm of An-
gluin to learn a specification automaton by using test results of this software. If all the test
information is learned we may get a formal specification of the interfaces if the software.
Another attempt to use this learning algorithm is to rate software test suites. If all test cases
are learned and the learned automaton is equivalent to the automaton learned by using the
specification as input the test suite covers all details needed and don’t need to be extended.

This bachelors thesis bases on the masters thesis of S. Polonski in 2008 (5) and the exten-

7

2 Introduction

tions to this algorithm made by S. Karimkhani Asl, S. Withus, H. Zhang and me in 2009 (3)
during the “Projektseminar Maschinelles Lernen in der Softwaretechnik”. In winter term
2008/2009 we extended the product of the masters thesis by a new TraceTree data struc-
ture, switching the “string” signals to a signal type, removing the coder/decoder compo-
nent and enhancing the algorithm to work properly with any signal traces and not only
binary. In this bachelors thesis, we will discuss the use of the data format of the TTCN-3
test suite, the handling of TTCN-3 verdicts, “any” statements and loops.

This thesis consists of five main parts. Next to the glossary (chapter 1), we have the first
main chapter, the introduction (chapter 2). In chapter 3 we will discuss the foundations
of this thesis, the basics of TTCN-3 (3.1), the learning algorithm of Angluin (3.2) and the
TraceTree data structure developed in winter term 2008/2009 (3.3). In chapters 4 to 6 we
discuss the handling and implementation of several TTCN-3 data, “any” statements (4),
verdicts (5) and loops (6). In chapter 7 we will have case study showing the learning
process of the modified algorithm by using examples. In chapter 8 I will give a short
summary and an outlook for future studies.

8

3 Foundations

In this chapter, we will cover all foundations needed for our research. We will start with
an overview on the TTCN-3 language, especially on the verdicts and the data structure of
the TTCN-3 ltsml files. After this, we will discuss Angluin’s learning algorithm. Finally
we will see the functionality of the TraceTree which was developed to be the basic data
structure.

3.1 TTCN-3

TTCN-3 stands for Testing and Test Control Notation Version 3 and TTCN-3 is an interna-
tionally standardized language for defining test specifications. It supports many different
types of tests and systems, e.g. functionality, scaling, interoperability, conformance, relia-
bility, integration and system tests. TTCN-3 specifies black and gray box tests for reactive,
local or distributed systems. It is build modular and gives the possibility to do parallel
test procedures using an amount of test components. TTCN-3 allows to describe static
or dynamic and local or distributed configurations. It is possible to use synchronous or
asynchronous communication. TTCN-3 allows the use of TTCN-3 data types or imported
data types, e.g. ASN.1 or XML schemes. The test cases can be chosen either by user or by
module control.

Now we will discuss some facts of TTCN-3 in detail because they will be needed for
the rest of this bachelor thesis. First we will discuss about verdicts, than about the “any”
statement and last about the LTSML data format generated by the TRex-Suite.

For additional information see “An Introduction to TTCN-3” (7) or “Methods for Testing
and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3
Core Language” (6).

9

3 Foundations

3.1.1 Verdicts

A verdict in a TTCN-3 test suite is a variable that can have one of five different states:

• none - The initial value. No verdict has been set.

• pass - The test case did pass.

• inconc - This verdict stands for inconclusive.

• fail - The test case did fail.

• error - This verdict cannot be set by user. It will be set if, for example, a error occured
in the test run.

There is an overwrite rule on verdicts that says:

none→ pass→ inconc→ f ail → error.

This means that any verdict can overwrite the none verdict and a fail verdict can only be
overwritten by fail or error . This implies that once the verdict has been set to error it will
not be able to get another verdict .

In a TTCN-3 test suite each test component and the master test component (MTC) has its
own variable of the datatype “verdicttype” which is called the local verdict of a test compo-
nent. This local verdict can be set by using the setverdict function of this datatype and read
by using getverdict . The complete test case has a verdict which depends on all local verdicts.
The resulting verdict has the value of the local verdict having the highest value. If there is
any local error verdict the complete test case is marked error . If all local verdicts except one
are marked none and this verdict is pass the resulting verdict is pass, too.

3.1.2 “Any” statement and default altsteps

When testing a software application we have to formalize test cases. If we are not able to
decide which of a number of events will happen at a time, TTCN-3 uses the alt statement .
The alt statement realizes managing alternatives and complex behaviour. If more than a
single option has the same threatment TTCN-3 allows to combine these to altsteps to avoid
code duplication. These altsteps and alt statements are often used to handle unexpected
behaviour. If we do not want to specify an alt statement or an altstep for any possible
interaction, there is the possibility to create default altsteps. This default altstep will be
used after all explicit alternatives have been checked. This means a default altstep is the
complement of all explicit statements.

Default altsteps are used for flow control. When specifiing this behaviour, we often have
the need to work using variables having no specified value. TTCN-3 uses the any statement

10

3 Foundations

to specify this functionality. It checks if a single value matches the specifications of this any
statement. If we are dealing with positive integer values it would check if the entered data
was an integer value greater or equal zero. If this check passes, the any will match. If a
sync() input signal and a ready() output signal are the only explicit signals and Σ is the set
of all signals, the any statement any will match:

any = {{sync(), ready()} = Σ \ {sync(), ready()}.

3.1.3 Ltsml data format

This subsection describes the basic information on the data format used for this learning
automatons implementation’s input format. We will not discuss all attributes set in the
LTSML. These can be read in the specifications (1).

A complete test suite can be described in an XML file. In the case of the TRex applica-
tion and this learning automaton we use the XML scheme definition (XSD) of the Labeled
Transition System Markup Language (LTSML)1. This scheme specifies Labeled Transition
Systems (LTSs).

We do not use all tags given by the XSD specification. We only need the following ele-
ments as seen in the LTSML specification in chapter A.2:

• varibales - These will store the verdicts.

• action incl. changeVariable tag - Actions are used to specify signals in the test suite
and they are used to formalize verdict changes defined by setverdict actions.

• states - These are nodes in the transition graph GT definded by any LTS.

• ports - They specify the port of a signal .

• transitions - Transitions are directed edges between two nodes of the transition graph
GT. They are labeled using a signal .

• startState tag - This defines the start node of the LTS.

• endStates - This defines nodes, the test case specified by the LTS are able to end in.

Stored to an LTSML file a simple example would look like this:

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
< l t s m l xmlns=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l "
xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
xs i : schemaLocat ion=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l
h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l / l t s m l . xsd ">

1See appendices A.1 and A.2.

11

3 Foundations

< l t s id=" sample l t s ">
< v a r i a b l e s >

< v a r i a b l e id=" v0_l0 " name=" verdict_none " i n i t =" f a l s e "/>
< v a r i a b l e id=" v1_l0 " name=" v e r d i c t _ p a s s " i n i t =" f a l s e "/>
< v a r i a b l e id=" v2_l0 " name=" v e r d i c t _ i n c o n c " i n i t =" f a l s e "/>
< v a r i a b l e id=" v3_l0 " name=" v e r d i c t _ f a i l " i n i t =" f a l s e "/>
< v a r i a b l e id=" v4_l0 " name=" v e r d i c t _ e r r o r " i n i t =" f a l s e "/>

</ v a r i a b l e s >

< s t a t e s >
< s t a t e id=" s 0 _ l 0 ">

< d e s c r i p t i o n > s t a t e 0 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 1 _ l 0 ">

< d e s c r i p t i o n > s t a t e 1 </ d e s c r i p t i o n >
</ s t a t e >

</ s t a t e s >

<ports>
<port id=" p0_l0 ">

< d e s c r i p t i o n >Port0</ d e s c r i p t i o n >
</port>

</ports>

< a c t i o n s >
< a c t i o n id=" a0_ l0 " type=" in " portRef=" p0_l0 ">

< d e s c r i p t i o n >any</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a1_ l0 " type=" i n t e r n a l " portRef=" p0_l0 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v1_l0 " value=" t rue "/>
</changeVariables>

</ a c t i o n >
</ a c t i o n s >

< t r a n s i t i o n s >
< t r a n s i t i o n id=" t 0 _ l 0 " ac t ionRef=" a0_ l0 " sourceRef=" s 0 _ l 0 "
t a r g e t R e f =" s 1 _ l 0 "/>
< t r a n s i t i o n id=" t 1 _ l 0 " ac t ionRef=" a1_ l0 " sourceRef=" s 1 _ l 0 "
t a r g e t R e f =" s 0 _ l 0 "/>

</ t r a n s i t i o n s >

< s t a r t S t a t e s t a t e R e f =" s 0 _ l 0 "/>

<endStates>
<endState s t a t e R e f =" s 0 _ l 0 "/>

</endStates>
</ l t s >

12

3 Foundations

</ l t s m l >

Listing 3.1: Sample of an LTSML file.

Any test case can be understood as an transition graph GT. The starting point of GT is
defined by the start state of the LTS. The states, traces can end in, are marked by the end
states. This means a trace does not have to be able to end in any of the nodes of the LTS.
To decide wheather a trace t is accepting or not, we have to monitor the verdicts t passes
on its way on GT. The verdicts are set using special actions called setverdict . These actions
use the changeVariable reference to define their value. The setverdict transition is a test case
internal transition. Because of this the setverdict edges of G are used to add the node in GT
they point to.

In the LTSML the any statements are marked, too. These are actions using the description
value “any” (see listing 3.1). This value is forbidden for other signals.

Except the standard LTSML specification we need some additional reglementations on
the file format. The elements state, action and port need to have a description. This is the
only reglementation on the data format for use in the learn automaton. These descriptions
will be used to define identifiers, e.g. the signal’s name.

3.2 Angluin’s Learning Algorithm

This bachelor thesis bases on the learning algorithm developed by Dana Angluin in 1987
(2; 4). In this section I will explain the way this algorithm works.

3.2.1 Definitions

First we have to do some definitions we will need lateron.

Definition 1 (Deterministic finite automaton(DFA)) A DFA A is represented by a tuple
(Q, Σ, δ, q0, F) with:

• Q: finite, not empty set of nodes of the DFA

• Σ: input alphabet

• δ: transition function mapping Q× Σ→ Q:

∀p ∈ Q, σ ∈ Σ ∃q ∈ Q : δ(p, σ) = q

• q0: the node the DFA is starting in; q0 ∈ Q

• F: set of finite (accepting) node; F ⊆ Q

13

3 Foundations

A word or trace w ∈ Σ∗ is a string of signals si ∈ Σ. The concatenation of the signals
s1 to sn of the alphabet can be written w = s1 + s2 + · · · + sn = s1.s2.sn = s1s2 . . . sn.
The concatenation of words is written the same way. Let wi ∈ Σ∗ be a set of n words. The
concatenation of this words can be written w = w1 + w2 + · · · + wn = w1.w2.wn =
w1w2 . . . wn. For s ∈ Σ A(s) = δ(q0, s) represents the node A reaches after reading s. For
w ∈ Σ∗ A(w) is the node that is reached after reading the word w.

A(w) = δ(δ(. . . (δ(q0, s1), . . .), sn−1), sn)

Definition 2 (Teacher) The teacher or “oracle” is one of two parts of the algorithm of An-
gluin. It knows anything about the target automaton B. The oracle can create counterex-
amples, check if traces are accepted or not (membership queries) and proof if the hypothesis
automaton H is equivalent to B (equivalence query):

H ≡ B.

A membership query is a query the teacher can be asked. The syntax is MQ(t) with a
trace t. It will be used to check if B(t) is accepted or not. If the trace is accepted it will
return true if not false.

An equivalence query EQ(H) is the other type of query the teacher can be asked. The
syntax is MQ(A) with a DFA A. It will be used to check if A ≡ B. They are equivalent
if all state partitions of B have been discovered. If they are not equivalent, this query will
returnsa counterexample c. Otherwise it returns null.

A counterexample c is a special trace. Let HQ(c) be the query if H(c) is an accepting
node. A trace c is a counterexample if MQ(c) 6= HQ(c).

A counterexample is equivalent to another state partition needed to be dicovered in the
hypothesis automaton.

Definition 3 (Learner) The learner is the second part in the algorithm of Angluin. He tries
to learn a hypothesis automaton H that shall be equivalent to the target automaton B. He
uses a classification tree T to store hes information. He is able to ask two different types of
queries to the teacher:

• membership queries to proof if a trace t is accepted or not

• equivalence queries (equivalence query) to check if H ≡ B and if not to get a coun-
terexample c

14

3 Foundations

Figure 3.1: The base hypothesis
automaton started with.

Definition 4 (Hypothesis automaton) The learner uses a DFA H, the hypothesis automa-
ton, to do a hypothesis about B. It is also used when asking equivalence queries to tell the
teacher about his learning process. It is generated using the information from the classifi-
cation tree T .

Any node n ofH holds information about its label nas if it is accepting or not. This label
is equal to the label of one leaf of the classification tree.

The base hypothesis automaton consists only of one node with an empty, not accepting
node. All edges e ∈ Σ return to this node (figure 3.1).

There is another interesting fact about the hypothesis automaton: it will always be a min-
imized DEA! even if the target automaton B is not.

Figure 3.2: Classification tree
example.

Definition 5 (Classification tree) The classification tree T of the learner is a full binary tree.
A binary tree is recursively specified by the tuple (n, l, r) with n the current node, l the left

15

3 Foundations

and r the right subtree. A full binary tree is a binary tree whose nodes all have exactly to
descendents.

The classification tree stores the information already learned by the algorithm. To do this,
any node has a label w. This label is a word of the language of the DFA B. The root and
exactly one of the nodes of T are labeled using the empty word ε. The leafs of this tree
store access strings and the inner nodes distinguishing strings.

An access string w is word that leads from the starting nodeq0 of H to another node q:
δ(q0, w) = q.

A word w is called distuinguishing string if for each pair of words r, s ∈ Σ∗, r 6= s there is a
distuinguishing string w that only one of r.w and s.t reaches an accepting node and the other
a rejecting node ofH.

∀r 6= s ∈ Σ∗∃w ∈ Σ∗ : HQ(r + t) 6= HQ(s + t)

A Treewalk T (t)

Definition 6 (Sifting) Sifting is an important task in this algorithm. Its syntax is Sift(t).
t ∈ Σ∗ is a trace being sifted. The result of this method is a node of the classification tree.

The way, the sift is working, you can see in listing 3.2. We start at the tree root. In all
nodes n we reach we start a membership query MQ(t + n.label).If the result is true, we walk
to the right child, if false to the left and do this query again. If we reach a leaf node, we
will return the label of this node.

s i f t (t r a c e) {
n = t r e e . root ;
while (! n . i s L e a f) {

d=n . label ;
i f (membershipQuery (t r a c e + d) == t rue) {

n = n . r ightChi ld ;
} e lse {

n = n . l e f t C h i l d ;
}

}
return (n . label)

}

Listing 3.2: Siftinh

3.2.2 The algorithm

First, the learner will build its base hypothesis automatonH and an empty classification tree
T . This is the most simple DFA possible. He will do a membership query with the empty
trace MQ(ε) to know if the initial node is accepting or not accepting. If the membership

16

3 Foundations

query was true the learner will change the root node to accepting. Now the learner will
launch an equivalence query to check if this was the right automaton.

If this was the correct DFA, the algorithm will stop. If not, the oracle will answer the
equivalence query by giving a counterexample. Next we have to update the classification
tree.

The first update is the easiest one. We have to add two children to the tree root. One
of them is the right nr, the other the left child nl . If the empty word is accepted, the right
child’s label will be set to the trace of the counterexample: nr.label() = c and the left child’s
label will be set to the empty label: nl .label() = ε. Otherwise both labels will be exchanged.

Now we have to update H. First of all we have to remove all nodes and edges of H.
We add for every leaf of T a node in H using the same label as the corresponding leaf in
T had. Mark the node holding the empty label ε as start of the hypothesis automaton. For
any node n ∈ H and any signal sig ∈ Σ we have to search for the link target nt. We will
sift the label of any node and any signal to find the target nodes. Sift(sig + n.label()). The
target node nt is the graph node whose label equals the result of the sift . Now we have
to generate for any n, sig-combination the edge starting in n, ending in nt and using the
signal sig.

At last we will have to do another equivalence query EQ(H) to check ifH ≡ B or not.
Now the main loop of the algorithm will start. This loop is run as long as the equivalence

query generates counterexamples.
First of all, we have to check on which position the difference between H and the coun-

terexample happens. For doing this we are searching the first position a they differ. We
generate c′ ⊆ c starting with c′ holding the first signal. Now we check for differences. If
H(c′) 6= Sift(c′) is false we will have a difference. If not we simply increase the number of
signals of c′ by one and check again.

When we find a difference we have discovered a new state partition of B. We need to
update the classification tree. Let c′′ be the subset of c and c′with c′′.length() = c′.length()−
1. Set l′ = Sift(c′) and set l′′ = Sift(c′′). Now we remove the tree node with the access
string l′′ and replace it with an internal node nn. This node has two children that we will
have to create. One of them nl will be labeled l′′ and the other, nc, will be labeled c′′. The
internal node nn will be labeled c′ + d, d is the correct distinguishing string for H(c′) and l′

obtained from T . If MQ(c′) = true is nc will be the right child and nl the left one. If not, nc
will be the left child and nl the right one.

Now we will have to update the hypothesis automata again. And finally we will do an
equivalence query before continuing the main loop.

17

3 Foundations

3.3 Graph walk and tree walk

Definition 7 (graph walk) A graph walk on a graph G is specified by a trace t ∈ Σ∗ast. We
start in the starting node of G. We update the current node n by searching the edge target
of the corresponding edge. For any signal s in the trace we search the target node of the
outgoing edge of n. This edge is identified by the signal s.

Definition 8 (tree walk) A tree walk on an tree T is specified by a trace t ∈ Σ∗ast. This
walk begins in the tree root. For any signal s in the trace we have to check if there is an
outgoing edge holding the signal s. If we find this edge, we will update the current node
with the target of this edge. If there is no outgoing edge, we have no corresponding node
to this trace. When we reach the node the trace is pointing on, it will be returned as target
node.

3.4 TraceTree data structure

This section discribes the TraceTree data

Figure 3.3: TraceTree example.

structure that was developed during the course
“Maschinelles Lernen in der Softwaretech-
nik” at the Georg-August-Universität Göt-
tingen (3).

The TraceTree data structure is a simple
tree structure used to store trace data. Ev-
ery node has up to n children - any edge
pointing from the current node to a child
has a unique signal. Because it is a tree
structure, any node except the tree root has
exactly one parent. The nodes hold the in-
formation if the signal leading to this node
is accepted or not accepted. By default any
node inside and outside of the tree is not
accepted.

An empty TraceTree holds only the not
accepting tree root and no pairs of children
and signals. Any time a trace is put in the
tree, the tree will grow - if some of the sig-
nals were not known - or it will try to set
the “accepting” state of the final node, the trace is ending in. The TraceTree will throw an
exception if the trace will mark an accepting node not accepting. The example (figure ??)

18

3 Foundations

on the right shows a TraceTree holding the data of at least 6 different traces - the accepted
traces “a,b”, “b”, “b,a,c”, “c,b”, “c,c” and the not accepting trace “b,a,a”.

The advantadges of this tree data structure are the easy and fast possibility to check if a
trace is accepted or not by doing a walk on this tree2 and no information is saved multiple
times. If the prefix of two traces are equal, they use the same nodes to store their prefix’
information.

2See definition 8.

19

4 The “any” statement

This chapter discribes the handling of any statements, the problems created by using them
and the changes in the algorithm needed to handle these problems. The any statements are
only used in the LTSML files and the TraceTree.

4.1 The “any” statement in the LTSML

When searching for any statements in the LTSML we have to search in the actions of the
LTS. The any statements are marked by their description. The description has the value any.
For internal use in a single LTS, it can be used like any other signal. When importing the
signal to the TraceTree it is needed to import additional information about this any signal.
Be n the node the any statement is leaving. We have to mark the any signal by saving
information about any other signal that is leaving n. If we do not import this information,
too, a correct handling of the any statement will be impossible. Finally we have to clean the
actions we want to export to the signal set in the data core. This signal set is not allowed to
contain an any signal.

4.2 Import of the “any” statement

To handle the any statements we need some more information on the TraceTree. We will
have to know if we have a default route, the target of this route and a list of signals that did
leave the same node. When importing any statements to the TraceTree we need this list of
complementary signals to verify the correct work of this default route.

If ai is our imported any statement and ai = {{a, b} = Σ \ {a, b} these signals will not be
influenced by the any statement (see figure 4.1). If there is for example an outgoing edge
holding the signal c that is not in the complementary set, it is included in the set of the
any statement c ∈ ai. Because of this, we now know that we have to modify this edge (see
figure 4.2).

Be t = p + ai + r the trace imported, p stands for the prefix of the any statement and r for
the remaining trace. Because we have to modify the sub TraceTree ts accessed by c. This
is done by importing r in ts. Now we have to add c to the set of complementary signals.
Now ai = {{a, b, c}.

20

4 The “any” statement

Figure 4.1: TraceTree holding an any signal
example 1.

If there is already a default route stored in this node we have to compare this default route
with the imported any statement . Be the stored default route as. If both statements have the
same elements in their lists of complementary signals ∀s ∈ Σ : s ∈ as ⇔ s ∈ ai we have
nothing special to do. We simply need to import the data to the node the default route is
pointing on.

If as 6= ai we will have some more work to do (see figure 4.3). For all signals c ∈ as ∧ c /∈
ai or c /∈ as ∧ c ∈ ai we have to create a new child node nc. Be ac the statement containing
c in its list of complementary signals. If a verdict is attached to the target node of ac this
verdict will be added to our new child node. First we will have to import the data of our
imported any statement to this new node. Now we need to import all data of the stored
default route to this child node. Finally we have to add c to the list that it is not in and add
the imported any statements data to the default route.

4.3 Handling of the “any” statement

Once the data is imported to the TraceTree the handling of any statements is easy. If a
membership query checks a trace using a node with default route we only have to check
the default route at last. If the outgoing signal was found in the regular signals1 nothing
happenes. If it is no regular signal, this means it is unexpected, the search algorithm has to
look on the defaultTarget for more information instead the regular child nodes.

If we are generating new traces we simply have to handle the regular signals the way

1A regular signal is a signal in the TraceTree not covered by the default route.

21

4 The “any” statement

Figure 4.2: TraceTree holding an any signal example 2.

Figure 4.3: TraceTree holding an any signal example 3.

we always did. If we have a default route rd we need to generate additional traces.
The membership querys and equivalence querys only use the output of the TraceTree.

There are no more interfaces between the data structure and the learn algorithm. Because
of this, there will not be any any statement in the hypothesis automaton or in the classification
tree. Finally in the data import there will not be a any statement , too.

22

5 Handling and representation of verdicts

This chapter describes the handling and the representation of verdicts. First we will have
a look on how the TraceTree works with verdicts. Finally we will see if there are more
changes needed in the algorithm.

Currently we only interprete the verdicts “none”, “pass” and “fail” in the data structure.
The verdicts “inconc” and “error” will be imported in the TraceTree, too, but all verdicts
except “pass” will be mapped on “fail”.

{pass} → {pass}; {none, inconc, fail, error} → {fail}

5.1 Verdicts in the ltsml

If we want to detect a verdict in the LTS data structure, we will have to analyze the actions.
In most cases we will have one or more actions holding the description “setverdict”. These
actions are storing the verdicts. The setverdict action holds one or more changeVariables.
This are variables having a name and a boolean value. The name specifies the variable, e.g.
“verdict_pass” or “verdict_error”. The value decides if this variable is true or false. The
setverdict action marks the node it is arriving in.

5.2 Importing verdicts to the TraceTree

If we only store information about a trace being accepted or not accepted in this tree node,
we will have a lot of work to keep this data up to date. If we want to handle verdicts easily
we will only need information about the verdicts and information about end states on the
tree nodes.

For storing the verdicts we only need to interprete the setverdict action as different than
any other action a in the LTS and keep the setverdict away from the set of signals stored in
the data core. When reading importing a trace to the TraceTree and reaching a signal in the
trace that is a setverdict action, we do not have add an outgoing edge to the TraceTree. We
have to set the local node’s verdict information to the verdict set by setverdict .

It is not needed to have many reglementations on this point. For dynamic calculation of
the current verdicts we do not need more information. We only have to do a tree walk to
create the information. We create a temporary verdict vt and for any verdict v passed by,

23

5 Handling and representation of verdicts

we will check if we are allowed to change vt to v. This will be possible if the temporary
verdict can be overwritten by v, e.g. vt = none, v = pass. If we are not allowed to change
the verdict we ignore the verdict on the edge and walk on.

By importing traces from the TTCN-3 test suite, we will automatically import the end
states. The generated traces will always have to end in an end state. Because of this, we
can easily mark the end states when importing data. End states of the LTS not able to
reach by using transitions will be ignored because we are not able to identify on which way
both sub graphs are connected. A node marked end state in the TraceTree is a node the
algorithm is able to stop in while generating traces. These are the only nodes that can be
accepting nodes.

When checking for accepting traces we only have to do a tree walk by updating vt. To
find a accepting trace t all of the following conditions have to be true:

• t has to be found in the TraceTree. This means for any signal s in t we have a outgoing
signal equal to s leading to an sub tree.

• The node t is ending in is an end state.

• The temporary verdict vt is set to “pass”.

If all of this three conditions are true, we have found an accepting trace.

5.3 Changes related to the algorithm

The algorithm itself will not be affected by the use of verdicts. We only have to use the
capabilities of the TraceTree data structure to manage equivalence query and membership
query :

• A membership query will be delegated to the TraceTree because all information about
accepting and non accepting traces are stored in the this data structure.

• A equivalence query will have to work on dynamically generated information by the
TraceTree. Because learning of verdicts sorted by length leads to a smaller number of
iterations to learn the target automaton B the easiest way to manage this is a list of
traces. This list can be generated depending on a length window. Using this window
not all traces will be imported. There will only some traces using a minimum and
maximum length. This can be used to keep a small number of traces stored currently.
If these have been finished and we did not get B ≡ H we would have to increase the
target window to search more traces. Using this window we only need to create a list
of traces once. To check for equivalence of B andH we need a complete list of traces
to check them inH.

∀traces t : HQ(t) = MQ(t)

24

5 Handling and representation of verdicts

When exporting H to a LTSML file we do not need to handle verdicts because they will
not occure in the hypothesis automaton. We only have to mark the accepting nodes by
marking them as end states.

25

6 Loop detection and handling

Loop detection and handling is used to store loop information in a compact way and to
generate a infinite number of traces. If we discovered a loop in the automaton we are able
to store the data in a better way. If there are traces running many times a loop, we can store
this loop directly. When generating counterexamples we are able to unroll this loop as often
as it is needed, to generate aditional traces.

First we will discuss the handling in the LTSML data format, lateron the changes for the
TraceTree and finally we will discuss the changes needed to implement loop handling.

6.1 Loop detection and handling in ltsml data format

In the LTSML data format we have several LTS’. Any of these LTS can be interpreted as an
(incomplete) graph. Incomplete means, that not all nodes have outgoing edges covering
all signals.

To detect loops in the LTS there are several ways that will work properly. Now, we will
see two of them:

• The first way is to transfer the LTS in a deterministic finite automaton (DFA). After
transfering all information to the edges and nodes to this DFA we are able to walk
on the graph to search for loops. There are several algorithms do this. But the easiest
way is to start in the graph root and walk on any way and mark all visited nodes. If
we find a visited node we have found a loop. It is nessassary to split the search on
any node with more than one outgoing transition. The any transition will work equal
to a normal transition. We do not need a different treatment for any signals.

• The second is to use the transitions and to create loops by comparing the source and
target nodes. To have a complete set of loops, we need to create all combinations
of transitions matching on each other. If we find a loop, we will now have to filter
which combinations stand for the same loop. This is needed to store this loop only
once. Finally we have to detect all prefixes directing to this loop. If we have any sub
graphs not connected to the start state containing loops we will not be able to find a
prefix.

After finding the loops we have to add them to the internal data structure. Now we have
to decide how to manage importing the traces of the LTS.

26

6 Loop detection and handling

On the one hand, we can keep these loops in the LTS. If we do this, we will have to mark
these loops not to enter these more than once. If we do not mark them it will be possible
to stay in these loops forever. Because the import of loops does not add end states to the
TraceTree it is needed to visit all nodes in the LTS at least once.

On the other hand we can remove the final transition of any loop to remove any loop from
the tree. Now we can search the LTS as if there has never been a loop. All data belonging
to the loops except the information about end states have been added to the TraceTree
while importing the loops. Because of this, the transitions closing the loops are not needed
anymore. Now we can import the “normal” traces as done before.

When finished learning B, the export to LTSML is simple. Because we always had to
handle loops stored in the hypothesis graphH there is no need to change. We only have to
import the data ofH.

27

6 Loop detection and handling

6.2 Loop handling in TraceTree data structure

To discribe the loop handling in the TraceTree data structure we first have to understand
the changes needed. Next to this we will have a look on generating new traces using loops
and the problems we have to manage by doing this. Finally we will have a look on some
implementation details.

6.2.1 TraceTree data structure

As learned above the data structure of the TraceTree

Figure 6.1: Example: TraceTree
with loops.

is a tree structure. This means all nodes except the tree
root have exactly one parent - the tree root has none. All
nodes have up to n children.

If we want to add loop information in a tree structure
we will have some problems. For example we cannot
easily create the loop links because only one parant node
is allowed. To leave this reglementation the easiest way
is using a “tree like” graph. This means, we are trying
to keep the structure of a tree while storing it in a graph.
If we find loops, we will add the last edge of this loop
as back or self loop (see figure 6.1 - the node accessed by
the trace “c,a” has two outgoing loops: a self loop using
signal “b” and a back loop using the signal “a”).

A self loop is a loop starting and ending in the same
tree node. A back loop is a loop ending in a tree node of
the ancestors of the starting tree node.

If we want to import a loop, there will be another problem, because of data imports of al-
ready unrolled loops. If we monitor this problem we cannot decide what we have to do on
the fly. This problem may occur if importing several LTS and some storing loops unrolled
others store the loop directly. Now we will have to handle this problem by combining the
information of the sub tree and the loop trace.

If we are using a trace to reach a target node we have to do a walk on the tree as done be-
fore. If the outgoing signal is a self loop we will reach in the same tree node after following
this. When following a back loop we will reach a node nearer to the tree root and already
visited. In the TraceTree data structure, we have a set of outgoing signals. This contains
any “normal” outgoing signal and any outgoing loop signal. Because of this, there is no
difference in managing loop signals and “normal” signals.

28

6 Loop detection and handling

6.2.2 Generatig traces in TraceTree data structure using loops

To generate new traces by using loops, we first have to have a look on the problems we
will have to face. After this we will discuss the procedure of generating traces.

The main problem in generating traces using loops is equal to the problem of importing
loops in the data structure. If we only try to generate any trace, this will end in an infinite
loop. This is because if we take the last edge of the loop we can restart walking this loop
again. This can be done any time we end on a loop and this will result in infinite loops.

If we want to avoid this problem we will have to

• mark the outgoing loop signals and store which signal is assigned to which loop id .

• keep a list of loops visited. If we take a loop signal we will increase the value of the
correstponding loop id’s list entry.

When we have done this, we know which signals are “normal” signals and which ones
are “loop signals” and how often we have visited a specified loop. Finally we will need
to decide how often a loop may be taken. A value of 2 or 3 times should be enough to
generate enough traces to import all loop data.

When generating traces using loops, we will have the same procedure as used in the
normal TraceTree. We will walk any way possible and if we take a loop we will check the
number of visits of this loop. If we have another try, we will walk this after splitting the
search. If we have already passed this loop too often we ignore this loop and look for other
outgoing signals to take.

29

7 Implementation

This chapter will handle with the layout of the implementation.
The programm splits up in four main parts - a reader , a writer , a learning algorithm and a

data core component. These components are linked by the main method (see figure 7.1).
The reader is an module that depends on the interface TraceReader . Classes implement-

ing this interface are used as input for the programm. The reader classes specify the im-
port of a special data time, e.g. the TRexTraceReader imports LTSML files generated by
the TRex suite. It is possible to add any inport file format by generating a corresponding
TraceReader .

The writer is the opposite of the reader . It does not read an input file - it writes an output
file. The writer depends on the interface TraceWriter and can be modified to generate any
output file format by designing the TraceWriter for this data type. In general the writer
does not use extensions of the data formats, e.g. vedicts.

The learning algorithm is the center component of this programm. It implements the
algorithm of angluin.

The data core and the TraceTree are the data storage components. The data core provides
access to all central data, especially to the TraceTree and the set of signals.

The main method is the running method and links all components. It provides the pro-
gramm interface and access to the reader and writer used.

If we run the programm, it reads an or several input files using the reader component.
This reader stores its data directly to the trace tree. After generating the data foundation,
the learn algorithm is launched. It calculates an hypothesis automaton depending on the
data stored in the TraceTree. After finished learning the hypothesis automaton the learner
component will store its hypothesis automaton in the data core. From this position, the data
of the hypothesis automaton can easily be read by the writer component.

30

7 Implementation

Figure 7.1: Basic structure of the programm.

31

8 Case study

In this chapter we will compare the changes to the older version of the algorithm in detail.

8.1 Example: The coffee machine

This example deals with an automaton called “coffee machine”. First we will have a look
on the LTSML. Here we have four LTS’ creating new traces. These transition systems are
equal to the four automatons in figure 8.1. The edges are marked by the verdicts; none if

Figure 8.1: Automata represented by the LTS’.

verdict_none is set (standard verdict), pass if verdict_pass is set and fail if verdict_fail is set.
Next to the verdict is the signal description. The white nodes are normal nodes, the black
ones mark end states.

First the algorithm will try to import the LTSML file. If we are not using the integration
of loops to the TraceTree data structure, we will have to unroll any loop. This means we
have to go each loop in any LTS twice and we have to generate this data. This means, we
will not store the loop as a loop but twice unrolled. This results in the TraceTree seen on
figure 8.1. In this special case - the starting node is an accepting node - the LTS has to be

32

8 Case study

modified to keep being equal to not unrolling the traces: We have to add a new starting
node and a setverdict transition using the verdict verdict_pass. We can see that the resulting
graph is a tree. The end states have a verdict written next to them in italics. These are the
nodes, where we find verdicts stored in nodes of theTraceTree.

If we use loop detection, the algorithm will try to detect the loops in LTS1. It will de-
tect the trace t = [requestCoffee, requestMoney, cancel]. Now the algorithm will add this
information to the TraceTree, using the empty trace [] as prefix and t as suffix. Now the
TraceTree contains the trace t. The signal cancel will create a back loop to the tree root.
None of the nodes in the TraceTree are marked end state. After running the search for
traces the algorithm will only find one remaining trace - the empty trace marking the tree
node as an end state. Now the TraceTree is equal in data and appearance to graph 1) of
figure 8.1.

After importing all LTS’ the TraceTree will have the structure of figure 8.3. This TraceTree
does not really look like a tree because of the huge number of loops stored and only having
a few normal traces.

Now we will have to generate our set of counterexamples. After parsing and sorting the
algorithm without loop detection will only be able to generate 19 counterexample. On the
other side, the algorithm using loop detection will generate far more than 500 traces (using
loop depth 2, see the first fifty on listing A.4). This difference is founded in the four loops
beginning in the starting node. This means, we can use each of the four loops twice or less
and we have three possible suffixes, we can add after any of the traces:

1. [ε]

2. [reqestCoffee, requestMoney, insertMoney, outputTea]

3. [reqestTea, requestMoney, insertMoney, outputCoffee]

This means, the number n of traces generated the TraceTree will be huge, about n = 34 ∗
4! ∗ 3 = 5832 traces. If we had no specified limit of loop usage, the number would be
infinite.

Next we will launch an membership query using the empty signal and we will learn that
the initial state is accepting. We create the base hypothesis automaton H using an accept-
ing node and do the EQ(H). The teacher will return the first and shortest non accepting
trace - c = (-, [requestCoffee, requestMoney, insertMoney, outputTea]). After adding this
trace to the classification tree T , we have to update H (see figure 8.4). When finished up-
dating the tree, we do another equivalence query and we get another counterexample. This
time we will get the shortest accepting one, c = (+, [requestCoffee, requestMoney, cancel]).
To learn the information of c we need two iterations of the algorithm. Now we have
to do another check for equivalence and we get another accepting counterexample: c =
(+, [requestCoffee, requestMoney, insertMoney, outputCoffee]). We have to do another it-
eration to store this information in the classification tree. Now we do a last equivalence

33

8 Case study

query and we get a null reference. This meansH ≡ B. We have finished learning the target
automaton (see figures 8.5, 8.6). At last we have to do the data export. We will generate a
LTSML file using a state for any node, and an action for any edge of H. We will mark the
accepting nodes as end states and the starting node as start state.

34

8 Case study

Figure 8.2: TraceTree sample without the use of loops.

35

8 Case study

Figure 8.3: Coffee Machine: TraceTree created by LTSML import.

Figure 8.4: Hypothesis automaton and classification tree after one iteration.

36

8 Case study

Figure 8.5: Hypothesis automaton and classification tree final steps (part 1/2).

37

8 Case study

Figure 8.6: Hypothesis automaton and classification tree final steps (part 2/2).

38

9 Summary and outlook

9.1 Summary

In this thesis we discussed the influence and the handling of loops, TTCN-3 verdicts and
any statements on the learning algorithm.

When doing research on loop handling we saw, that the implementation of loop han-
dling to the data structure will have three effects:

1. If we detect loops in the LTSML files, we are able to generate a great number of new
traces because of dynamically unrolling the loops. We are also able to fetch traces for
the equivalence query of the length we need it to learn new traces and we can specify
which depth loops will be unrolled.

2. Especially, if we store combined loops - loops sharing some nodes in the TraceTree,
we will be able to generate enourmous numbers of traces by using these loops. If
loops share nodes or start at the same node, the number of generated traces expo-
nentially increases.

3. When storing loops in the TraceTree we are able to save space - especially if we are
storing several loops. For example, if we stored them as unrolled loops, we would
have to store any suffix several times.

Handling any statements and verdicts, we learned, that both of them have no effect on
the algorithm but they force us to do several changes on the TraceTree data structure. The
handling of verdicts on the data structure, allows us, to decide on the fly, if a trace is ac-
cepted or not. This is an advantadge when working on the data of several LTS’. In that
case, the verdict information of all LTS’ will influence each other.

9.2 Outlook

If we have a look on the TTCN-3 verdicts we will remember, that currently we only handle
the verdicts none, pass and fail. This could be a domain of further research. Perhaps, if
handling the inconc verdict , we will have to face the fact that we have to consider both
possibilities, the possibility that it is a pass or that it is a fail.

39

9 Summary and outlook

Another domain for research could be the “open world” context. This means, we have
to face the possibility of an incomplete knowledge about the accepting states. Here, inter-
esting facts would be, how the learning algorithm would be influenced and which changes
would be needed to face this context.

40

A Appendix

A.1 XSD specification of LTSML

<?xml version=" 1 . 0 " ?>
<xs:schema xmlns:xs=" h t t p : //www. w3 . org /2001/XMLSchema"
targetNamespace=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l "
xmlns:lml=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l "
elementFormDefault=" q u a l i f i e d ">

<xs:complexType name=" S t a t e ">
< x s : a l l >

<xs :e lement name=" d e s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e lement name=" pr opos i t i ons " type=" l m l : P r o p o s i t i o n s "
minOccurs=" 0 "/>

</ x s : a l l >
< x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name=" c o l o r " type=" x s : s t r i n g " use=" opt iona l "/>

</xs:complexType>

<xs:complexType name=" S t a t e s ">
<xs :sequence>

<xs :e lement name=" s t a t e " type=" l m l : S t a t e "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" ChangeVariables ">
<xs :sequence>

<xs :e lement name=" changeVariable " type=" lml:ChangeVariable "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" Action ">
< x s : a l l >

<xs :e lement name=" d e s c r i p t i o n " type=" x s : s t r i n g "/>
<xs :e lement name=" lineNumber " type=" x s : p o s i t i v e I n t e g e r "
minOccurs=" 0 "/>
<xs :e lement name=" changeVariables "
type=" lml:ChangeVariables " minOccurs=" 0 "/>

</ x s : a l l >

41

A Appendix

< x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name=" portRef " type=" x s : s t r i n g "
use=" opt iona l "/>
< x s : a t t r i b u t e name=" type " use=" opt iona l ">

<xs:simpleType>
< x s : r e s t r i c t i o n base=" x s : s t r i n g ">

<xs:enumeration value=" input "/>
<xs:enumeration value=" output "/>
<xs:enumeration value=" tau "/>
<xs:enumeration value=" i n t e r n a l "/>

</ x s : r e s t r i c t i o n >
</xs:simpleType>

</ x s : a t t r i b u t e >
< x s : a t t r i b u t e name=" c o l o r " type=" x s : s t r i n g " use=" opt iona l "/>

</xs:complexType>

<xs:complexType name=" Actions ">
<xs :sequence>

<xs :e lement name=" a c t i o n " type=" lml :Act ion "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" T r a n s i t i o n ">
< x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name=" ac t ionRef " type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name=" sourceRef " type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name=" t a r g e t R e f " type=" x s : s t r i n g " use=" required "/>

</xs:complexType>

<xs:complexType name=" T r a n s i t i o n s ">
<xs :sequence>

<xs :e lement name=" t r a n s i t i o n " type=" l m l : T r a n s i t i o n "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" S t a r t S t a t e ">
< x s : a t t r i b u t e name=" s t a t e R e f " type=" x s : s t r i n g " use=" required "/>

</xs:complexType>

<xs:complexType name=" Lts ">
< x s : a l l >

<xs :e lement name=" v a r i a b l e s " type=" l m l : V a r i a b l e s " minOccurs=" 0 "/>
<xs :e lement name=" s t a t e s " type=" l m l : S t a t e s "/>
<xs :e lement name=" a c t i o n s " type=" lml :Ac t ions " minOccurs=" 0 "/>
<xs :e lement name=" ports " type=" l m l : P o r t s " minOccurs=" 0 "/>
<xs :e lement name=" t r a n s i t i o n s " type=" l m l : T r a n s i t i o n s "
minOccurs=" 0 "/>

42

A Appendix

<xs :e lement name=" s t a r t S t a t e " type=" l m l : S t a r t S t a t e "/>
<xs :e lement name=" endStates " type=" lml :EndSta tes " minOccurs=" 0 "/>

</ x s : a l l >
< x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " use=" required "/>

</xs:complexType>

<xs:complexType name=" Ltsml ">
<xs :sequence>

<xs :e lement name=" l t s " type=" l m l : L t s " maxOccurs=" unbounded "/>
</xs :sequence>

</xs:complexType>

<xs :e lement name=" l t s m l " type=" lml :Ltsml ">

<xs :key name=" StateKey ">
< x s : s e l e c t o r xpath=" .// l m l : s t a t e "/>
< x s : f i e l d xpath=" @id "/>

</xs :key>
< x s : k e y r e f name=" SourceKeyRef " r e f e r =" lml :S ta teKey ">

< x s : s e l e c t o r xpath=" .// l m l : t r a n s i t i o n "/>
< x s : f i e l d xpath=" @sourceRef "/>

</ x s : k e y r e f >
< x s : k e y r e f name=" TargetKeyRef " r e f e r =" lml :S ta teKey ">

< x s : s e l e c t o r xpath=" .// l m l : t r a n s i t i o n "/>
< x s : f i e l d xpath=" @targetRef "/>

</ x s : k e y r e f >
< x s : k e y r e f name=" S ta r tS ta t eKe yRe f " r e f e r =" lml :S ta teKey ">

< x s : s e l e c t o r xpath=" .// l m l : s t a r t S t a t e "/>
< x s : f i e l d xpath=" @stateRef "/>

</ x s : k e y r e f >
< x s : k e y r e f name=" EndStateKeyRef " r e f e r =" lml :S ta teKey ">

< x s : s e l e c t o r xpath=" .// l m l : e n d S t a t e "/>
< x s : f i e l d xpath=" @stateRef "/>

</ x s : k e y r e f >

<xs :key name=" ActionKey ">
< x s : s e l e c t o r xpath=" .// l m l : a c t i o n "/>
< x s : f i e l d xpath=" @id "/>

</xs :key>
< x s : k e y r e f name=" ActionKeyRef " r e f e r =" lml:ActionKey ">

< x s : s e l e c t o r xpath=" .// l m l : t r a n s i t i o n "/>
< x s : f i e l d xpath=" @actionRef "/>

</ x s : k e y r e f >

<xs :key name=" PortKey ">
< x s : s e l e c t o r xpath=" .// l m l : p o r t "></ x s : s e l e c t o r >
< x s : f i e l d xpath=" @id "></ x s : f i e l d >

</xs :key>
< x s : k e y r e f name=" PortKeyRef " r e f e r =" lml:PortKey ">

43

A Appendix

< x s : s e l e c t o r xpath=" .// l m l : a c t i o n "/>
< x s : f i e l d xpath=" @portRef "/>

</ x s : k e y r e f >

<xs :key name=" VarKey ">
< x s : s e l e c t o r xpath=" .// l m l : v a r i a b l e "/>
< x s : f i e l d xpath=" @id "/>

</xs :key>
< x s : k e y r e f r e f e r =" lml:VarKey " name=" VarKeyRef ">

< x s : s e l e c t o r xpath=" .// lml :changeVar iable "/>
< x s : f i e l d xpath=" @varRef "/>

</ x s : k e y r e f >
</xs :e lement>

< !−− o p t i o n a l t y p e s / e l e m e n t s f o r K r i p k e s t r u c t u r e s −−>

<xs:complexType name=" Propos i t ion ">
<xs :s impleContent>

< x s : e x t e n s i o n base=" xs :boolean ">
< x s : a t t r i b u t e name="name" type=" x s : s t r i n g " use=" required "/>

</ x s : e x t e n s i o n >
</xs :s impleContent>

</xs:complexType>

<xs:complexType name=" Propos i t ions ">
<xs :sequence>

<xs :e lement name=" propos i t ion " type=" l m l : P r o p o s i t i o n "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" EndState ">
< x s : a t t r i b u t e name=" s t a t e R e f " type=" x s : s t r i n g " use=" required "/>

</xs:complexType>

<xs:complexType name=" EndStates ">
<xs :sequence>

<xs :e lement name=" endState " type=" lml :EndState "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" Port ">
<xs :sequence>

<xs :e lement name=" d e s c r i p t i o n " type=" x s : s t r i n g "/>
</xs :sequence>
< x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " use=" required "/>

</xs:complexType>

44

A Appendix

<xs:complexType name=" Ports ">
<xs :sequence>

<xs :e lement name=" port " type=" l m l : P o r t "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" Var iab le ">
< x s : a t t r i b u t e name=" id " type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name="name" type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name=" i n i t " type=" xs :boolean " default=" f a l s e "
use=" opt iona l "/>

</xs:complexType>

<xs:complexType name=" Var iab les ">
<xs :sequence>

<xs :e lement name=" v a r i a b l e " type=" l m l : V a r i a b l e "
maxOccurs=" unbounded "/>

</xs :sequence>
</xs:complexType>

<xs:complexType name=" ChangeVariable ">
< x s : a t t r i b u t e name=" varRef " type=" x s : s t r i n g " use=" required "/>
< x s : a t t r i b u t e name=" value " type=" xs :boolean " use=" required "/>

</xs:complexType>

</xs:schema>

Listing A.1: XSD specification of LTSML

A.2 LTSML sample

In this LTSML example the spacer “[...]” is used for additional items of the same type.

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
< l t s m l xmlns=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l "
xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
xs i : schemaLocat ion=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l
h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l / l t s m l . xsd ">

< l t s id=" l t s 0 ">
< v a r i a b l e s >

< v a r i a b l e id=" v0_l0 " name=" verdict_none " i n i t =" f a l s e "/>
< v a r i a b l e id=" v1_l0 " name=" v e r d i c t _ p a s s " i n i t =" f a l s e "/>
< v a r i a b l e id=" v2_l0 " name=" v e r d i c t _ i n c o n c " i n i t =" f a l s e "/>
< v a r i a b l e id=" v3_l0 " name=" v e r d i c t _ f a i l " i n i t =" f a l s e "/>
< v a r i a b l e id=" v4_l0 " name=" v e r d i c t _ e r r o r " i n i t =" f a l s e "/>

</ v a r i a b l e s >

45

A Appendix

< s t a t e s >
< s t a t e id=" s 0 _ l 0 ">

< d e s c r i p t i o n > s t a t e 0 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 1 _ l 0 ">

< d e s c r i p t i o n > s t a t e 1 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 2 _ l 0 ">

< d e s c r i p t i o n > s t a t e 2 </ d e s c r i p t i o n >
</ s t a t e >

[. . .]
< s t a t e id=" sN_l0 ">

< d e s c r i p t i o n >stateN</ d e s c r i p t i o n >
</ s t a t e >

</ s t a t e s >

<ports>
<port id=" p0_l0 ">

< d e s c r i p t i o n >port0</ d e s c r i p t i o n >
</port>
<port id=" p1_l0 ">

< d e s c r i p t i o n >port1</ d e s c r i p t i o n >
</port>
<port id=" p2_l0 ">

< d e s c r i p t i o n >port2</ d e s c r i p t i o n >
</port>

[. . .]
<port id=" pN_l0 ">

< d e s c r i p t i o n >portN</ d e s c r i p t i o n >
</port>

</ports>

< a c t i o n s >
< a c t i o n id=" a0_ l0 " type=" in " portRef=" p1_l0 ">

< d e s c r i p t i o n >a c t i o n 0</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a1_ l0 " type=" out " portRef=" p123_l0 ">

< d e s c r i p t i o n >a c t i o n 1</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a2_ l0 " type=" tau " portRef=" p42_l0 ">

< d e s c r i p t i o n >a c t i o n 2</ d e s c r i p t i o n >
</ a c t i o n >

[. . .]
< a c t i o n id=" a42_l0 " type=" i n t e r n a l " portRef=" p23_l0 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v1_l0 " value=" t rue "/>
</changeVariables>

46

A Appendix

</ a c t i o n >
[. . .]

< a c t i o n id=" aN_l0 " type=" in " portRef=" pN_l0 ">
< d e s c r i p t i o n >actionN</ d e s c r i p t i o n >

</ a c t i o n >
</ a c t i o n s >

< t r a n s i t i o n s >
< t r a n s i t i o n id=" t 0 _ l 0 " ac t ionRef=" a0_ l0 " sourceRef=" s 0 _ l 0 "
t a r g e t R e f =" s 1 _ l 0 "/>
< t r a n s i t i o n id=" t 1 _ l 0 " ac t ionRef=" a2_ l0 " sourceRef=" s 1 _ l 0 "
t a r g e t R e f =" s 2 _ l 0 "/>
< t r a n s i t i o n id=" t 2 _ l 0 " ac t ionRef=" a1_ l0 " sourceRef=" s 2 _ l 0 "
t a r g e t R e f =" s 3 _ l 0 "/>

[. . .]
< t r a n s i t i o n id=" tN_l0 " ac t ionRef=" aN_l0 " sourceRef=" sN_l0 "
t a r g e t R e f =" sN_l0 "/>

</ t r a n s i t i o n s >

< s t a r t S t a t e s t a t e R e f =" s 0 _ l 0 "/>

<endStates>
<endState s t a t e R e f =" s 1 _ l 0 "/>
<endState s t a t e R e f =" s 7 _ l 0 "/>
<endState s t a t e R e f =" s 3 5 _ l 0 "/>

[. . .]
<endState s t a t e R e f =" sN_l0 "/>

</endStates>
</ l t s >

< l t s id=" l t s 1 ">
[. . .]

</ l t s >

< l t s id=" l t s 2 ">
[. . .]

</ l t s >

[. . .]

< l t s id=" l tsN ">
[. . .]

</ l t s >
</ l t s m l >

Listing A.2: A sample LTSML.

47

A Appendix

A.3 Case study example: The coffee machine

This is the LTSML of the first example of the case study.

<?xml version=" 1 . 0 " encoding="UTF−8" ?>
< l t s m l xmlns=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l "
xmlns :xs i=" h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e "
xs i : schemaLocat ion=" h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l
h t t p : //www. t r e x . informat ik . uni−goet t ingen . de/ l t s m l / l t s m l . xsd ">

< l t s id=" l t s 0 ">
< v a r i a b l e s >

< v a r i a b l e id=" v0_l0 " name=" v e r d i c t _ p a s s " i n i t =" f a l s e "/>
< v a r i a b l e id=" v2_l0 " name=" v e r d i c t _ f a i l " i n i t =" f a l s e "/>

</ v a r i a b l e s >

< s t a t e s >
< s t a t e id=" s 0 _ l 0 ">

< d e s c r i p t i o n > s t a t e 0 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 1 _ l 0 ">

< d e s c r i p t i o n > s t a t e 1 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 2 _ l 0 ">

< d e s c r i p t i o n > s t a t e 2 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 3 _ l 0 ">

< d e s c r i p t i o n > s t a t e 3 </ d e s c r i p t i o n >
</ s t a t e >

</ s t a t e s >

< a c t i o n s >
< a c t i o n id=" a0_ l0 " type=" in " portRef=" p1_l0 ">

< d e s c r i p t i o n >requestCof fee</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a1_ l0 " type=" in " portRef=" p1_l0 ">

< d e s c r i p t i o n >cance l</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a2_ l0 " type=" out " portRef=" p1_l0 ">

< d e s c r i p t i o n >requestMoney</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a3_ l0 " type=" i n t e r n a l " portRef=" p1_l0 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v0_l0 " value=" t rue "/>
</changeVariables>

</ a c t i o n >
</ a c t i o n s >

<ports>

48

A Appendix

<port id=" p1_l0 ">
< d e s c r i p t i o n >port1</ d e s c r i p t i o n >

</port>
</ports>

< t r a n s i t i o n s >
< t r a n s i t i o n id=" t 0 _ l 0 " ac t ionRef=" a0_ l0 " sourceRef=" s 0 _ l 0 "
t a r g e t R e f =" s 1 _ l 0 "/>
< t r a n s i t i o n id=" t 1 _ l 0 " ac t ionRef=" a2_ l0 " sourceRef=" s 1 _ l 0 "
t a r g e t R e f =" s 2 _ l 0 "/>
< t r a n s i t i o n id=" t 2 _ l 0 " ac t ionRef=" a1_ l0 " sourceRef=" s 2 _ l 0 "
t a r g e t R e f =" s 3 _ l 0 "/>
< t r a n s i t i o n id=" t 3 _ l 0 " ac t ionRef=" a3_ l0 " sourceRef=" s 3 _ l 0 "
t a r g e t R e f =" s 0 _ l 0 "/>

</ t r a n s i t i o n s >

< s t a r t S t a t e s t a t e R e f =" s 0 _ l 0 "/>

<endStates>
<endState s t a t e R e f =" s 0 _ l 0 "/>

</endStates>
</ l t s >

< l t s id=" l t s 1 ">
< v a r i a b l e s >

< v a r i a b l e id=" v0_l1 " name=" v e r d i c t _ p a s s " i n i t =" f a l s e "/>
< v a r i a b l e id=" v2_l1 " name=" v e r d i c t _ f a i l " i n i t =" f a l s e "/>

</ v a r i a b l e s >

< s t a t e s >
< s t a t e id=" s 0 _ l 1 ">

< d e s c r i p t i o n > s t a t e 0 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 1 _ l 1 ">

< d e s c r i p t i o n > s t a t e 1 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 2 _ l 1 ">

< d e s c r i p t i o n > s t a t e 2 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 3 _ l 1 ">

< d e s c r i p t i o n > s t a t e 3 </ d e s c r i p t i o n >
</ s t a t e >

</ s t a t e s >

< a c t i o n s >
< a c t i o n id=" a0_ l1 " type=" in " portRef=" p1_l1 ">

< d e s c r i p t i o n >requestTea</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a1_ l1 " type=" in " portRef=" p1_l1 ">

49

A Appendix

< d e s c r i p t i o n >cance l</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a2_ l1 " type=" out " portRef=" p1_l1 ">

< d e s c r i p t i o n >requestMoney</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a3_ l1 " type=" i n t e r n a l " portRef=" p1_l1 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v0_l1 " value=" t rue "/>
</changeVariables>

</ a c t i o n >
</ a c t i o n s >

<ports>
<port id=" p1_l1 ">

< d e s c r i p t i o n >port1</ d e s c r i p t i o n >
</port>

</ports>

< t r a n s i t i o n s >
< t r a n s i t i o n id=" t 0 _ l 1 " ac t ionRef=" a0_ l1 " sourceRef=" s 0 _ l 1 "
t a r g e t R e f =" s 1 _ l 1 "/>
< t r a n s i t i o n id=" t 1 _ l 1 " ac t ionRef=" a2_ l1 " sourceRef=" s 1 _ l 1 "
t a r g e t R e f =" s 2 _ l 1 "/>
< t r a n s i t i o n id=" t 2 _ l 1 " ac t ionRef=" a1_ l1 " sourceRef=" s 2 _ l 1 "
t a r g e t R e f =" s 3 _ l 1 "/>
< t r a n s i t i o n id=" t 3 _ l 1 " ac t ionRef=" a3_ l1 " sourceRef=" s 3 _ l 1 "
t a r g e t R e f =" s 0 _ l 1 "/>

</ t r a n s i t i o n s >

< s t a r t S t a t e s t a t e R e f =" s 0 _ l 1 "/>

<endStates>
<endState s t a t e R e f =" s 0 _ l 1 "/>

</endStates>
</ l t s >

< l t s id=" l t s 2 ">
< v a r i a b l e s >

< v a r i a b l e id=" v0_l2 " name=" v e r d i c t _ p a s s " i n i t =" f a l s e "/>
< v a r i a b l e id=" v2_l2 " name=" v e r d i c t _ f a i l " i n i t =" f a l s e "/>

</ v a r i a b l e s >

< s t a t e s >
< s t a t e id=" s 0 _ l 2 ">

< d e s c r i p t i o n > s t a t e 0 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 1 _ l 2 ">

< d e s c r i p t i o n > s t a t e 1 </ d e s c r i p t i o n >

50

A Appendix

</ s t a t e >
< s t a t e id=" s 2 _ l 2 ">

< d e s c r i p t i o n > s t a t e 2 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 3 _ l 2 ">

< d e s c r i p t i o n > s t a t e 3 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 4 _ l 2 ">

< d e s c r i p t i o n > s t a t e 4 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 5 _ l 2 ">

< d e s c r i p t i o n > s t a t e 5 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 6 _ l 2 ">

< d e s c r i p t i o n > s t a t e 6 </ d e s c r i p t i o n >
</ s t a t e >

</ s t a t e s >

< a c t i o n s >
< a c t i o n id=" a0_ l2 " type=" in " portRef=" p1_l2 ">

< d e s c r i p t i o n >requestCof fee</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a1_ l2 " type=" in " portRef=" p1_l2 ">

< d e s c r i p t i o n >insertMoney</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a2_ l2 " type=" out " portRef=" p1_l2 ">

< d e s c r i p t i o n >requestMoney</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a3_ l2 " type=" out " portRef=" p1_l2 ">

< d e s c r i p t i o n >outputCoffee</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a4_ l2 " type=" out " portRef=" p1_l2 ">

< d e s c r i p t i o n >outputTea</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a5_ l2 " type=" i n t e r n a l " portRef=" p1_l2 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v0_l2 " value=" t rue "/>
</changeVariables>

</ a c t i o n >
< a c t i o n id=" a6_ l2 " type=" i n t e r n a l " portRef=" p1_l2 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v2_l2 " value=" t rue "/>
</changeVariables>

</ a c t i o n >
</ a c t i o n s >

<ports>

51

A Appendix

<port id=" p1_l2 ">
< d e s c r i p t i o n >port1</ d e s c r i p t i o n >

</port>
</ports>

< t r a n s i t i o n s >
< t r a n s i t i o n id=" t 0 _ l 2 " ac t ionRef=" a0_ l2 " sourceRef=" s 0 _ l 2 "
t a r g e t R e f =" s 1 _ l 2 "/>
< t r a n s i t i o n id=" t 1 _ l 2 " ac t ionRef=" a2_ l2 " sourceRef=" s 1 _ l 2 "
t a r g e t R e f =" s 2 _ l 2 "/>
< t r a n s i t i o n id=" t 2 _ l 2 " ac t ionRef=" a1_ l2 " sourceRef=" s 2 _ l 2 "
t a r g e t R e f =" s 3 _ l 2 "/>
< t r a n s i t i o n id=" t 3 _ l 2 " ac t ionRef=" a3_ l2 " sourceRef=" s 3 _ l 2 "
t a r g e t R e f =" s 4 _ l 2 "/>
< t r a n s i t i o n id=" t 4 _ l 2 " ac t ionRef=" a5_ l2 " sourceRef=" s 4 _ l 2 "
t a r g e t R e f =" s 0 _ l 2 "/>
< t r a n s i t i o n id=" t 5 _ l 2 " ac t ionRef=" a4_ l2 " sourceRef=" s 3 _ l 2 "
t a r g e t R e f =" s 5 _ l 2 "/>
< t r a n s i t i o n id=" t 6 _ l 2 " ac t ionRef=" a6_ l2 " sourceRef=" s 5 _ l 2 "
t a r g e t R e f =" s 6 _ l 2 "/>

</ t r a n s i t i o n s >

< s t a r t S t a t e s t a t e R e f =" s 0 _ l 2 "/>

<endStates>
<endState s t a t e R e f =" s 0 _ l 2 "/>
<endState s t a t e R e f =" s 6 _ l 2 "/>

</endStates>
</ l t s >

< l t s id=" l t s 3 ">
< v a r i a b l e s >

< v a r i a b l e id=" v0_l3 " name=" v e r d i c t _ p a s s " i n i t =" f a l s e "/>
< v a r i a b l e id=" v2_l3 " name=" v e r d i c t _ f a i l " i n i t =" f a l s e "/>

</ v a r i a b l e s >

< s t a t e s >
< s t a t e id=" s 0 _ l 3 ">

< d e s c r i p t i o n > s t a t e 0 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 1 _ l 3 ">

< d e s c r i p t i o n > s t a t e 1 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 2 _ l 3 ">

< d e s c r i p t i o n > s t a t e 2 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 3 _ l 3 ">

< d e s c r i p t i o n > s t a t e 3 </ d e s c r i p t i o n >
</ s t a t e >

52

A Appendix

< s t a t e id=" s 4 _ l 3 ">
< d e s c r i p t i o n > s t a t e 4 </ d e s c r i p t i o n >

</ s t a t e >
< s t a t e id=" s 5 _ l 3 ">

< d e s c r i p t i o n > s t a t e 5 </ d e s c r i p t i o n >
</ s t a t e >
< s t a t e id=" s 6 _ l 3 ">

< d e s c r i p t i o n > s t a t e 6 </ d e s c r i p t i o n >
</ s t a t e >

</ s t a t e s >

< a c t i o n s >
< a c t i o n id=" a0_ l3 " type=" in " portRef=" p1_l3 ">

< d e s c r i p t i o n >requestTea</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a1_ l3 " type=" in " portRef=" p1_l3 ">

< d e s c r i p t i o n >insertMoney</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a2_ l3 " type=" out " portRef=" p1_l3 ">

< d e s c r i p t i o n >requestMoney</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a3_ l3 " type=" out " portRef=" p1_l3 ">

< d e s c r i p t i o n >outputCoffee</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a4_ l3 " type=" out " portRef=" p1_l3 ">

< d e s c r i p t i o n >outputTea</ d e s c r i p t i o n >
</ a c t i o n >
< a c t i o n id=" a5_ l3 " type=" i n t e r n a l " portRef=" p1_l3 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v0_l3 " value=" t rue "/>
</changeVariables>

</ a c t i o n >
< a c t i o n id=" a6_ l3 " type=" i n t e r n a l " portRef=" p1_l3 ">

< d e s c r i p t i o n > s e t v e r d i c t </ d e s c r i p t i o n >
<changeVariables>

<changeVariable varRef=" v2_l3 " value=" t rue "/>
</changeVariables>

</ a c t i o n >
</ a c t i o n s >

<ports>
<port id=" p1_l3 ">

< d e s c r i p t i o n >port1</ d e s c r i p t i o n >
</port>

</ports>

< t r a n s i t i o n s >
< t r a n s i t i o n id=" t 0 _ l 3 " ac t ionRef=" a0_ l3 " sourceRef=" s 0 _ l 3 "

53

A Appendix

t a r g e t R e f =" s 1 _ l 3 "/>
< t r a n s i t i o n id=" t 1 _ l 3 " ac t ionRef=" a2_ l3 " sourceRef=" s 1 _ l 3 "
t a r g e t R e f =" s 2 _ l 3 "/>
< t r a n s i t i o n id=" t 2 _ l 3 " ac t ionRef=" a1_ l3 " sourceRef=" s 2 _ l 3 "
t a r g e t R e f =" s 3 _ l 3 "/>
< t r a n s i t i o n id=" t 3 _ l 3 " ac t ionRef=" a4_ l3 " sourceRef=" s 3 _ l 3 "
t a r g e t R e f =" s 4 _ l 3 "/>
< t r a n s i t i o n id=" t 4 _ l 3 " ac t ionRef=" a5_ l3 " sourceRef=" s 4 _ l 3 "
t a r g e t R e f =" s 0 _ l 3 "/>
< t r a n s i t i o n id=" t 5 _ l 3 " ac t ionRef=" a3_ l3 " sourceRef=" s 3 _ l 3 "
t a r g e t R e f =" s 5 _ l 3 "/>
< t r a n s i t i o n id=" t 6 _ l 3 " ac t ionRef=" a6_ l3 " sourceRef=" s 5 _ l 3 "
t a r g e t R e f =" s 6 _ l 3 "/>

</ t r a n s i t i o n s >

< s t a r t S t a t e s t a t e R e f =" s 0 _ l 3 "/>

<endStates>
<endState s t a t e R e f =" s 0 _ l 3 "/>
<endState s t a t e R e f =" s 6 _ l 3 "/>

</endStates>
</ l t s >

</ l t s m l >

Listing A.3: Case study example 1.

A.4 Case study example 1 generated traces

This is the beginning of the list of traces generated by the TraceTree using search depth 2.
The total number of generated traces by search depth 2 are 505. A complete list of these
will not be nessassary and will not be a advantadge for anyone.

1. +, []

2. +, [requestCoffee, requestMoney, cancel]

3. +, [requestTea, requestMoney, cancel]

4. +, [requestCoffee, requestMoney, insertMoney, outputCoffee]

5. +, [requestTea, requestMoney, insertMoney, outputTea]

6. -, [requestCoffee, requestMoney, insertMoney, outputTea]

7. -, [requestTea, requestMoney, insertMoney, outputCoffee]

8. +, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, cancel]

9. +, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, cancel]

10. +, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, cancel]

11. +, [requestTea, requestMoney, cancel, requestTea, requestMoney, cancel]

12. +, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputCoffee]

54

A Appendix

13. +, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, insertMoney, outputTea]

14. -, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputTea]

15. -, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, insertMoney, outputCoffee]

16. +, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputCoffee]

17. +, [requestTea, requestMoney, cancel, requestTea, requestMoney, insertMoney, outputTea]

18. -, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputTea]

19. -, [requestTea, requestMoney, cancel, requestTea, requestMoney, insertMoney, outputCoffee]

20. +, [requestCoffee, requestMoney, insertMoney, outputCoffee, requestCoffee, requestMoney, cancel]

21. +, [requestCoffee, requestMoney, insertMoney, outputCoffee, requestTea, requestMoney, cancel]

22. +, [requestTea, requestMoney, insertMoney, outputTea, requestCoffee, requestMoney, cancel]

23. +, [requestTea, requestMoney, insertMoney, outputTea, requestTea, requestMoney, cancel]

24. +, [requestCoffee, requestMoney, insertMoney, outputCoffee, requestCoffee, requestMoney, insertMoney,
outputCoffee]

25. +, [requestCoffee, requestMoney, insertMoney, outputCoffee, requestTea, requestMoney, insertMoney,
outputTea]

26. -, [requestCoffee, requestMoney, insertMoney, outputCoffee, requestCoffee, requestMoney, insertMoney,
outputTea]

27. -, [requestCoffee, requestMoney, insertMoney, outputCoffee, requestTea, requestMoney, insertMoney,
outputCoffee]

28. +, [requestTea, requestMoney, insertMoney, outputTea, requestCoffee, requestMoney, insertMoney, out-
putCoffee]

29. +, [requestTea, requestMoney, insertMoney, outputTea, requestTea, requestMoney, insertMoney, out-
putTea]

30. -, [requestTea, requestMoney, insertMoney, outputTea, requestCoffee, requestMoney, insertMoney, out-
putTea]

31. -, [requestTea, requestMoney, insertMoney, outputTea, requestTea, requestMoney, insertMoney, output-
Coffee]

32. +, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestCoffee, request-
Money, insertMoney, outputCoffee]

33. +, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestTea, request-
Money, insertMoney, outputTea]

34. -, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestCoffee, request-
Money, insertMoney, outputTea]

35. -, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestTea, requestMoney,
insertMoney, outputCoffee]

36. +, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, cancel, requestCoffee, request-
Money, insertMoney, outputCoffee]

37. +, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, cancel, requestTea, requestMoney,
insertMoney, outputTea]

38. -, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, cancel, requestCoffee, requestMoney,
insertMoney, outputTea]

55

A Appendix

39. -, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, cancel, requestTea, requestMoney,
insertMoney, outputCoffee]

40. +, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestCoffee, request-
Money, insertMoney, outputCoffee]

41. +, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestTea, requestMoney,
insertMoney, outputTea]

42. -, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestCoffee, requestMoney,
insertMoney, outputTea]

43. -, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, cancel, requestTea, requestMoney,
insertMoney, outputCoffee]

44. +, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputCoffee, re-
questCoffee, requestMoney, cancel]

45. +, [requestCoffee, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputCoffee, re-
questTea, requestMoney, cancel]

46. +, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, insertMoney, outputTea, request-
Coffee, requestMoney, cancel]

47. +, [requestCoffee, requestMoney, cancel, requestTea, requestMoney, insertMoney, outputTea, request-
Tea, requestMoney, cancel]

48. +, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputCoffee, re-
questCoffee, requestMoney, cancel]

49. +, [requestTea, requestMoney, cancel, requestCoffee, requestMoney, insertMoney, outputCoffee, re-
questTea, requestMoney, cancel]

50. +, [requestCoffee, requestMoney, insertMoney, outputCoffee, requestCoffee, requestMoney, cancel, re-
questCoffee, requestMoney, cancel]

51. +, [...]

56

Bibliography

[1] Specification of ltsml for trex suite. http://www.trex.informatik.uni-
goettingen.de/ltsml/ltsml.xsd, 06 2009.

[2] D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 1987.

[3] S. Karimkhani Asl, C. Otto, S. Withus, and H. Zhang. Lernen von Automaten - Er-
weiterung. Ausarbeitung im Projektseminar “Maschinelles Lernen in der Soft-
waretechnik” an der Georg-August-Universität Göttingen, 2009.

[4] M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. MIT
Press, Cambridge, MA, USA, 1994.

[5] S. Polonski. Learning of protocol-based automata. Master’s thesis, Masterarbeit im
Studiengang Angewandte Informatik am Institut für Informatik, GAUG-ZFI-MSC-
2008-09, ISSN 1612-6793, Zentrum für Informatik, Georg-August-Universität Göttin-
gen, May 2008.

[6] I. Schieferdecker and L. Vreck. Methods for testing and specification (mts); the testing
and test control notation version 3; part 1: Ttcn-3 core language. Technical report,
June 2009.

[7] C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler, and S. Schulz. An Introduction to
TTCN-3. John Wiley & Sons, Ltd, Chichester, West Sussex, England, 2005.

57

	List of Figures
	Glossary
	Introduction
	Foundations
	TTCN-3
	Verdicts
	``Any'' statement and default altsteps
	Ltsml data format

	Angluin's Learning Algorithm
	Definitions
	The algorithm

	Graph walk and tree walk
	TraceTree data structure

	The ``any'' statement
	The ``any'' statement in the LTSML
	Import of the ``any'' statement
	Handling of the ``any'' statement

	Handling and representation of verdicts
	Verdicts in the ltsml
	Importing verdicts to the TraceTree
	Changes related to the algorithm

	Loop detection and handling
	Loop detection and handling in ltsml data format
	Loop handling in TraceTree data structure
	TraceTree data structure
	Generatig traces in TraceTree data structure using loops

	Implementation
	Case study
	Example: The coffee machine

	Summary and outlook
	Summary
	Outlook

	Appendix
	XSD specification of LTSML
	LTSML sample
	Case study example: The coffee machine
	Case study example 1 generated traces

	Bibliography

