

Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN
Nummer

1612-6793
ZFI-BM-2007-14

Masterarbeit
im Studiengang „Angewandte Informatik“

Web Service Test Framework with TTCN-3

Stefan Troschütz

am Institut für

Informatik

Gruppe Softwaretechnik für Verteilte Systeme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen
15. Juni 2007

Georg-August-Universität Göttingen
Zentrum für Informatik

Lotzestraße 16-18
37083 Göttingen
Germany

Tel. +49 (5 51) 39-1 44 14
Fax +49 (5 51) 39-1 44 15
Email office@informatik.uni-goettingen.de
WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 15. Juni 2007

Master’s Thesis

Web Service Test Framework with TTCN-3

Stefan Troschütz

June 15, 2007

Software Engineering for Distributed Systems Group

Institute for Informatics

Georg-August-University Göttingen

Abstract

Web services are standards-based software systems designed to facilitate interoperable

application-to-application integration over a network. The broadening adoption of Web

services and especially their use for business purposes or critical applications introduce

a growing need for efficient testing approaches that allow assuring the correctness and

interoperability of Web services.

This thesis presents a framework for the testing of Web services with the standardized

test specification and implementation language TTCN-3. Foremost, the mapping of a

Web service description to a TTCN-3 abstract test suite, which facilitates basic testing

of the Web service, is discussed in detail. A time-saving automation of the proposed

mapping implemented as a Java console application is introduced afterwards. Finally,

the enhancement of TTworkbench Basic, a TTCN-3 test development and execution

environment, for Web service testing is presented. The implemented extension enables

the execution of a TTCN-3 abstract test suite derived from a Web service description. In

addition, it provides dialog-based wizards for using the automation of the mapping from

within TTworkbench or defining new, more complex test cases.

Acknowledgements

First and foremost, I would like to thank Edith Werner for her kind support during all

phases of creating this master's thesis. Without her knowledge, valuable suggestions,

and other efforts, this thesis would never have been written.

Special thanks are dedicated to Robert and my brother Michael who spent a great deal

of their precious time for proof-reading. I am really thankful for their comments and

constructive criticism.

Finally, I want to thank my family and all of my friends for accompanying my journey

through life. It is their supporting love and friendship that have made me who I am and

have brought me this far.

 Contents

 I

Contents

List of Tables .. III

List of Figures... IV

Abbreviations and Acronyms ... VI

1 Introduction... 1

1.1 Scope of this Thesis .. 1

1.2 Structure of this Thesis ... 2

2 Foundations... 5

2.1 XML Primer.. 5

2.1.1 XML Namespaces... 6

2.1.2 XML Schema .. 8

2.2 Web Services .. 10

2.2.1 Exemplary "Movie Database" Web Service ... 11

2.2.2 SOAP .. 13

2.2.3 WSDL ... 14

2.2.4 Message Styles.. 18

2.3 TTCN-3... 21

2.3.1 TTCN-3 Core Language ... 23

2.3.2 TTCN-3 Test System .. 27

2.4 Related Work .. 29

3 Mapping between WSDL and TTCN-3.. 31

3.1 Overview... 31

3.1.1 Chosen TTCN-3 Communication Paradigm... 31

3.1.2 Overall Mapping Rules ... 32

3.2 Supportive TTCN-3 Definitions ... 33

3.2.1 Naming Conventions for TTCN-3 Identifiers... 33

3.2.2 Predefined TTCN-3 Types.. 37

3.3 Mapping of the WSDL types Element .. 43

3.3.1 Mapping of XML Schemas as a Whole.. 44

3.3.2 Translation of XML Schema Identifiers ... 45

3.3.3 Mapping of XML Schema Constraining Facets 48

3.3.4 Mapping of the XML Schema id and ref Attributes 53

 Contents

 II

3.3.5 Mapping of the XML Schema nillable Attribute.................................... 55

3.3.6 Mapping of the Simple Type Definition Schema Component................ 56

3.3.7 Mapping of the Complex Type Definition Schema Component 57

3.3.8 Mapping of the Annotation Schema Component.................................... 61

3.4 Mapping of the WSDL portType Element.. 63

3.5 Mapping of the WSDL port and binding Elements 67

3.6 Mapping of the WSDL service Element... 69

3.7 Mapping of the WSDL documentation Element 75

4 The WSDL2TTCN Utility .. 77

4.1 Architecture... 78

4.1.1 The xsd2ttcn Package.. 79

4.1.2 The wsdl2ttcn Package.. 81

4.1.3 Overall Program Flow... 83

4.2 Implementation Details... 85

4.2.1 Creation of Target Namespace Qualifiers... 85

4.2.2 Translation of XML Schema Regular Expressions 87

4.3 Optional Mapping Changes for TTworkbench Compatibility................ 88

4.4 Invocation and Command Line Options ... 91

5 Extension of TTworkbench Basic for Web Service Testing 93

5.1 Test Adapter and Codec enabling Test Execution.................................. 93

5.2 Plug-in bundling Supportive Wizards... 98

5.2.1 "Web Service Test Modules" Wizard ... 99

5.2.2 "Web Service Test Project" Wizard.. 102

5.2.3 "Web Service Test Scenario" Wizard ... 105

6 Conclusion .. 109

6.1 Summary ... 109

6.2 Outlook ... 110

Bibliography ... 111

Appendix A Implementations of the "Movie Database" Web Service 117

A.1 Apache Axis Framework .. 117

A.2 Microsoft .NET Framework.. 120

Appendix B TTCN-3 Representations of the XML Schema Built-in Data Types.... 123

 List of Tables

 III

List of Tables

Table 3.1: Overall rules for mapping WSDL to TTCN-3 .. 33

Table 3.2: Prefixes of TTCN-3 identifiers (cp. [43] Table 13.1) 35

Table 3.3: Replacement of illegal characters in WSDL identifiers................................ 36

Table 3.4: Mapping support of XML Schema constraining facets (cp. [40] ch. 4.1.5).. 50

Table 3.5: Mapping rules for XML Schema regular expressions (cp. [9] ch. 6.1.4)...... 52

Table 3.6: Default values of TTCN-3 message templates.. 72

Table 3.7: Mapping rules for the WSDL documentation element 75

Table 4.1: Translation of XML Schema regular expressions (cp. Table 3.5) 87

Table 4.2: Translation of Unicode character representations of TTCN-3 patterns 88

Table 4.3: Command line options of the WSDL2TTCN utility 92

Table 5.1: Plug-ins required by the de.ugoe.cs.swe.webservices plug-in....................... 99

 List of Figures

 IV

List of Figures

Figure 2.1: XML document .. 6

Figure 2.2: XML document with explicit namespace qualification 7

Figure 2.3: XML Schema document .. 9

Figure 2.4: Web services architecture .. 11

Figure 2.5: Class diagram of the "Movie Database" Web service 12

Figure 2.6: SOAP message format ... 13

Figure 2.7: Abstraction of the WSDL document structure... 15

Figure 2.8: WSDL document of the "Movie Database" Web service – abstract part 16

Figure 2.9: WSDL document of the "Movie Database" Web service – concrete part ... 17

Figure 2.10: Rpc/literal message style.. 19

Figure 2.11: Document/literal message style ... 20

Figure 2.12: Wrapped message style.. 21

Figure 2.13: Overall picture of TTCN-3 (cp. [13] Figure 1).. 22

Figure 2.14: TTCN-3 module for the login example – type and data definition............ 24

Figure 2.15: TTCN-3 module for the login example – behavior definition 25

Figure 2.16: Structure of a TTCN-3 test system (cp. [7] Figure 1 and [8] Figure 1) 27

Figure 2.17: Interaction of TTCN-3 test system entities (cp. [43] Figure 12.2) 28

Figure 3.1: Extract of the XSDAUX module... 39

Figure 3.2: WSDL extended by the SOAP 1.1 binding (cp. [37] ch. 3.2)...................... 39

Figure 3.3: WSDL extended by the SOAP 1.2 binding (cp. [41] ch. 3)......................... 41

Figure 3.4: TTCN-3 types representing SOAP binding information 43

Figure 3.5: Translation of XML Schema identifiers .. 48

Figure 3.6: Mapping of multiple pattern facets.. 52

Figure 3.7: Mapping of the ref attribute ... 54

Figure 3.8: Mapping of the nillable Attribute .. 55

Figure 3.9: Hypothetical complex type definition with an xsi:nil attribute.................... 56

Figure 3.10: Mapping a simple type definition derived by union (cp. [9] ch. 7.5.3) 57

Figure 3.11: Mapping complex content derived by extension (cp. [9] ch. 7.6.2.1) 58

Figure 3.12: Mapping of a referenced attribute group (s. [9] ch. 7.6.7)......................... 58

Figure 3.13: Mapping of nested attribute and attributeGroup elements........................ 59

Figure 3.14: Mapping an any element (cp. [9] ch. 7.6.5.5) .. 60

 List of Figures

 V

Figure 3.15: XML representation of the schema element (s. [39] ch. 3.15.2)................ 61

Figure 3.16: XML representation of the annotation element (s. [39] ch. 3.13.2) 62

Figure 3.17: Mapping of the annotation element ... 63

Figure 3.18: WSDL extract showing portType and message elements.......................... 64

Figure 3.19: TTCN-3 output of mapping the WSDL portType element 66

Figure 3.20: WSDL extract showing service, port, and binding elements..................... 67

Figure 3.21: TTCN-3 output of mapping the WSDL port and binding elements 69

Figure 3.22: WSDL extract showing service, port, binding, and portType elements 70

Figure 3.23: TTCN-3 output of mapping the WSDL service element 74

Figure 3.24: Mapping of the WSDL documentation element .. 76

Figure 4.1: Packages of the WSDL2TTCN utility ... 78

Figure 4.2: Main classes of the xsd2ttcn package .. 80

Figure 4.3: Main classes of the wsdl2ttcn package .. 81

Figure 4.4: Overall program flow... 84

Figure 4.5: Creation of target namespace qualifiers... 86

Figure 4.6: Pattern-restricted TTCN-3 subtype.. 89

Figure 4.7: Changed mapping of TTCN-3 subtypes .. 90

Figure 4.8: Invocation of the WSDL2TTCN utility ... 91

Figure 5.1: TTworkbench test implementation process (cp. [29] Figure 2.1)................ 94

Figure 5.2: Main classes of the test adapter and codec implementation 95

Figure 5.3: Pages of the "Web Service Test Modules" wizard 100

Figure 5.4: First and second page of the "Web Service Test Project" wizard.............. 103

Figure 5.5: Third page of the "Web Service Test Project" wizard 104

Figure 5.6: Pages of the "Web Service Test Scenario" wizard 106

Figure 5.7: TTCN-3 output of the "Web Service Test Scenario" wizard..................... 108

Figure A.1: MovieDatabase.java .. 117

Figure A.2: Movie.java... 118

Figure A.3: Person.java .. 118

Figure A.4: MovieDatabase.wsdd .. 119

Figure A.5: MovieDatabase.asmx .. 120

Figure A.6: Movie.cs .. 121

Figure A.7: Person.cs ... 121

Figure B.1: XSDAUX.ttcn3 ... 125

 Abbreviations and Acronyms

 VI

Abbreviations and Acronyms

ANTLR Another Tool for Language Recognition

API Application Programming Interface

ASN.1 Abstract Syntax Notation One

ATS Abstract Test Suite

CD Coding and Decoding

CDATA Character Data

DTD Document Type Definition

ETS Executable Test Suite

ETSI European Telecommunications Standards Institute

GFT Graphical Presentation Format

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

ISO International Organization for Standardization

ITU International Telecommunication Union

ITU-T ITU Telecommunication Standardization Sector

J2SE Java Platform, Standard Edition

JAR Java Archive

MLF Module Loader File

MSDN Microsoft Developer Network

OSI Open Systems Interconnection

PA Platform Adapter

QName Qualified Name

RPC Remote Procedure Call

SA SUT Adapter

SDK Software Development Kit

SOAP Simple Object Access Protocol

SUT System Under Test

TCI TTCN-3 Control Interface

TE TTCN-3 Executable

TFT Tabular Presentation Format

TRI TTCN-3 Runtime Interface

 Abbreviations and Acronyms

 VII

TTCN Tree and Tabular Combined Notation

TTCN-2 Tree and Tabular Combined Notation version 2

TTCN-3 Testing and Test Control Notation version 3

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

UTF-8 8-bit Unicode Transformation Format

W3C World Wide Web Consortium

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

WSDL4J Web Services Description Language for Java Toolkit

WS-I Web Services Interoperability Organization

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

XSD XML Schema Definition

 1. Introduction

 1

1 Introduction

Web services are a standards-based, service-oriented approach to distributed computing

that enables application-to-application integration over a network, Inter- or intranet. The

maturity of the Web service core standards, the increasing need of automating cross-

enterprise business processes over the Internet, and the mature tool support from major

middleware as well as smaller, Web service-specific vendors are leading to a broad

adoption of Web services. Whereas they are already widely used in corporate intranet

environments or on a prototype scale, Web services are currently making their way into

commercial use too and a growing number of companies use them with their customers,

suppliers, and business partners. However, the broadening adoption of Web services and

especially their usage for business purposes or critical applications introduce a growing

need for efficient testing approaches that allow assuring correctness and interoperability

of Web services.

In [23], [24], and [46], a specification-based, automated testing approach is developed

that uses the standardized test specification and test implementation language TTCN-3

(Testing and Test Control Notation version 3). From a Web service description given by

means of a WSDL (Web Services Description Language) document, an abstract test

specification expressed with TTCN-3 is derived that is independent of the test platform

and the concrete system to be tested. In conjunction with the standardized TTCN-3

notation, which eases understanding, documentation, communication, and discussion,

this improves the transparency of the test process, increases the objectiveness of the

tests, and makes test results comparable. Overall, the approach is considered superior to

other, proprietary test solutions. Although there are case studies that prove the concept

of the specification-based, automated Web service testing approach, it lacks a thorough

specification of the mapping between WSDL and TTCN-3.

1.1 Scope of this Thesis

Based upon the existing research work, this thesis presents a framework for Web service

testing with TTCN-3 that includes the following contributions:

• The detailed specification of a mapping between a Web service description given by

means of a WSDL document and a TTCN-3 abstract test suite (ATS) that facilitates

basic testing of the Web service.

 1. Introduction

 2

• The implementation of the WSDL2TTCN utility, a command line application written

in the Java programming language, which automates the specified mapping between

WSDL and TTCN-3.

• The extension of TTworkbench Basic ([28]), a TTCN-3 test development and test

execution environment, for Web service testing. This includes the implementation of:

o A test adapter and codec that enable the execution of TTCN-3 abstract test suites

derived from WSDL descriptions.

o Two wizards providing dialog-based usage of the WSDL2TTCN utility. Whereas

one simply maps a WSDL document to a TTCN-3 abstract test suite, the second

wizard previously creates a TTCN-3 project that is configured for the testing of

Web services (using the implemented test adapter and codec).

o A third wizard that provides dialog-based definition of more complex test cases

based on TTCN-3 abstract test suites created according to the specified mapping

between WSDL and TTCN-3.

1.2 Structure of this Thesis

The content of this thesis is structured as follows: After this introduction, the basics of

this thesis are given in Chapter 2. This includes a presentation of the Extensible Markup

Language (XML), the concept of Web services and their key technologies, and the basic

concepts and constructs of TTCN-3. Furthermore, an overview of the related research

work is given.

Subsequently, Chapter 3 specifies the mapping between a Web service description given

by means of a WSDL document and a TTCN-3 abstract test suite that facilitates basic

testing of the Web service. After an introduction of the chosen TTCN-3 communication

paradigm, the overall mapping rules, and a number of supportive TTCN-3 definitions,

the mapping rules for the major WSDL elements are presented in detail.

An automated mapping of a Web service description to a TTCN-3 abstract test suite is

provided by the WSDL2TTCN utility that is introduced in Chapter 4. In addition to the

overall architecture of the Java console application, two implementation aspects are

discussed in detail and the invocation and the available command line options of the

WSDL2TTCN utility are presented. Furthermore, an option is introduced that facilitates

changing the proposed mapping between WSDL and TTCN-3 in some points in order to

create TTCN-3 output fully compatible to TTworkbench Basic.

 1.2. Structure of this Thesis

 3

In Chapter 5, the extension of the TTCN-3 test development and execution environment

TTworkbench Basic for Web service testing is discussed. This includes an introduction

of the test adapter and codec, which enable the execution of TTCN-3 abstract test suites

derived from WSDL descriptions. In addition, three wizards are presented that provide

dialog-based means to either use the WSDL2TTCN utility from within TTworkbench or

define new, more complex test cases based upon TTCN-3 abstract test suites generated

according to the mapping specified in Chapter 3.

The content of this thesis is concluded by Chapter 6, which gives an overall summary as

well as an outlook to further work.

 2. Foundations

 5

2 Foundations

This chapter provides the basics that are used in the subsequent chapters of this thesis.

First, Section 2.1 introduces the Extensible Markup Language, which is at the heart of

all Web service standards and techniques. Thereafter, Section 2.2 presents the concept

of Web services as well as their core standards SOAP (originally Simple Object Access

Protocol, since version 1.2 only SOAP) and WSDL. In Section 2.3, the basic concepts

and constructs of the Testing and Test Control Notation version 3 are discussed. At last,

Section 2.4 gives an overview of the related work.

2.1 XML Primer

The Extensible Markup Language is a meta-language that provides text-based means to

structure and store information. XML defines a syntactic foundation that facilitates the

definition of arbitrary, structural equivalent markup languages that can be used in many

areas of application such as XHTML (Extensible Hypertext Markup Language) for the

creation of web pages or WSDL for the description of Web services.

The XML standard is defined by the World Wide Web Consortium (W3C) and there are

two current versions. The first, XML 1.0, became a W3C Recommendation in February

1998. It has undergone minor changes since then and is currently in its fourth edition

([30]), as published in August 2006. XML 1.0 is widely implemented and recommended

for general use. The second version, XML 1.1, was first published in February 2004 and

is currently in its second edition, as published in August 2006. It contains new features

that are intended to ease the use of XML in certain scenarios. At the time of this writing,

XML 1.1 is not very widely implemented and therefore its use is only recommended, if

its features are necessarily needed.

An XML document is a hierarchical tree-structure that is composed by properly nesting

the following types of nodes:

• Elements are the most important building block of an XML document. They are

represented by a matching pair of start and end tags (<element></element>) or an

empty tag (<element />). Elements may have attributes appearing either on the start

tag or on the empty tag. In addition, they may have content enclosed by the matching

start and end tags. The element content is an arbitrary sequence of text nodes and/or

child elements.

 2. Foundations

 6

• Attributes provide additional information on elements and they are the only carrier of

information besides text nodes. Attributes are represented by a name-value pair in the

start or the empty tag of elements (<element attributeName=”attributeValue” />).

The names of attributes are required to be unique per element.

• Text nodes are the most important carrier of information in an XML document. They

may appear as normal text or in form of a CDATA (Character Data) section.

• Processing instructions and comments

On its top level, an XML document must have exactly one element, the so-called root or

document element, which directly or indirectly contains all other elements, attributes,

and/or text nodes. In front of the root element there may appear an optional line, the

XML declaration, which states what version of XML is in use and contains information

about the used character encoding. An XML document that conforms to all syntactical

rules of the XML standard is called well-formed and assured to be at least readable by

any XML-aware software.

Figure 2.1: XML document

Figure 2.1 shows an exemplary XML document that is well-formed and provides basic

information about two employees. The XML declaration states that the document uses

version 1.0 of the XML standard and characters are encoded in UTF-8 (8-bit Unicode

Transformation Format). The document element named employees contains two nested

employee elements. Each of those contains further elements providing the employee's

name and gender as well as an id attribute that holds the employee's personnel number.

2.1.1 XML Namespaces

An important amendment to the XML standard is the concept of XML namespaces. It

enables the qualification of element and attribute names used in XML documents by

associating them with namespaces identified by URI (Uniform Resource Identifier)

 2.1. XML Primer

 7

references. XML namespaces are a W3C Recommendation that was first published in

January 1999 and is currently in its second edition ([31]), as published in August 2006.

The qualification of element and attribute names gains in importance when an XML

document should not only be read but also interpreted. A software system must be able

to recognize the elements and attributes, which it is designed to process, even in the face

of "collisions" i.e. the occurrence of markup using the same element or attribute names

but intended for some other software. For example, an XML document could contain a

table element being the root for an ordered arrangement of data in rows and columns

and a second table element, which is the root for the description of a piece of furniture.

Such a XML document is well-formed, but it would be very hard for a software system

to interpret and process the XML document correctly, unless the two table elements are

associated with differing namespaces.

Since URI references identifying XML namespaces are often inconveniently long and

can contain characters not allowed in element and attribute names, they are not directly

incorporated. Instead, the name of an element or attribute appears as a qualified name

(QName) i.e. the name is either unprefixed or appended to a prefix and a delimiting

colon (s. [31] ch. 4). An attribute-based declaration syntax is provided to bind prefixes

to URIs identifying XML namespaces and/or to bind a default namespace that applies to

unprefixed element names. The latter binding technique is used in the XML document

shown in Figure 2.1 to associate all elements with a namespace identified by the URI

"http://www.troschuetz.de/employees". The first technique is exemplified by the XML

document displayed in Figure 2.2. The same namespace is now bound to the prefix em

that is used to qualify all element names and thereby associate them with the namespace

explicitly. Both types of namespace declaration are scoped by the element on which

they appear, so different bindings may apply in different parts of an XML document.

Figure 2.2: XML document with explicit namespace qualification

 2. Foundations

 8

2.1.2 XML Schema

As initially mentioned, the XML standard provides a syntactic foundation that enables

the definition of arbitrary, structural equivalent markup languages. In order to describe a

specific markup language or type of XML document, the basic XML syntax rules must

be supplemented with a schema that restricts the set of allowed element and attribute

names as well as the valid document structures i.e. how the nodes are allowed to be

nested. A schema is therein equivalent to the grammar for a language as it defines a

"vocabulary" and the structure of valid "sentences". In case an XML document is well-

formed and additionally conforms to every constraint specified by a given schema, the

document is valid according to that schema.

XML Schema is one of the most widely used languages that facilitate defining schemas

for XML documents. It is specified by the W3C in a multi-part standard that was first

published in May 2001 and is currently in its second edition ([38], [39], and [40]), as

published in October 2004. Henceforth, this thesis refers to the second edition without

further notice or reference by using the term XML Schema Standard for the standard as

a whole or XML Schema Standard Part 0, 1, or 2 for a specific part, respectively.

The XML Schema language is itself XML-based, which makes it legible for any XML-

aware software and allows authoring a schema and the conforming documents with a

single tool. Besides the description of the allowed vocabulary and structures for a type

of document, XML Schema adds the notion of data types to XML, which by default

treats all information as text. The provided type system is very rich, making the XML

Schema language powerful and complex at the same time. Furthermore, XML Schema

is aware of XML namespaces and each schema can be viewed as a collection of type

definitions and element declarations whose names belong to a specific namespace, the

so-called target namespace.

The XML Schema type system differentiates two fundamental sorts of types. On the one

hand, simple types describe and restrict character-based content such as attribute values

and text nodes. The XML Schema Standard provides a large set of built-in simple types

such as string, integer, or date. Those can be used either directly or as base type for a

custom simple type. In order to obtain a new simple type, its base is restricted along a

number of constraining facets that for example allow restricting the number of digits in

a numeric value or listing all valid values. The built-in simple types and the mechanism

 2.1. XML Primer

 9

for defining custom types are standardized in Part 2 of the XML Schema Standard. On

the other hand, complex types describe the valid document structures by defining the

sequencing, multiplicity, and content type of (child) elements as well as the appearance

and content type of attributes. There are numerous ways of defining complex types,

which are specified in detail in the XML Schema Standard Part1.

To conclude this section, Figure 2.3 shows an exemplary XML Schema document also

called XML Schema Definition (XSD). The displayed schema describes a type of XML

document to which the documents given in Figure 2.1 and Figure 2.2 conform i.e. both

documents are valid according to the schema. At the beginning, the schema document

describes the employees element, which is of an anonymous complex type that allows

the element to contain a sequence of an unlimited number of employee elements. Those

child elements are of the complex type named employee that allows them to contain a

sequence of one name and one gender element as well as one id attribute. Since both

child elements as well as the attribute should contain character-based content, they are

of simple types. The name element and the id attribute are of the XML Schema built-in

data types string or int, respectively. The gender element on the other hand is of the

custom simple type gender that restricts the built-in data type string to the values "male"

and "female".

Figure 2.3: XML Schema document

 2. Foundations

 10

2.2 Web Services

Web services are a standards-based, service-oriented approach to distributed computing

that enables application-to-application integration over a network, Inter- or intranet. The

development of Web services was especially driven by the growing need of automating

cross-enterprise business processes over the Internet for which conventional middleware

is not suitable (s. [2] ch. 5.1.3). The term Web services was introduced in 2000, but at

that time there was no universally adopted definition what it means and many software

vendors had their own initiatives and products. In the following, the concept of Web

services refined through the process of open standards development and in November

2002, the W3C published a first working draft describing the Web services architecture

and defining a Web service as follows:

"A Web service is a software system identified by a URI, whose public interfaces

and bindings are defined and described using XML. Its definition can be discovered

by other software systems. These systems may then interact with the Web service in

a manner prescribed by its definition, using XML based messages conveyed by

internet protocols." ([36] ch. 2)

The above definition captures the essence of Web services very well without specifying

the standards that should be used for their description and discovery or the interaction

with them. Whilst this ambiguity was intended and no standards should be presupposed,

the further development of Web services proved WSDL, UDDI (Universal Description,

Discovery and Integration), and SOAP to be the leading standards for the respective

tasks.

SOAP is a lightweight protocol for exchanging XML-based messages over a network

and the leading standard for the interaction with Web services. The SOAP protocol is

discussed in detail in Section 2.2.2. WSDL is an XML-based language that provides

means to describe the interface and location of a Web service as well as how to access

it. The Web Service Description Language is presented in Section 2.2.3. UDDI is an

XML-based registry for businesses and the services provided by them. It can be queried

by SOAP messages and it provides access to the WSDL documents of the listed Web

services. Because the publication and discovery of Web services are not relevant in the

context of this thesis, the Universal Description, Discovery and Integration standard is

not discussed in detail.

 2.2. Web Services

 11

The basic Web services architecture and the application of the three core standards are

illustrated in Figure 2.4 whereat emphasis is placed on the underlying service-oriented

architecture. A service provider, the Web service, and a service requestor, any software

system potentially another Web service, interact on the basis of the service description,

which is published by the provider and discovered by the requester through a service

broker. Because all involved entities communicate by means of well-defined standards

and the requester and provider need no or only little shared understanding besides the

service description, the architecture allows software systems to be loosely coupled and

integrated independent of their platform or programming language.

Figure 2.4: Web services architecture

Besides the three core technologies SOAP, WSDL, and UDDI, there are a number of

supplementing standards that add notions of security, transactions, etc. to Web services.

Furthermore, an open industry organization, the WS-I (Web Services Interoperability

Organization), was founded to promote Web services interoperability across platforms,

operating systems, and programming languages. For that purpose, the WS-I publishes

profiles, which provide guidelines for how related Web services standards should be

used together for best interoperability, as well as sample applications and test tools. The

WS-I Basic Profile provides interoperability guidelines for the three core technologies

WSDL, SOAP, and UDDI. It is currently available in version 1.0 ([44]), as published in

April 2004, and 1.1 ([45]), as published in April 2006.

2.2.1 Exemplary "Movie Database" Web Service

This section introduces a simple Web service that simulates access to a movie database.

It is used in the Sections 2.2.2 and 2.2.3 to exemplify the Web services core standards

SOAP and WSDL and throughout Chapter 3 to illustrate how a WSDL description maps

to TTCN-3. Furthermore, the exemplary "Movie Database" Web service was used to put

Service
Provider

Service
Requester

Service
Broker Publish (UDDI) Find (UDDI)

Interact (SOAP)

Service Description (WSDL)

Service Description (WSDL)

 2. Foundations

 12

the software developed in the context of this thesis to a first test. Its WSDL description

was mapped to a TTCN-3 abstract test suite using the WSDL2TTCN utility presented in

Chapter 4. Afterwards the generated test suite was executed against the exemplary Web

service using TTworkbench Basic ([28]), which was enhanced for Web service testing

with the custom test adapter and codec introduced in Section 5.1.

The "Movie Database" Web service is implemented with two distinct frameworks that

are widely used for that purpose. On the one hand, it is written in the Java programming

language and exposed as a Web service by using Apache Axis ([1]) version 1.4. On the

other hand, the Web service is developed with the .NET Framework ([21]) 2.0 and the

C# programming language. Figure 2.5 visualizes the structure of both implementations

and their sources are listed in Appendix A. The .NET implementation is furthermore

publicly available at the URI "http://www.troschuetz.de/MovieDatabase.asmx".

Figure 2.5: Class diagram of the "Movie Database" Web service

The interface of the exemplary Web service is implemented by the MovieDatabase class

and it comprises operations for the creation, insertion, and retrieval of movies. Although

the interface is kept quite simple, the exposed operations are designed to cover a wide

range of possible signatures. First, the createMovie operation takes multiple parameters.

Second, the createMovie and the insertMovie operations take complex arguments i.e.

objects of the Movie and Person classes and the getMovie operation returns one. Finally,

the searchMovies operation covers the use of arrays of both simple and complex types.

 2.2. Web Services

 13

2.2.2 SOAP

SOAP is a lightweight protocol for exchanging XML-based messages in a distributed,

decentralized environment and constitutes the leading standard for the interaction with

Web services. It consists of four parts:

• A messaging framework that describes what is in a message, who should deal with it,

and whether it is optional or mandatory.

• A set of encoding rules that specify a serialization mechanism for the expression of

instances of application-defined data types.

• A convention that can be used to represent Remote Procedure Calls (RPC).

• A protocol binding framework that enables the exchange of SOAP messages using a

variety of underlying protocols. A binding of SOAP to HTTP (Hypertext Transfer

Protocol) is included.

The name SOAP was coined in early 1998 by Microsoft, DevelopMentor, and Userland

that were working on XML-based distributed computing. After its further development

was slowed down by Microsoft politics, SOAP was submitted to the World Wide Web

Consortium for standardization. In May 2000, SOAP 1.1 ([32]) was published as a W3C

Note and thenceforward it formed the foundation for the further standards work. In June

2003, the SOAP 1.2 protocol became a W3C Recommendation, which is published as a

multi-part deliverable ([33], [34], and [35]).

Figure 2.6: SOAP message format

Envelope

Header

header child

Body

body child

 2. Foundations

 14

Figure 2.6 shows an abstraction of the SOAP message format along with two exemplary

messages that were exchanged during a call to the createMovie operation of the .NET

implementation of the "Movie Database" Web service. To aid display, all namespace

declarations occurring in the exemplary messages have been shortened. The document

element of each SOAP message is named Envelope and it encloses an optional Header

and a mandatory Body element. Both Body and Header are allowed to contain arbitrary

XML, making the message format of the SOAP protocol both simple and flexible.

The SOAP protocol assumes that every message has a sender, an ultimate receiver, and

an arbitrary number of so-called intermediaries that process the message and route it to

the receiver. The Body element carries the core information of a SOAP message and its

content must be processed by the ultimate receiver. The Header element is used to add

functionality or additional information to a SOAP message without modifying the core

of the message. For example, the Header could contain a session identifier or security

credentials. SOAP provides a flexible role model that allows each child element of the

Header to define for which of the intermediaries and/or ultimate receiver it is intended.

2.2.3 WSDL

The Web Services Description Language is the leading standard for the description of

Web services and provides an XML-based syntax to specify the exposed interface and

the location of a Web service as well as how to access it.

WSDL was initially created by Ariba, IBM, and Microsoft. The three vendors merged

their proprietary description languages and submitted the result to the World Wide Web

Consortium for standardization. In March 2001, WSDL 1.1 ([37]) was published as a

W3C Note and since then forms the basis for the current standards work. At the time of

this writing, several working drafts have been published of WSDL 2.0 that is expected

to become a W3C Recommendation. Since WSDL 2.0 is currently not widely supported

or used, this thesis considers only WSDL 1.1 and henceforth refers to it without further

notice or reference by using the term WSDL 1.1 Standard.

The overall structure of WSDL documents is illustrated in Figure 2.7 and can be split up

into two parts. The abstract part, which consists of the types, message, and portType

elements, describes the interface of the Web service i.e. the exposed operations and used

data types. The concrete part comprising the service and binding elements describes a

 2.2. Web Services

 15

concrete implementation of the service's interface at a network endpoint i.e. where the

Web service is located and how its operations can be accessed. All WSDL elements

depicted in Figure 2.7 are named using an attribute-based syntax and belong to a certain

namespace, the target namespace declared on the root element of the WSDL document.

This allows the WSDL elements to be referenced by their qualified name within their

defining document or any other WSDL description that imports the defining document.

Figure 2.7: Abstraction of the WSDL document structure

Figure 2.8 shows the abstract part of the WSDL description that is generated by the

.NET implementation of the "Movie Database" Web service. In order to shorten the

document and aid display, some elements are collapsed, but their content is comparable

to this of expanded elements of the same type.

The types element describes all data structures, which will be exchanged as parts of

messages. The default type system in WSDL is XML Schema, but other type systems

can be added via extensibility elements. The subsequent message elements describe the

messages, which will be exchanged between applications, as sets of parts. Each part is

characterized by a name and by a type that in turn is described in the used type system.

definitions

message

part

types

Types and elements defined by
XML Schema instances

portType

operation

output

input

references

fault

service

port

binding

operation

output

input

fault

 2. Foundations

 16

All messages of the .NET implementation of the "Movie Database" Web service are

composed of a single part named parameters whose type is defined in the XML Schema

language.

The portType element finally describes the Web service interface as a set of operations

with every operation being a collection of previously defined input, output, and/or fault

messages. The WSDL 1.1 Standard defines four operation types: request-response, one-

way, solicit-response, and notification. The two latter operation types, which require the

Web service to initiate communication, are not well defined in the WSDL 1.1 Standard

and there is only little support for them. Because of this, the WS-I Basic Profile Version

1.0 and 1.1 forbid the usage of the solicit-response and the notification operation types

(s. [44] ch. 5.4.2 and [45] ch. 4.5.2). The four operations of the .NET implementation of

the "Movie Database" Web service make use of the request-response operation type.

Figure 2.8: WSDL document of the "Movie Database" Web service – abstract part

 2.2. Web Services

 17

Figure 2.9 shows the concrete part of the WSDL description that is generated by the

.NET implementation of the exemplary "Movie Database" Web service. Again, some

elements are collapsed to shorten the document and aid display.

Figure 2.9: WSDL document of the "Movie Database" Web service – concrete part

Each binding element concretizes a specific port type by defining the message format

and the protocol bindings for all of its operations and messages. The Web Services

Description Language defines a common binding mechanism that allows bindings to

any number of messaging and transport protocols via extensibility elements. The WSDL

1.1 Standard defines a binding extension for SOAP 1.1 (s. [37] ch. 3), which is the most

widely used binding and the only one supported by the WS-I Basic Profile Version 1.0

and 1.1 (s. [44] ch. 5.6.1 and [45] ch. 4.6.1). A binding extension for the latest version

of the SOAP protocol is specified in the "WSDL 1.1 Binding Extension for SOAP 1.2"

([41]), a W3C Member Submission published in April 2006. WSDL can be bound to the

SOAP protocol using one of five message styles that are presented in detail in Section

2.2.4. The .NET implementation of the "Movie Database" Web service contains two

binding elements that both use a refinement of the document/literal style, the wrapped

message style, and bind the service's interface to SOAP 1.1 on the one hand and SOAP

1.2 on the other hand.

 2. Foundations

 18

The service element finally groups a set of related port elements. The latter describe

single endpoints hosting a Web service interface by associating a specific binding with a

network address. The bindings of the .NET implementation of the "Movie Database"

Web service are associated with the same network address by two ports that are grouped

by the MovieDatabase service.

2.2.4 Message Styles

The abstract interface description of a WSDL document can be bound to SOAP using

one of five message styles. Those differ in the construction of the Body and the Header

elements of SOAP messages.

The SOAP binding extensions introduced in Section 2.2.3 provide two attributes for

adjusting the message style. On the one hand, the style attribute indicates whether an

operation is document-oriented i.e. the messages contain documents, or RPC-oriented

i.e. the messages contain parameters and return values. The use attribute on the other

hand indicates whether the message parts are encoded using the SOAP encoding rules

or whether the parts define the concrete schema of the message. The combination of the

attribute values gives four of the five message styles: rpc/encoded, document/encoded,

rpc/literal, and document/literal. The fifth message style called wrapped represents a

special application of the document/literal style.

Because "it was determined that there was no way to guarantee interoperability when

using an RPC-encoded binding" ([14] p. 628), the WS-I Basic Profile Version 1.0 and

1.1 require a WSDL description to use either the rpc/literal or the document/literal

message style (s. [44] ch. 5.6.3 and [45] ch. 4.7.3). Besides this general restriction, the

WS-I Basic Profile imposes further, specific requirements for the supported message

styles. Following the WS-I Basic Profile, only three message styles are supported in the

context of this thesis: the ones mentioned above as well as the wrapped style being a

special application of the document/literal style.

The rpc/literal message style uses the SOAP convention for the representation of remote

procedure calls and responses i.e. the Body element of SOAP messages contains a single

child element that encloses all message parts. Inside the request message, this wrapper

element is named identically to the operation, and inside the response, its name is the

operation name with "Response" being appended. The message parts are represented by

 2.2. Web Services

 19

elements whose names are identical to the part's names and whose types are defined by

the WSDL type system, by default XML Schema. An example of the rpc/literal style is

given in Figure 2.10. The left hand side partly shows the WSDL description of the Axis

implementation of the "Movie Database" Web service using the rpc/literal message

style. Concretely, it shows the description of the request and response messages of the

createMovie operation. The right hand side of Figure 2.10 displays the corresponding

SOAP messages exchanged during a call to the createMovie operation. To aid display,

all occurring namespace declarations have been shortened.

Figure 2.10: Rpc/literal message style

In case the document/literal message style is used, the SOAP Body element contains no

additional wrapper elements. Instead, the message parts appear directly under the Body

element, so that everything within the body is described by the WSDL type system. If

the default type system XML Schema is used, a SOAP message can be validated using

any XML validator. A drawback of the document/literal style is the non-inclusion of the

operation name in the SOAP message, which could make it difficult or even impossible

to associate a message with an operation. Furthermore, the WS-I Basic Profile Version

1.0 and 1.1 allow only one child i.e. only one message part in the SOAP body (s. [44]

ch. 5.3.1 and [45] ch. 4.4.1). An example of the document/literal style is given in Figure

2.11. The left hand side partly shows the WSDL description of the Axis implementation

of the "Movie Database" Web service using the document/literal style. Concretely, it

shows the description of the request and response messages of the getMovie operation.

This operation replaces the createMovie operation used by the example of the rpc/literal

message style, since the latter requires more than one message part and therefore cannot

 2. Foundations

 20

be exposed by the Axis implementation using the document/literal style. The right hand

side of Figure 2.11 displays the corresponding SOAP messages exchanged during a call

to the getMovie operation. In the shown SOAP response, the identifier of the only child

of the SOAP body was changed to "getMovieReturn", because it was wrongly named

"idReturn" in the message actually returned by the Axis implementation. Similar to the

previous example, all namespace declarations have been shortened to aid display.

Figure 2.11: Document/literal message style

The wrapped message style, which is a refinement of the document/literal style, resolves

the drawbacks of its parent by using a wrapper element. Similar to the rpc/literal style

the wrapper is named identically to the operation and it encloses all message parts.

However, the wrapper now also reflects in the WSDL document, as it is fully described

by the WSDL type system and becomes the only message part. On account of this, a

SOAP message can still be validated using any XML validator, if the WSDL description

uses the default type system XML Schema. Drawbacks of the wrapped message style

are its proprietary origin from Microsoft and the non-existence of a specification for this

style. The wrapped message style is nevertheless considered interoperable, as it is well

understood and supported by many Web services implementations besides the Microsoft

products. An example for the wrapped message style is given in Figure 2.12. The left

hand side partly shows the WSDL document of the .NET implementation of the "Movie

Database" Web service. Concretely, it shows the description of the request and response

messages of the createMovie operation. The right hand side of Figure 2.12 displays the

corresponding SOAP messages exchanged during a call to the createMovie operation.

Again all occurring namespace declarations have been shortened.

 2.3. TTCN-3

 21

Figure 2.12: Wrapped message style

2.3 TTCN-3

The Testing and Test Control Notation version 3 is a standardized test specification and

implementation language dedicated to black-box testing of a wide range of computer

and telecommunication systems. Typical application areas are the testing of protocols,

services, modules, and APIs (Application Programming interface).

TTCN-3 is a redesign of the Tree and Tabular Combined Notation (TTCN), which was

developed by ISO (International Organization for Standardization) since 1984 as part of

the overall methodology for conformance testing of the Open Systems Interconnection

(OSI) protocol layers. TTCN was first standardized in 1992 and revised in 1998 with

the publication of TTCN version 2 (TTCN-2). Though TTCN was successfully used for

conformance testing of a wide range of communication protocols, it was not adequate

for various kinds of testing such as interoperability, robustness, regression, system, and

integration testing or for various emerging testing application areas such as mobile

protocol, Internet protocol, service, module, and API testing. Therefore, a more flexible

and powerful test specification language was called for and in 1998, ETSI (European

Telecommunication Standards Institute) started the development of an improved version

of TTCN, the Testing and Test Control Notation version 3.

 2. Foundations

 22

After two years of development, ETSI published the first version of TTCN-3 in October

2000. Since then TTCN-3 is maintained through a well-defined change request process

handled by ETSI and it is currently available in version 3.2.1, as published in February

2007. Because the latest version was published in the middle of this writing, this thesis

refers to the prior version 3.1.1 that was released in June 2005. TTCN-3 is standardized

in a multi-part deliverable that comprises ten parts. Whereas the parts 1 to 7 are already

included in version 3.1.1 of TTCN-3, the remaining parts are still in the process of

standardization and only available as drafts. Of interest to this thesis are the parts 1, 5,

and 6 ([6], [7], and [8]) as well as part 9, which was published as finalized draft ([9]) in

October 2006. Henceforth, this thesis refers to the parts included in TTCN-3 version

3.1.1 and part 9 without further notice or reference by using the term TTCN-3 Standard

Part 1-7 or 9, respectively.

Figure 2.13: Overall picture of TTCN-3 (cp. [13] Figure 1)

At the heart of TTCN-3 is the textual core notation, also called core language, which is

specified in the TTCN-3 Standard Part 1. The core notation is similar to conventional

programming languages like Java or C++ but provides additional features dedicated to

testing such as built-in data matching, test verdicts, timer handling, or the concurrent

execution of test components. As illustrated in Figure 2.13, the TTCN-3 core notation

can be represented using other formats than the textual one. The depicted presentation

formats TFT and GFT are specified in the TTCN-3 Standard Part 2 and 3. Furthermore,

the core notation provides interfaces to various data description languages to use the

data described by these languages besides its own data model. The use of the depicted

languages ASN.1 and XML Schema is defined in the TTCN-3 Standard Part 7 and 9.

TTCN-3

Core

Notation

Abstract Syntax
Notation One (ASN.1)

XML Schema

Other Data
Descriptions

Tabular Presentation
Format (TFT)

Graphical Presentation
Format (GFT)

Other Presentation
Formats

Textual Format

TTCN-3
User

 2.3. TTCN-3

 23

In the following Section 2.3.1, the TTCN-3 core language and its key constructs are

explained along the simple example of testing the login function of a fictitious service.

In doing so, the necessary definitions of types, test data, and test behavior are presented.

Subsequently, Section 2.3.2 introduces the TTCN-3 test system, a conceptual collection

of entities that manage test execution and interpret or execute compiled TTCN-3 code.

2.3.1 TTCN-3 Core Language

TTCN-3 code written in the TTCN-3 core language is collected in modules. The module

for the login example is shown in Figure 2.14 and Figure 2.15. Every TTCN-3 module

can be split up into two parts. On the one hand, the module definitions part (Figure 2.14

and Figure 2.15 lines 2-52) comprises the definitions of data (types, templates, and

constants), test behavior (test cases, functions, and altsteps), and import statements that

reference the definitions of external modules. On the other hand, the optional module

control part (Figure 2.15 lines 54-56) controls and sequences the execution of test cases.

It is therein similar to the main function of conventional programming languages.

The module definitions part can be further structured using groups. In TTCN-3, groups

do not form separate scopes i.e. the identifiers of definitions must be unique across the

whole module, but the utilization of groups aids readability and adds logical structure.

In addition, groups can be used for more selective importing of definitions. The module

for the login example contains two groups that separate the type and data definitions

(Figure 2.14 lines 2-26) from the definition of test behavior (Figure 2.15 lines 28-52).

The TTCN-3 core notation provides a rich data model that can be used to define types

of test data. Similar to conventional programming languages, there are predefined basic

types such as boolean, integer, float, and various string types. Moreover, TTCN-3 has

some specific types. The verdicttype, an enumeration of the distinguished values "pass",

"fail", "inconc", "none", and "error", represents the possible outcomes of a test case

called test verdicts. The anytype on the other hand is defined as shorthand for the union

of all types known inside a TTCN-3 module. On the basis of the basic types, a powerful

subtyping mechanism can be used to define new types. Depending on the base type, the

new subtype can restrict its parent to a specific length, value range, character pattern, or

list of values. Line 8 of Figure 2.14 defines the type for response messages of the login

function. The LoginResponse type is defined as a name alias of the built-in boolean type

i.e. it is a subtype without restrictions.

 2. Foundations

 24

From the built-in types and already defined subtypes, structured types such as records,

sets, or unions can be constructed. A record type is an ordered sequence of named and

typed fields. Lines 3-6 of Figure 2.14 define the record type for requests messages send

to the login function. The LoginRequest type is composed of the user and the password

field that are both of the built-in charstring type. A set type is similar to a record except

that the sequencing of the fields is not significant. Whereas records and sets specify

structures where all fields are always present, a union type defines a collection of named

and typed fields, called variants, of which only one will ever be present in a value. The

record-of and set-of types specify an ordered or unordered collection of instances of a

single type.

01 module LoginExample {
02 group TypeAndDataDefinition {
03 type record LoginRequest {
04 charstring user,
05 charstring password
06 }
07
08 type boolean LoginResponse;
09
10 template LoginRequest a_LoginRequest := {
11 user := "Max Mustermann",
12 password := "1234"
13 }
14
15 template LoginResponse a_LoginResponse := true;
16
17 type port LoginPort message {
18 out LoginRequest;
19 in LoginResponse;
20 }
21
22 type component LoginTestComponent {
23 port LoginPort pt_login;
24 timer t_timeoutGuard;
25 }
26 }
27

Figure 2.14: TTCN-3 module for the login example – type and data definition

With the request and response message types being defined, Lines 10-15 of Figure 2.14

specify actual values of them, the so-called templates. During test execution, templates

are going to be used to either transmit distinct values or test whether received values are

contained in the set of expected messages. A template declaration is required to define a

specific value or a matching expression for each field of its type i.e. it is fully specified.

Furthermore, templates can be parameterized and provide a simple form of inheritance.

The matching expressions allow specifying ranges or lists of values and thus provide a

powerful mechanism to describe sets of expected messages. Both templates for the login

example define messages with specific values.

 2.3. TTCN-3

 25

Before the test behavior can be defined, there are two special types associated with test

configurations that need to be specified preliminarily. On the one hand, the port type

defines an endpoint at which communication takes place. Ports can be message-based

for communication via message exchange and/or procedure-based for communication

via remote procedure calls. A port type declaration contains one or more lists indicating

the allowed (message) types and/or procedures in conjunction with the permitted

communication direction. The port type for the login example (Figure 2.14 lines 17-20)

allows sending messages of the LoginRequest type and receiving messages of the

LoginResponse type. On the other hand, the component type is used to describe test

components on which the test behavior will be executed. A component type declaration

defines the ports, timers, constants, and variables owned by a test component of that

type. The component type for the login example (Figure 2.14 lines 22-25) owns an

instance of the LoginPort port type for communication with the service whose login

function should be tested. Furthermore, the component type owns the t_timeoutGuard

timer that will be used to secure test execution from inactivity of the service under test.

28 group BehaviorDefinition {
29 testcase tc_login() runs on LoginTestComponent {
30 pt_login.send(a_LoginRequest);
31
32 t_timeoutGuard.start(5.0);
33
34 alt {
35 [] pt_login.receive(a_LoginResponse) {
36 t_timeoutGuard.stop;
37 setverdict(pass);
38 }
39 [] alt_ReceiveAnyOrTimeout();
40 }
41 }
42
43 altstep alt_ReceiveAnyOrTimeout() runs on LoginTestComponent {
44 [] pt_login.receive {
45 t_timeoutGuard.stop;
46 setverdict(fail);
47 }
48 [] t_timeoutGuard.timeout {
49 setverdict(fail);
50 }
51 }
52 }
53
54 control {
55 execute(tc_login());
56 }
57 }

Figure 2.15: TTCN-3 module for the login example – behavior definition

With all necessary types and templates being described, finally the test behavior can be

specified by test cases, functions, and altsteps. Functions and altsteps are used to specify

and structure test behavior, to define default behavior, and to structure computation in a

 2. Foundations

 26

module. Test cases are a special kind of functions that always return a value of the type

verdicttype and that can be executed in the module control part.

Lines 29-41 of Figure 2.15 define the test case for the login example named tc_login.

The test case refers to the LoginTestComponent component type on which the described

behavior will be executed. This reference is defined in the test case header (Figure 2.15

line 29) with the "runs on" clause. The header also declares a possibly empty list of

parameters. The test case body (Figure 2.15 lines 30-40) specifies how to stimulate the

system under test (SUT) and the expected reactions to the stimulation. The test behavior

is described in sequential order and the TTCN-3 core language provides basic control

structures known from conventional programming languages such as if-else-blocks or

for-loops.

At first, the tc_login test case sends the request message template via the pt_login port

owned by the test component (Figure 2.15 line 30). Subsequently, the test component's

t_timeoutGuard timer is started (Figure 2.15 line 32) to safeguard test execution against

inactivity of the service under test. The timer will run for 5 seconds. Finally, the test

case contains an alt statement (Figure 2.15 lines 34-40) that defines an ordered set of

alternatives. The first alternative (Figure 2.15 lines 35-38) is executed, if the defined

response message template is received on the pt_login port i.e. the login function of the

service under test answers as expected. The alternative stops the t_timeoutGuard timer

and sets the test verdict to "pass". The second alternative defined in line 39 of Figure

2.15 simply refers to the alt_ReceiveAnyOrTimeout altstep.

Altsteps are used to structure the alternatives of alt statements. Similar to those, altsteps

define an ordered collection of alternatives but in addition, they are given a name. This

allows altsteps to be referenced by possibly multiple alt statements and thereby avoids

code duplication. Furthermore, altsteps can be used to specify default behavior. Altsteps

may have parameters and they may refer to a component type with the "runs on" clause.

The alt_ReceiveAnyOrTimeout altstep (Figure 2.15 lines 43-51) refers to the component

type LoginTestComponent and has two alternatives that react on faulty communication

with the service under test. The first alternative (Figure 2.15 lines 44-47) is executed, if

any (unexpected) message is received on the pt_login port. Lines 48-50 of Figure 2.15

define the second alternative that is executed, if the t_timeoutGuard timer expires. Since

both alternatives react on faulty communication, they set the test verdict to "fail".

 2.3. TTCN-3

 27

2.3.2 TTCN-3 Test System

Similar to any other programming language, TTCN-3 code is not executable by itself.

Tests written in the TTCN-3 core language form a so-called abstract test suite, which

lacks any platform and system-specific information like an actual timer implementation

or how to communicate with the system under test. The ATS has to be interpreted or

translated into an executable format, the executable test suite (ETS), which is then

executed by a TTCN-3 test system. A standardized adaptation for TTCN-3 test system

implementations such as TTworkbench Basic is provided by the TTCN-3 Standard Part

5 and 6. As illustrated in Figure 2.16, a TTCN-3 test system can be conceptually defined

as a collection of interacting entities where each entity corresponds to a particular aspect

of functionality in a test system implementation.

Figure 2.16: Structure of a TTCN-3 test system (cp. [7] Figure 1 and [8] Figure 1)

At the heart of a TTCN-3 test system is the TTCN-3 Executable (TE). The name shall

thereby only indicate that the TE entity is responsible for the interpretation or execution

of the ATS and does not necessarily imply that it is a separate executable. Conceptually,

the TE consists of the executable test suite resulting from interpretation or compilation

of the ATS as well as the TTCN-3 Runtime System. The latter manages the ETS and

handles the interaction with the other test system entities via the standardized TTCN-3

Runtime Interface (TRI) and TTCN-3 Control Interface (TCI).

SUT Adapter (SA) Platform Adapter (PA)

System Under Test (SUT)

TTCN-3 Test System
Test Logging Component Handling Coding/Decoding (CD)

TCI

TRI

TTCN-3 Executable (TE)

Test Management

Test System User

Executable Test Suite (ETS) TTCN-3 Runtime System

 2. Foundations

 28

The TRI defines the communication between the TE, SUT Adapter (SA), and Platform

Adapter (PA) entities. Conceptually, it provides means for the TE to transmit test data to

the SUT or manipulate timers, and similarly to notify the TE of received test data or

timeouts. The TCI describes the interaction between the TE, Component Handling, Test

Management, Test Logging, and Coding/Decoding (CD) entities. It provides means for

the TE to distribute execution of test components among different test devices, manage

test execution, log information about test execution, and encode/decode test data.

The standardized distribution of functionality into different entities makes TTCN-3 test

system implementations very flexible. For example, a SUT Adapter can be reused in

multiple test suites and possibly even in multiple test system implementations. TTCN-3

tools like TTworkbench Basic provide implementations for most of the entities, so that a

user typically needs to implement only those entities that are test suite or SUT-specific,

namely the SUT Adapter and the Coding/Decoding entity.

01 testcase tc_login() runs on LoginTestComponent {
02 pt_login.send(a_LoginRequest);
03 t_timeoutGuard.start(5.0);
04 alt {
05 [] pt_login.receive(a_LoginResponse) {
06 t_timeoutGuard.stop;
07 setverdict(pass);
08 }
09 [] alt_ReceiveAnyOrTimeout();
10 }
11 }

Figure 2.17: Interaction of TTCN-3 test system entities (cp. [43] Figure 12.2)

 2.4. Related Work

 29

To conclude this section, Figure 2.17 illustrates the interaction of the test system entities

via the TRI and TCI interfaces that takes place during execution of the login test case

defined in Section 2.3.1. First, the TE invokes the triExecuteTestcase operation on the

SA to inform it that the tc_login test case is about to be started and thus allows the SUT

Adapter to prepare its communication facilities. Next, the a_LoginRequest message is

send to the SUT. In a first step, the TE invokes the encode operation on the CD entity,

which encodes the message from a structured TTCN-3 value into a form that will be

accepted by the SUT. The encoded message is passed back to the TE as a binary string.

In a second step, this binary string is passed on to the SA via the triSend operation,

which is then responsible for transmitting it to the SUT. After the request message is

sent, the t_timeoutGuard timer is started to guard the test behavior against inactivity of

the SUT. To achieve this, the TE invokes the triStartTimer method on the PA.

In case the SUT accepts the encoded login request, it returns an encoded response. This

message is received by the SUT Adapter, which forwards it to the TE by invoking the

triEnqueueMsg operation. Inside the TE, the message receipt triggers an evaluation of

the alt statement whose first alternative calls for a matching attempt of the received

message against the a_LoginResponse template. For that purpose, the encoded message

first has to be decoded into a structured TTCN-3 value and is therefore passed to the CD

entity via the decode operation. If the operation succeeds, the decoded value is passed

back to the TE and used in a template match attempt, which then causes the selection or

rejection of the currently considered alternative. If the decode operation fails, the TE is

informed and the currently considered alternative is rejected. Assuming the received

message matches, the first alternative is selected and it stops the t_timeoutGuard timer.

In order to achieve this, the TE finally invokes the triStopTimer method on the PA.

2.4 Related Work

There are both research and tools from industry to facilitate Web service testing. Many

tools and approaches are language-specific and sometimes even bound to a specific test

platform. In [12] and [26], the authors introduce testing approaches based on XML and

Perl or Java, respectively. In [20], the author presents how to automate ASP.NET Web

service testing using means provided by the .NET Framework. In [16], the authors

present how to automate Web service testing using technologies such as JUnit, Apache

Commons HttpClient, and Apache XMLUnit. However, these tools and approaches do

 2. Foundations

 30

not guarantee any systematic test and do not sufficiently cope with the language and

platform-independency of Web services.

In [46], a formal approach to Web service testing based on TTCN-3 is discussed, which

distributes the test activities to both server and client side. Specification of a TTCN-3

abstract test suite based on the WSDL description, models, and/or source code of a Web

service is conducted at server side. At client side, the ATS is executed by a TTCN-3 test

system implemented in a native programming language. Thus, the approach facilitates

Web service testing while traditional software testing does not work well due to the

language and platform-independency of Web services. However, the approach lacks

generality especially at test implementation and execution conducted at client side and

the binding between WSDL descriptions and TTCN-3 is not automated.

In [23], the authors discuss the automated testing of XML/SOAP based Web services by

use of TTCN-3 and present a mapping between XML data descriptions and TTCN-3

data to enable the automated derivation of test data. The paper is the first proposal of an

automated mapping between DTD (Document Type Definition) or XML Schema types

and TTCN-3 type definitions. Nonetheless, the (automated) generation of TTCN-3 types

associated with test configuration as well as generic test implementation and execution

are not properly considered.

Additional work on importing XML Schema types into TTCN-3 is presented in [18] and

[19]. It became the foundation of the TTCN-3 Standard Part 9, which was published as

finalized draft ([9]) by ETSI in October 2006 and which is going to standardize the use

of XML Schema with TTCN-3.

In [24], the authors discuss the import of WSDL descriptions into TTCN-3 targeting

Web service testing and define mapping rules between WSDL and TTCN-3 definitions.

The mapping enables the automated derivation of basic TTCN-3 test suites from WSDL

descriptions where only specific test data must still be entered manually. Although the

approach is evidenced by means of a simple case study, it lacks a thorough specification

of the mapping between WSDL and TTCN-3. For example, it is not considered how the

unambiguousness of TTCN-3 identifiers obtained from WSDL elements can be ensured.

In addition, the derived TTCN-3 test suite uses procedure-based communication, which

is considered less suitable in the context of Web service testing than message-based

communication (s. ch. 3.1.1).

 3. Mapping between WSDL and TTCN-3

 31

3 Mapping between WSDL and TTCN-3

This chapter presents the mapping of a Web service description given by means of a

WSDL document to a TTCN-3 abstract test suite that allows basic testing of the Web

service. The WSDL document is thereby expected to adhere to the WSDL 1.1 Standard

and to be bound to the SOAP 1.1 or the SOAP 1.2 protocol using the document/literal,

the rpc/literal, or the wrapped message style. Furthermore, the Web service interface(s)

described by the WSDL document are expected to contain only request-response and/or

one-way operations.

This chapter is structured as follows: First, Section 3.1 introduces the chosen TTCN-3

communication paradigm as well as the overall mapping rules. Afterwards, Section 3.2

presents a number of supportive TTCN-3 definitions. This includes naming conventions

for the generated TTCN-3 abstract test suite as well as predefined TTCN-3 types needed

by the mapping. Finally, the Sections 3.3 to 3.7 present detailed mapping rules for the

major elements of a WSDL description.

3.1 Overview

3.1.1 Chosen TTCN-3 Communication Paradigm

An essential choice that influences the further mapping rules is whether the TTCN-3

abstract test suite should use message-based or procedure-based communication for the

interaction with Web services. In the related research work, both communication ways

are used almost equally often. Thereby, no reasons are given for the usage of either of

the communication paradigms except in [24] where the authors motivate the usage of

procedure-based communication with "the possibility of defining exceptions (from their

fault counterparts)" ([24] ch. 4.5). The mapping presented in this thesis nevertheless

generates a TTCN-3 abstract test suite that uses message-based communication for the

interaction with Web services. This choice is based on the following reasons:

• Web services use message-based communication themselves, so the use of the same

communication paradigm for testing suggests itself.

• The input, output, and fault messages described by the WSDL document can be

mapped directly to a message type definition in TTCN-3.

• The call statement, a procedure-based communication operation, is not allowed to

reference altsteps and during its evaluation, all active defaults are ignored. Therefore,

 3. Mapping between WSDL and TTCN-3

 32

common behavior such as the reaction on inactivity of the system under test must be

specified repeatedly. In contrast, these restrictions do not apply to the alt statement

that is used in message-based communication to specify alternative receive and/or

timeout operations.

• The syntax of the message-based communication operations send and receive is less

complex than that of the procedure-based operations call and getreply, so the former

provide a better readability of test cases.

3.1.2 Overall Mapping Rules

With the communication paradigm chosen, the rules for mapping a WSDL description

to a TTCN-3 abstract test suite can be specified. Table 3.1 gives a first overview of the

mapping rules for the major elements of a WSDL document that are discussed in detail

in the Sections 3.3 to 3.7.

WSDL Element TTCN-3 Construct

documentation
A comment before the TTCN-3 construct to which the enclosing

WSDL element maps

types

Create a module for each target namespace, which is declared by

directly enclosed XML Schema instances or the schemas that are

imported, included, or redefined by them.

The components defined by each XML Schema are mapped to

TTCN-3 type definitions inside the module that has been created

for the target namespace of the schema.

portType A module with a TTCN-3 port type

operation A group

input

output

fault

A record type (messages of this type are allowed to be send or

received by the TTCN-3 port type that has been defined for the

enclosing WSDL port type)

binding
Maps to the module that represents the WSDL port, which refers

to this binding

 operation A constant with SOAP binding information

port
A module with a constant containing SOAP binding information

for each WSDL operation defined by the referenced binding

 3.2. Supportive TTCN-3 Definitions

 33

WSDL Element TTCN-3 Construct

service

Create a module for each WSDL port type referenced by the

service via port and binding, which contains basic test behavior

and execution control for testing the WSDL port type.

First, the module contains a component type definition owning a

port, which is of the TTCN-3 port type that has been created for

the WSDL port type.

Second, the module contains test cases and necessary templates

for testing all operations defined by the WSDL port type.

Finally, the module control part executes the defined test cases

for each WSDL port of the service, which references the WSDL

port type. Thereby, the appropriate TTCN-3 constant with SOAP

binding information is passed in.

Table 3.1: Overall rules for mapping WSDL to TTCN-3

The rules given in Table 3.1 show that the mapping makes wide use of modularization,

which aids to increase the readability and maintainability of the resulting test suite. In

addition, the modularization reduces the number of rules that aim at the elimination of

name ambiguities. These rules are required, since the identifiers of TTCN-3 constructs

are mostly obtained from the name attributes of the WSDL elements to which they map

and those are only required to have unique names within the scope of their enclosing

WSDL element. For example, the input and output elements must have unique names

among the same elements within the enclosing WSDL port type, but a second port type

can define input and output elements with equal names. The use of modularization is an

essential improvement in comparison to the mapping presented in [24], which maps a

WSDL description to a single module.

3.2 Supportive TTCN-3 Definitions

3.2.1 Naming Conventions for TTCN-3 Identifiers

Besides the modularization discussed in the Section 3.1.2, the utilization of prefixes is

another approach to increase the readability and maintainability of a TTCN-3 test suite.

Distinct prefixes allow distinguishing TTCN-3 identifiers of different kinds more easily

and furthermore aid to prevent name ambiguities when TTCN-3 identifiers are obtained

 3. Mapping between WSDL and TTCN-3

 34

from the name attribute of WSDL elements. The prefixes employed by this mapping are

listed in Table 3.2 and can be subdivided into two groups. The first prefixes including

the one for timers are suggestions made by [43] and usable in many areas of application,

whereas the remaining ones are closely bound to the domain of Web service testing.

TTCN-3 Construct Prefix Comment

type
In general, type identifiers are written without prefix,

instead the first letter should be written in upper case

template a_

altstep alt_
The same prefix is used for altsteps independent of

whether they are used as defaults or not

constant c_

parameter p_
Formal parameters of test cases, functions, altsteps,

and templates

port pt_

test case tc_

timer t_

module T_x

Modules that represent a target namespace declared

by one or more XML Schema instances.

In fact, this prefix is the final module identifier.

module PT_x_ Modules representing a WSDL port type

module P_x_
Modules representing a WSDL port and its associated

binding

module TPT_x_
Modules containing basic test behavior and execution

control for testing a WSDL port type

group g_

record type I_
Record types representing an input message of an

operation defined by a WSDL port type

record type O_
Record types representing an output message of an

operation defined by a WSDL port type

record type F_
Record types representing a fault message of an

operation defined by a WSDL port type

 3.2. Supportive TTCN-3 Definitions

 35

TTCN-3 Construct Prefix Comment

field mp_
Fields of the above record types representing the part

of a WSDL input, output, or fault message

port type TP_ Port types representing a WSDL port type

component type TC_
Component types defining test components on which

behavior for testing a WSDL port type is executed

constant b_

Constants that encapsulate SOAP binding information

for an operation of a WSDL port and its associated

binding

Note: The "x" inside the module prefixes represents a target namespace qualifier as

specified beneath.

Table 3.2: Prefixes of TTCN-3 identifiers (cp. [43] Table 13.1)

Every module prefix specified in Table 3.2 incorporates a target namespace qualifier

whose purpose is the uniqueness of module identifiers. In case of the modules, which

represent a target namespace declared by XML Schemas contained in the WSDL types

element, the prefix is the final module identifier. Thus, the incorporation of a qualifier

for the target namespace is the only possibility to create unique identifiers. The module

prefixes specified for the other WSDL elements are prepended to the value of the name

attribute on the respective element. Although those names are required to be unique

amongst the same elements within the enclosing WSDL description, elements with

equivalent names can be imported from another WSDL document. Because of that, each

module prefix incorporates a qualifier for the target namespace of the WSDL document,

which encloses the WSDL element that maps to the module. The mapping presented in

this thesis does not specify a concrete format for the target namespace qualifiers, but it

suggests the usage of either user-defined qualifiers or hashes of the target namespace

URIs, because both of them can guarantee unique identifiers even for the subsequent

mapping of WSDL documents. All examples that are included in this thesis make use of

user-defined qualifiers.

As aforementioned, many TTCN-3 identifiers are obtained from the name attribute of

WSDL elements. It is thereby imperative to ensure that the resulting identifiers do not

contain illegal characters. The syntax and set of valid characters for TTCN-3 identifiers

are defined as follows:

 3. Mapping between WSDL and TTCN-3

 36

"TTCN-3 identifiers are case sensitive and may only contain lowercase letters (a-z)

uppercase letters (A-Z) and numeric digits (0-9). Use of the underscore (_) symbol

is also allowed. An identifier shall begin with a letter (i.e. not a number and not an

underscore)." ([6] ch. A.1.3)

In contrast to this clear definition for TTCN-3 identifiers, the set of valid characters for

the name attribute of WSDL elements is only inconsistently specified. Following the

normative text of the WSDL 1.1 Standard, the name attributes of WSDL elements are of

the XML Schema data type NMTOKEN i.e. a valid value is an arbitrary concatenation

of letters, digits, points, hyphens, underscores, and colons. Against this, the schema for

WSDL documents given in Section A.4.1 of the WSDL 1.1 Standard defines that some

name attributes are of the XML Schema data type NCName i.e. a valid attribute value

must now start with a letter or underscore and it is not allowed to contain colons. This

redefinition is crucial, since otherwise the names of the affected WSDL elements e.g.

the port and portType element could not be used to construct a QName by which the

elements can be referenced. Finally, the WS-I Basic Profile Version 1.0 and 1.1 address

this inconsistency of the WSDL 1.1 Standard and each of them references a new schema

for WSDL documents, which both define that the name attribute of all WSDL elements

is of the XML Schema data type NCName (s. [44] ch. 5.1.1 and [45] ch. 4.2.1).

In order to support WSDL documents conforming to any of the mentioned schemas, the

translation of name attributes to valid TTCN-3 identifiers considers values of the XML

Schema data types NCName and NMTOKEN. Because the name attribute values are

appended to prefixes specified in Table 3.2, the resulting TTCN-3 identifiers are already

guaranteed to start with a letter. In order to ensure that the identifiers contain only valid

characters, the occurrences of point, hyphen, and colon characters are replaced by the

escape sequences defined in Table 3.3. Due to the fact that all escape sequences start

with an underscore, it is mandatory to escape the actual underscore character too.

Illegal character Replacing escape sequence

"_" "_U"

"." "_P"

"-" "_H"

":" "_C"

Table 3.3: Replacement of illegal characters in WSDL identifiers

 3.2. Supportive TTCN-3 Definitions

 37

3.2.2 Predefined TTCN-3 Types

This section discusses a number of TTCN-3 types that are predefined for the mapping.

On the one hand, this includes TTCN-3 representations of the XML Schema built-in

data types (s. [40] ch. 3) and the schema-related attributes defined for the direct use in

any XML document being validated (s. [39] ch. 2.6). They are needed for the mapping

of the data type definitions contained in the WSDL types element, because the default

WSDL type system is XML Schema. The representations of the XML Schema built-in

data types and the schema-related attributes are defined in a distinct TTCN-3 module

named XSDAUX, which will be imported as needed by the modules that are generated

during the mapping. On the other hand, TTCN-3 types are predefined, which allow the

encapsulation of SOAP binding information using a fixed format. Those TTCN-3 types

are defined in another distinct module named WebServices, which will also be imported

as needed.

The TTCN-3 representations of the XML Schema built-in data types base upon those

presented in Part 9 of the TTCN-3 Standard (s. [9] Annex A), whereat the following

changes apply:

• All subtypes of "useful TTCN-3 types", which are specified inside Annex E of the

TTCN-3 Standard Part 1, are directly subtyped from built-in TTCN-3 types with the

same restrictions as the former base type to reduce the number of predefined types.

The concerned type definitions are long_, unsignedLong, int, unsignedInt, short_,

unsignedShort, byte_, unsignedByte, float_, and double. The type identifiers having a

trailing underscore character to prevent ambiguities with the "useful TTCN-3 types"

remain the same to keep identifiers consistent with the TTCN-3 Standard Part 9.

• The pattern restriction of the TTCN-3 representations of XML Schema string types

are revised, so that they follow the rules for character patterns (s. [6] ch. B.1.5) and

conveniently mimic the restrictions for the XML Schema string types (s. [40] ch. 3):

o If a set expression contains an unescaped hyphen character, which is preceded and

followed by another character but should not denote a value range, the hyphen is

escaped, so it loses its special meaning and no longer denotes a value range. The

concerned type definitions are ENTITY, Name, NCName, ID, and IDREF.

o The pattern of the token type contains a trailing "|" character that has no use and is

therefore removed.

 3. Mapping between WSDL and TTCN-3

 38

o The pattern of the base64Binary type is changed to "[0-9a-zA-Z+/=]#(0,)".

o Occurrences of the metacharacter "\d" in a set expression together with the "\w"

metacharacter are removed, because the latter also matches numerical digits. The

concerned types are NMTOKEN, ENTITY, Name, NCName, ID, and IDREF.

o The first character of the XML Schema data types ENTITY, Name, NCName, ID,

and IDREF is not allowed to be a digit. Thus, the set expressions in the patterns of

the respective TTCN-3 representations, which describe the first character, have to

contain the range "a-zA-Z" instead of the "\w" metacharacter.

• The extension attributes, which are used by the TTCN-3 Standard Part 9 to allow

codecs to keep track of the original XSD nature of a given TTCN-3 type by storing a

value of the fixed format "XSD:<localName>", are removed. Instead the XSD nature

is stored in the encode attribute, which is more appropriate for this information (cp.

[6] ch. 28), whereat the string representation "{<namespaceURI>}<localName>" is

used to store the qualified names of the XML Schema built-in data types.

The TTCN-3 representations of the four schema-related attributes, which are defined for

the direct use in any XML document being validated, follow the rules of mapping an

attribute declaration, as defined by the TTCN-3 Standard Part 9 and this thesis. Though

those attributes are defined in a different namespace than the XML Schema built-in data

types, their TTCN-3 representations are defined in the same module, so that the number

of modules with supportive definitions is kept as low as possible.

Figure 3.1 shows parts of the XSDAUX module containing the TTCN-3 type definitions

for the XML Schema built-in data types and the schema-related attributes. The complete

module is listed in Figure B.1.

01 /*
02 * This module defines TTCN-3 representations of XML Schema types basing on
03 * the types presented in the ETSI standard ES 201 873-9 V1.1.1 Annex A
04 */
05 module XSDAUX {
06 // String types
07 type charstring token (pattern "([^ \t\r\n]#(1,)([^ \t\r\n]#(1,))#(0,))") with {
08 encode "{http://www.w3.org/2001/XMLSchema}token";
09 }
10
11 type charstring string with {
12 encode "{http://www.w3.org/2001/XMLSchema}string";
13 }
14 ...
15
16 // Integer types
17 type integer integer_ with {
18 variant "{http://www.w3.org/2001/XMLSchema}integer";
19 }
20

 3.2. Supportive TTCN-3 Definitions

 39

21 type integer positiveInteger (1 .. infinity) with {
22 variant "{http://www.w3.org/2001/XMLSchema}positiveInteger";
23 }
24 ...
25
26 // Boolean types
27 type boolean boolean_ with {
28 encode "{http://www.w3.org/2001/XMLSchema}boolean";
29 }
30
31 // XSI attribute declarations
32 type XSDAUX.QName Attribute_type with {
33 encode "{http://www.w3.org/2001/XMLSchema-instance}type";
34 }
35 ...
36 }

Figure 3.1: Extract of the XSDAUX module

In order to be able to define the TTCN-3 types, which allow encapsulation of SOAP

binding information using a fixed format, the SOAP bindings supported by the mapping

have to be examined first. The SOAP 1.1 binding is defined in Chapter 3 of the WSDL

1.1 Standard and it extends a WSDL document as shown in Figure 3.2. The informal

syntax, which is used by the figure to describe the XML grammar, is defined in Section

1.2 of the WSDL 1.1 Standard, but it should be accessible without further reading.

<definitions >

 <binding > *
 <soap:binding style="rpc|document" ? transport="uri" />
 <operation > *
 <soap:operation soapAction="uri" ? style="rpc|document" ? /> ?
 <input> ?
 <soap:body parts="nmtokens" ? use="literal|encoded"
 encodingStyle="uri-list" ? namespace="uri" ? />
 <soap:header message="qname" part="nmtoken" use="literal|encoded"
 encodingStyle="uri-list" ? namespace="uri" ? > *
 <soap:headerfault message="qname" part="nmtoken" use="literal|encoded"
 encodingStyle="uri-list" ? namespace="uri" ? /> *
 <soap:header>
 </input>
 <output> ?
 <soap:body parts="nmtokens" ? use="literal|encoded"
 encodingStyle="uri-list" ? namespace="uri" ? />
 <soap:header message="qname" part="nmtoken" use="literal|encoded"
 encodingStyle="uri-list" ? namespace="uri" ? > *
 <soap:headerfault message="qname" part="nmtoken" use="literal|encoded"
 encodingStyle="uri-list" ? namespace="uri" ? /> *
 <soap:header>
 </output>
 <fault> *
 <soap:fault name="nmtoken" use="literal|encoded"
 encodingStyle="uri-list" ? namespace="uri" ? />
 </fault>
 </operation>
 </binding>

 <service > *
 <port > *
 <soap:address location="uri" />
 </port>
 </service >

</definitions>

Figure 3.2: WSDL extended by the SOAP 1.1 binding (cp. [37] ch. 3.2)

 3. Mapping between WSDL and TTCN-3

 40

Since the SOAP binding versions do not differ much and all distinctions can be adapted

with little effort, first TTCN-3 types are defined that allow encapsulation of SOAP 1.1

binding information. Subsequently, the differences between the SOAP binding versions

are discussed and the defined TTCN-3 types are extended to support SOAP 1.2 binding

information too. The completed types are shown in Figure 3.4.

At first, subtypes of the TTCN-3 built-in type charstring are specified for the use and

style attributes and both subtypes are restricted to the values allowed for the respective

attribute. Furthermore, two set-of types are specified for the parts and encodingStyle

attributes, whereat the TTCN-3 representations of the XML Schema built-in data types

NMTOKEN and anyURI are used as element type.

As can be clearly seen in Figure 3.2, almost any information provided by the SOAP 1.1

binding is operation specific. Therefore, the binding information is encapsulated on the

operation level as specified by the overall mapping rules, whereat common details given

by the soap:address and the soap:binding elements are also included. For that purpose,

a record type named SoapBinding is defined, which contains a field for every piece of

information given by attributes of the soap:address, soap:binding, and soap:operation

elements. The fields are named equivalent to their corresponding attribute and are of a

type that is appropriate for the attribute values i.e. either a TTCN-3 representation of

XML Schema built-in data types or a type already defined for the SOAP binding. The

style attribute optionally present on soap:binding and soap:operation elements maps to

a single field, since the value specified on a soap:binding element is only the default for

the style attributes of the soap:operation elements enclosed by the same WSDL binding.

Because the information defined by the other SOAP binding elements is too complex to

be stored in simple fields of the SoapBinding record type, additional TTCN-3 types are

defined. Those types encapsulate the information defined by the complex SOAP binding

elements and the SoapBinding type contains fields of them.

For the soap:body, soap:header, soap:headerfault, and soap:fault elements, record

types are defined, which follow the rules that are specified above i.e. attributes become

simple fields and nested elements become fields of additional types. Because multiple

soap:header and soap:fault elements are allowed for each operation, an additional set-of

type needs to be defined for each of them. The same applies to the soap:headerfault

element that is allowed to occur multiple times inside a soap:header element.

 3.2. Supportive TTCN-3 Definitions

 41

Finally, all fields, which correspond to nodes marked to be optional with a succeeding

"?" or "*" character, are also defined optional in TTCN-3. An exception is the style field

of the SoapBinding type, which is mandatory although the corresponding style attribute

is declared optional on the soap:binding and soap:operation elements. This bases upon

the fact that if "the soap:binding element does not specify a style, it is assumed to be

"document"" ([37] ch. 3.4).

The binding for the SOAP 1.2 protocol, which is specified in Chapter 3 of the "WSDL

1.1 Binding Extension for SOAP 1.2" ([41]), extends a WSDL document as shown in

Figure 3.3. The XML grammar is described with an informal syntax, which is specified

in Section 2.2 of [41], but should be accessible without further reading.

<wsdl:definitions ...>

 ...

 <wsdl:binding ...>
 <wsoap12:binding style="rpc|document" ?
 transport="xs:anyURI" />
 <wsdl:operation ...>
 <wsoap12:operation soapAction="xs:anyURI" ?
 soapActionRequired="xs:boolean" ?
 style="rpc|document" ? /> ?
 <wsdl:input>
 <wsoap12:body parts="list of xs:NMTOKEN" ?
 use="literal|encoded" ?
 encodingStyle="xs:anyURI" ?
 namespace="xs:anyURI" ? />
 <wsoap12:header message="xs:QName"
 part="xs:NMTOKEN"
 use="literal|encoded"
 encodingStyle="anyURI" ?
 namespace="anyURI" ? > *
 <wsoap12:headerfault message="xs:QName"
 part="xs:NMTOKEN"
 use="literal|encoded"
 encodingStyle="anyURI" ?
 namespace="anyURI" ? /> *
 <wsoap12:header> *
 </wsdl:input> ?
 <wsdl:output>
 <!-- Same as wsdl:input -->
 </wsdl:output> ?
 <wsdl:fault>
 <wsoap12:fault name="xs:NMTOKEN"
 use="literal|encoded"
 encodingStyle="xs:anyURI" ?
 namespace="xs:anyURI" ? />
 </wsdl:fault> *
 </wsdl:operation> *
 </wsdl:binding> *

 <wsdl:service ...>
 <wsdl:port ...>
 <wsoap12:address location="xs:anyURI" />
 </wsdl:port> *
 </wsdl:service>

</wsdl:definitions>

Figure 3.3: WSDL extended by the SOAP 1.2 binding (cp. [41] ch. 3)

 3. Mapping between WSDL and TTCN-3

 42

As aforementioned, the SOAP 1.2 binding does not differ much from the SOAP 1.1

binding. The four key differences are:

• Introduction of a new namespace ("http://schemas.xmlsoap.org/wsdl/soap12/").

• The style attribute of the binding element has become mandatory.

• If present, the encodingStyle attribute is a single URI, instead of a list of URIs.

• The operation element has a new attribute called soapActionRequired, which is used

to indicate that the server needs the soapAction value.

Except for the last difference, none of them imposes the need to change the TTCN-3

types. The new namespace is only relevant for the parsing of WSDL descriptions. The

style attribute of the binding element, which is now mandatory, has a default value in

the SOAP 1.1 binding, so that an attribute value is always given independent of the

SOAP binding version. Finally, the single URI possibly specified by an encodingStyle

attribute can be treated as a list of URIs with a single element.

For the new soapActionRequired attribute, an optional field is added to the SoapBinding

record type. In case of the SOAP 1.1 binding, the value of the soapActionRequired field

is always "omit". In case of the SOAP 1.2 binding, the values "true" and "false" are

possible as well. Besides the soapActionRequired field, the soapVersion field is added

to the SoapBinding record. The mandatory field stores the SOAP binding version and is

of the additional SoapVersion type, which is restricted to the values "V_11" and "V_12".

The completed TTCN-3 types representing SOAP binding information are displayed in

Figure 3.4.

01 module WebServices {
02 import from XSDAUX all;
03
04 type charstring SoapVersion ("V_11", "V_12");
05
06 type charstring SoapStyle ("rpc", "document");
07
08 type charstring SoapUse ("literal", "encoded");
09
10 type set length (1 .. infinity) of XSDAUX.NMTOKEN SoapParts;
11
12 type set length (1 .. infinity) of XSDAUX.anyURI SoapEncodingStyles;
13
14 type record SoapBody {
15 WebServices.SoapUse use,
16 WebServices.SoapParts parts optional,
17 WebServices.SoapEncodingStyles encodingStyles optional,
18 XSDAUX.anyURI namespace optional
19 }
20
21 type record SoapHeader {
22 WebServices.SoapUse use,
23 XSDAUX.QName messageName,
24 XSDAUX.NMTOKEN part,

 3.3. Mapping of the WSDL types Element

 43

25 WebServices.SoapEncodingStyles encodingStyles optional,
26 XSDAUX.anyURI namespace optional,
27 WebServices.SoapHeaderFaults headerFaults optional
28 }
29
30 type set length (1 .. infinity) of WebServices.SoapHeader SoapHeaders;
31
32 type record SoapHeaderFault {
33 WebServices.SoapUse use,
34 XSDAUX.QName messageName,
35 XSDAUX.NMTOKEN part,
36 WebServices.SoapEncodingStyles encodingStyles optional,
37 XSDAUX.anyURI namespace optional
38 }
39
40 type set length (1 .. infinity) of WebServices.SoapHeaderFault SoapHeaderFaults;
41
42 type record SoapFault {
43 WebServices.SoapUse use,
44 XSDAUX.NMTOKEN name,
45 SoapEncodingStyles encodingStyles optional,
46 XSDAUX.anyURI namespace optional
47 }
48
49 type set length (1 .. infinity) of WebServices.SoapFault SoapFaults;
50
51 type record SoapBinding {
52 XSDAUX.QName operationName,
53 WebServices.SoapVersion soapVersion,
54 XSDAUX.anyURI location,
55 XSDAUX.anyURI transport,
56 WebServices.SoapStyle style,
57 XSDAUX.anyURI soapAction optional,
58 XSDAUX.boolean_ soapActionRequired optional,
59 WebServices.SoapBody inputBody,
60 WebServices.SoapHeaders inputHeaders optional,
61 WebServices.SoapBody outputBody optional,
62 WebServices.SoapHeaders outputHeaders optional,
63 WebServices.SoapFaults faults optional
64 }
65
66 type record length (1 .. infinity) of WebServices.SoapBinding SoapBindings;
67 }

Figure 3.4: TTCN-3 types representing SOAP binding information

3.3 Mapping of the WSDL types Element

The WSDL 1.1 Standard introduces the types element as follows:

"The types element encloses data type definitions that are relevant for the exchanged

messages. For maximum interoperability and platform neutrality, WSDL prefers the

use of XSD as the canonical type system, and treats it as the intrinsic type system.

[…]

However, since it is unreasonable to expect a single type system grammar can be

used to describe all abstract types present and future, WSDL allows type systems to

be added via extensibility elements." ([37] ch. 2.2)

The mapping described in this thesis considers only the default type system in WSDL

namely XML Schema, because other type systems are regarded as proprietary and rare.

 3. Mapping between WSDL and TTCN-3

 44

A mapping of XML Schema data type definitions to TTCN-3 is defined in the TTCN-3

Standard Part 9. The mapping presented in this thesis widely adopts the rules specified

by the standard but also applies some changes and additions, which are discussed in the

Sections 3.3.1 to 3.3.8.

3.3.1 Mapping of XML Schemas as a Whole

The mapping of XML Schema data type definitions has to take notice of two essential

points. On the one hand, it has to support the simultaneous mapping of multiple XML

Schemas, because the WSDL types element is allowed to contain an arbitrary number of

schema elements, which in each case represent an XML Schema and can include or

import further schemas. On the other hand, the mapping has to support the concept of

target namespaces. The TTCN-3 Standard Part 9 specifies the following rules for the

mapping of XML Schemas and the handling of namespaces:

"A single XSD Schema will be translated to a single TTCN-3 module. Any XSD

include / import statements are mapped to equivalent TTCN-3 import statements.

XML namespaces are supported by means of incorporating any namespace qualifiers

into the translated TTCN-3 identifier, as TTCN-3 does not offer a namespace

concept. To do this, a translator has to first bring all XSD identifiers to a unique

qualified form ([…]) and than translate these unique qualified names to TTCN-3

identifiers […]." ([9] ch. 5.1)

The mapping described in this thesis chooses another approach that mainly aims at a

better support of namespaces. A TTCN-3 module is created for each declared target

namespace instead of each XML Schema i.e. the data type definitions of schemas

declaring the same target namespace map to a single TTCN-3 module. This poses no

threat to the unambiguousness of TTCN-3 identifiers, because the names of each kind of

definition and declaration component are required to be unique within their distinct

symbol space within the target namespace. In this context, the term symbol space "is

similar to the non-normative concept of namespace partition introduced in [XML-

Namespaces]" ([39] ch. 2.5) and "denote[s] a collection of names, each of which is

unique with respect to the others" ([39] ch. 2.5). The translation mechanism that makes

the names unique across the distinct symbol spaces, so that they can be used as TTCN-3

identifiers, is discussed in Section 3.3.2. The identifier of a created module becomes the

 3.3. Mapping of the WSDL types Element

 45

prefix specified in Section 3.2.1, which incorporates a qualifier for the target namespace

to which the TTCN-3 module maps. The main advantages of the chosen approach to the

mapping of XML Schemas are:

• No need to incorporate namespace qualifiers into all translated TTCN-3 identifiers.

• The module containing the TTCN-3 representation of an XML Schema component

can be resolved unambiguously from its qualified name.

3.3.2 Translation of XML Schema Identifiers

As mentioned in Section 3.3.1, the names of each kind of XML Schema components are

only unique within their distinct symbol space. In order to use them as identifiers for the

resulting TTCN-3 type definitions, they need to be made unique across the distinctive

symbol spaces first. Furthermore, it has to be ensured that the identifiers resulting from

names of schema components are unequal to TTCN-3 keywords. The TTCN-3 Standard

Part 9 does not standardize those translations but demands the following:

"A name conversion algorithm has to guarantee that the translated identifier name…

a) is unique within the scope it is to be used

b) contains only valid characters

c) is not a TTCN-3 keyword

d) is not a reserved word ("base" or "content")" ([9] ch. 5.2)

Besides those requirements, the TTCN-3 Standard Part 9 specifies an algorithm that is

used for all examples within the standard (s. [9] ch. 5.2). The mapping presented in this

thesis utilizes a similar algorithm that introduces some amendments and improvements.

The TTCN-3 Standard Part 9 does not specify how to deal with characters that are not

allowed in TTCN-3 identifiers. Since the names of schema components are of the XML

Schema data type NCName, they can contain invalid point and/or hyphen characters.

Those characters are replaced by escape sequences, as defined in Table 3.3.

The name of an XML Schema component is made unique across the symbol spaces by

appending it to a prefix that reflects the component type e.g. Attribute_foo. Compared to

the TTCN-3 Standard Part 9, which defines that the names of element declarations

remain unchanged and all other names are prepended to two underscores and the type of

the component e.g. foo__attribute, the chosen approach has two advantages. First, the

 3. Mapping between WSDL and TTCN-3

 46

usage of prefixes guarantees that the resulting TTCN-3 identifiers start with a letter as

demanded by the TTCN-3 Standard Part 1 (s. [6] ch. A.1.3). This cannot be ensured by

using suffixes, because the names of XML Schema components are allowed to start

with a letter or an underscore. Second, the prefixing of all component names removes

the need to check whether an element name possibly matches a TTCN-3 keyword or the

concatenation of another component name and its respective suffix. For example, an

element schema component could be named foo__attribute, so following the translation

algorithm of the TTCN-3 Standard Part 9 the resulting TTCN-3 identifier would be

equal to that of an attribute component named foo. In contrast, the prefixing approach

creates the distinct identifiers Element_foo__attribute and Attribute_foo. The prefixes

that can occur during the mapping to TTCN-3 are: Element_, Attribute_, SimpleType_,

ComplexType_, Group_, AttributeGroup_, All_, Choice_, Sequence_, Extension_, and

Any_.

The mapping of XML Schema components to TTCN-3 sometimes requires the creation

of multiple TTCN-3 type definitions. The name of the schema component is thereby

used for the main type, whereas the names for the additional, anonymous types need to

be generated. The TTCN-3 Standard Part 9 specifies that those generated identifiers are

the concatenation of the word ANONYM and a sequential number that must be unique

per module. The translation algorithm of the mapping presented in this thesis uses only

a sequential number for the generated names, which again must be unique per module.

Those generated names cannot match the name of an XML Schema component, because

the latter are not allowed to start with a digit. At the same time, the resulting TTCN-3

identifiers are still valid, because the sequential number is appended to the prefix that

corresponds to the type of the structure that is mapped to the anonymous TTCN-3 type.

For example, the TTCN-3 identifier for a local simple type definition, which needs to be

mapped to an anonymous TTCN-3 type, could be SimpleType_5.

The above rules guarantee that the identifiers of TTCN-3 type definitions resulting from

the mapping meet the requirements specified by the TTCN-3 Standard Part 9. In order

to guarantee the same for the identifiers of fields or variants of those type definitions,

additional rules need to be specified. Thereby, the translation algorithm must only make

sure that the names of local element or attribute declarations, which map to fields or

variants, do not match any TTCN-3 keyword or a reserved word. Uniqueness is already

 3.3. Mapping of the WSDL types Element

 47

ensured, because the names of the local declaration components must be unambiguous

within their local symbol spaces (s. [39] ch. 2.5) and the local element and attribute

declarations map to different TTCN-3 constructs.

The TTCN-3 Standard Part 9 defines that the names matching a keyword or a reserved

word should be converted to uppercase, but this approach has the following drawback.

If the symbol space contains another name that already denotes the keyword or reserved

word in uppercase letters, a name ambiguity occurs that has to be resolved with another

translation rule. In order to circumvent this problem, the translation algorithm that is

used by the mapping presented in this thesis simply prefixes the names of locally

declared elements and attributes. This prefixing approach furthermore has the advantage

that the resulting identifiers of fields and variants are guaranteed to start with a letter, as

demanded by the TTCN-3 Standard Part 1 (s. [6] ch. A.1.3). On the one hand, the used

prefix depends on the type of the local declaration i.e. element or attribute. On the other

hand, it depends upon the information whether the appearance of the local element or

attribute declaration in an XML document must be qualified by a namespace. The latter

can be specified by a schema author as follows:

"Qualification of local elements and attributes can be globally specified by a pair of

attributes, elementFormDefault and attributeFormDefault, on the schema element, or

can be specified separately for each local declaration using the form attribute. All

such attributes' values may each be set to unqualified or qualified, to indicate

whether or not locally declared elements and attributes must be unqualified." ([38]

ch. 3.1)

If the appearances of a local element declaration must be qualified, the identifier of the

field or variant to which the declaration maps becomes the declaration name appended

to the prefix eq_. If otherwise the appearances have to be unqualified, the prefix e_ is

used. In an analogous manner, the name of a local attribute declaration is appended to

the prefix aq_ or a_, respectively.

Finally, the TTCN-3 encode attribute is used to store the non-translated names of global

and local XML Schema components. Therewith, codecs are able to keep track of the

original name of a specific TTCN-3 type, field, or variant. The string representation

"{<namespaceURI>}<localName>" is utilized to store the qualified name of an XML

Schema component.

 3. Mapping between WSDL and TTCN-3

 48

01 module T_naming {
02 import from XSDAUX all;
03
04 type set ComplexType_person {
05 T_naming.Sequence_1 base,
06 XSDAUX.string a_age optional,
07 XSDAUX.int aq_age optional
08 } with {
09 encode "{naming}person";
10 extension "Attribute: a_age,

aq_age";
11 encode (a_age) "age";
12 encode (aq_age) "{naming}age";
13 }
14
15 type record Sequence_1 {
16 XSDAUX.string e_age,
17 XSDAUX.int eq_age
18 } with {
19 encode "{naming}1";
20 encode (e_age) "age";
21 encode (eq_age) "{naming}age";
22 }
23
24 type T_naming.ComplexType_person

Element_person with {
25 encode "{naming}person";
26 }
27 }

Figure 3.5: Translation of XML Schema identifiers

To conclude this section, Figure 3.5 illustrates the presented name translation rules with

the mapping of two exemplary XML Schema components. At first, the mapped complex

type definition and element declaration are both named person to exemplify how names

are made unique across the symbol spaces of different kinds of components. Second, the

complex type definition requires the generation of an anonymous record type for which

the identifier Sequence_1 is created. Finally, the complex type definition contains four

local element and attribute declarations that are all named age but are either qualified or

unqualified and map to fields in different TTCN-3 type definitions.

3.3.3 Mapping of XML Schema Constraining Facets

The mapping of XML Schema constraining facets is covered by the TTCN-3 Standard

Part 9 in Section 6.1. The following explanations supplement this definition by giving a

more detailed overview on the mapping support for the individual constraining facets as

well as some corrections and additions for the mapping rules of the pattern facet.

The XML Schema Standard allows constraining simple type definitions with a given set

of facets. If the simple type definition is derived by union or list, the set of valid facets

is fixed. If the simple type definition is otherwise derived by restriction, the used base

type definition restricts the set of facets. A detailed listing of the constraining facets that

 3.3. Mapping of the WSDL types Element

 49

are valid for each kind of simple type definition is given in Section 4.1.5 of the XML

Schema Standard Part 2. Table 3.4 merges this specification with information about the

mapping support for the individual constraining facets as specified in Section 6.1 of the

TTCN-3 Standard Part 9.

Constraining Facet

Base Type Definition
le

ng
th

m
in

L
en

gt
h

m
ax

L
en

gt
h

pa
tt

er
n

en
um

er
at

io
n

w
hi

te
sp

ac
e

m
in

In
cl

us
iv

e

m
ax

In
cl

us
iv

e

m
in

E
xc

lu
si

ve

m
ax

E
xc

lu
si

ve

to
ta

lD
ig

its

fr
ac

tio
nD

ig
its

Simple Type definition derived by union

all data types * x

Simple Type definition derived by list

all data types x x x * * x

Simple Type definition derived by restriction

NMTOKENS x x x * * x

IDREFS x x x * * x

ENTITIES x x x * * x

string x x x x x x

normalizedString x x x x x x

token x x x x x x

language x x x x x x

NMTOKEN x x x x x x

Name x x x x x x

NCName x x x x x x

ID x x x x x x

IDREF x x x x x x

ENTITY x x x x x x

boolean * x

float * x x x x x x

double * x x x x x x

decimal * x x x x x x * *

integer * x x x x x x x *

 3. Mapping between WSDL and TTCN-3

 50

Constraining Facet

Base Type Definition

le
ng

th

m
in

L
en

gt
h

m
ax

L
en

gt
h

pa
tt

er
n

en
um

er
at

io
n

w
hi

te
sp

ac
e

m
in

In
cl

us
iv

e

m
ax

In
cl

us
iv

e

m
in

E
xc

lu
si

ve

m
ax

E
xc

lu
si

ve

to
ta

lD
ig

its

fr
ac

tio
nD

ig
its

negativeInteger * x x x x x x x *

nonPositiveInteger * x x x x x x x *

nonNegativeInteger * x x x x x x x *

positiveInteger * x x x x x x x *

long * x x x x x x x *

int * x x x x x x x *

short * x x x x x x x *

byte * x x x x x x x *

unsignedLong * x x x x x x x *

unsignedInt * x x x x x x x *

unsignedShort * x x x x x x x *

unsignedByte * x x x x x x x *

duration x x x * * * *

dateTime x x x * * * *

time x x x * * * *

date x x x * * * *

gYearMonth x x x * * * *

gYear x x x * * * *

gMonthDay x x x * * * *

gDay x x x * * * *

gMonth x x x * * * *

hexBinary x x x * x x

base64Binary x x x x x x

anyURI x x x x x x

QName x x x x x x

NOTATION * * * * * *

x Allowed by the XML Schema Standard and a mapping to TTCN-3 is supported.

* Allowed by the XML Schema Standard but a mapping to TTCN-3 is not supported.

Table 3.4: Mapping support of XML Schema constraining facets (cp. [40] ch. 4.1.5)

 3.3. Mapping of the WSDL types Element

 51

The XML Schema pattern facet is expected to contain a regular expression that follows

the specification given in Chapter F of the XML Schema Standard Part 2. The mapping

of these regular expressions to a TTCN-3 pattern is discussed in Section 6.1.4 of the

TTCN-3 Standard Part 9, but some of the given rules must be corrected as follows:

• The character class "\S" should become the term "[^ \t\n\t]" that is presumably

erroneous due to a typing error. According to the regular expression specification the

correct mapping result is the expression "[^ \t\n\r]".

• The character class "\i" should be mapped to "[\w\d:]", but the specification of

regular expressions defines this character class to be the set of initial name characters

i.e. those matched by "_", ":", or a character from the character class Letter defined

by the XML standard (s. [30] ch. B). The "_" character has therefore to be included

and digits to be excluded, so the mapping result becomes the term "[a-zA-Z_:]". The

same correction applies to the translation of the character class "\I".

• The mapping result for the character classes "\c" and "\C" should contain the term

"\w\d". Thereby, the metacharacter "\d" can be removed, because the metacharacter

"\w" already matches numeric digits.

• The TTCN-3 Standard Part 9 defines that an escaped plus character "\+" should be

mapped directly to the plus character. This mapping rule needs to be excluded, since

the plus character is a metacharacter in TTCN-3 patterns too (s. [6] Table B.1).

• The mapping of Unicode characters is defined to be a direct translation that simply

changes the syntax from "&#xgprc;" to "\q{g,p,r,c}" with "g,p,r,c" representing

single hexadecimal characters. First, this mapping rule has to be supplemented by

three more, which translate Unicode characters with only one, two, or three values

given. The missing values become zero, so that for example the expression "&#xrc;"

maps to "\q{0,0,r,c}". Second, it is not clearly defined whether TTCN-3 patterns

allow hexadecimal characters to occur in representations of Unicode characters. The

TTCN-3 Standard Part 1 specifies in Table B.1 that a Unicode character is matched

by the quadruple "\q{group, plane, row, cell}", but no details are given about the

value format. Since the quadruples occurring in code examples of the standard use

only decimal characters (s. [6] ch. 6.2.4 and B.1.5.2), it is assumed that hexadecimal

characters are not supported in the Unicode character representations of TTCN-3

patterns and thus have to be replaced by their corresponding decimal character.

 3. Mapping between WSDL and TTCN-3

 52

Table 3.5 summarizes the rules for mapping the regular expression given by an XML

Schema pattern facet to a TTCN-3 pattern. For those mapping rules that are corrected

versions of mapping rules specified by the TTCN-3 Standard Part 9, both versions are

contained in the table to recapitulate the made corrections.

TTCN-3 pattern XSD regular

expression Actual value Value in [9]

XSD regular

expression

TTCN-3

pattern

. ? ? #(0,1)

\s [\t\n\r] + #(1,)

\S [^ \t\n\r] [^ \t\n\t] * #(0,)

\D [^\d] {n} #(n)

\W [^\w] {n,} #(n,)

\i [a-zA-Z_:] [\w\d:] {n,m} #(n,m)

\I [^a-zA-Z_:] [^\w\d:] &#xgprc; \q{g,p,r,c}

\c [\w.\-_:] [\w\d.\-_:] &#xprc; \q{0,p,r,c}

\C [^\w.\-_:] [^\w\d.\-_:] &#xrc; \q{0,0,r,c}

\. .  \q{0,0,0,c}

" \" Note: g,p,r,c in [0-9a-fA-F]

Table 3.5: Mapping rules for XML Schema regular expressions (cp. [9] ch. 6.1.4)

Finally, an additional mapping rule must be specified for the simultaneous occurrence

of multiple pattern facets, since this is not covered by the TTCN-3 Standard Part 9. The

XML Schema Standard Part 2 states: "If multiple <pattern> element information items

appear as [children] of a <simpleType>, the [value]s should be combined as if they

appeared in a single ·regular expression· as separate ·branch·es" ([40] ch. 4.3.4.3). Based

on this definition, the values of multiple pattern facets are mapped to a single TTCN-3

pattern in two steps. First, every pattern value is mapped to a TTCN-3 pattern according

to the rules given in Table 3.5. In the second step, those translations become alternatives

in the finally used TTCN-3 pattern as illustrated in Figure 3.6.

01 module T_pattern {
02 import from XSDAUX all;
03
04 type XSDAUX.string SimpleType_s1

(pattern
"([a-z]#(0,))|([A-Z]#(0,))")
with {

05 encode "{pattern}s1";
06 }
07 }

Figure 3.6: Mapping of multiple pattern facets

 3.3. Mapping of the WSDL types Element

 53

3.3.4 Mapping of the XML Schema id and ref Attributes

The TTCN-3 Standard Part 9 specifies the following mapping rules for the id and the ref

attributes:

"The attribute id enables a unique identification of an XSD component. They are

mapped to TTCN-3 as simple type references, e.g. any component mapping to a type

with name typeName and an attribute id="ID" should result in an additional TTCN-3

type declaration:

 type typeName ID;" ([9] ch. 7.1.1)

"The ref attribute may reference an id or any global type (see clause 7.2).

If the attribute is referring to an id it’s directly mapped as a simple type, e.g. a

component with an attribute ref="REF" is translated to:

 type REF typeName;

In the case that REF references a global type the name of the global type has to be

substituted, e.g.

 type globalType typeName;" ([9] ch. 7.1.2)

The mapping presented in this thesis redefines the rule for the ref attribute and omits the

rule for the id attribute based on the following reasons:

The XML Schema Standard only specifies how to resolve a global schema component

based upon a QName given by a ref attribute (s. [39] ch. 3.15.3). It does not describe

how an id should be resolved based on a QName and defines no semantics for the id

attribute. Hence, the id attribute has no significance for the mapping of XML Schema

type definitions to TTCN-3 and it can be ignored.

The ref attribute is only permitted to appear on attribute, element, attributeGroup, and

group elements that are no immediate children of the schema element (s. [39] ch. 3.2.2,

3.3.2, 3.6.2, and 3.7.2). Hence, a schema component with a ref attribute is always part

of another structure e.g. a complex type definition and the mapping to a subtype is not

suitable. The TTCN-3 Standard Part 9 discusses the appearance of nested group and

attributeGroup elements with a ref attribute (s. [9] ch. 7.6.5.2, 7.6.6.2, and 7.6.7), but it

disregards the occurrence of nested element or attribute elements with a ref attribute.

Therefore, additional rules are defined for the latter mappings, which are similar to the

 3. Mapping between WSDL and TTCN-3

 54

rules for the nested group and attributeGroup elements. The nested element or attribute

components with a ref attribute are mapped to a field or variant in the TTCN-3 type

definition to which their enclosing schema component maps. The type of this field or

variant is the TTCN-3 type that represents the global element or attribute declaration to

which the value of the ref attribute refers. The name of the field, to which an attribute

component with a ref attribute maps, is the concatenation of attribute_ and a sequential

number that must be unique amongst all fields of the enclosing TTCN-3 type. The name

of the field or variant, to which a nested element component with a ref attribute maps, is

the concatenation of a reserved string and a sequential number that needs to be unique

amongst all fields or variants of the enclosing TTCN-3 type. The reserved string is all_,

choice_, or sequence_, depending on the schema component that encloses the nested

element component with the ref attribute. The preceding explanations are illustrated in

Figure 3.7, which shows the mapping of all varieties of nested element and attribute

components with a ref attribute.

01 module T_ref {
02 import from XSDAUX all;
03
04 type XSDAUX.int Attribute_a1 with {
05 encode "{ref}a1";
06 extension "Attribute";
07 }
08
09 type set AttributeGroup_ag1 {
10 T_ref.Attribute_a1 attribute_1

optional
11 } with {
12 encode "{ref}ag1";
13 extension "AttributeGroup";
14 }
15
16 type XSDAUX.int Element_e1 with {
17 encode "{ref}e1";
18 }
19
20 type set ComplexType_c1 {
21 T_ref.Element_e1 all_1 optional
22 } with {
23 encode "{ref}c1";
24 }
25
26 type union ComplexType_c2 {
27 T_ref.Element_e1 choice_1
28 } with {
29 encode "{ref}c2";
30 }
31
32 type record ComplexType_c3 {
33 T_ref.Element_e1 sequence_1
34 } with {
35 encode "{ref}c3";
36 }
37 }

Figure 3.7: Mapping of the ref attribute

 3.3. Mapping of the WSDL types Element

 55

3.3.5 Mapping of the XML Schema nillable Attribute

The nillable attribute, which is allowed to occur on element declaration components, is

of great importance for the validation of XML documents. If the nillable attribute is

present on an element declaration and set to true, "then an element may also be ·valid· if

it carries the namespace qualified attribute with [local name] nil from namespace

http://www.w3.org/2001/XMLSchema-instance and value true (see xsi:nil (§2.6.2)) even

if it has no text or element content despite a {content type} which would otherwise

require content" ([39] ch. 3.3.1). Because the TTCN-3 Standard Part 9 does not specify

a mapping for the nillable attribute, an additional rule is introduced by the mapping

presented in this thesis.

01 module T_nil {
02 import from XSDAUX all;
03
04 type union Element_e1 {
05 XSDAUX.int notNil,
06 T_nil.ComplexType_1 nil
07 } with {
08 encode "{nil}e1";
09 }
10
11 type set ComplexType_1 {
12 XSDAUX.Attribute_nil

attribute_1,
13 } with {
14 encode "{nil}1";
15 extension "Attribute:

attribute_1";
16 }
17
18 type record ComplexType_c1 {
19 T_nil.Element_2 e_e2
20 } with {
21 encode "{nil}c1";
22 encode (e_e2) "e2";
23 }
24
25 type union Element_2 {
26 XSDAUX.int notNil,
27 T_nil.ComplexType_1 nil
28 } with {
29 encode "{nil}2";
30 }
31
32 type union Element_e3 {
33 T_nil.ComplexType_c1 notNil,
34 T_nil.ComplexType_1 nil
35 } with {
36 encode "{nil}e3";
37 }
38 }

Figure 3.8: Mapping of the nillable Attribute

An element declaration with a present nillable attribute having the value true always

maps to a TTCN-3 union with exactly two variants, as illustrated by the three exemplary

mappings displayed in Figure 3.8. The first variant named notNil is of the TTCN-3 type

 3. Mapping between WSDL and TTCN-3

 56

that represents the type of the element declaration component. Thus, it allows specifying

normal text or element content according to the content type of the element declaration.

The second variant is named nil and it allows specifying that the element only carries a

namespace qualified nil attribute, as defined by the XML Schema Standard Part 1. For

that purpose, the second variant is of an anonymous TTCN-3 set type that represents the

following hypothetical complex type definition.

Figure 3.9: Hypothetical complex type definition with an xsi:nil attribute

In the exemplary mapping shown in Figure 3.8, this anonymous TTCN-3 set type is

named ComplexType_1 and commonly used in all TTCN-3 union types representing an

element declaration component with a nillable attribute. In order to keep the number of

additional types as low as possible, it is recommended but not mandatory to define only

one TTCN-3 set type of that kind per module.

3.3.6 Mapping of the Simple Type Definition Schema

Component

The mapping of simple type definitions to TTCN-3 is thoroughly defined in Section 7.5

of the TTCN-3 Standard Part 9. Yet, the specified rules contain an inconsistency that is

corrected by the mapping presented in this thesis.

The TTCN-3 Standard Part 9 illustrates the specified rules with various examples of

mapping simple type definitions derived by restriction, list, or union. All identifiers of

the resulting TTCN-3 definitions except one end with the suffix __simpleType. The

exception is a simple type definition derived by union that maps to a TTCN-3 definition

whose identifier ends with the suffix __union (s. [9] ch. 7.5.3). Since this behavior is

inconsistent and not motivated by the TTCN-3 Standard Part 9, the mapping in question

is corrected. Following the naming rules of the mapping presented in this thesis, all

identifiers of the resulting TTCN-3 definitions start with the prefix SimpleType_. Figure

3.10 shows the simple type definition in question as well as the inconsistent and the

corrected TTCN-3 mapping results.

 3.3. Mapping of the WSDL types Element

 57

01 type union e21__union {
02 XSDAUX.string union_1,
03 XSDAUX.float_ union_2
04 }

01 module T_union {
02 import from XSDAUX all;
03
04 type union SimpleType_e21 {
05 XSDAUX.string union_1,
06 XSDAUX.float_ union_2
07 } with {
08 encode "{union}e21";
09 }
10 }

Figure 3.10: Mapping a simple type definition derived by union (cp. [9] ch. 7.5.3)

3.3.7 Mapping of the Complex Type Definition Schema

Component

The mapping of complex type definitions to TTCN-3 is described in detail in Section

7.6 of the TTCN-3 Standard Part 9, but again some of the specified rules are changed by

the mapping presented in this thesis.

First, the mapping of a complex type definition with complex content, which is derived

by extension, is unified. A component of this kind "is translated to TTCN-3 by creating

a record containing a reference to the base type using the reserved word "base" and the

extension components" ([9] ch. 7.6.2.1). Two alternatives are defined for the mapping

of the extension content. If the base content and the extension content are of the same

structure e.g. a sequence, the extension content should map directly to the resulting

TTCN-3 record type. If both are of different structures, an anonymous type is generated

and referenced by a second field with the reserved name "content". The mapping of the

extension content is unified by disabling the first alternative for the following reasons:

First, the unification simplifies the mapping, which is considered more useful than the

slight decrease in complexity of the TTCN-3 output. Second, the precondition of the

first alternative is not always suitable. Consider an example where the base content and

the extension content define a choice, so that both are of the same structure and the

extension content should map directly to the resulting TTCN-3 record type. This would

be an unsuitable and inconsistent mapping, since it is specified that choice content maps

to a TTCN-3 union type (s. [9] ch. 7.6.5). To illustrate the preceding explanations,

Figure 3.11 shows the complex type definition in question together with the mapping

result given by the standard and the changed mapping result.

 3. Mapping between WSDL and TTCN-3

 58

01 type record e25__complexType {
02 XSDAUX.string title,
03 XSDAUX.string forename,
04 XSDAUX.string surname
05 }
06
07 type record e26__complexType {
08 e25_complexType base,
09 XSDAUX.integer_ age
10 }

01 module T_extension {
02 import from XSDAUX all;
03
04 type record ComplexType_e25 {
05 XSDAUX.string e_title,
06 XSDAUX.string e_forename,
07 XSDAUX.string e_surname
08 } with {
09 encode "{extension}e25";
10 encode (e_title) "title";
11 encode (e_forename) "forename";
12 encode (e_surname) "surname";
13 }
14
15 type record ComplexType_e26 {
16 T_extension.ComplexType_e25 base,
17 T_extension.Sequence_1 content
18 } with {
19 encode "{extension}e26";
20 }
21
22 type record Sequence_1 {
23 XSDAUX.integer_ e_age
24 } with {
25 encode "{extension}1";
26 encode (e_age) "age";
27 }
28 }

Figure 3.11: Mapping complex content derived by extension (cp. [9] ch. 7.6.2.1)

Besides the discussed unification, the mapping of an attribute group that is referenced

from within a complex type definition is corrected. The TTCN-3 Standard Part 9 states

that "if attributeGroup components are referenced from a complexType, restriction, or

extension, a reference to the attributeGroup is generated and inserted in the mapped

construct" ([9] ch. 7.6.7). To exemplify this mapping rule, the TTCN-3 Standard Part 9

includes the example shown in Figure 3.12.

01 type set e42__attributeGroup {
02 XSDAUX.float_ foo optional,
03 XSDAUX.float_ bar optional
04 } with {
05 extension "AttributeGroup"
06 };
07
08 type set e44__complexType {
09 XSDAUX.string ding,
10 e42__attributeGroup attributeGroup_1
11 }

Figure 3.12: Mapping of a referenced attribute group (s. [9] ch. 7.6.7)

 3.3. Mapping of the WSDL types Element

 59

The resulting TTCN-3 definition e44__complexType is thereby inconsistent with regard

to the mapping rules for sequence content of a complex type definition, which specify

that such content maps to a TTCN-3 record type (s. [9] ch. 7.6.6). Because mapping the

referenced attribute group to a field inside a set type is nevertheless reasonable, this is

retained. The sequence content is however mapped to an anonymous record type, which

is referenced by a field of the set type that has the reserved name "base". The corrected

mapping result for the complex type definition in question is shown in Figure 3.13.

01 module T_complex {
02 import from XSDAUX all;
03
04 type set AttributeGroup_e42 {
05 XSDAUX.float_ a_foo optional,
06 XSDAUX.float_ a_bar optional
07 } with {
08 encode "{complex}e42";
09 extension "AttributeGroup";
10 encode (a_foo) "foo";
11 encode (a_bar) "bar";
12 }
13
14 type set ComplexType_e44 {
15 T_complex.Sequence_1 base,
16 T_complex.AttributeGroup_e42

attributeGroup_1
17 } with {
18 encode "{complex}e44";
19 }
20
21 type record Sequence_1 {
22 XSDAUX.string e_ding
23 } with {
24 encode "{complex}1";
25 encode (e_ding) "ding";
26 }
27
28 type set ComplexType_c1 {
29 T_complex.Extension_2 base,
30 XSDAUX.int a_a1 optional,
31 XSDAUX.int a_a2 optional
32 } with {
33 encode "{complex}c1";
34 extension "Attribute: a_a1, a_a2";
35 encode (a_a1) "a1";
36 encode (a_a2) "a2";
37 }
38
39 type record Extension_2 {
40 T_complex.ComplexType_e44 base,
41 T_complex.Choice_3 content
42 } with {
43 encode "{complex}2";
44 }
45
46 type union Choice_3 {
47 XSDAUX.int e_e1,
48 XSDAUX.int e_e2
49 } with {
50 encode "{complex}3";
51 encode (e_e1) "e1";
52 encode (e_e2) "e2";
53 }
54 }

Figure 3.13: Mapping of nested attribute and attributeGroup elements

 3. Mapping between WSDL and TTCN-3

 60

The corrected mapping rule furthermore applies to all cases where an attributeGroup,

attribute, or anyAttribute element is contained directly in a complex type definition or in

nested complex content derived by restriction or extension. In any case, a TTCN-3 set

type is created that contains a field for each attributeGroup, attribute, or anyAttribute

element as well as a field of the anonymous type to which the complex type definition

or the complex content maps. The preceding explanations are illustrated in Figure 3.13,

which shows the exemplary mapping of the complex type definition c1.

Finally, the mapping of any elements, which are contained in a complex type definition

with choice content, is changed. The any element is a so-called wildcard component that

facilitates element content according to namespaces i.e. only the namespace to which an

element belongs is restricted. For example, the any element could permit the appearance

of arbitrary XHTML elements. In the TTCN-3 Standard Part 9, the following mapping

is specified:

"As the TTCN-3 anytype is defined to be a union of all types of the present module

and every other imported module, a choice containing XSD any types will translate

to anyType in TTCN-3." ([9] ch. 7.6.5.5)

That is, a plain subtype of the TTCN-3 anytype is created regardless of other definitions

contained in the choice content. Figure 3.14 displays the exemplary mapping of the

complex type e35 as given in Section 7.6.5.5 of the TTCN-3 Standard Part 9.

01 type anytype e35__complexType;

01 module T_any {
02 import from XSDAUX all;
03
04 type union ComplexType_e35 {
05 XSDAUX.string e_foo,
06 anytype choice_1
07 } with {
08 encode "{any}e35";
09 encode (e_foo) "foo";
10 }
11 }

Figure 3.14: Mapping an any element (cp. [9] ch. 7.6.5.5)

The mapping to a subtype of the TTCN-3 anytype seems reasonable at first glance, but

it is not suitable. None of the local definitions, which are also contained in the choice

content e.g. the element foo in the above example, are part of the special union type

represented by the TTCN-3 anytype, because they do not map to a type in the present or

any imported module. Thus, the mapping of the any element is adapted to that of other

 3.3. Mapping of the WSDL types Element

 61

definitions contained in the choice content of a complex type definition i.e. it is mapped

to an additional variant that is of the TTCN-3 anytype. The name of the variant becomes

the concatenation of choice_ and a sequential number that must be unique amongst all

variants of the enclosing union type. The changed mapping is shown in Figure 3.14.

3.3.8 Mapping of the Annotation Schema Component

The mapping of the annotation schema component is only partially specified in the

TTCN-3 Standard Part 9:

"Annotations may appear in every component and will be mapped to a corresponding

comment in TTCN-3. The comment should appear in the TTCN-3 code just before

the mapped structure that it belongs to. This standard does not describe a format in

which the comment is to be put into the TTCN-3 code." ([9] ch. 7.7)

In the following, the specification given above is refined by defining concrete rules for

the mapping of the annotation schema component to a TTCN-3 comment.

An annotation is not only allowed to appear in other schema components but can also

appear anywhere at the top level of schemas, as specified in Figure 3.15. In case the

annotation schema component appears before include, import, or redefine elements, it

supposedly provides information on the schema. Therefore, it is mapped to a TTCN-3

comment before the TTCN-3 module that represents the schema. In case the annotation

occurs elsewhere on the top level, it will be mapped to a TTCN-3 comment in front of

the TTCN-3 representation of the first subsequent schema component (a simpleType,

complexType, group, attributeGroup, element, attribute, or notation element). In case

multiple annotation schema components are mapped to a comment in front of the same

TTCN-3 construct e.g. a module, the created comments should preferably be merged to

a single block comment wherein each of them starts in a new line.

<schema
 attributeFormDefault = (qualified | unqualified) : unqualified
 blockDefault = (#all | List of (extension | restriction | substitution)) : ''
 elementFormDefault = (qualified | unqualified) : unqualified
 finalDefault = (#all | List of (extension | restriction | list | union)) : ''
 id = ID
 targetNamespace = anyURI
 version = token
 xml:lang = language
 {any attributes with non-schema namespace . . .}>
 Content: ((include | import | redefine | annotation)*, (((simpleType | complexType |

group | attributeGroup) | element | attribute | notation), annotation*)*)
</schema>

Figure 3.15: XML representation of the schema element (s. [39] ch. 3.15.2)

 3. Mapping between WSDL and TTCN-3

 62

The annotation schema component is described in Section 3.13 of the XML Schema

Standard Part 1 and its XML representation is shown in Figure 3.16. The annotation

schema component is allowed to contain an arbitrary number of documentation and/or

appinfo child elements that are furthermore permitted to occur in any order. The nested

elements are very similar and therefore translated to analog string representations. Each

of those resulting string representations starts in a new line inside the TTCN-3 comment

to which the enclosing annotation schema component maps.

<annotation
 id = ID
 {any attributes with non-schema namespace . . .}>
 Content: (appinfo | documentation)*
</annotation>
<appinfo
 source = anyURI
 {any attributes with non-schema namespace . . .}>
 Content: ({any})*
</appinfo>
<documentation
 source = anyURI
 xml:lang = language
 {any attributes with non-schema namespace . . .}>
 Content: ({any})*
</documentation>

Figure 3.16: XML representation of the annotation element (s. [39] ch. 3.13.2)

The string representation of the appinfo and documentation elements is similar to their

XML representation. The unchanged start and end tags are copied into subsequent lines.

The value of each nested text node is put into a new line between the matching element

tags, whereupon the value is indented by two space characters (#x20). If the text node

value contains any line breaks, the following white space characters are replaced with

two space characters, so the text node value is consistently indented in the resulting

string representation. The child elements of the appinfo and the documentation elements

are processed in the same manner as the elements themselves and the resulting string

representations are also inserted into a new line between the matching element tags and

indented by two space characters.

To conclude this section, Figure 3.17 illustrates the preceding explanations with some

examples. The first annotation schema component is mapped to a module comment,

since it appears in front of an include element. The contained text node value stretches

across multiple lines, which gets lost in the schema representation shown on the left, but

is preserved in the resulting TTCN-3 comment. The second annotation is more complex

as it has attributes as well as a nested element. It is mapped to a comment in front of the

TTCN-3 representation for the subsequent complex type definition named c1. Inside the

 3.4. Mapping of the WSDL portType Element

 63

final complex type definition named c2, multiple annotations appear. Each of them is

mapped to a comment in front of the TTCN-3 definition that represents the structure to

which it belongs. Hence, the two first annotations map to a block comment in front of

the TTCN-3 record type ComplexType_c2, whereas the innermost annotation schema

component becomes a simple line comment in front of the Sequence_1 record type.

01 /*
02 * <appinfo>
03 * global, before include
04 * multiline
05 * </appinfo>
06 */
01 module T_annotation {
02 import from XSDAUX all;
03
04 /*
05 * <documentation source="anyURI"

xml:lang="en">
06 * global, after include
07 * <nestedElement>
08 * nested element
09 * </nestedElement>
10 * source and xml:lang attribute
11 * </documentation>
12 */
13 type record ComplexType_c1 {
14 XSDAUX.int e_e1
15 } with {
16 encode "{annotation}c1";
17 encode (e_e1) "e1";
18 }
19
20 /*
21 * <appinfo t:local="complexType" />
22 * <appinfo t:local="extension" />
23 */
24 type record ComplexType_c2 {
25 T_annotation.ComplexType_c1 base,
26 T_annotation.Sequence_1 content
27 } with {
28 encode "{annotation}c2";
29 }
30
31 // <appinfo t:local="sequence" />
32 type record Sequence_1 {
33 XSDAUX.int e_e2
34 } with {
35 encode "{annotation}1";
36 encode (e_e2) "e2";
37 }
38 }

Figure 3.17: Mapping of the annotation element

3.4 Mapping of the WSDL portType Element

The overall mapping rules specify that the WSDL portType element maps to a module,

which contains a record type definitions for each input, output, and fault message of the

operations defined by the WSDL port type as well as a TTCN-3 port type definition that

allows sending or receiving messages of the above record types. Figure 3.18 shows an

extract from the WSDL document of the .NET implementation of the "Movie Database"

 3. Mapping between WSDL and TTCN-3

 64

Web service. It contains all elements that are relevant for the current mapping step and

serves as an example along the discussion of the detailed mapping rules. Some elements

are collapsed in order to shorten the document, but their content is comparable to that of

expanded elements of the same type.

Figure 3.18: WSDL extract showing portType and message elements

For every WSDL port type, a TTCN-3 module is created whose identifier becomes the

concatenation of the prefix specified in Table 3.2 and the value of the name attribute on

the port type. This identifier is ensured to be unique, because of the prefix and the fact

that the "port type name attribute provides a unique name among all port types defined

within in the enclosing WSDL document" ([37] ch. 2.4). In the current example, a

single module named PT_mdb_MovieDatabaseSoap is created, whereat mdb denotes a

user-defined target namespace qualifier.

In the modules, a TTCN-3 group is defined for each operation element of the respective

WSDL port type. In general, the group identifier becomes the prefix g_ with the value

of the name attribute on the operation element being appended. Because the WSDL 1.1

Standard allows multiple WSDL operations with equivalent names, this naming rule is

overridden, if and only if there are equally named operations. In this case, the group

identifier is composed of the prefix, the operation name, an underscore, and the name of

the enclosed input element, which has to be unique among all input elements within the

enclosing WSDL port type. This special case creates a rather long identifier, but it is

considered to occur rarely. Furthermore, it is completely forbidden by the WS-I Basic

 3.4. Mapping of the WSDL portType Element

 65

Profile Version 1.0 and 1.1, which both require a WSDL port type to have operations

with distinct values for their name attributes (s. [44] ch. 5.4.3 and [45] ch. 4.5.3). In the

current example, four groups named g_createMovie, g_insertMovie, g_getMovie, and

g_searchMovies are defined. A hypothetical example for a composed group identifier is

g_createMovie_createMovieRequest.

Inside of each group, a TTCN-3 record type is defined for every input, output, and fault

element of the respective WSDL operation. The identifiers of these record types are the

concatenation of the proper prefix I_, O_, or F_ and a base part, which differs for input

and output elements on the one hand and fault elements on the other hand. In the first

case, the identifier base part can be obtained from the name attribute value, because it

"provides a unique name among all input and output elements within the enclosing port

type" ([37] ch. 2.4.5). In case the name attribute is not specified on the input or output

element as in the current example, the WSDL 1.1 Standard specifies that its value is by

default the name of the enclosing operation with either "Request" or "Response" being

appended. In contrast, the name attribute of a fault element is required to be present but

only unique within the set of faults that are defined for the enclosing operation. Thus,

the identifier base part of the corresponding TTCN-3 record type will be the name of the

enclosing operation with the name of the fault being appended. As aforementioned, the

operation name is not required to be unique, so in case of multiple operation elements

having equal name attributes, the operation name is first made unique by appending an

underscore and the name of the enclosed input element. In the current example, the

input and output elements of the WSDL createMovie operation map to the TTCN-3

record types I_createMovieRequest and O_createMovieResponse.

The first field of each TTCN-3 record type representing an input element is named

soapbinding and of the TTCN-3 SoapBinding type predefined inside the WebServices

module. The purpose of this field is to accompany each input message with the proper

SOAP binding information that is necessary to make a call to the Web service upon test

execution.

The other fields of the TTCN-3 record types are derived from the WSDL message that

is referenced by the input, output, or fault element to which they correspond. Each part

element of a WSDL message is mapped to a field whose name is the concatenation of

the previously specified prefix mp_ and the value of the name attribute, which "provides

 3. Mapping between WSDL and TTCN-3

 66

a unique name among all the parts of the enclosing message" ([37] ch. 2.3). The type of

the field is the TTCN-3 representation of the XML Schema element declaration or type

definition, which is specified by the element or type attribute on the part element. If an

XML Schema built-in data type is referenced, the TTCN-3 representation is defined in

the XSDAUX module. Otherwise, it has been generated according to the rules discussed

in Section 3.3. In the current example, both record types contain a single field called

mp_parameters that is of the generated createMovie or createMovieResponse type.

Finally, each TTCN-3 module representing a WSDL port type contains a TTCN-3 port

type, which uses message-based communication and allows sending or receiving the

defined record types. The identifier of the TTCN-3 port type is the concatenation of the

prefix TP_ and the value of the name attribute of the WSDL port type, so in the current

example it is named TP_MovieDatabaseSoap.

To conclude this section, Figure 3.19 lists the mapping result for the exemplary WSDL

port type. In order to shorten the figure, the TTCN-3 groups corresponding to WSDL

operations, which are collapsed in the WSDL description (s. Figure 3.18), are likewise

collapsed in Figure 3.19.

01 module PT_mdb_MovieDatabaseSoap {
02 import from WebServices all;
03 import from T_mdb all;
04
05 type port TP_MovieDatabaseSoap message {
06 out PT_mdb_MovieDatabaseSoap.I_createMovieRequest;
07 in PT_mdb_MovieDatabaseSoap.O_createMovieResponse;
08 out PT_mdb_MovieDatabaseSoap.I_insertMovieRequest;
09 in PT_mdb_MovieDatabaseSoap.O_insertMovieResponse;
10 out PT_mdb_MovieDatabaseSoap.I_getMovieRequest;
11 in PT_mdb_MovieDatabaseSoap.O_getMovieResponse;
12 out PT_mdb_MovieDatabaseSoap.I_searchMoviesRequest;
13 in PT_mdb_MovieDatabaseSoap.O_searchMoviesResponse;
14 }
15
16 group g_createmovie {
17 type record I_createMovieRequest {
18 WebServices.SoapBinding soapBinding,
19 T_mdb.Element_createMovie mp_parameters
20 }
21
22 type record O_createMovieResponse {
23 T_mdb.Element_createMovieResponse mp_parameters
24 }
25 }
26
27 group g_insertMovie {...}
28
29 group g_getMovie {...}
30
31 group g_searchMovies {...}
32 }

Figure 3.19: TTCN-3 output of mapping the WSDL portType element

 3.5. Mapping of the WSDL port and binding Elements

 67

3.5 Mapping of the WSDL port and binding Elements

The overall mapping rules specify that a WSDL port and its associated binding element

map to a module, which contains TTCN-3 constants with SOAP binding information for

every described operation. Figure 3.20 displays an extract from the WSDL document of

the .NET implementation of the "Movie Database" Web service that again shows all

elements relevant for the current mapping step and will serve as an example along the

discussion of the detailed mapping rules. As in Section 3.4, the document is shortened

by collapsing some elements whose content is similar to that of expanded elements of

the same type.

Figure 3.20: WSDL extract showing service, port, and binding elements

For each WSDL port and its associated binding, a TTCN-3 module is created whose

identifier is composed of the prefix specified in Table 3.2 and the value of the name

attribute on the port element. This identifier is ensured to be unique, because of the

prefix and the fact that the "name attribute provides a unique name among all ports

defined within in the enclosing WSDL document" ([37] ch. 2.6). In the current example,

two modules named P_mdb_MovieDatabaseSoap and P_mdb_MovieDatabaseSoap12

are generated, whereupon mdb denotes a user-defined target namespace qualifier.

Inside the modules, constants are created that hold information, which is common to all

operations defined by the respective WSDL port and its associated binding. The first

 3. Mapping between WSDL and TTCN-3

 68

constant called c_soapVersion is of the predefined SoapVersion type and holds a string

that reflects the SOAP binding version used by the WSDL port and binding. The second

constant is named c_location and of the predefined anyURI type. It contains the value of

the location attribute of the soap:address element. The third constant, which is named

c_transport and of the anyURI type, obtains its value from the transport attribute on the

soap:binding element. In case the optional use attribute is specified on the soap:binding

element, the attribute value is assigned to a fourth constant, which is of the predefined

SoapStyle type and named c_Style. In the current example, all constants but the fourth

are generated.

After defining the constants, which hold common SOAP binding information, further

constants of the predefined SoapBinding record type are declared for each operation

specified by the WSDL port and its associated binding. In general, their identifier is

simply composed of the specified prefix b_ and the value of the name attribute on the

operation element. Because the "operation element within a binding specifies binding

information for the operation with the same name within the binding's portType" ([37]

ch. 2.5) and "operation names are not required to be unique" ([37] ch. 2.5), the given

naming rule is overridden, if and only if there are equally named operations. In this

case, the group identifier is composed of the specified prefix, the operation name, an

underscore, and the name of the enclosed input element, which is unique and must now

be specified to identify the operation unambiguously. In the current example, the four

constants named b_createMovie, b_insertMovie, b_getMovie, and b_searchMovies are

created. An example for a composed identifier is b_createMovie_createmovieRequest.

The value for each constant of the SoapBinding record type is composed of references

to the constants holding common SOAP binding information and the invocation details

specified by the attributes on the SOAP binding elements. If an optional SOAP binding

detail is not specified, the special TTCN-3 value "omit" is assigned to the corresponding

field of a constant. The value for the style field of the SoapBinding record type poses a

special case. It becomes the value specified by the style attribute on the soap:operation

element, if present. In case the soap:operation element specifies no style attribute but

the soap:binding element does, it becomes a reference to the previously created c_style

constant. If none of the preceding cases applies, the value for the style field becomes the

assumed default value "document" (s. [37] ch. 3.4 and [41] ch. 3.2).

 3.6. Mapping of the WSDL service Element

 69

01 module P_mdb_MovieDatabaseSoap {
02 import from XSDAUX all;
03 import from WebServices all;
04
05 const WebServices.SoapVersion c_soapVersion := "V_11";
06
07 const XSDAUX.anyURI c_location := "http://www.troschuetz.de/MovieDatabase.asmx";
08
09 const XSDAUX.anyURI c_transport := "http://schemas.xmlsoap.org/soap/http";
10
11 const WebServices.SoapBinding b_createMovie := {
12 operationName :=

"{http://www.troschuetz.de/services/MovieDatabase}createMovie",
13 soapVersion := P_MovieDatabaseSoap.c_soapVersion,
14 location := P_MovieDatabaseSoap.c_location,
15 transport := P_MovieDatabaseSoap.c_transport,
16 style := "document",
17 soapAction := "http://www.troschuetz.de/services/MovieDatabase/createMovie",
18 soapActionRequired := omit,
19 inputBody := {
20 use := "literal",
21 parts := omit,
22 encodingStyles := omit,
23 namespace := omit
24 },
25 inputHeaders := omit,
26 outputBody := {
27 use := "literal",
28 parts := omit,
29 encodingStyles := omit,
30 namespace := omit
31 },
32 outputHeaders := omit,
33 faults := omit
34 };
35
36 const WebServices.SoapBinding b_insertMovie := {...};
37
38 const WebServices.SoapBinding b_getMovie := {...};
39
40 const WebServices.SoapBinding b_searchMovies := {...};
41 }

Figure 3.21: TTCN-3 output of mapping the WSDL port and binding elements

Figure 3.21 lists the mapping result for the exemplary WSDL port MovieDatabaseSoap

and its binding MovieDatabaseSoap, which are both expanded in the initially shown

Figure 3.20. To shorten the figure, only the constant corresponding to the createMovie

operation, which is expanded in Figure 3.20, is completely shown.

3.6 Mapping of the WSDL service Element

The overall mapping rules specify that the WSDL service element maps to a collection

of modules. Each module contains basic test behavior and execution control for testing a

WSDL port type referenced by the service via port and binding. Figure 3.22 displays an

extract of the WSDL description of the .NET implementation of the exemplary "Movie

Database" Web service containing all elements that are relevant for the current mapping

step. It exemplifies the following discussion of the detailed mapping rules. As in the

Sections 3.4 and 3.5, the document is shortened by collapsing some elements.

 3. Mapping between WSDL and TTCN-3

 70

Figure 3.22: WSDL extract showing service, port, binding, and portType elements

For every WSDL port type, which is referenced by the service via the enclosed port and

their associated binding elements, a TTCN-3 module is created. The name of a module

is the value of the name attribute on the respective portType element prepended with the

prefix specified in Table 3.2. The identifiers are guaranteed to be distinctive, because of

the prefix and the fact that the "name attribute provides a unique name among all port

types defined within in the enclosing WSDL document" ([37] ch. 2.4). In the current

example, a single module named TPT_mdb_MovieDatabaseSoap is generated, whereat

mdb denotes a user-defined target namespace qualifier.

Each module defines a single test component with a single port on which the behavior

for testing the WSDL port type, to which the module corresponds, will be executed. The

identifiers of both become the name of the WSDL port type appended to the respective

prefix specified in Table 3.2. The single port describes the test component's interface

and is of the TTCN-3 port type that allows transmission and receipt of the messages

defined by the WSDL port type and that is already defined in the module representing

the WSDL port type (s. ch. 3.4). Besides the port, the test component also contains a

timer named t_timeoutguard, which will be used to safeguard the test behavior against

inactivity of the Web service under test. In the current example, the test component and

its port are named TC_MovieDatabaseSoap and pt_MovieDatabaseSoap.

Apart from the test component, there are two more definitions on the module level. On

the one hand, there is the c_timeout constant, which defines a common timeout for

 3.6. Mapping of the WSDL service Element

 71

communication with the Web service to be tested and is therefore referenced whenever

the previously mentioned timer is started. On the other hand, there is an altstep named

alt_ReceiveAnyOrTimeout, which defines common reactions on faulty communication

with the Web service to be tested e.g. the receipt of unexpected responses or inactivity.

The altstep is defined to run on the already defined test component, whose port and

timer can therefore be used in the altstep definition. It specifies two alternatives that set

the test verdict to "fail" after catching either the receipt of any (unexpected) message

on the port or a timeout of the timer.

Next, a TTCN-3 group is defined for every operation specified by the WSDL port type.

Each group contains a test case and message templates that allow testing the operation.

In general, the group identifier is simply the value of the name attribute on the operation

element appended to the specified prefix g_. Because the WSDL 1.1 Standard allows

WSDL operations to have identical names, the given naming rule is overridden, if and

only if there are equally named operations. In this case, the group identifier consists of

the prefix g_, the operation name, an underscore, and the name of the enclosed input

element, which has to be unique among all input elements within the enclosing WSDL

port type. In the current example, the g_createMovie, g_insertMovie, g_getMovie, and

g_searchMovies groups are specified. A hypothetical example for a compound group

identifier is g_createMovie_createMovieRequest.

The message templates defined inside each group correspond to the input, output, and

fault messages specified by the respective WSDL operation. The type of each template

is the TTCN-3 record type that is already defined for its corresponding input, output, or

fault message in the module representing the WSDL port type (s. ch. 3.4). From the type

of a template, its identifier can be easily derived by appending the type name to the

prefix specified for templates. Because the mapping presented in this thesis does not

cover the generation of test data, the values assigned to the message templates are only

required to be valid with regard to the template type. Real test data has to be specified

by hand before executing the test behavior that is defined by the mapping. However, the

template values should preferably follow the rules listed in Table 3.6. The template

corresponding to the input message of a WSDL operation poses a special case, because

it possesses an input parameter, which is named p_soapBinding and of the predefined

SoapBinding type. The parameter value is assigned to the soapBinding field, which is

 3. Mapping between WSDL and TTCN-3

 72

specified by every record type corresponding to a WSDL input message (s. ch. 3.4), and

accompanies the message with the SOAP binding information that is necessary to make

a call to the Web service upon test execution. In the current example, the two templates

a_I_createMovieRequest and a_O_createMovieResponse are defined.

TTCN-3 type Template value

boolean true

integer 0

float 0.0

charstring ""

octetstring ''O

record

set

A record/set value whose fields are set to

• "omit", if the field is optional (this aims at avoiding values that are

nested infinitely deep, because recursive fields i.e. those of the

defining record/set type are expected to be optional for this reason)

• A value of the field type that follows these rules, otherwise

set-of

If the set-of type has no length restriction, a set-of value containing

one value of the element type that follows these rules.

Otherwise, a set-of value containing the minimum number of elements

required by the length restriction. Every element becomes a value of

the element type that follows these rules.

union
A union value with its first variant set. The value assigned to the

variant follows these rules.

subtype

A value according to the rule that first matches

• The first value from the value list, if present

• The minimum range value, if present and not "-infinity"

• The maximum range value, if present and not "infinity"

• A value of the base type that follows these rules

Table 3.6: Default values of TTCN-3 message templates

The test case defined in each group runs on the already specified test component, so the

port and timer owned by the component can be used within the test case definition. The

naming of the test cases follows the same rules as the naming of their defining groups,

 3.6. Mapping of the WSDL service Element

 73

except the test case-specific prefix tc_ is used. Furthermore, every test case has an input

parameter equal to the one specified by an input message template. As aforementioned,

the test cases only define behavior for basic testing of a WSDL operation. At first, the

template for the input message of the operation is transmitted via the port owned by the

test component. In doing so, the test case parameter p_soapBinding, which contains the

SOAP binding information for the operation, is passed to the parameterized template. If

the operation is a one-way operation i.e. the Web service to be tested will not respond,

the test case ends with setting the test verdict to "pass". Otherwise, the timer owned by

the test component is started to safeguard the test behavior against inactivity of the Web

service under test. The timer will run for the number of seconds defined by the value of

the c_timeout constant, which is passed to the start operation as duration parameter.

After starting the timer, the test case defines an alt statement with several alternatives.

The first alternative is executed, if the template defined for the output message of the

WSDL operation is received on the port owned by the test component. It will stop the

timer and set the test verdict to "pass". If the WSDL operation specifies fault messages,

further alternatives are defined for the receipt of their corresponding templates. Each of

those alternatives will also stop the running timer, but set the test verdict to "fail". At

last, the alt statement refers to the alt_ReceiveAnyOrTimeout altstep in order to catch

the receipt of unexpected messages or a timeout.

With the test behavior being specified, it can finally be executed in the module control

part. Concretely, every test case specified for an operation of the WSDL port type is

executed once for each WSDL port, which refers to the WSDL port type via its binding.

When a test case is executed for a specific WSDL port, the value, which is passed to its

p_soapBinding parameter, is the constant that is defined in the module representing the

WSDL port (s. ch. 3.5) and that contains SOAP binding information for the operation to

which the test case corresponds. In the current example, the test cases specified for the

port type MovieDatabaseSoap are executed once for the port MovieDatabaseSoap and

once for the port MovieDatabaseSoap12.

To conclude this section, Figure 3.23 lists the mapping result for the exemplary WSDL

service MovieDatabase, which is displayed in Figure 3.22. To aid display, the figure is

shortened as in the previous sections. Moreover, the module prefixing of the references

to templates and test cases is removed to improve the readability of the listed code.

 3. Mapping between WSDL and TTCN-3

 74

01 module TPT_mdb_MovieDatabaseSoap {
02 import from WebServices all;
03 import from PT_mdb_MovieDatabaseSoap all;
04 import from P_mdb_MovieDatabaseSoap all;
05 import from P_mdb_MovieDatabaseSoap12 all;
06
07 type component TC_MovieDatabaseSoap {
08 port PT_mdb_MovieDatabaseSoap.TP_MovieDatabaseSoap pt_MovieDatabaseSoap;
09 timer t_timeoutGuard;
10 }
11
12 const float c_timeout := 5.0;
13
14 altstep alt_ReceiveAnyOrTimeout ()
15 runs on TPT_mdb_MovieDatabaseSoap.TC_MovieDatabaseSoap {
16 [] pt_MovieDatabaseSoap.receive {
17 t_timeoutGuard.stop;
18 setverdict(fail);
19 }
20 [] t_timeoutGuard.timeout {
21 setverdict(fail);
22 }
23 }
24
25 group g_createMovie {
26 template PT_mdb_MovieDatabaseSoap.I_createMovieRequest a_I_createMovieRequest(
27 in WebServices.SoapBinding p_soapBinding) := {
28 soapOpBinding := p_soapBinding,
29 mp_parameters := {
30 eq_id := -2147483648,
31 eq_name := omit,
32 eq_director := omit
33 }
34 };
35
36 template PT_mdb_MovieDatabaseSoap.O_createMovieResponse a_O_createMovieResponse

:= {
37 mp_parameters := {
38 eq_createMovieResult := true
39 }
40 };
41
42 testcase tc_createMovie (
43 in WebServices.SoapBinding p_soapBinding)
44 runs on TPT_mdb_MovieDatabaseSoap.TC_MovieDatabaseSoap {
45 pt_MovieDatabaseSoap.send(a_I_createMovieRequest(p_soapBinding));
46
47 t_timeoutGuard.start(TPT_mdb_MovieDatabaseSoap.c_timeout);
48
49 alt {
50 [] pt_MovieDatabaseSoap.receive(a_O_createMovieResponse) {
51 t_timeoutGuard.stop;
52 setverdict(pass);
53 }
54 [] TPT_mdb_MovieDatabaseSoap.alt_ReceiveAnyOrTimeout();
55 }
56 }
57 }
58
59 group g_insertMovie {...}
60
61 group g_getMovie {...}
62
63 group g_searchMovies {...}
64
65 control {
66 execute(tc_createMovie(P_mdb_MovieDatabaseSoap.b_createMovie));
67 ...
68
69 execute(tc_createMovie(P_mdb_MovieDatabaseSoap12.b_createMovie));
70 ...
71 }
72 }

Figure 3.23: TTCN-3 output of mapping the WSDL service element

 3.7. Mapping of the WSDL documentation Element

 75

3.7 Mapping of the WSDL documentation Element

The optional documentation element is used by the WSDL 1.1 Standard as a container

for human readable documentation and thus allowed to occur as the first child element

of any WSDL element other than the part element. If it is present, the documentation

element is mapped to a block comment in front of the TTCN-3 construct to which the

enclosing WSDL element maps. The precise mapping rules are given in Table 3.7.

Documented

WSDL element
TTCN-3 construct that gets commented

definitions None

types
Each module representing a target namespace that is declared by the

contained XML Schemas

message

The record type, which represents the WSDL input, output, or fault

element (nested inside a WSDL port type) that refers to this WSDL

message

portType
The module, which represents the WSDL port type, as well as the

TTCN-3 port type defined in the module

operation The group that represents the WSDL operation

input

output

fault

The record type that represents the input, output, or fault element

binding The module that represents the WSDL port referring to this binding

operation
The constant of the SoapBinding type to which the WSDL operation

maps

input

output

fault

The constant of the SoapBinding type, which represents the WSDL

operation element that embodies the input, output, or fault element

port The module that represents the WSDL port

service

Each module that defines basic test behavior and execution control

for testing a WSDL port type referenced by the WSDL service via

port and binding

Table 3.7: Mapping rules for the WSDL documentation element

 3. Mapping between WSDL and TTCN-3

 76

The block comment, to which a WSDL documentation element maps, is nearly its XML

representation, because "the content of the element is arbitrary text and elements

("mixed" in XSD)" ([37] ch. 2.1.4) and thus improper for a more sophisticated mapping.

The start and end tags are copied without any changes into subsequent lines. The value

of every nested text node is put into a new line between the element tags, whereat the

value is indented by two space characters (#x20). If the text node value contains any line

breaks, the following white space characters are replaced with two space characters, so

the text node value is consistently indented in the TTCN-3 comment. Any child element

of a documentation element is processed in the same manner as the element itself. The

resulting string representation is also inserted into a new line between the element tags

and indented by two space characters. If multiple documentation elements are mapped

to a block comment before the same TTCN-3 construct, all resulting comments should

preferably be merged into a single block comment.

The preceding explanations are illustrated in Figure 3.24, which shows the mapping of

WSDL documentation elements on a WSDL port and its associated binding.

01 /*
02 * <wsdl:documentation>
03 * port documentation
04 * </wsdl:documentation>
05 * <wsdl:documentation>
06 * binding documentation
07 * <nestedElement>
08 * nested Element
09 * </nestedElement>
10 * </wsdl:documentation>
11 */
12 module P_MovieDatabaseSoap12 {
13 ...
14 }

Figure 3.24: Mapping of the WSDL documentation element

 4. The WSDL2TTCN Utility

 77

4 The WSDL2TTCN Utility

The mapping of a Web service description to TTCN-3, which is discussed in detail in

Chapter 3, can be done manually but it is also well capable of being automated. Because

the automated mapping of a WSDL description is less error-prone and most notably less

time-consuming, the WSDL2TTCN utility was developed in the context of this thesis.

The utility is a simple console application written in the Java programming language,

which was chosen for the following reasons:

• Applications written in Java are platform-independent i.e. they can be run on any

platform for which a Java Virtual Machine exists. The WSDL2TTCN utility requires

the J2SE (Java Platform, Standard Edition) Runtime Environment 1.5.0 that amongst

others is available for Windows, Linux, and Solaris platforms.

• There exists the "Web Services Description Language for Java Toolkit (WSDL4J)"

([25]) that is the reference implementation of the "JSR110 Java™ APIs for WSDL"

([17]) and allows the creation, representation, and manipulation of WSDL documents

in Java code. The WSDL2TTCN utility uses WSDL4J version 1.6.2.

• Java is a well-known and widely-used object-oriented programming language, which

has evolved continuously since the first public implementation in 1995. Furthermore,

there are a variety of (non-)commercial tools for Java such as the open source IDE

(Integrated Development Environment) Eclipse ([5]). Version 3.2.0 of Eclipse was

used for the implementation of the WSDL2TTCN utility.

The WSDL2TTCN utility is introduced in this chapter, which is structured as follows:

At first, Section 4.1 presents the architecture of the utility by giving an overview of the

created packages and their respective main classes. Moreover, the overall program flow

is introduced. Afterwards, Section 4.2 discusses two implementation aspects in detail.

On the one hand, it presents the generation of target namespace qualifiers for TTCN-3

module identifiers, whose format is not specified by the mapping. On the other hand,

the translation of XML Schema regular expressions provided by the pattern facet to

TTCN-3 patterns is described. Thereby, the focus lies on the regular expressions that

actually perform the translation and that may be re-used by other implementations of the

mapping. Next, Section 4.3 introduces an option of the WSDL2TTCN utility, which

allows changing the mapping in certain points in order to generate TTCN-3 code fully

compatible to TTworkbench Basic ([28]). In the context of this thesis, this TTCN-3 test

 4. The WSDL2TTCN Utility

 78

system implementation is used to execute a TTCN-3 abstract test suite derived from a

WSDL description, but it lacks support for some of the used TTCN-3 features regarding

subtypes and attributes. Finally, Section 4.4 exemplifies how the WSDL2TTCN utility

is invoked and presents the available command line options.

4.1 Architecture

The classes, interfaces, and enumerations implemented for the WSDL2TTCN utility are

organized in three main packages as shown in Figure 4.1.

Figure 4.1: Packages of the WSDL2TTCN utility

The greatest importance has the wsdl2ttcn package. It contains all implementations that

are directly related to the mapping of a WSDL description to a TTCN-3 abstract test

suite. Most notably, the package contains the WSDL2TTCN class that defines the main

entry point for the utility. The main classes of the wsdl2ttcn package are discussed in

more detail in Section 4.1.2.

 4.1. Architecture

 79

The xsd2ttcn package contains the implementations that allow mapping XML Schemas

to TTCN-3. This functionality is organized in a distinct package to separate it from the

domain of mapping WSDL to TTCN-3 and therewith ease its re-use in other fields of

application. In order to map the XML Schema data type definitions given by the WSDL

types element to TTCN-3, the xsd2ttcn package is imported by the wsdl2ttcn package.

The main classes of the xsd2ttcn package are discussed in more detail in Section 4.1.1.

The third main package named ttcn and its three subpackages contain implementations

for the representation of TTCN-3 in Java. The usage of subpackages thereby provides a

better structuring of the classes. Because the focus of this thesis is on the testing of Web

services, only those TTCN-3 constructs, which are mandatory for the mapping between

WSDL and TTCN-3, can be created, modified, and written to the file system by Java

code. Like the mapping of XML Schemas to TTCN-3, the representation of TTCN-3 in

Java is organized in a distinct package to ease its re-use in other fields of application.

The ttcn package and its subpackages are imported by the other two main packages in

order to perform their respective mappings.

4.1.1 The xsd2ttcn Package

The main classes of the xsd2ttcn package and their relations to each other are visualized

in the class diagram shown in Figure 4.2. The central element is the XsdProcessor class

that encapsulates the functionality of mapping XML Schemas to Java representations of

TTCN-3 modules. The other classes and enumerations displayed by the class diagram

are used by the XsdProcessor to perform this mapping.

The XsdDataTypes class exposes class attributes with the complete Java representations

of the predefined TTCN-3 types for the XML Schema built-in types and their defining

module XSDAUX, which are described in Section 3.2.2. The enumerations XsdAttributes

and XsdElements define the attributes and elements that are allowed to occur in an XML

Schema and aid the process of parsing an XML Schema. The XsdIdentifierTranslator

class is very important, because it provides class operations for the translation of XML

Schema to TTCN-3 identifiers. Those operations are not defined in the XsdProcessor

itself to separate the translation functionality from the overall functionality of mapping

XML Schemas to TTCN-3. Furthermore, the translation operations are defined on the

class level to make them easily accessible for the XsdProcessor and any other class that

needs to know the names of the TTCN-3 types representing XML Schema components

 4. The WSDL2TTCN Utility

 80

and those of their defining modules. For example, the mapping of a WSDL description

to TTCN-3 requires such knowledge, because the described WSDL messages consist of

parts whose types are by default defined in the XML Schema language.

Figure 4.2: Main classes of the xsd2ttcn package

Finally, the most important helper for the XsdProcessor is the XsdProcessingInfo class,

which encapsulates all information that is necessary to map a specific XML Schema

component to TTCN-3 e.g. the XML element representing the component or the name

and the defining module of the resulting TTCN-3 type definition. At the beginning of

the mapping process, the XsdProcessor class creates an instance of this class for every

top-level component found in the XML Schemas to be mapped. Subsequently, those

instances can easily be passed to operations involved in the mapping process.

 4.1. Architecture

 81

4.1.2 The wsdl2ttcn Package

The most relevant classes of the wsdl2ttcn package and their relations to each other are

visualized in the class diagram shown in Figure 4.3.

Figure 4.3: Main classes of the wsdl2ttcn package

The central element of the wsdl2ttcn package is the equally named WSDL2TTCN class,

which implements the overall behavior of mapping a WSDL description to TTCN-3 and

therefore contains the main entry point for the WSDL2TTCN utility namely the class

 4. The WSDL2TTCN Utility

 82

operation main. In addition to this operation, the WSDL2TTCN class exposes various

attributes that allow certain mapping options to be configured e.g. the directory where

the resulting TTCN-3 ATS will be created. The mapping process is invoked by calling

an overload of the mapWSDL2TTCN operation. One overload takes the URI of a WSDL

document and resolves it to a Java representation of the WSDL description by using the

WSDL4J API. This representation is subsequently passed to the second overload that

executes the actual mapping to TTCN-3. The representations of the resulting TTCN-3

modules are accessible via the SchemaModules, PortTypeModules, PortModules, and

PortTypeTestModules attributes and can be written to the configured output directory by

calling the operation writeModulesToOutput.

In order to execute the mapping, the WSDL2TTCN class uses the WsdlTypesProcessor,

WsdlPortTypeProcessor, WsdlPortProcessor, and WsdlServiceProcessor classes. Every

class encapsulates the mapping of an individual, major element of a WSDL description.

The four classes are derived from the abstract WsdlProcessor class that provides the

getXmlRepresentationElement operation, which is utilized by all inheritors during the

mapping of WSDL documentation elements. A special case is the WsdlTypesProcessor

class. It does not perform the complete mapping by itself, but contains an instance of the

XsdProcessor class from the xsd2ttcn package that is used to map the XML Schemas

contained in the WSDL types element to TTCN-3.

All processor classes use the class operations provided by the WsdlIdentifierTranslator

in order to translate WSDL to TTCN-3 identifiers. Those operations are not defined by

the classes themselves for two reasons. First, some are utilized by multiple processor

classes so that duplicate code is avoided. Second, the encapsulation in a dedicated class

separates the translation operations from the overall functionality of mapping WSDL to

TTCN-3. The WsdlIdentifierTranslator class utilizes the XsdIdentifierTranslator class

from the xsd2ttcn package to be capable of resolving the identifiers of TTCN-3 types

representing XML Schema components and those of their defining modules. This is

mandatory, since the WSDL messages are composed of parts whose types are by default

defined in the XML Schema language.

Finally, the WebServiceTypes and TypeManager classes provide supporting functions.

The former exposes class attributes with the Java representations of the TTCN-3 types

for encapsulation of SOAP binding information and their defining module WebServices,

 4.1. Architecture

 83

which are described in Section 3.2.2. The TypeManager class exposes class operations

that allow registering all types defined by a module as well as retrieving the registered

types by their name. The functionality is for example used by the WsdlServiceProcessor

to retrieve the TTCN-3 port type, which has been created for a specific WSDL port type

by the WsdlPortTypeProcessor class.

4.1.3 Overall Program Flow

The overall program flow of mapping a WSDL document to TTCN-3 is depicted by the

sequence diagram shown in Figure 4.4. The focus of the diagram lies on the interaction

of the classes, so that the invocation of non-public operations is omitted to aid display.

As mentioned in Section 4.1.2, the overall behavior of mapping a WSDL description to

TTCN-3 is implemented in the mapWSDL2TTCN operation of the WSDL2TTCN class.

Thus, the sequence diagram starts with a call to this operation on an already configured

instance of the WSDL2TTCN class.

First, an instance of the WsdlTypesProcessor class is created that in turn instantiates an

object of the XsdProcessor class. On the former object, the processTypes operation is

called, whereupon the Java representations of all types elements of the currently mapped

WSDL description are passed in. The XML Schemas contained in those elements are

retrieved and put into a collection, which is then passed to the XsdProcessor object by

calling its processSchemas operation. In this operation, the XML Schemas are mapped

to TTCN-3 modules whose Java representations are returned to the WsdlTypesProcessor

object and in the end to the WSDL2TTCN instance. The WSDL types elements or more

precisely the contained schemas are mapped all at once, because this eases dealing with

possible interdependencies of the XML Schema components.

Next, the WSDL portType elements are mapped to TTCN-3. Therefore, an instance of

the WsdlPortTypeProcessor class is created whose processPortType operation is called

for every WSDL port type defined in the currently mapped WSDL document. Thereby,

the Java representation of the respective portType element is passed in and that of the

resulting TTCN-3 module is returned.

Finally, the WSDL service and port elements contained in the currently mapped WSDL

document are processed. In order to do so, instances of the classes WsdlPortProcessor

and WsdlServiceProcessor are constructed. The mapWSDL2TTCN operation afterwards

 4. The WSDL2TTCN Utility

 84

iterates over the WSDL service elements and inside of a nested loop over their enclosed

WSDL port elements. The Java representations of the elements are thereby passed to the

processService or the processPort operation and those of the resulting TTCN-3 modules

are returned.

When the mapWSDL2TTCN operation ends, the current WSDL document is completely

mapped to TTCN-3 and the Java representations of the generated TTCN-3 modules are

exposed via the respective class attributes of the WSDL2TTCN instance.

Figure 4.4: Overall program flow

 4.2. Implementation Details

 85

4.2 Implementation Details

4.2.1 Creation of Target Namespace Qualifiers

In the mapping presented in this thesis, it is specified that every identifier of a TTCN-3

module shall incorporate a qualifier for the target namespace of either the XML Schema

that maps to the module in question or the WSDL description that encloses the WSDL

element mapping to the module in question (s. ch. 3.2.1). Although the concrete format

of the target namespace qualifiers is not specified, the mapping suggests the usage of

user-defined qualifiers or hashes of the namespace URIs, since those are able to ensure

unambiguous identifiers even for the subsequent mapping of WSDL descriptions. The

WSDL2TTCN utility follows this suggestion and implements a combination of both.

By default, a target namespace qualifier becomes the hash of the namespace URI. This

hash is created by calling the hashcode method of the String instance, which holds the

namespace URI and converting the returned integer into a string. Since the return value

of the String.hashcode method can be negative but the "-" character is not allowed in

TTCN-3 identifiers, the conversion to a string has to replace occurrences of the minus

character without breaking the uniqueness of the hash. In order to do so, the absolute

value of the hash is prefixed with "1", if the hash is negative, or "0" otherwise.

Because the usage of hashes results in target namespace qualifiers that can be quite long

and are not very expressive, the WSDL2TTCN utility allows the user to define specific

qualifiers for the namespaces. Concretely, the WSDL2TTCN class exposes the attribute

namespaceUriQualifierMap, which stores the correlation between namespace URIs and

user-defined qualifiers. This map can be configured as needed in front of starting the

mapping process, at whose beginning the map is passed to the WsdlIdentifierTranslator

and the XsdIdentifierTranslator classes that are responsible for the creation of TTCN-3

identifiers. In order to allow the specification of user-defined qualifiers not only in code,

the WSDL2TTCN utility provides a command line option, which is interpreted by the

main entry point and then used to properly configure an instance of the WSDL2TTCN

class (s. ch. 4.4).

Finally, the WSDL2TTCN utility also facilitates disabling the incorporation of target

namespace qualifiers into TTCN-3 module identifiers, since it is not always necessary

but nevertheless increases the complexity of the identifiers. If for example the data type

 4. The WSDL2TTCN Utility

 86

definitions of a WSDL description are contained in a single XML Schema, there is no

imperative need for the incorporation of a target namespace qualifier into the identifier

of the resulting TTCN-3 module. The use of target namespace qualifiers can be disabled

selectively for modules mapping to an XML Schema target namespace and/or modules

that map to WSDL elements. In Java code, this can be achieved by setting the attributes

qualifyXsdModuleNames and qualifyWsdlModuleNames of the WSDL2TTCN class. In

order to disable the incorporation of target namespace qualifiers on external invocation

of the WSDL2TTCN utility, the corresponding command line options have to be used

(s. ch. 4.4).

To conclude this section and illustrate the previous explanations, Figure 4.5 shows the

implementation of incorporating target namespace qualifiers into identifiers of TTCN-3

modules as defined in the XsdIdentifierTranslator class.

01 public class XsdIdentifierTranslator {
02 public static final String PREFIX_MODULE = "T_";
03
04 ...
05
06 private static boolean QUALIFY_XSD_MODULE_NAMES;
07 private static Map<String, String> NAMESPACEURI_QUALIFIER_MAP;
08 private static Map<String, String> ANONYMOUS_TYPES_COUNTER;
09
10 static {
11 QUALIFY_XSD_MODULE_NAMES = true;
12 NAMESPACEURI_QUALIFIER_MAP = new HashMap<String, String>();
13 ANONYMOUS_TYPES_COUNTER = new HashMap<String, String>();
14 }
15
16 public static void initialize(boolean qualifyXsdModuleNames, Map<String, String>

namespaceUriQualifierMap) {
17 QUALIFY_XSD_MODULE_NAMES = qualifyXsdModuleNames;
18 NAMESPACEURI_QUALIFIER_MAP = namespaceUriQualifierMap;
19 }
20
21 public static String getModuleNameForNamespaceUri(String namespaceUri) {
22 if (namespaceUri.equals(XMLConstants.W3C_XML_SCHEMA_NS_URI)) {
23 return XsdDataTypes.MODULE_XSDAUX.getName();
24 } else {
25 String qualifier = "";
26 if (QUALIFY_XSD_MODULE_NAMES) {
27 qualifier = NAMESPACEURI_QUALIFIER_MAP.get(namespaceUri);
28 if (qualifier == null) {
29 int hash = namespaceUri.hashCode();
30 if (hash < 0) {
31 qualifier = String.format("ns1%d", -1 * hash);
32 } else {
33 qualifier = String.format("ns0%d", hash);
34 }
35 NAMESPACEURI_QUALIFIER_MAP.put(namespaceUri, qualifier);
36 }
37 }
38 return PREFIX_MODULE + qualifier;
39 }
40 }
41
42 ...
43 }

Figure 4.5: Creation of target namespace qualifiers

 4.2. Implementation Details

 87

4.2.2 Translation of XML Schema Regular Expressions

The implementation of the WSDL2TTCN utility uses regular expressions to translate

the XML Schema regular expressions provided by the pattern facet to TTCN-3 patterns.

Table 4.1 lists the translations defined by the mapping (s. Table 3.5) together with the

used regular expressions split into matching and replacement expression.

XSD regular

expression

TTCN-3

Pattern
Matching Expression

Replacement

Expression
? #(0,1) ([^\\](\\\\)*)\? $1#(0,1)

+ #(1,) ([^\\](\\\\)*)\+ $1#(1,)

* #(0,) ([^\\](\\\\)*)* $1#(0,1)

{n} #(n) ([^\\](\\\\)*)\{(\d+)\} $1#($3)

{n,} #(n,) ([^\\](\\\\)*)\{(\d+),\} $1#($3,)

{n,m} #(n,m) ([^\\](\\\\)*)\{(\d+),(\d+)\} $1#($3,$4)

. ? (^|[^\\](\\\\)*)\. $1?

\s [\t\n\r] (^|[^\\](\\\\)*)\\s $1[\\t\\n\\r]

\S [^ \t\n\r] (^|[^\\](\\\\)*)\\S $1[^ \\t\\n\\r]

\D [^\d] (^|[^\\](\\\\)*)\\D $1[^\\d]

\W [^\w] (^|[^\\](\\\\)*)\\W $1[^\\w]

\i [a-zA-Z_:] (^|[^\\](\\\\)*)\\i $1[a-zA-Z_:]

\I [^a-zA-Z_:] (^|[^\\](\\\\)*)\\I $1[^a-zA-Z_:]

\c [\w.\-_:] (^|[^\\](\\\\)*)\\c $1[\\w.\\-_:]

\C [^\w.\-_:] (^|[^\\](\\\\)*)\\C $1[^\\w.\\-_:]

\. . (^|[^\\](\\\\)*)\\\. $1\.

" \" " \\"

&#xgprc; \q{g,p,r,c}
&#x([0-9a-fA-F])([0-9a-fA-F])

([0-9a-fA-F])([0-9a-fA-F]);
\\q{$1,$2,$3,$4}

&#xprc; \q{0,p,r,c}
&#x([0-9a-fA-F])([0-9a-fA-F])

([0-9a-fA-F]);
\\q{0,$1,$2,$3}

&#xrc; \q{0,0,r,c} &#x([0-9a-fA-F])([0-9a-fA-F]); \\q{0,0,$1,$2}

 \q{0,0,0,c} &#x([0-9a-fA-F]); \\q{0,0,0,$1}

Note: The back references $n (n=1, 2 …) contained in the replacement expressions

may have a different syntax in other implementations of regular expressions.

Table 4.1: Translation of XML Schema regular expressions (cp. Table 3.5)

The terms "(^|[^\\](\\\\)*)" and "([^\\](\\\\)*)" appearing at the beginning of

most matching regular expressions ensure that the term to be matched either occurs at

the beginning of a line or is preceded by zero or an even number of backslashes. In

 4. The WSDL2TTCN Utility

 88

addition, it is important that the translation of "?" to "#(0,1) " is executed before

translating "." to "?", since otherwise each dot character appearing in an XML Schema

regular expression will become first a question mark and in a second step the quantifier

"#(0,1)".

Besides the above translations, the mapping presented in Chapter 3 also specifies that

hexadecimal characters inside the Unicode character representation of TTCN-3 patterns

must be replaced by their respective decimal character (s. ch. 3.3.3). This translation is

performed by the regular expressions listed in Table 4.2.

Matching Expression
Replacement

Expression
(^|[^\\](\\\\)*)(\\q\{[0-9a-fA-F,]*)[aA]([0-9a-fA-F,]*\}) $1$310$4

(^|[^\\](\\\\)*)(\\q\{[0-9b-fB-F,]*)[bB]([0-9b-fB-F,]*\}) $1$311$4

(^|[^\\](\\\\)*)(\\q\{[0-9c-fC-F,]*)[cC]([0-9c-fC-F,]*\}) $1$312$4

(^|[^\\](\\\\)*)(\\q\{[0-9defDEF,]*)[dD]([0-9defDEF,]*\}) $1$313$4

(^|[^\\](\\\\)*)(\\q\{[0-9efEF,]*)[eE]([0-9efEF,]*\}) $1$314$4

(^|[^\\](\\\\)*)(\\q\{[0-9fF,]*)[fF]([0-9fF,]*\}) $1$315$4

Note: The back references $n (n=1, 2 …) contained in the replacement expressions

may have a different syntax in other implementations of regular expressions.

Table 4.2: Translation of Unicode character representations of TTCN-3 patterns

There is a regular expression for each hexadecimal character, which replaces its upper

and lower case occurrences at any place in a Unicode character representation. The term

"(^|[^\\](\\\\)*)" guarantees that the expression to be matched either occurs at the

beginning of a line or is preceded by zero or an even number of backslash characters.

Furthermore, it is important to execute the translations in the given order, because the

lower matching expressions become less complex under the assumption that specific

hexadecimal characters have already been replaced.

4.3 Optional Mapping Changes for TTworkbench Compatibility

As initially mentioned, the WSDL2TTCN utility offers an option that allows changing

the mapping between WSDL and TTCN-3 in certain points in order to create TTCN-3

output fully compatible to TTworkbench Basic. This tool is used in the context of this

thesis to execute the abstract test suite resulting from the mapping, but does not support

some of the used TTCN-3 features regarding subtypes and attributes.

 4.3. Optional Mapping Changes for TTworkbench Compatibility

 89

Foremost, there are three problems with the pattern-subtyping of character string types.

First, TTworkbench Basic requires all occurrences of the hyphen character that do not

denote a range of characters to be escaped, though the TTCN-3 Standard Part 1 defines

that the hyphen has its metacharacter meaning only inside a set expression (s. [6] Table

B.1). For example, the pattern "-option" is valid according to the standard but marked

as erroneous by TTworkbench Basic. Second, Table B.1 of the TTCN-3 Standard Part 1

specifies a metacharacter meaning for the plus character namely that it matches the

preceding expression one or several times. Hence, a plus character needs to be escaped

to loose its special meaning, but this is not permitted by TTworkbench Basic. For

example, the pattern "1\+2" expressing the addition of two numbers is marked as

erroneous. TTworkbench Basic only accepts the pattern without the backslash i.e. "1+2",

but following the standard such a pattern matches one or more "1" characters followed

by a single "2" character. Third and most significant, TTworkbench Basic marks values

of a pattern-restricted subtype as erroneous, although they are valid. For example, the

module displayed in Figure 4.6 is objected, because TTworkbench Basic claims that the

value "Max" is not of the preliminarily defined Name type.

01 module Pattern {
02 type charstring Name (pattern "[A-Z][a-z]#(1,)");
03
04 const Name c_name := "Max";
05 }

Figure 4.6: Pattern-restricted TTCN-3 subtype

Since many TTCN-3 representations of the XML Schema built-in data types are pattern-

restricted subtypes and the XML Schema constraining facet pattern maps to a pattern-

restricted subtype, the third limitation of TTworkbench Basic would effectively prevent

the specification of valid templates for the execution of an abstract test suite derived

from a WSDL description. Hence, the activation of the option discussed in this section

suppresses the mapping of XML Schema pattern facets as well as the pattern-restriction

of the TTCN-3 types representing XML Schema built-in data types.

In contrast to the mentioned problems, where TTworkbench Basic marks the generated

TTCN-3 code as erroneous, the remaining problem arises during test execution. More

precisely, it regards the encoding and decoding of proper SOAP messages from or to the

generated TTCN-3 definitions. The mapping of WSDL descriptions to TTCN-3 makes

use of the TTCN-3 encode attribute in order to allow codecs keep track of the original

 4. The WSDL2TTCN Utility

 90

XSD nature of a TTCN-3 definition and thus allow an easy and proper construction of

the corresponding XML fragment. In TTworkbench Basic, if the codec retrieves the

encode attribute of a subtype whose base type is not a TTCN-3 built-in type, it does not

get the encode attribute of the subtype as expected, but that of the base type. Because

this would cause the encoding of invalid SOAP messages, such subtype definitions are

replaced by a copy of the base type definition, whereat the identifier, encode attribute,

and present restriction of the subtype are taken over. This replacement is illustrated in

Figure 4.7. It shows the general as well as the changed mapping of the simple type

definition named age, which restricts the XML Schema built-in data type integer, and of

the element declaration employee, which is of the globally defined complex type named

person.

01 module T_subtype {
02 import from XSDAUX all;
03
04 type XSDAUX.integer_ SimpleType_age

(0 .. 2147483647) with {
05 encode "{subtype}age";
06 }
07
08 type record ComplexType_person {
09 XSDAUX.string e_name,
10 XSDAUX.int e_age
11 } with {
12 encode "{subtype}person";
13 encode (e_name) "name";
14 encode (e_age) "age";
15 }
16
17 type T_subtype.ComplexType_person

Element_employee with {
18 encode "{subtype}employee";
19 }
20 }

01 module T_subtype {
02 import from XSDAUX all;
03
04 type integer SimpleType_age

(0 .. 2147483647) with {
05 encode "{subtype}age";
06 }
07
08 type record ComplexType_person {
09 XSDAUX.string e_name,
10 XSDAUX.int e_age
11 } with {
12 encode "{subtype}person";
13 encode (e_name) "name";
14 encode (e_age) "age";
15 }
16
17 type record Element_employee {
18 XSDAUX.string e_name,
19 XSDAUX.int e_age
20 } with {
21 encode "{subtype}employee";
22 encode (e_name) "name";
23 encode (e_age) "age";
24 }
25 }

Figure 4.7: Changed mapping of TTCN-3 subtypes

 4.4. Invocation and Command Line Options

 91

In Java code, the WSDL2TTCN utility is configured to create a TTCN-3 ATS fully

compatible to TTworkbench Basic by enabling the outputIsTTworkbenchCompatible

attribute of the WSDL2TTCN class before starting the mapping process. In order to

activate the option on external invocation of the WSDL2TTCN utility, the proper

command line option specified in the Section 4.4 has to be used.

4.4 Invocation and Command Line Options

An invocation of the WSDL2TTCN utility has the form given in Figure 4.8, whereupon

"wsdl_uri" denotes the URI of the WSDL document that should be mapped to TTCN-3.

01 java de.ugoe.cs.swe.wsdl2ttcn.WSDL2TTCN [options] wsdl_uri

Figure 4.8: Invocation of the WSDL2TTCN utility

The available command line options are listed in Table 4.3. For each option, there are

two names: a short one represented by a single character and a long, more descriptive

form. The usage of either short or long names does not affect the result and is up to the

users personal preferences.

Option Description

-h

--help
Print a list of all command line options.

-o <arg>

--output <arg>

Specify the directory for the TTCN-3 abstract test suite generated

by the WSDL2TTCN utility.

-i

--identifiers

The identifiers of TTCN-3 definition usages are unqualified i.e.

they are not prefixed with the name of the defining module.

Be aware of the fact that the activation of this option may lead to

name ambiguities.

-t <arg1> <arg2>

--targetnamespace

<arg1> <arg2>

Specify a qualifier (<arg1>) that is used to qualify module names

with regard to the given target namespace URI (<arg2>).

-s

--schemamodules

The identifiers of modules representing an XML Schema target

namespace are unqualified with regard to the target namespace i.e.

all modules are named the same.

When activating this option, be sure that the WSDL document uses

only types from a single XML Schema target namespace.

 4. The WSDL2TTCN Utility

 92

Option Description

-w

--wsdlmodules

The identifiers of modules representing major WSDL elements are

unqualified with regard to the target namespace of the enclosing

WSDL document.

Be aware of the fact that the activation of this option may lead to

name ambiguities.

-T

--ttworkbench

The TTCN-3 ATS will miss some features as described in Section

4.3 to be fully compatible to TTworkbench Basic.

-U <arg>

--user <arg>

Specify the username, which is used, if retrieval of the WSDL

description requires authentication.

-P <arg>

--password <arg>

Specify the password, which is used, if retrieval of the WSDL

description requires authentication.

Table 4.3: Command line options of the WSDL2TTCN utility

 5. Extension of TTworkbench Basic for Web Service Testing

 93

5 Extension of TTworkbench Basic for Web Service Testing

Similar to any other programming language, TTCN-3 code is not executable by itself.

An abstract test suite, which has been generated for Web service testing according to the

mapping specified in Chapter 3, needs to be interpreted or executed by a TTCN-3 test

system implementation. In the context of this thesis, TTworkbench Basic ([28]) is used

for that purpose.

TTworkbench Basic is a TTCN-3 IDE designed and marketed by Testing Technologies

IST GmbH and was used in version 1.0.13 under an educational license. It is the basic

format of the TTworkbench product line, which is based upon the Eclipse platform and

consequently written in the Java programming language. TTworkbench Basic supports a

broad spectrum of test development, ranging from the text-based specification to the

compilation and the execution of tests. The provided functionality is split into three

distinct features:

• CL Editor: TTCN-3 Core Language Editor

• TTthree: TTCN-3 Compiler

• TTman: Test management, execution, and analysis

This chapter discusses the extension of TTworkbench Basic for Web service testing. It

is structured as follows: First, Section 5.1 presents the test adapter and codec that enable

the execution of a TTCN-3 abstract test suite, which has been created according to the

mapping specified in Chapter 3, against the corresponding Web service. Subsequently,

Section 5.2 presents a plug-in for TTworkbench that contains three supportive wizards.

Those provide dialog-based means to either use the WSDL2TTCN utility from within

TTworkbench or define new, more complex test cases based upon TTCN-3 abstract test

suites derived from WSDL descriptions.

5.1 Test Adapter and Codec enabling Test Execution

Before the test adapter and codec enabling Web service testing are discussed, the overall

TTworkbench test implementation process is briefly introduced. The process, the files

involved, and the interrelation between them are exemplified in Figure 5.1. It shows the

test implementation for the TTCN-3 abstract test suite, which is developed throughout

Chapter 3 for testing the .NET implementation of the "Movie Database" Web service.

 5. Extension of TTworkbench Basic for Web Service Testing

 94

Figure 5.1: TTworkbench test implementation process (cp. [29] Figure 2.1)

The TTthree compiler reads module definitions written in the TTCN-3 core notation and

translates them into Java sources. Those are then compiled into byte code class files and

combined into a single JAR (Java archive) file for each module. After compilation, the

JAR files generated by the TTthree compiler correspond to the TTCN-3 Executable i.e.

the part of the TTCN-3 test system that is responsible for the interpretation or execution

of TTCN-3 code.

In order to run the generated executable test suite against an actual system under test for

example a Web service, a specific test adapter and codec have to be implemented in the

Java programming language and provided by means of a single Java archive. The test

adapter thereby combines the SA and PA entities of the TTCN-3 test system and the

codec corresponds to the CD entity. TTworkbench provides basic implementations for

both test adapter and codec from which custom adapters and codecs can derive.

Finally, test parameterization is performed with the so-called module loader file (MLF).

It informs the test management, which compiled TTCN-3 module should be executed,

which test adapter and codec should be used, and where the respective JAR files can be

found. Furthermore, it tells the test management about the test cases that are located in

the compiled module and the parameters that are used. A module loader file is an XML

file that can be generated automatically during compilation and/or authored manually.

Abstract Test Suite

TPT_mdb_MovieDatabaseSoap.ttcn3
P_mdb_MovieDatabaseSoap.ttcn3

P_mdb_MovieDatabaseSoap12.ttcn3
PT_mdb_MovieDatabaseSoap.ttcn3

T_mdb.ttcn3
WebServices.ttcn3

Executable Test Suite

TPT_mdb_MovieDatabaseSoap.jar
P_mdb_MovieDatabaseSoap.jar

P_mdb_MovieDatabaseSoap12.jar
PT_mdb_MovieDatabaseSoap.jar

T_mdb.jar
WebServices.jar

Compiled

with TTthree

Test Adapter and Codec

WebServices.jar

Module Loader File

TPT_mdb_MovieDatabaseSoap.mlf

Loaded with TTman

References

Test Execution

Generated by TTthree

 5.1. Test Adapter and Codec enabling Test Execution

 95

As indicated in the previous paragraphs and depicted in Figure 5.1, the test adapter and

codec enabling test execution against Web services are written in the Java programming

language and combined into the Java archive WebServices.jar. Both test adapter and

codec inherit from the basic implementations provided by TTworkbench and override

the operations of the TRI and TCI interfaces that are invoked by the TE when executing

a test suite generated according to the mapping specified in Chapter 3. Concretely, the

test adapter implements the triSend operation and the codec implements the encode and

decode operations. In order to deal with SOAP messages and communicate with a Web

service under test, the test adapter and codec make use of the APIs provided by the

Apache Axis distribution ([1]) version 1.4. Besides, the codec uses the implementation

of the WSDL2TTCN utility for a proper encoding and decoding of SOAP messages e.g.

for the recovery of element and attribute names from TTCN-3 identifiers. In Figure 5.2,

the WebServicesAdapter and WebServicesCodec classes are depicted together with the

most important supportive classes and the interrelations between them. To aid display,

all constructors and the methods providing access to private attributes are omitted.

Figure 5.2: Main classes of the test adapter and codec implementation

When a message is send to a Web service, it is first encoded from a structured TTCN-3

value to an appropriate SOAP message by the encode method of the WebServicesCodec

class. The value, which is passed into the method, is thereby expected to be a TTCN-3

record value that adheres to the rules specified in Section 3.4. That is, the first field is

 5. Extension of TTworkbench Basic for Web Service Testing

 96

named soapBinding and it contains SOAP binding information for the current Web

service operation, whereas the remaining fields represent the message parts. The encode

method first transfers the SOAP binding information from the soapBinding field to an

instance of the SoapBinding class, which allows to access it in a more convenient way.

In the following, the retrieved SOAP binding information is used to construct a SOAP

envelope from the remaining fields of the TTCN-3 record value. On the one hand, the

SOAP binding information tells the codec whether a certain message part has to appear

under the SOAP body or the SOAP header. On the other hand, the codec evaluates the

message style to know whether message parts appearing under the SOAP body need to

be enclosed by a wrapper element. The further encoding of the fields, which represent

message parts, to respective XML fragments in the SOAP envelope is straightforward

and therefore not discussed. For the time being, the WebServicesCodec.encode method

supports only construction of the SOAP body and only the rpc/literal, document/literal,

and wrapped message styles. After the SOAP envelope has been constructed, it is stored

along with the SOAP binding information in an instance of the WebServiceOperation

class. This object is finally serialized into a binary string representation and returned to

the TE, which passes it on to the WebServicesAdapter via the triSend method.

The triSend method recovers the WebServiceOperation instance and uses the contained

SOAP binding information to configure an object of the Call class. In detail, the SOAP

binding information provides the location of the Web service, the transport that has to

be used and possibly a SOAP action that has to be specified. The Call class is provided

by the Axis distribution and it facilitates communication with a Web service. After the

Call instance has been configured, its invoke method is executed in order to send the

SOAP request contained in the WebServiceOperation instance to the Web service under

test and receive its response. The invoke method, which blocks until the receipt of a

response, is thereby executed on a separate thread, so that the triSend method is able to

return immediately. Inside the new thread, a SOAP response that is received from the

Web service is assigned to the soapResponseEnvelope field of the WebServiceOperation

object. Thereafter, the latter object is again serialized into a binary string and passed to

the TE via the TRI operation triEnqueueMsg.

In order to match the received SOAP response against a specific message, it has to be

decoded into a structured TTCN-3 value. For that purpose, the TE passes the serialized

 5.1. Test Adapter and Codec enabling Test Execution

 97

WebServiceOperation object containing the SOAP response as well as the assumed type

of the message, the so-called decoding hypothesis, to the WebServicesCodec.decode

method. The latter argument is thereby very important for the decoding process, because

the SOAP response cannot be decoded deterministically without it. This is due to the

fact that the TTCN-3 types representing parts of the SOAP envelope are derived from

XML Schema descriptions, but there are many, possibly an unlimited number of XML

Schema descriptions for the same XML fragment. Hence, it is not possible to determine

to which structured TTCN-3 value a SOAP fragment should be decoded without the

decoding hypothesis. As a result of this, the TTCN-3 value is constructed according to

the decoding hypothesis, whereupon it is checked whether the SOAP envelope contains

the assumed elements and attributes. If they are found, their content is copied to the

TTCN-3 value. Otherwise, the decode method fails and the distinct null value is passed

back. During the decoding process, the SOAP binding information contained in the

WebServiceOperation object is again used to determine whether a message part appears

under the SOAP body or the SOAP header and whether message parts appearing under

the SOAP body have to be enclosed by a wrapper element. As the encode method, the

WebServicesCodec.decode method supports only the rpc/literal, document/literal, and

wrapped message styles and for the time being only message parts appearing under the

SOAP body are decoded.

The decoding of SOAP envelopes according to the decoding hypothesis is problematic

at two points. The first problem arises when the assumed message type contains fields

or variants that are of a TTCN-3 union type or the anytype. In those cases, the decoding

hypothesis provides no information which variant of the union or anytype is expected,

so that the codec has to loop over all variants and try to decode the current fragment of

the SOAP envelope according to one of them. As soon as the decoding according to a

variant succeeds, it is assumed that the current SOAP fragment was decoded correctly,

but this is not necessarily the case. Assuming there is a TTCN-3 union type with two

variants that are of different name aliases for the TTCN-3 charstring type, it would be

possible to decode a SOAP fragment with simple text content according to both variants

without knowing which one is actually expected.

The second problem occurs when the decoding hypothesis contains a field or variant

that is of a TTCN-3 set-of type. In such cases, no information is provided on how many

 5. Extension of TTworkbench Basic for Web Service Testing

 98

elements are expected and how many elements are actually allowed by the set-of type.

The former restriction is circumvented by simply trying to decode as many elements as

possible from the current SOAP fragment. The second restriction is more problematic as

it eliminates the possibility to distinguish between valid and invalid empty lists. That is,

if no elements can be decoded from the current SOAP fragment, it is not possible to

determine whether the resulting empty set-of value is valid according to its type. Since

assigning zero to the length of a set-of value, whose type defines a greater minimum

length, causes a test execution error i.e. the abortion of the test case, empty lists are

generally not supported. Consequently, when the decoding hypothesis contains a field

or variant of a TTCN-3 set-of type but no elements can be decoded from the current

SOAP fragment, the decode method fails by returning the distinct null value.

5.2 Plug-in bundling Supportive Wizards

Since TTworkbench is based on the Eclipse platform, it inherits their high extensibility.

The Eclipse platform is build around the concept of plug-ins, structured bundles of code

and/or data that contribute function to the system. The platform itself is structured as set

of subsystems that provide key functionality and run on top of a small runtime engine.

Every subsystem is implemented in one or more plug-ins that have so-called extension

points, well-defined places where other plug-ins can add functionality to the platform.

Those other plug-ins are in turn allowed to define their own extension points for further

customization, so the Eclipse platform can be seen as a layered system of plug-ins.

At its heart, TTworkbench comprises a few plug-ins, which extend the Eclipse platform

with functionality for TTCN-3 test specification, compilation, test case execution, and

analysis. The plug-in that is discussed in this section furthermore extends TTworkbench

by contributing three wizards. Two of the wizards provide dialog-based utilization of

the WSDL2TTCN utility from within TTworkbench. The first one simply executes the

automated mapping of a WSDL document to a TTCN-3 abstract test suite as introduced

in section 5.2.1. The second wizard presented in Section 5.2.2 performs not only the

mapping but also creates a TTCN-3 project for the generated abstract test suite. The

project is readily configured for Web service testing for what the test adapter and codec

introduced in Section 5.1 are re-used. Section 5.2.3 finally discusses the third wizard

that facilitates the dialog-based specification of new, more complex test cases based on

TTCN-3 abstract test suites generated according to the mapping specified in Chapter 3.

 5.2. Plug-in bundling Supportive Wizards

 99

Plug-in Description

org.eclipse.core.resources
org.eclipse.core.runtime
org.eclipse.jdt.ui
org.eclipse.ltk.core.refactoring
org.eclipse.text
org.eclipse.ui
org.eclipse.ide

These plug-ins are included in the Eclipse SDK

(Software Development Kit), which bundles the

Eclipse platform with major tools useful for

plug-in development. They also ship with

TTworkbench Basic and provide basic functions

for the de.ugoe.cs.swe.webservices plug-in.

com.testingtech.ttworkbench.core

This plug-in ships with TTworkbench Basic and

it is required to generate TTCN-3 projects and

configure them for Web service testing.

de.ugoe.cs.swe.trex.antlr
de.ugoe.cs.swe.trex.core

These two plug-ins are part of TRex ([48]), a

TTCN-3 Refactoring and Metrics Tool. They

are used in version 0.5.3 to parse TTCN-3

sources when a new test case is defined based

upon an existing abstract test suite.

Table 5.1: Plug-ins required by the de.ugoe.cs.swe.webservices plug-in

The plug-in bundling the three wizards has the id "de.ugoe.cs.swe.webservices" and it is

packaged into a single JAR file. In order to use the three wizards, the Java archive has

to be copied into the "plugins" directory of a TTworkbench installation. Furthermore, it

is required that the plug-ins listed in Table 5.1 are also present.

5.2.1 "Web Service Test Modules" Wizard

The "Web Service Test Modules" wizard is the first of two wizards that provide dialog-

based utilization of the WSDL2TTCN utility from within TTworkbench. It comprises

three dialog pages, which are shown in Figure 5.3. The wizard requires that at least one

project is already created in the workspace and it can be invoked either via the main

menu or via the context menu that appears after performing a right-click on a project or

folder in the "TTCN-3 Projects" view.

On the first wizard page, the user is requested to specify the source folder to which the

TTCN-3 abstract test suite resulting from the mapping between WSDL and TTCN-3

should be written. The user can either directly specify the source folder in a text field or

alternatively browse the workspace to select a source folder.

 5. Extension of TTworkbench Basic for Web Service Testing

 100

Figure 5.3: Pages of the "Web Service Test Modules" wizard

 5.2. Plug-in bundling Supportive Wizards

 101

With a source folder being selected, the second wizard page requests the user to specify

the URI of the WSDL description, which should be mapped to TTCN-3. The user can

either directly specify the URI in a text field or browse the file system to select a WSDL

document. If the retrieval of the WSDL description requires authentication, a user name

and password can be specified in two additional text fields. In case the wizard is able to

obtain the specified WSDL document, for what the Web Services Description Language

for Java Toolkit ([25]) version 1.6.2 is used, the user can either finish the wizard or

proceed to the optional third wizard page.

The last wizard page allows the user to configure the mapping of the obtained WSDL

description to a TTCN-3 abstract test suite. On the one hand, this includes three options

regarding the qualification of module identifiers and identifiers of TTCN-3 definition

usages. On the other hand, the user can specify qualifiers for the URIs of all WSDL and

XML Schema target namespaces that appear in the retrieved WSDL description.

After the user has finally finished the "Web Service Test Modules" wizard, the already

retrieved WSDL description is mapped to TTCN-3 using the functionality provided by

the WSDL2TTCN utility. At first, an instance of the WSDL2TTCN class is created and

configured according to the specified mapping options. Subsequently, the mapping is

executed by passing the obtained WSDL4J representation of the WSDL document to the

appropriate overload of the mapWSDL2TTCN operation. After the mapping is executed,

the generated TTCN-3 modules, whose Java representations are exposed via attributes

of the WSDL2TTCN object, are written to the TTCN-3 source folder initially specified

by the user.

If a module resulting from the mapping already exists in the source folder, the wizard

opens a modal dialog to ask the user whether the existing module should be overwritten.

Besides the provision of "Yes" and "No" options, the specially implemented dialog also

allows the user to specify that all or none of the TTCN-3 modules already existing on

the file system should be overwritten. Those additional options are provided, since the

mapping possibly generates a great number of modules that already exist on the file

system. Exceptions to this overwriting procedure are the creation of the XSDAUX and

WebServices modules. Because they are commonly used for the testing of any Web

service, those TTCN-3 modules are never overwritten.

 5. Extension of TTworkbench Basic for Web Service Testing

 102

5.2.2 "Web Service Test Project" Wizard

The "Web Service Test Project" wizard is the second wizard that provides dialog-based

usage of the WSDL2TTCN utility from within TTworkbench. Besides the execution of

the automated mapping between WSDL and TTCN-3, the main purpose of the wizard is

the creation of a TTCN-3 project that takes up the generated abstract test suite and that

is readily configured for Web service testing. For the latter purpose, the test adapter and

codec introduced in Section 5.1 are re-used. Similar to the "Web Service Test Modules"

wizard, the "Web Service Test Project" wizard can be invoked either via the main menu

or via the context menu that appears after performing a right-click on a project or folder

in the "TTCN-3 Projects" view.

The "Web Service Test Project" wizard includes five pages. The first three wizard pages

resemble the TTworkbench wizard for the creation of a new TTCN-3 project as shown

in Figure 5.4 and Figure 5.5. For that purpose, the implementations of the TTworkbench

wizard pages, which are included in the com.testingtech.ttworkbench.core plug-in, are

re-used or extended, respectively. The remaining two pages of the "Web Service Test

Project" wizard enable the selection of a WSDL description as well as the specification

of mapping options. They are re-used from the "Web Service Test Modules" wizard, so

that they are used as described in Section 5.2.1 and except for the wizard title and icon

appear as shown in Figure 5.3.

The first "Web Service Test Project" wizard page is re-used from the TTworkbench

wizard and it allows the user to create a TTCN-3 project in the workspace or an external

location. When the user proceeds to the next wizard page, a project with the specified

name is immediately created at the specified location and the project is pre-configured

for Java development.

This pre-configuration can be edited by the user on the second page of the "Web Service

Test Project" wizard. The individual Java settings are not relevant in the current context

and thus not discussed. When the user advances to the next page, the project is pre-

configured for TTCN-3 development. Since the "Web Service Test Project" wizard aims

at the creation of a project that is configured for Web service testing, the behavior of the

TTworkbench wizard needs to be extended at this point. Thus, the implementation of

the second TTworkbench wizard page is not simply re-used but inherited and enhanced.

After execution of the base behavior, the extended implementation of the second wizard

 5.2. Plug-in bundling Supportive Wizards

 103

page copies the WebServices.jar file that packages the test adapter and codec introduced

in Section 5.1 into the project directory. Thereafter, the pre-configuration for TTCN-3

development is changed, so that the TTthree compiler generates a module loader file on

compilation of TTCN-3 modules and these MLFs reference the test adapter packaged in

the WebServices.jar file.

Figure 5.4: First and second page of the "Web Service Test Project" wizard

 5. Extension of TTworkbench Basic for Web Service Testing

 104

Figure 5.5: Third page of the "Web Service Test Project" wizard

The pre-configuration of the project for TTCN-3 development can be edited by the user

on the third page of the "Web Service Test Project" wizard, which is again simply re-

used from the TTworkbench wizard. Figure 5.5 shows the third wizard page with its

"Compiler" tab being selected and the compiler settings being configured as described.

The remaining TTCN-3 project properties are not relevant in the current context and

thus not discussed. After possibly adjusting the TTCN-3 properties to his needs, the user

can finish the wizard immediately, leaving the TTCN-3 project readily configured for

Web service testing but empty i.e. no TTCN-3 source files are created.

Alternatively, the user can advance to the last two wizard pages that provide means to

select a WSDL description and configure the mapping between WSDL and TTCN-3. If

the user selects a WSDL document and finishes the wizard, the Web service description

is mapped to a TTCN-3 abstract test suite using the functionality of the WSDL2TTCN

utility. The use of the wizard pages and the execution of the mapping are almost the

same as in the context of the "Web Service Test Modules" wizard introduced in Section

5.2.1. The only difference is that the generated TTCN-3 abstract test suite is not written

to a user-specified directory but the standard TTCN-3 source folder named "ttcn3".

 5.2. Plug-in bundling Supportive Wizards

 105

5.2.3 "Web Service Test Scenario" Wizard

A TTCN-3 abstract test suite generated according to the mapping specified in Chapter 3

contains only simple test cases for testing the Web service operations individually. This

is due to the fact that a Web service description provides no semantics for the described

operations and thus makes it hard or even impossible to derive complex test scenarios

automatically. The "Web Service Test Scenario" wizard provides dialog-based means to

ease the specification of new, more complex test cases that base on a TTCN-3 abstract

test suite derived from a WSDL description and may involve numerous calls to Web

service operations. The wizard comprises two pages, which are displayed in Figure 5.6,

and it can be invoked via the "Web Service Testing" menu item, which is added to the

TTworkbench main menu by the de.ugoe.cs.swe.webservices plug-in.

After invocation of the "Web Service Test Scenario" wizard, it is first verified whether a

TTCN-3 source file is opened and selected for editing. If not, the wizard immediately

aborts with an error message. Otherwise, the TTCN-3 source file and all other TTCN-3

sources in the same project are analyzed using the parser functionality provided by the

TRex plug-ins. In the course of the analysis, the source code written in the TTCN-3 core

notation is lexed and parsed using an ANTLR (Another Tool for Language Recognition)

grammar and the resulting syntax tree is used to generate a symbol table. The resulting

syntax tree and symbol table constitute representations of TTCN-3 in Java, which are

less comfortable to work with than the API implemented for the WSDL2TTCN utility.

Nevertheless, in the context of the "Web Service Test Scenario" wizard the effort to

work with the syntax tree and symbol table is less than adding parser functionality to the

Java representations of TTCN-3 implemented for the WSDL2TTCN utility. For future

work, it may be an interesting option to extend the TTCN-3 API of the WSDL2TTCN

utility and combine it with the TRex parser functionality. With all TTCN-3 sources files

being analyzed, it is subsequently verified whether the selected source file contains a

TTCN-3 module for testing a WSDL port type as described in Section 3.6 and depicted

in Figure 3.23. If no appropriate module is found, the wizard immediately aborts with

an error message. Otherwise, the found module is used as basis and final target of the

new test scenario.

The initial page of the "Web Service Test Scenario" wizard enables the user to select the

TTCN-3 definition already existing on the top level of the target module after which the

 5. Extension of TTworkbench Basic for Web Service Testing

 106

new test scenario should be inserted. Furthermore, the user can specify the sequence of

Web service operations that should be invoked in the course of the test scenario. For

that purpose, the TTCN-3 test component, on which the behavior for testing a WSDL

port type is executed, is determined and analyzed. Thereby, all Web service operations

that can be invoked via ports owned by the test component are listed inside the tree view

positioned at the left edge of the first wizard page. The operations are grouped per port

and can be selected for the test scenario by performing a double-click on the respective

tree view item. A selected Web service operation can be moved in or removed from the

ordered sequence of operations by selecting the respective list item and clicking on the

appropriate button positioned at the wizard's right edge. In order to advance to the next

wizard page at least one Web service operation has to be selected.

Figure 5.6: Pages of the "Web Service Test Scenario" wizard

The second page of the "Web Service Test Scenario" wizard requires the user to specify

the identifiers of the TTCN-3 definitions that will be created for the test scenario. These

include a test case, templates for all input, output, and fault messages of the selected

Web service operations, and a group that encloses the former test scenario definitions.

All specified identifiers are required to adhere to the naming conventions specified in

Section 3.2.1 and it is verified whether they would cause name ambiguities in the target

module. That is, the specified identifiers must be unique among each other and among

the identifiers of all top-level definitions in the target module. In case an identifier is

invalid, the corresponding text field is highlighted and an error message is shown. When

all specified identifiers are valid, the wizard can be finished.

 5.2. Plug-in bundling Supportive Wizards

 107

After the user has finally finished the "Web Service Test Scenario" wizard, the new test

scenario is created and inserted into the target module. For that purpose, a syntax tree

representing the test scenario group and all enclosed TTCN-3 definitions is constructed,

transformed into TTCN-3 core notation by using the TRex pretty printer, and finally

inserted into the target module after the already existing definition initially specified by

the user.

The test case of the test scenario is similar to those created during the mapping between

WSDL and TTCN-3. In fact, it is like a sequence of the test behavior defined by those

test cases that test the individual Web service operations selected for the test scenario.

For each operation in the test scenario sequence, first the template for the input message

is transmitted via the port owned by the test component. In case the operation is a one-

way operation i.e. the Web service under test will not respond, the test verdict is set to

"pass". Otherwise, the timer owned by the test component is started to safeguard the test

behavior against inactivity of the Web service to be tested. The timer will run for the

number of seconds defined by the value of the c_timeout constant, which is passed to

the start operation as duration parameter. After starting the timer, the test case defines

an alt statement that specifies several alternatives. The first alternative is executed, if

the template defined for the output message of the Web service operation is received on

the port owned by the test component. It will stop the timer and set the test verdict to

"pass". If the operation specifies fault messages, further alternatives are defined for the

receipt of their corresponding templates. Each of those alternatives will also stop the

running timer, but set the test verdict to "fail". At last, the alt statement refers to the

alt_ReceiveAnyOrTimeout altstep in order to catch the receipt of unexpected messages

or a timeout.

The values of the message templates created for the input, output, and fault messages of

the selected Web service operations do not follow the rules that are suggested by the

mapping between WSDL and TTCN-3 (s. Table 3.6). For the time being, all message

templates have the distinct value "omit" and a test user is necessarily required to specify

real test data by hand. This is due to the fact that with the syntax tree and symbol table

representations of TTCN-3 definitions, the generation of values following the suggested

rules would have been to complex.

 5. Extension of TTworkbench Basic for Web Service Testing

 108

To conclude this section, Figure 5.7 shows an exemplary test scenario generated by the

"Web Service Test Scenario" wizard. The scenario tests the .NET implementation of the

"Movie Database" Web service and includes subsequent calls to the createMovie and

the getMovie operations. In order to generate the exemplary scenario, the "Web Service

Test Scenario" wizard was invoked on the module for testing the WSDL port type of the

.NET implementation of the exemplary "Movie Database" Web service (s. Figure 3.23)

and configured as depicted in Figure 5.6.

In the displayed test scenario, the references to the component type TC_MovieDatabase

(Figure 5.7 line 6) and the altstep alt_ReceiveAnyOrTimeout (Figure 5.7 lines 14 and

23) are not prefixed with the module identifier. This is because the used version of the

TRex pretty printer would not generate the delimiting point character after the module

identifier and thus would create erroneous TTCN-3 code.

01 group g_createAndGetMovie {
02 template PT_mdb_MovieDatabase.O_createMovieResponse a_createMovieResponse := omit;
03 template PT_mdb_MovieDatabase.I_createMovieRequest a_createMovieRequest(

in WebServices.SoapBinding p_soapBinding) := omit;
04 template PT_mdb_MovieDatabase.O_getMovieResponse a_getMovieResponse := omit;
05 template PT_mdb_MovieDatabase.I_getMovieRequest a_getMovieRequest(

in WebServices.SoapBinding p_soapBinding) := omit;
06 testcase tc_createAndGetMovie(in WebServices.SoapBindings p_soapBindings)

runs on TC_MovieDatabase {
07 pt_MovieDatabase.send(

TPT_mdb_MovieDatabase.a_createMovieRequest(p_soapBindings[0]));
08 t_timeoutGuard.start(TPT_mdb_MovieDatabase.c_timeout);
09 alt {
10 [] pt_MovieDatabase.receive(TPT_mdb_MovieDatabase.a_createMovieResponse) {
11 t_timeoutGuard.stop;
12 setverdict(pass);
13 };
14 [] alt_ReceiveAnyOrTimeout();
15 }
16 pt_MovieDatabase.send(

TPT_mdb_MovieDatabase.a_getMovieRequest(p_soapBindings[1]));
17 t_timeoutGuard.start(TPT_mdb_MovieDatabase.c_timeout);
18 alt {
19 [] pt_MovieDatabase.receive(TPT_mdb_MovieDatabase.a_getMovieResponse) {
20 t_timeoutGuard.stop;
21 setverdict(pass);
22 };
23 [] alt_ReceiveAnyOrTimeout();
24 }
25 }
26 }

Figure 5.7: TTCN-3 output of the "Web Service Test Scenario" wizard

 6. Conclusion

 109

6 Conclusion
6.1 Summary

In this thesis, a framework for Web service testing with TTCN-3 has been presented. It

bases on an automated, specification-based testing approach developed in related work

([23], [24], and [46]). From the WSDL description of a Web service, an abstract test

suite expressed with TTCN-3 is derived that is independent of the test platform and the

concrete system to be tested. This abstract test suite is subsequently executed against the

Web service by a TTCN-3 test system implemented in a native programming language.

Although the existing research work includes case studies that prove the concept of the

testing approach, it lacks a thorough specification of the mapping between WSDL and

TTCN-3.

Thus, detailed rules have been presented for the mapping of a Web service description

given by means of a WSDL document to a TTCN-3 abstract test suite that allows basic

testing of the Web service. In addition to the specification of mapping rules for the

individual major WSDL elements, the mapping between TTCN-3 and XML Schema,

which forms the default type system of WSDL descriptions, has been examined. The

discussion of the proposed mapping between WSDL and TTCN-3 has been exemplified

through the derivation of a TTCN-3 abstract test suite from the WSDL description of an

exemplary "Movie Database" Web service.

The proposed mapping between WSDL and TTCN-3 can be done manually but it is also

well capable of being automated. Because an automated mapping is less error-prone and

most notably less time-consuming, the WSDL2TTCN utility was implemented in the

context of this thesis. The architecture, two implementation details, the invocation, and

the available command line options of the Java console application have been presented.

Furthermore, an option has been discussed that allows changing the mapping between

WSDL and TTCN-3 in certain points in order to generate a TTCN-3 abstract test suite

fully compatible to TTworkbench Basic.

Lastly, the extension of TTworkbench Basic, a TTCN-3 test development and execution

environment, for Web service testing has been presented. At first, the test adapter and

codec, which facilitate the execution of TTCN-3 abstract test suites generated according

to the mapping between WSDL and TTCN-3, have been discussed. Subsequently, three

 6. Conclusion

 110

wizards have been introduced, which provide dialog-based means to either use the

WSDL2TTCN utility from within TTworkbench or specify new, more complex test

cases based upon TTCN-3 abstract test suites derived from WSDL descriptions.

6.2 Outlook

Regarding the mapping between WSDL and TTCN-3, it would be desirable to adapt it

to WSDL 2.0. This version has been disregarded in the context of this thesis, because it

is still being standardized at the time of this writing and hence not widely supported or

used. Nevertheless, WSDL 2.0 will presumably displace WSDL 1.1 bit by bit after

becoming a W3C Recommendation.

Besides an adaptation of the proposed mapping to WSDL 2.0, it could be worthwhile to

add support for the document/encoded and the rpc/encoded message styles. They have

not been considered in the context of this thesis, because their utilization is forbidden by

the WS-I Basic Profile Version 1.0 and 1.1 due to interoperability concerns. However,

there are some Web services that do not conform to the WS-I Basic Profile and that

make use of those message styles.

All changes that will be made to the mapping between WSDL and TTCN-3 should also

be adapted by the WSDL2TTCN utility as well as the test adapter and codec that enable

test execution with TTworkbench Basic. In case of the latter, it would furthermore be

desirable to add support for the encoding and decoding of the Header element of SOAP

envelopes.

Finally, it is certainly worthwhile to enhance the "Web Service Test Scenario" wizard in

order to better support the test user in defining new, more complex test cases based on

TTCN-3 abstract test suites derived from WSDL descriptions. A possible extension may

be to allow composing a new test case from the operations of multiple WSDL port

types. Moreover, it would be useful to provide better support in defining the message

templates, possibly by dialog-based means. As a part of extending the wizard, it may be

an interesting and useful option to enhance the Java representations of TTCN-3, which

were implemented in the context of the WSDL2TTCN utility, and for example combine

them with the TRex parser functionality.

 Bibliography

 111

Bibliography

The validity of all listed URIs was lastly checked on June 6, 2007.

[1] Apache <Web Services /> Project: Web Services - Axis

http://ws.apache.org/axis/

[2] Alonso, G., F. Casati, H. Kuno, and V. Machiraju: Web Services

First Edition, Springer Verlag, Berlin Heidelberg (Germany), 2004

[3] Butek, R.: Handle namespaces in SOAP messages you create by hand

IBM developerWorks article, 2005-05-03

http://www-128.ibm.com/developerworks/webservices/library/ws-tip-

namespace.html

[4] Butek, R.: Which style of WSDL should I use?

IBM developerWorks article, 2005-05-24

http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

[5] Eclipse Foundation: Eclipse

http://www.eclipse.org/

[6] ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 1: TTCN-3 Core Language

ETSI ES 201 873-1 V3.1.1, ETSI, Sophia Antipolis Cedex (France), 2005-06

[7] ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)

ETSI ES 201 873-5 V3.1.1, ETSI, Sophia Antipolis Cedex (France), 2005-06

[8] ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 6: TTCN-3 Control Interface (TCI)

ETSI ES 201 873-6 V3.1.1, ETSI, Sophia Antipolis Cedex (France), 2005-06

[9] ETSI: Methods for Testing and Specification (MTS); The Testing and Test Control

Notation version 3; Part 9: Using XML Schema with TTCN-3

ETSI ES/MTS-201 873-9 V1.1.1, ETSI, Sophia Antipolis Cedex (France), 2006-10

[10] ETSI: TTCN-3 Home page

http://www.ttcn-3.org/

 Bibliography

 112

[11] Ewald, T.: The Argument Against SOAP Encoding

Microsoft Developer Network SOAP Technical Article, 2002-10

http://msdn2.microsoft.com/en-us/library/ms995710.aspx

[12] Goldberg, C.: WebInject - (HTTP) Web Application and Web Services Test Tool

http://www.webinject.org/

[13] Grabowski, J., D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, and C. Willcock:

An introduction to the testing and test control notation (TTCN-3)

In: Computer Networks Volume 42 Issue 3, Elsevier, Amsterdam (Netherlands),

2003-06

[14] Graham, S., D. Davis, S. Simeonov, G. Daniels, P. Brittenham, Y. Nakamura,

P. Fremantle, D. König, and C. Zentner: Building Web Services with Java

Second Edition, Sams Publishing, Indianapolis (USA), 2005

[15] International Telecommunication Union: The Evolution of TTCN

ITU-T Study Group 7 Special Issue, 2002-09-30

http://www.itu.int/ITU-T/studygroups/com07/ttcn.html

[16] Jadhav M., and M. Ahmed: Automate Web service testing, Part 2: Test a Web

service with XMLUnit

IBM developerWorks article, 2007-03-26

http://www-128.ibm.com/developerworks/edu/ws-dw-ws-soa-autotest2.html

[17] Java Community Process: JSR-000110 Java™ APIs for WSDL

Maintenance Release 2, 2006-09-12

http://jcp.org/aboutJava/communityprocess/mrel/jsr110/index2.html

[18] Jeaca D.-M: XML Schema to TTCN-3 Mapping: Importing XMLSchema datatypes

into TTCN-3

Diploma Thesis, Politehnica University of Bucharest (Department of Computer

Science), Bucharest (Romania), 2004-09

[19] Jeaca D.-M., G. Din, and A. Rennoch: Importing XML Schema datatypes into

TTCN-3

In: Proceedings of the 3rd Workshop on System Testing and Validation (SV04),

Paris (France), 2004-12-02

 Bibliography

 113

[20] McCaffrey, J.: Test Run: Automate Your ASP.NET Web Services Testing

In: MSDN Magazine, 2005-03

http://msdn.microsoft.com/msdnmag/issues/05/03/TestRun/

[21] Microsoft: .NET Framework Home

http://msdn2.microsoft.com/netframework/default.aspx

[22] Puro, Vesa-Matti: TTCN-3 Basics Course Slides

http://www.ttcn3basics.com/

[23] Schieferdecker, I., and B. Stepien: Automated Testing of XML/SOAP based Web

Services

In: Proceedings of the 13th Fachkonferenz der Gesellschaft für Informatik (GI)

Fachgruppe Kommunikation in verteilten Systemen (KIVS), Leipzig (Germany),

2003-02-26/28

[24] Schieferdecker, I., D. Vega, and C. Renta: Import of WSDL Definitions in TTCN-3

Targeting Testing of Web Services

In: Proceedings of the 9th International Conference on Integrated Design and Process

Technology (IDPT 2006), San Diego (USA), 2006-06-25/30

[25] SourceForge.net: Web Services Description Language for Java Toolkit (WSDL4J)

http://sourceforge.net/projects/wsdl4j

[26] Sumra, R., and R. Venkatvaradan: Web Service's Test Harness: A Functional, Load,

and Performance Testing Framework for Web Services

developer.com article, 2003-06-06

http://www.developer.com/services/article.php/2229161

[27] Sun: JavaTM 2 Platform Standard Edition 5.0 API Specification

http://java.sun.com/j2se/1.5.0/docs/api/index.html

[28] Testing Technologies: TTworkbench Basic

http://testingtech.de/products/ttwb_basic.php

[29] Testing Technologies: TTworkbench Developer’s Guide

Revision 1.2, 2006-02

http://www.testingtech.de/download/TTwb_UsersGuide.zip

 Bibliography

 114

[30] W3C: Extensible Markup Language (XML) 1.0 (Fourth Edition)

W3C Recommendation, 2006-08-16 (edited in place 2006-09-29)

http://www.w3.org/TR/2006/REC-xml-20060816

[31] W3C: Namespaces in XML 1.0 (Second Edition)

W3C Recommendation, 2006-08-16

http://www.w3.org/TR/2006/REC-xml-names-20060816/

[32] W3C: Simple Object Access Protocol (SOAP) 1.1

W3C Note, 2000-05-08

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[33] W3C: SOAP Version 1.2 Part 0: Primer

W3C Recommendation, 2003-06-24

http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

[34] W3C: SOAP Version 1.2 Part 1: Messaging Framework

W3C Recommendation, 2003-06-24

http://www.w3.org/TR/2003/REC-soap12-part1-20030624/

[35] W3C: SOAP Version 1.2 Part 2: Adjuncts

W3C Recommendation, 2003-06-24

http://www.w3.org/TR/2003/REC-soap12-part2-20030624/

[36] W3C: Web Services Architecture

W3C Working Draft, 2002-11-14

http://www.w3.org/TR/2002/WD-ws-arch-20021114/

[37] W3C: Web Services Description Language (WSDL) 1.1

W3C Note, 2001-03-15

http://www.w3.org/TR/2001/NOTE-wsdl-20010315

[38] W3C: XML Schema Part 0: Primer Second Edition

W3C Recommendation, 2004-10-28

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

[39] W3C: XML Schema Part 1: Structures Second Edition

W3C Recommendation, 2004-10-28

http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

 Bibliography

 115

[40] W3C: XML Schema Part 2: Datatypes Second Edition

W3C Recommendation, 2004-10-28

http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/

[41] W3C Member: WSDL 1.1 Binding Extension for SOAP 1.2

W3C Member Submission, 2006-04-05

http://www.w3.org/Submission/2006/SUBM-wsdl11soap12-20060405/

[42] Wang, D., T. Bayer, T. Frotscher, and M. Teufel: Java Web Services mit Apache

Axis

First Edition, Software & Support Verlag, Frankfurt (Germany), 2004

[43] Willcock, C., T. Deiß, S. Tobies, S. Keil, F. Engler, and S. Schulz: An Introduction

to TTCN-3

First Edition, John Wiley & Sons Ltd, West Sussex (England), 2005

[44] WS-I: Basic Profile Version 1.0

Final Material, 2004-04-16

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

[45] WS-I: Basic Profile Version 1.1

Final Material, 2006-04-10

http://www.ws-i.org/Profiles/BasicProfile-1.1-2006-04-10.html

[46] Xiong, P., R. L. Probert, and B. Stepien: An Efficient Formal Testing Approach for

Web Service with TTCN-3

In: Proceedings of the 13th International Conference on Software,

Telecommunications and Computer Networks (SoftCOM 2005), Split (Croatia),

2005-09-15/17

[47] Zeiß, B.: A Refactoring Tool for TTCN-3

Master's Thesis, Georg-August-University Göttingen (Institute for Informatics),

Göttingen (Germany), 2006-03-15

[48] Zeiß, B., and H. Neukirchen: TRex - the TTCN-3 Refactoring and Metrics Tool

http://www.trex.informatik.uni-goettingen.de/trac

 Appendix A: Implementations of the "Movie Database" Web Service

 117

Appendix A Implementations of the "Movie Database" Web

Service
A.1 Apache Axis Framework

01 package services.moviedatabase;
02
03 import java.util.HashMap;
04 import java.util.Map;
05
06 public class MovieDatabase {
07 private Map<Integer, Movie> database;
08
09 public MovieDatabase()
10 {
11 this.database = new Map<Integer, Movie> ();
12 this.insertMovie(new Movie(4, "Kill Bill: Vol. 1", new Person("Quentin",

"Tarantino")));
13 this.insertMovie(new Movie(12, "Kill Bill: Vol. 2", new Person("Quentin",

"Tarantino")));
14 }
15
16 public boolean createMovie(int id, String name, Person director) {
17 return this.insertMovie(new Movie(id, name, director));
18 }
19
20 public boolean insertMovie(Movie movie) {
21 if (movie == null || movie.getName() == null || movie.getDirector() == null ||
22 movie.getDirector().getFirstName() == null ||

movie.getDirector().getLastName() == null) {
23 return false;
24 } else {
25 // Does not persist, because the Web Service itself is stateless.
26 this.database.put(movie.getId(), movie);
27
28 return true;
29 }
30 }
31 return true;
32 }
33
34 public Movie getMovie(int id) {
35 return this.database.get(id);
36 }
37
38 public Movie[] searchMovies(String[] keywords) {
39 if (keywords == null) {
40 return null;
41 } else {
42 // Instead of executing a search, the two default movies are returned.
43 Movie[] movies = new Movie[this.database.values().size()];
44 this.database.values().toArray(movies);
45
46 return movies;
47 }
48 }
49 }

Figure A.1: MovieDatabase.java

 Appendix A: Implementations of the "Movie Database" Web Service

 118

01 package services.moviedatabase;
02
03 public class Movie {
04 private int id;
05 private String name;
06 private Person director;
07
08 public Movie() {
09 this(0, "", new Person());
10 }
11
12 public Movie(int id, String name, Person director) {
13 this.id = id;
14 this.name = name;
15 this.director = director;
16 }
17
18 public void setId(int id) {
19 this.id = id;
20 }
21 public int getId() {
22 return id;
23 }
24
25 public void setName(String name) {
26 this.name = name;
27 }
28 public String getName() {
29 return name;
30 }
31
32 public void setDirector(Person director) {
33 this.director = director;
34 }
35 public Person getDirector() {
36 return director;
37 }
38 }

Figure A.2: Movie.java

01 package services.moviedatabase;
02
03 public class Person {
04 private String firstName;
05 private String lastName;
06
07 public Person() {
08 this("", "");
09 }
10
11 public Person(String firstName, String lastName) {
12 this.firstName = firstName;
13 this.lastName = lastName;
14 }
15
16 public void setFirstName(String firstName) {
17 this.firstName = firstName;
18 }
19 public String getFirstName() {
20 return firstName;
21 }
22
23 public void setLastName(String lastName) {
24 this.lastName = lastName;
25 }
26 public String getLastName() {
27 return lastName;
28 }
29 }

Figure A.3: Person.java

 Appendix A: Implementations of the "Movie Database" Web Service

 119

01 <deployment xmlns="http://xml.apache.org/axis/wsdd/"
02 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
03
04 <service name="MovieDatabase" provider="java:RPC" style="wrapped" use="literal">
05 <requestFlow><handler type="soapmonitor"/></requestFlow>
06 <responseFlow><handler type="soapmonitor"/></responseFlow>
07
08 <parameter name="className" value="services.moviedatabase.MovieDatabase" />
09 <parameter name="allowedMethods" value="createMovie, insertMovie, getMovie,

searchMovies" />
10 <namespace>http://www.troschuetz.de/services/MovieDatabase</namespace>
11
12 <beanMapping qname="md:Movie"

xmlns:md="http://www.troschuetz.de/services/MovieDatabase"
13 languageSpecificType="java:services.moviedatabase.Movie"/>
14 <beanMapping qname="md:Person"

xmlns:md="http://www.troschuetz.de/services/MovieDatabase"
15 languageSpecificType="java:services.moviedatabase.Person"/>
16 </service>
17
18 <service name="MovieDatabaseDoc" provider="java:RPC" style="document"

use="literal">
19 <requestFlow><handler type="soapmonitor"/></requestFlow>
20 <responseFlow><handler type="soapmonitor"/></responseFlow>
21
22 <parameter name="className" value="services.moviedatabase.MovieDatabase" />
23 <parameter name="allowedMethods" value="insertMovie, getMovie, searchMovies" />
24 <namespace>http://www.troschuetz.de/services/MovieDatabase</namespace>
25
26 <beanMapping qname="md:Movie"

xmlns:md="http://www.troschuetz.de/services/MovieDatabase"
27 languageSpecificType="java:services.moviedatabase.Movie"/>
28 <beanMapping qname="md:Person"

xmlns:md="http://www.troschuetz.de/services/MovieDatabase"
29 languageSpecificType="java:services.moviedatabase.Person"/>
30 </service>
31
32 <service name="MovieDatabaseRpc" provider="java:RPC" style="rpc" use="literal">
33 <requestFlow><handler type="soapmonitor"/></requestFlow>
34 <responseFlow><handler type="soapmonitor"/></responseFlow>
35
36 <namespace>http://www.troschuetz.de/services/MovieDatabase</namespace>
37 <parameter name="className" value="services.moviedatabase.MovieDatabase" />
38 <parameter name="allowedMethods" value="createMovie, insertMovie, getMovie,

searchMovies" />
39 <beanMapping qname="md:Movie"

xmlns:md="http://www.troschuetz.de/services/MovieDatabase"
40 languageSpecificType="java:services.moviedatabase.Movie"/>
41 <beanMapping qname="md:Person"

xmlns:md="http://www.troschuetz.de/services/MovieDatabase"
42 languageSpecificType="java:services.moviedatabase.Person"/>
43 </service>
44
45 </deployment>

Figure A.4: MovieDatabase.wsdd

 Appendix A: Implementations of the "Movie Database" Web Service

 120

A.2 Microsoft .NET Framework

01 <%@ WebService Language="C#" Class="Services.MovieDatabase.MovieDatabase" %>
02
03 using System.Web.Services;
04 using System.Collections.Generic;
05
06 namespace Services.MovieDatabase
07 {
08 [WebService(Namespace = "http://www.troschuetz.de/services/MovieDatabase")]
09 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
10 public class MovieDatabase : System.Web.Services.WebService
11 {
12 private Dictionary<int, Movie> database;
13
14 public MovieDatabase()
15 {
16 this.database = new Dictionary<int, Movie>();
17 this.insertMovie(new Movie(4, "Kill Bill: Vol. 1", new Person("Quentin",

"Tarantino")));
18 this.insertMovie(new Movie(12, "Kill Bill: Vol. 2", new Person("Quentin",

"Tarantino")));
19 }
20
21 [WebMethod]
22 public bool createMovie(int id, string name, Person director)
23 {
24 return this.insertMovie(new Movie(id, name, director));
25 }
26
27 [WebMethod]
28 public bool insertMovie(Movie movie)
29 {
30 if (movie == null || movie.Name == null || movie.Director == null ||
31 movie.Director.FirstName == null || movie.Director.LastName == null)
32 {
33 return false;
34 }
35 else
36 {
37 // Does not persist, because the Web Service itself is stateless.
38 this.database.Add(movie.Id, movie);
39
40 return true;
41 }
42 }
43
44 [WebMethod]
45 public Movie getMovie(int id)
46 {
47 return this.database[id];
48 }
49
50 [WebMethod]
51 public Movie[] searchMovies(string[] keywords)
52 {
53 if (keywords == null)
54 {
55 return null;
56 }
57 else
58 {
59 // Instead of executing a search, the two default movies are returned.
60 Movie[] movies = new Movie[this.database.Values.Count];
61 this.database.Values.CopyTo(movies, 0);
62
63 return movies;
64 }
65 }
66 }
67 }

Figure A.5: MovieDatabase.asmx

 Appendix A: Implementations of the "Movie Database" Web Service

 121

01 namespace Services.MovieDatabase
02 {
03 public class Movie
04 {
05 public int Id
06 {
07 get { return id; }
08 set { id = value; }
09 }
10 private int id;
11
12 public string Name
13 {
14 get { return name; }
15 set { name = value; }
16 }
17 private string name;
18
19 public Person Director
20 {
21 get { return director; }
22 set { director = value; }
23 }
24 private Person director;
25
26 public Movie()
27 : this(0, "", new Person())
28 {
29 }
30
31 public Movie(int id, string name, Person director)
32 {
33 this.id = id;
34 this.name = name;
35 this.director = director;
36 }
37 }
38 }

Figure A.6: Movie.cs

01 namespace Services.MovieDatabase
02 {
03 public class Person
04 {
05 public string FirstName
06 {
07 get { return firstName; }
08 set { firstName = value; }
09 }
10 private string firstName;
11
12 public string LastName
13 {
14 get { return lastName; }
15 set { lastName = value; }
16 }
17 private string lastName;
18
19 public Person()
20 : this("", "")
21 {
22 }
23
24 public Person(string firstName, string lastName)
25 {
26 this.firstName = firstName;
27 this.lastName = lastName;
28 }
29 }
30 }

Figure A.7: Person.cs

 Appendix B: TTCN-3 Representations of the XML Schema Built-in Data Types

 123

Appendix B TTCN-3 Representations of the XML Schema

Built-in Data Types

01 /* This module defines TTCN-3 representations of XML Schema types basing on
02 * the types presented in the ETSI standard ES 201 873-9 V1.1.1 Annex A
03 */
04 module XSDAUX {
05 // String types
06 type charstring token (pattern "([^ \t\r\n]#(1,)([^ \t\r\n]#(1,))#(0,))|") with {
07 encode "{http://www.w3.org/2001/XMLSchema}token";
08 }
09
10 type charstring string with {
11 encode "{http://www.w3.org/2001/XMLSchema}string";
12 }
13
14 type octetstring hexBinary with {
15 encode "{http://www.w3.org/2001/XMLSchema}hexBinary";
16 }
17
18 type charstring base64Binary (pattern "[0-9a-zA-Z+/=]#(0,)") with {
19 encode "{http://www.w3.org/2001/XMLSchema}base64Binary";
20 }
21
22 type charstring anyURI with {
23 encode "{http://www.w3.org/2001/XMLSchema}anyURI";
24 }
25
26 type charstring QName with {
27 encode "{http://www.w3.org/2001/XMLSchema}QName";
28 }
29
30 type charstring normalizedString (pattern "[^\n\r\t]#(0,)") with {
31 encode "{http://www.w3.org/2001/XMLSchema}normalizedString";
32 }
33
34 type charstring languageXSD (pattern "[a-zA-Z]#(1,8)(-[\w]#(1,8))#(0,)") with {
35 encode "{http://www.w3.org/2001/XMLSchema}language";
36 }
37
38 type charstring NMTOKEN (pattern "[\w_.:-]#(0,)") with {
39 encode "{http://www.w3.org/2001/XMLSchema}NMTOKEN";
40 }
41
42 type charstring ENTITY (pattern "[a-zA-Z_][\w_\-.]#(0,)") with {
43 encode "{http://www.w3.org/2001/XMLSchema}ENTITY";
44 }
45
46 type charstring Name (pattern "[a-zA-Z_:][\w_:\-.]#(0,)") with {
47 encode "{http://www.w3.org/2001/XMLSchema}Name";
48 }
49
50 type charstring NCName (pattern "[a-zA-Z_][\w_\-.]#(0,)") with {
51 encode "{http://www.w3.org/2001/XMLSchema}NCName";
52 }
53
54 type charstring ID (pattern "[a-zA-Z_][\w_\-.]#(0,)") with {
55 encode "{http://www.w3.org/2001/XMLSchema}ID";
56 }
57
58 type charstring IDREF (pattern "[a-zA-Z_][\w_\-.]#(0,)") with {
59 encode "{http://www.w3.org/2001/XMLSchema}IDREF";
60 }
61
62 // Integer types
63 type integer integer_ with {
64 encode "{http://www.w3.org/2001/XMLSchema}integer";
65 }
66
67 type integer positiveInteger (1 .. infinity) with {
68 encode "{http://www.w3.org/2001/XMLSchema}positiveInteger";

 Appendix B: TTCN-3 Representations of the XML Schema Built-in Data Types

 124

69 }
70
71 type integer nonPositiveInteger (-infinity .. 0) with {
72 encode "{http://www.w3.org/2001/XMLSchema}nonPositiveInteger";
73 }
74
75 type integer negativeInteger (-infinity .. -1) with {
76 encode "{http://www.w3.org/2001/XMLSchema}negativeInteger";
77 }
78
79 type integer nonNegativeInteger (0 .. infinity) with {
80 encode "{http://www.w3.org/2001/XMLSchema}nonNegativeInteger";
81 }
82
83 type integer long_ (-9223372036854775808 .. 9223372036854775807) with {
84 encode "{http://www.w3.org/2001/XMLSchema}long";
85 }
86
87 type integer unsignedLong (0 .. 18446744073709551615) with {
88 encode "{http://www.w3.org/2001/XMLSchema}unsignedLong";
89 }
90
91 type integer int (-2147483648 .. 2147483647) with {
92 encode "{http://www.w3.org/2001/XMLSchema}int";
93 }
94
95 type integer unsignedInt (0 .. 4294967295) with {
96 encode "{http://www.w3.org/2001/XMLSchema}unsignedInt";
97 }
98
99 type integer short_ (-32768 .. 32767) with {
100 encode "{http://www.w3.org/2001/XMLSchema}short";
101 }
102
103 type integer unsignedShort (0 .. 65535) with {
104 encode "{http://www.w3.org/2001/XMLSchema}unsignedShort";
105 }
106
107 type integer byte_ (-128 .. 127) with {
108 encode "{http://www.w3.org/2001/XMLSchema}byte";
109 }
110
111 type integer unsignedByte (0 .. 128) with {
112 encode "{http://www.w3.org/2001/XMLSchema}unsignedByte";
113 }
114
115 // Float types
116 type float decimal with {
117 encode "{http://www.w3.org/2001/XMLSchema}decimal";
118 }
119
120 type float float_ with {
121 encode "{http://www.w3.org/2001/XMLSchema}float";
122 }
123
124 type float double with {
125 encode "{http://www.w3.org/2001/XMLSchema}double";
126 }
127
128 // Time types
129 type charstring duration (pattern "-?P([\d]+Y)#(0,)([\d]+M)#(0,1)([\d]+D)#(0,1)

(T([\d]+H)#(0,1)([\d]+M)#(0,1)([\d]+(.[\d]+)#(0,1)S)#(0,1))#(0,1)") with {
130 encode "{http://www.w3.org/2001/XMLSchema}duration";
131 }
132
133 type charstring dateTime (pattern "-?[\d]#(4)-((0[1-9])|[10-12])-((0[1-9])|[10-

31])T((0[1-9])|[10-23]):((0[1-9])|[10-59]):((0[1-9])|[10-
59])(.[\d]+)#(0,1)([+-]?[\d:Z]+)#(0,1)") with {

134 encode "{http://www.w3.org/2001/XMLSchema}dateTime";
135 }
136
137 type charstring time (pattern "((0[1-9])|[10-23]):((0[1-9])|[10-59]):((0[1-

9])|[10-59])(.[\d]+)#(0,1)([+-]?[\d:Z]+)#(0,1)") with {
138 encode "{http://www.w3.org/2001/XMLSchema}time";
139 }

 Appendix B: TTCN-3 Representations of the XML Schema Built-in Data Types

 125

140
141 type charstring date (pattern "-?[\d]#(4)-((0[1-9])|[10-12])-((0[1-9])|[10-

31])([+-]?[\d:Z]+)#(0,1)") with {
142 encode "{http://www.w3.org/2001/XMLSchema}date";
143 }
144
145 type charstring gYearMonth (pattern "[\d]#(4)-((0[1-9])|[10-12])([+-

]?[\d:Z]+)#(0,1)") with {
146 encode "{http://www.w3.org/2001/XMLSchema}gYearMonth";
147 }
148
149 type charstring gYear (pattern "-?\d#(4)([+-]?[\d:Z]+)#(0,1)") with {
150 encode "{http://www.w3.org/2001/XMLSchema}gYear";
151 }
152
153 type charstring gMonthDay (pattern "--((0[1-9])|[10-12])-((0[1-9])|[10-31])([+-

]?[\d:Z]+)#(0,1)") with {
154 encode "{http://www.w3.org/2001/XMLSchema}gMonthDay";
155 }
156
157 type charstring gDay (pattern "---((0[1-9])|[10-31])([+-]?[\d:Z]+)#(0,1)") with {
158 encode "{http://www.w3.org/2001/XMLSchema}gDay";
159 }
160
161 type charstring gMonth (pattern "--((0[1-9])|[10-12])([+-]?[\d:Z]+)#(0,1)") with {
162 encode "{http://www.w3.org/2001/XMLSchema}gMonth";
163 }
164
165 // Sequence types
166 type set of XSDAUX.NMTOKEN NMTOKENS with {
167 encode "{http://www.w3.org/2001/XMLSchema}NMTOKENS";
168 }
169
170 type set of XSDAUX.IDREF IDREFS with {
171 encode "{http://www.w3.org/2001/XMLSchema}IDREFS";
172 }
173
174 type set of XSDAUX.ENTITY ENTITIES with {
175 encode "{http://www.w3.org/2001/XMLSchema}ENTITIES";
176 }
177
178 // Boolean types
179 type boolean boolean_ with {
180 encode "{http://www.w3.org/2001/XMLSchema}boolean";
181 }
182
183 // XSI attribute declarations
184 type XSDAUX.QName Attribute_type with {
185 encode "{http://www.w3.org/2001/XMLSchema-instance}type";
186 }
187
188 type boolean Attribute_nil with {
189 encode "{http://www.w3.org/2001/XMLSchema-instance}nil";
190 }
191
192 type set of XSDAUX.anyURI Attribute_schemaLocation with {
193 encode "{http://www.w3.org/2001/XMLSchema-instance}schemaLocation";
194 }
195
196 type XSDAUX.anyURI Attribute_noNamespaceSchemaLocation with {
197 encode "{http://www.w3.org/2001/XMLSchema-instance}noNamespaceSchemaLocation";
198 }
199 }

Figure B.1: XSDAUX.ttcn3

	Contents
	List of Tables
	List of Figures
	Abbreviations and Acronyms
	1 Introduction
	1.1 Scope of this Thesis
	1.2 Structure of this Thesis

	2 Foundations
	2.1 XML Primer
	2.1.1 XML Namespaces
	2.1.2 XML Schema

	2.2 Web Services
	2.2.1 Exemplary "Movie Database" Web Service
	2.2.2 SOAP
	2.2.3 WSDL
	2.2.4 Message Styles

	2.3 TTCN-3
	2.3.1 TTCN-3 Core Language
	2.3.2 TTCN-3 Test System

	2.4 Related Work

	3 Mapping between WSDL and TTCN-3
	3.1 Overview
	3.1.1 Chosen TTCN-3 Communication Paradigm
	3.1.2 Overall Mapping Rules

	3.2 Supportive TTCN-3 Definitions
	3.2.1 Naming Conventions for TTCN-3 Identifiers
	3.2.2 Predefined TTCN-3 Types

	3.3 Mapping of the WSDL types Element
	3.3.1 Mapping of XML Schemas as a Whole
	3.3.2 Translation of XML Schema Identifiers
	3.3.3 Mapping of XML Schema Constraining Facets
	3.3.4 Mapping of the XML Schema id and ref Attributes
	3.3.5 Mapping of the XML Schema nillable Attribute
	3.3.6 Mapping of the Simple Type Definition Schema Component
	3.3.7 Mapping of the Complex Type Definition Schema Component
	3.3.8 Mapping of the Annotation Schema Component

	3.4 Mapping of the WSDL portType Element
	3.5 Mapping of the WSDL port and binding Elements
	3.6 Mapping of the WSDL service Element
	3.7 Mapping of the WSDL documentation Element

	4 The WSDL2TTCN Utility
	4.1 Architecture
	4.1.1 The xsd2ttcn Package
	4.1.2 The wsdl2ttcn Package
	4.1.3 Overall Program Flow

	4.2 Implementation Details
	4.2.1 Creation of Target Namespace Qualifiers
	4.2.2 Translation of XML Schema Regular Expressions

	4.3 Optional Mapping Changes for TTworkbench Compatibility
	4.4 Invocation and Command Line Options

	5 Extension of TTworkbench Basic for Web Service Testing
	5.1 Test Adapter and Codec enabling Test Execution
	5.2 Plug-in bundling Supportive Wizards
	5.2.1 "Web Service Test Modules" Wizard
	5.2.2 "Web Service Test Project" Wizard
	5.2.3 "Web Service Test Scenario" Wizard

	6 Conclusion
	6.1 Summary
	6.2 Outlook

	Bibliography
	Appendix A Implementations of the "Movie Database" Web Service
	A.1 Apache Axis Framework
	A.2 Microsoft .NET Framework

	Appendix B TTCN-3 Representations of the XML Schema Built-in Data Types

