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Abstract. In this paper we propose an extension of TTCN (Tree and
Tabular Combined Notation) to real-time TTCN. The extension is de-
fined on a syntactical and semantical level. Syntactically, we provide
facilities to annotate TTCN statements with two time values, namely an
earliest execution time (EET) and a latest execution time (LET'). The
informal interpretation of these time values is that a TTCN statement
may be executed if it has been continuously enabled for at least FET
units and it must be executed if it has been continuously enabled for LET
units. The operational semantics of real-time TTCN is defined by means
of timed transition systems. In timed transition systems an execution of
a system is modelled by a timed state sequence which counts for time
(progress of time) and state (execution of TTCN statements) activities.
We define a mapping of real-time TTCN to timed transition systems and
give examples in order to show the applicability of our approach.

1 Introduction

TTCN (Tree and Tabular Combined Notation) [10] is a notation for the definition
of conformance test suites for OSI (Open Systems Interconnection) protocol
specifications. Test suites are used for ensuring that different implementations
of the same protocol specification are checked for the same set of requirements
[8, 9]. Test suites are collections of test cases where each test case is defined
with a specific test purpose in mind. Test cases are specified as sequences of test
events. Essentially, test events are input and output events of abstract service
primitives (ASP) or protocol data units (PDU). A test case describes how a
tester should drive an implementation under test (IUT) through a sequence of
test events in order to reach the test purpose. The relative ordering of test events
is defined in a behaviour description. A behaviour description may also include
tester specific events, e.g., initialisation of variables or start of timers.

Although TTCN provides a timer mechanism which allows to set timers
and to check their status, the absolute and relative timing of events cannot
be specified. The TTCN timer mechanism might be sufficient for functional
tests of traditional OSI protocols, but it is insufficient for testing non-functional
requirements of multimedia and real-time communication protocols.

Due to the increasing dissemination of multimedia applications, testing of
the corresponding protocol implementations will become an issue. We propose a



real-time extension of TTCN so that TTCN can be used in testing multimedia
and real-time communication protocols.

Our extension of TTCN to real-tzme TTCN 1s on a syntactical and a seman-
tical level. In particular, the syntactical difference is that for real-time TTCN
we allow an annotation of test events with an earliest execution time (EET)
and a latest execution time (LET). Informally, a test event may be executed if
it has been continuously enabled for at least EFET time units and it must be
executed if i1t has been continuously enabled for LET time units. Test events
are executed instantaneously. For the definition of an operational semantics of
real-time TTCN we adopted timed transition systems [7].

A number of techniques for the specification of real-time constraints have
been proposed: time Petri Nets [2, 15], LOTOS [1, 6, 12, 17], SDL [6, 13] and
ESTELLE [4]. As in the cited literature, our approach allows the timing of ac-
tions relative to the occurrence of previous actions. The difference of the cited
approaches and ours is that the former are used for the specification of func-
tional and real-time requirements of systems whereas our emphasise is put on
testing real-time requirements. Real-time TTCN is used for the specification of
properties of a test system and requirements on the TUT.

In this paper we focus on mechanisms for the specification of real time re-
quirements in test cases. Other important issues like test suite validation, test
realization and tool support are for further study.

The paper is structured as follows: Section 2 gives a brief introduction to
TTCN. Section 3 explains real-time TTCN. The feasibility of our approach is
shown in Section 4. Section 5 concludes the paper with an assessment of our
approach and the identification of open issues.

2 TTCN - Tree and Tabular Combined Notation

TTCN is a notation for the description of test cases to be used in conformance
testing. TTCN provides two syntactical forms, TTCN/MP as a machine pro-
cessable (i.e., pure textual) form, and TTCN/GR as a graphical representation.
For the purpose of this paper we mainly restrict our attention to TTCN/GR and
TTCN concepts related to the description of the dynamic test case behaviour.
Further details on TTCN can be found in [10, 14, 16, 18].

2.1 Abstract Testing Methods and TTCN

A test case specifies which outputs from an implementation under test (IUT) can
be observed and which inputs to an IUT can be controlled. Inputs and outputs
are either abstract service primitives (ASPs) or protocol data units (PDUs).
An example of an abstract test method is the Multi-Party Testing Context [9].
Abstract testing functions, such as lower tester (LT), upper tester (UT) and
lower tester control function (LTCF), are the active components. LTs and UTs
control and observe the TUT at points of control and observation (PCOs) which
are interfaces above and below the TUT. The LTCEF is responsible for the creation



and coordination of L'Ts and UTs. LTs, UTs and LTCF are referred to as test
components (TCs). They run in parallel. TCs are interconnected by coordination
points (CPs) through which they exchange coordination messages (CMs). LT
and TUT logically communicate by exchanging PDUs which are embedded in
ASPs exchanged at PCOs. Since in most cases the lower boundary of an TUT
does not provide adequate PCO interfaces, L'Ts and TUT communicate by using
services of an underlying service provider. PCOs and CPs are based on the same
abstract model: a pair of unbounded FIFO queues (one for each direction of
communication) which allow an asynchronous exchange of ASPs and CMs.

2.2 Test Case Dynamic Behaviour Descriptions

The behaviour description of a TC consists of statements and verdict assign-
ments. A verdict assignment is a statement concerning the conformance of an
IUT with respect to the sequence of events that have been performed. A PASS
verdict is assigned if the IUT passes the test, FAIL is given if the IUT contra-
dicts the specification, and INCONCLUSIVE is assigned if neither a PASS nor a
FAIL verdict can be assigned. TTCN statements are test events, constructs and
pseudo events.

Test events are SEND, IMPLICIT SEND, RECEIVE, OTHERWISE, TIME-
OUT and DONE. SEND and IMPLICIT SEND specify the sending of ASPs,
PDUs and CMs. RECEIVE and OTHERWISE denote the processing of received
ASPs, PDUs and CMs. TIMEOUT events check for the expiration of a timer.
DONE is used to check whether TCs have terminated. Test events may be qual-
ified and/or followed by assignments and timer operations.

Constructs are CREATE, ATTACH, ACTIVATE, RETURN, GOTO and
REPEAT. CREATE specifies the creation of a TC. The created TC executes
in parallel with all other running TCs. ATTACH is a construct which allows to
transmit control to a sub-behaviour description, called test step. The mechanism
is comparable to the procedure concept in programming languages. ACTIVATE
and RETURN deal with default behaviour descriptions. Usually, a default be-
haviour description handles all incoming events which are not treated in the
main behaviour description. ACTIVATE allows to change the default behaviour
during the test run and RETURN allows to return from a default behaviour
back to the main description. GOTO transfers control to a specified statement.
REPEAT is used for the specification of loops.

Pseudo-events are qualifiers (i.e. Boolean expressions), timer operations and
assignments.

Statements can be grouped into statement sequences and sets of alternatives.
In TTCN/GR, sequences of statements are represented one after the other on
separate lines and being indented from left to right. The statements on lines
1 -6 in Fig. 1 are a statement sequence. Statements on the same level of in-
dentation and with the same predecessor are a set of alternatives. In Fig. 2 the
statements on lines 4 and 6 form a set of alternatives. They are on the same level
of indentation and have the statement on line 3 as their common predecessor.



Test Case Dynamic Behaviour
Nr|Label|Behaviour Description Constraints Ref|Verdict|Comments
1 CP 7 CM connected RECEIVE
2 (NumOfSends := 0) Assignment
3 REPEAT SendData Construct
UNTIL [NumOfSends > MAX]
4 START Timer Timer Operation
5 ?TIMEOUT timer TIMEOUT
6 L ! N-DATA request data SEND

Fig. 1. TTCN Behaviour Description - Sequence of Statements

Test Case Dynamic Behaviour
Nr|Label|Behaviour Description Constraints Ref|Verdict|Comments
1 [TRUE] Qualifier
2 |L1 (NumOfSends := NumOfSends + 1)
3 +SendData ATTACH
4 [NOT NumOfSends > MAX] Alternative 1
5 -> L1 GOTO
6 [NumOfSends > MAX] Alternative 2

Fig. 2. TTCN Behaviour Description - Set of Alternatives

2.3 Test Case Execution and Test Component Execution

Test case execution starts with only the main test component running. The
main test component which fulfils the role of the LTCF, creates all other TCs.
Immediately after creation the TC starts executing its behaviour description.

The execution of a behaviour description starts with the first level of inden-
tation (line 1 in Fig. 1), and proceeds towards the last level of indentation (line
6 in Fig. 1). If on a level of indentation a set of alternatives is found, only one
alternative is executed and test case execution proceeds with the next level of
indentation relative to the executed alternative. For example, in Fig. 2 the state-
ments on line 4 and line 6 are alternatives. If the statement on line 4 is executed,
processing continues with the statement on line 5. Each TC maintains its own
set of local variables and may make use of a number of implicitly defined vari-
ables. Execution of a behaviour description stops if the last level of indentation
is visited, a test verdict is assigned or a test case error occurs.

Before a set of alternatives is evaluated, a snapshot is taken [10], i.e., the
state of the TC and the state of all PCOs, CPs and timers related to the TC
are updated and frozen until the set of alternatives is evaluated. This guarantees
that evaluation of a set of alternatives is an atomic and deterministic action.

Alternatives are evaluated in sequence and the first alternative which is eval-
uated successfully (i.e., all conditions of that alternative are fulfilled [10]) is
executed. Then execution proceeds with the set of alternatives on the next level
of indentation. If no alternative can be evaluated successfully, a new snapshot is
taken and evaluation of the set of alternatives is started again.



2.4 TTCN and Real-Time Constraints

In TTCN no explicit time model is assumed in the sense that no predictions
of the execution time of TTCN statements or the transmission times of ASPs,
PDUs and CMs can be made. Only timers and the corresponding TIMEOUT
event are a means for specifying real-time behaviour in TTCN. However, as
stated in [10], a test case should be defined such that the relative speed of the
systems executing the test case does not have an impact on the test result.

Timers can be started (with a timeout value from picoseconds to minutes),
can be stopped and timer values can be read. The status of a timer can be checked
in a set of alternatives using the TIMEOUT event. But, whenever a timer expires
this has no immediate influence on the execution of a test component. If a timer
expires while evaluation of a set of alternatives is in progress, expiration of that
timer 1s not visible until the next snapshot 1s taken. An immediate reaction on
the timeout event is not possible. Depending on the ordering of alternatives an
expired timer may get undetected at all.

3 Real-Time TTCN

The extension of TTCN to real-time TTCN includes syntactical changes and
the definition of an operational semantics. For the latter we define a mapping
of real-time TTCN to timed transition systems [7]. Our choice of timed transi-

tion systems has been inspired by our work on the definition of an operational
semantics for TTCN [20, 21].

3.1 Timed Transition Systems

As stated in the literature [2, 7, 15], real-time behaviour of systems can be
expressed by assuming that execution of events is restricted by a finite interval
of earliest and latest execution times and which assume that execution of events
is instantaneous. In our approach we use timed transition systems for modelling
real-time behaviour. In this section we quote the main definitions of [7].

A transition system [11] consists of a set V' of variables, a set X of states,
a subset @ C X of initial states and a finite set 7 of transitions which also
includes the idle transition t;. Every transition ¢ € 7 is binary relations over
states; i.e., it defines for every state s € X a possibly empty set #(s) C X of
so-called t-successors. A transition ¢ is said to be enabled on state s if and only
if t(s) # 0. For the idle transition ¢; we have that t; = {(s,s) | s € X'}.

An infinite sequence o = sgs; ... 1s a computation of the underlying transition
system if sg € © is an initial state, and for all ¢ > 0 there exists a ¢ € T such
that s;41 € t(s;), denoted s; LN Si4+1, l.e., transition ¢ is taken at position 7 of
computation o.

The extension of transition systems to timed transition systems is that we
assume the existence of a real-valued global clock and that a system performs
actions which either advance time or change a state [7]. Actions are executed
instantaneously, i.e., they have no duration.



A timed transition system consists of an underlying transition system and,
for each transition ¢ € T, an earliest execution time EET; € IN (with IN the
natural numbers including zero) and a latest execution time LET; € INU {00} is
defined. We assume that FET; < LET; and, by default, FET; is zero and LET;
1s co. For a transition ¢ which is enabled on an 1nitial state we have LET; = oo
and so for the idle transition ¢;: LET:, = co. EET; and LET; define timing
constraints which ensure that transitions cannot be performed neither to early
(EET:) nor too late (LETY).

A timed state sequence p = (0, T) consists of an infinite sequence ¢ of states
and an infinite sequence T of times 7; € IR (with IR the real numbers) and T'
satisfies the following two conditions:

— Monotonicity: Yi > 0 either Tjy1 = T; or Tipq1 > T5 A sjp1 = 85
— Progress: ¥t € IR 3¢ > 0 such that 7; > t.

Monotonicity implies that time never decreases but possibly increases by any
amount between two neighbouring states which are identical. If time increases
this 1s called a time step. The transition being performed in a time step is the
idle transition which is always enabled (see above). The progress condition states
that time never converges, i.e., since IR has no maximal element every timed state
sequence has infinitely many time steps. Summarising, in timed state sequences
state activities are interleaved with time activities. Throughout state activities
time does not change, and throughout time steps the state does not change.

A timed state sequence p = (o, T') is a computation of a timed transition sys-
tem 1if and only if state sequence ¢ is a computation of the underlying transition
system and for every transition ¢ € 7 the following requirements are satisfied:

— for every transition ¢ € 7 and position 7 > 0 if £ is taken at j then there
exists a position ¢, ¢ < j such that 7; + FET, < T and t is enabled on
Si,8i4+1,.-.,5;—1 and is not taken at any of the positions ¢, 4+1,...,j -1,
l.e., a transition must be continuously enabled for at least £ ET; time units
before the transition can be taken.

— for every transition ¢ € 7 and position ¢ > 0, if ¢ is enabled at position %,
there exists a position j, ¢ < j, such that 7; + LET; > T; and either ? is
not enabled at j or ¢ 1s taken at j, i.e., a transition must be taken if the
transition has been continuously enabled for L E'T; time units.

A finite timed state sequence 1s made infinite by adding idle transitions, so that
we have an infinite sequence of time activities.

3.2 Syntax of Real-Time TTCN

For our real time extension of TTCN we add time information in the declara-
tions and the dynamic part of a TTCN test suite. In the declarations part we
specify time names and units to be used in TTCN behaviour descriptions. In the
dynamic part we add time values to behaviour lines of behaviour descriptions.



Execution Time Declarations

Time Name|Value|Unit|Comments

EET 1 s EET value

LET 1 min [LET value

WFN 5 ms |Wait For Nothing
NoDur min [No specified value

Fig. 3. Execution Time Declarations Table

Extensions of the Declarations Part. For the specification of FET and
LET values and time units we introduce an Execution Time Declarations table
(Fig. 3) and the keywords EET and LET.? The Time Name column can be used
to declare names for EET and LET values. The names can be used instead of
concrete values within behaviour description tables. Value and Unit columns are
used to associate a time value and a time unit to a time name. As time units
we allow the time units already used in TTCN (picoseconds (ps) to minutes
(min)). Time values are converted to the default time unit whenever necessary,
e.g., before time values are evaluated in a behaviour description.

EET and LET are predefined variables with 0 and oo as initial values. These
initial values can be overwritten as shown in Fig. 3. Apart from column headings
the table looks much like the TTCN Timer Declarations table.

For the time name NoDur (Figure 3) only the time unit min is given but
no value. In this case, a value has to be provided during test case execution by
means of an assignment. If a name is evaluated and no value is assigned, the test
case will end with a dynamic test case error.

Due to practical reasons it is not appropriate to require that for each TTCN
statement FET and LET values are specified. In this case the default values for
EET (=0) and LET (= oo) are used. Additionally, we allow to overwrite these
default values within an Execution Time Declarations table. For changing the
default time values the keywords EET and LET are used. In Fig. 3, the default
values for FET and LET are changed to 1 second and 1 minute, respectively.

Besides the static declarations of time values, a change of these values is
also allowed within a behaviour description. During a test run time values can
be changed by means of assignments. We only require that concrete FET and
LET values can be determined when the corresponding TTCN statement is
evaluated successfully and that the condition 0 < EET < LET holds. In all
other cases the test case will end with a dynamic test case error.

Examples for the dynamic change of time values within a behaviour descrip-
tion can be found in Fig. 4. On line 2 the value 3 is assigned to the time name
NoDur and on line 4 the default LET value i1s changed. This change becomes
effective on the next level of indentation, i.e., for the TTCN statements on lines
5 and 6. As shown on line 6 it is also allowed to refer to default time values
explicitly by using the keyword LET.

% We use different fonts for distinguishing between syntax, i.e., EET and LET, and
semantics, i.e., FET and LET.



Test Case Dynamic Behaviour
Nr|Label|Time Behaviour Description|Constraints Ref|Verdict|Comments
1 2,4 A 7 DATA request
2 (NoDur := 3) Time assignment
3 2, NoDur A ' DATA ack
4 (LET := 50) LET update (ms)
5 A 7 Data request
6 WFN, LET B 7 Alarm

Fig.4. Adding EET and LET values to behaviour lines

Extensions of the Dynamic Part. The changes in the dynamic part of a
TTCN test suite are related to behaviour lines in Test Case Dynamic Behaviour,
Default Dynamic Behaviour and Test Step Dynamic Behaviour tables. The struc-
ture of the behaviour lines is the same in all these tables. Therefore, we discuss
the syntactical changes by using a Test Case Dynamic Behaviour table only.

As indicated in Fig. 4 we add a Time column. An entry in the Time column
specifies FET and LET values for the corresponding behaviour line. Entries
may be variables or constants, e.g., the entry in Fig. 4 line 1 sets FET = 2 and
LET = 4 with default time unit ms. Within the Time column EFET and LET
may also be specified by means of name references which have to be looked up
within the declarations part of the test suite. For instance, on line 3 of Fig. 4
the time name NoDur is used. NoDur has been declared in table Fig. 3 and has
been assigned a value on line 2 of Fig. 4.

3.3 Operational Semantics of Real-Time TTCN

The operational semantics of real-time TTCN is defined in two steps: Firstly, we
define the semantics of a TC in terms of a timed transition system which has
the real numbers IR as abstract time domain (in contrast to the concrete time
domain in the syntactical extension of TTCN described in the previous section).
Secondly, we extend this definition so that the behaviour of several concurrent

TCs i1s modelled.

Operational Semantics of a Real-Time Test Component. With a given
definition of a TC we associate the following timed transition system: A state
s € X of a TC is given by a mapping of variables to values. The set of variables
V includes all variables defined for the TC in the test suite and, additionally,
a variable for each timer. Furthermore, we introduce a control variable = which
indicates the location of control in the behaviour description of the TC. 7 is
updated when a new level of indentation is visited. We even let PCOs and
CPs be pairs of variables so that each holds a queue of ASPs, PDUs or CMs
sent and received, respectively. PCO and CP variables and timer variables are
shared variables which can also be accessed from the environment of a TC.
For instance, received ASPs are put on the corresponding PCO variable by the
environment. Similarly, when a timer expires the value of the corresponding
timer variable is updated by the environment. The environment performs its
activities concurrently to the execution of the TC.



The initial state of a TC is the state with all variables having assigned their
initial values (if specified) or being undefined. All PCO and CP variables have
assigned an empty queue and all timer variables have assigned the value stop.
The control variable 7 is initialised to the first level of indentation. If the TC
is not running, i.e., the TC has not been created yet, then all variables are
undefined.

The set 7 of transitions contains a transition for every TTCN statement in
the TC behaviour description and the idle transition ¢;. Furthermore, we have
a transition tg which models activities of the environment, i.e., reception of an
ASP or expiration of a timer. tg is not performed by the TC but may change
the state of the TC, because a shared PCO, CP or timer variable is updated.

In the following we assume that the currently visited level of indentation
has been expanded as defined in Annex B of [10] and has the following general
form: Ay [EET,, LETY],..., A,|EET,, LET,], where A; denotes an alternative
and FET;, LET; denote the earliest and latest execution times of alternative A;.

We say that A;[FET;, LET;] is potentially enabled if A;[EET;, LET;] is in
the set of alternatives. A;[FET;, LET;] is enabled if A;[EET;, LET;] is evalu-
ated successfully (Sect. 2.3), A;[EET;, LET;] is executable if A;[EET;, LET;] is
enabled and A;[EET;, LET;] has been potentially enabled for at least EET;.

The mapping described above defines the set of possible computations of a
TC as a set of timed state sequences with potentially enabled substituted for
enabled in the definitions of Sect. 3.1. If an alternative cannot be successfully
evaluated within LET time units then test case execution stops with an error
indication. To make the evaluation of a real-time TTCN behaviour description
more explicit we introduce the following refined snapshot semantics (Sect. 2.3).
For the rest of this section we let 7,7, 7" € IR with T < T" < T".

1. The TC is put into its initial state.

2. If the level of indentation is visited for the first time then all alternatives
are marked potentially enabled and the global time T is saved. The state of
PCO and CP variables and expired timer variables is locked, so that they
cannot be updated by the environment.

If for an A;[EET;, LET;] in Ay [EET;, LET;],..., A,[EET;, LET;], LET; <
T’'—T, where T" the current global time and T the time when the alternative
has been marked potentially enabled, then test case execution stops.

3. All alternatives which can be evaluated successfully are marked enabled. If
no alternative in the set of alternatives can be evaluated successfully then
PCO, CP and timer variables are unlocked (and the environment may again
update these variables). Processing continues with Step 2.

4. An enabled alternative A;[FET;, LET;] is marked executable provided that
EET; <T'—T < LET; and if there is another enabled alternative A;[EETj,
LET;] with FET; < T' —T < LET] then i < j, i.e., the i-th alternative
comes before the j-th alternative in the set of alternatives.

If no alternative can be marked executable then PCO, CP and timer variables
are unlocked. Processing continues with Step 2.



Test Case Dynamic Behaviour

Nr|Label|Time|Behaviour Description Constraints Ref|Verdict|Comments
1 2,4 |PCO1 7 N-DATA indication info

2 next level

3 2,4 |PCO2 7 N-ABORT indication |abort

4 next level

Fig. 5. Partial Real-Time TTCN Behaviour Description

5. The alternative A;[EET;, LET;] marked executable in Step 4 is executed
and control variable 7 is updated to the next level of indentation. PCO, CP
and timer variables are unlocked. A test case terminates if the last level of
indentation is reached, otherwise evaluation continues with Step 2.

Remarks: If a new level of indentation is visited for the first time (Step 2) then all
alternatives become potentially enabled and time starts running although some
alternatives may wait for some further conditions to become fulfilled. If a poten-
tially enabled alternative cannot be evaluated successfully before the specified
latest execution time then a specified real-time constraint has not been met and
test case execution stops. If no alternative can be evaluated successfully (Step 3)
then a next iteration of Steps 2 - 5 must be performed. But before, PCO, CP
and timer variables are unlocked. In Step 4, the selection of alternatives for exe-
cution from the set of executable alternatives follows the same rules as in TTCN
[10]. Tf a TC stops (Step 5) then the finite timed state sequence is extended
to an infinite sequence by adding an infinite sequence of idle transitions. Every
iteration of Steps 2 - b is atomic. This complies with the snapshot semantics of

TTCN [10].

Ezrample 1. We consider the partial behaviour description in real-time TTCN
given in Fig. 5. Assume that the level of indentation with the two alternatives
on lines 1 and 3 has been visited for the first time at 7". The first alternative
may be executed in the interval FET] = 2 and LET] = 4 provided that a N-
DATA indication with data info has been received at PCO PCO1. Furthermore,
let us assume that at 7" an N-DATA indication is received. Then, the first
alternative may be executed at 7" with EET) < (T" —T) < LET}, because this
alternative is enabled (Step 3) and is executable (Step 4) and no other alternative
is executable (no N-ABORT indication has been received yet). A corresponding

computation might be:
(5. T) <5 (5,T7) 5 (s, 1) 5 (81, T7) =5 (87, 1) — ..

The reception of an N-DATA indication at time 7" is a state activity, (s,7") BN
(s',T"), because a PCO variable is updated by the environment performing tran-
sition tg.

Suppose that an N-DATA indication and an N-ABORT indication have been
received from the environment at some 7" < T". Then, although both alterna-
tives are executable, the first alternative is executed according to Step 4 because
of the ordering of alternatives in the set of alternatives.



If no N-DATA indication and no N-ABORT indication have been received
before LET) or LET; time units after the alternatives have been potentially
enabled, test case execution stops (Step 2).

Operational Semantics of a Real-Time Test System. In general, more
than one TC participates in the execution of a test case and, because of the
multiplicity of executable alternatives, several TTCN statements may be exe-
cuted in parallel. In timed transition systems the parallel behaviour of TCs is
modelled as finite sequences of state activities which are not interleaved with
time activities. Each state activity is performed by another test component.

Ezrample 2. We assume a test system of n active or running TCs TCy, ..., TC,.
Each TC has its own processor. Given these assumptions we associate the fol-
lowing timed transition system with the test system:

V=ViU...UV, where V;NV; =0 for 0 < ¢,j < n and i # j, i.e., the
set of variables is the union of the set of variables of all TCs. X' contains all
interpretations of V' i.e., the mapping from variables to values. The initial state
(€ @) of the test system is the one where only the MTC is initialised. The set
T of transitions consists of the idle transition ¢; and the environment transition
tg plus the sets of transitions of all TCs labelled with the corresponding time
values EET and LET of TTCN statements.

Assuming that during a test run every TC has an executable alternative ready
at time 7" then execution of all executable alternatives may yield the following
computation:

tre "
(50, T) 25 (51, T) 2 S (50m1, T) 225 (50, 7). ..

i.e., a sequence of n state activities. Note that, scheduling the executable alter-

natives in a different order would have yielded another computation.

The model described above, which assumes that a processor is available for
every TC| is termed multiprocessing modelin [7]. In a multiprogramming model, a
single processor is shared among a number of TCs. All TCs which are running on
the same processor and which have an executable transition have to be scheduled
for execution. Fortunately, as shown in [7], the semantics of the multiprogram-
ming model can also be defined in terms of timed transition systems. The only
additional constructs necessary are a special processor control variable g which
holds the identifier of the currently executing TC, and a scheduling transition ¢g
that changes the status of TCs by resuming a temporarily suspended TC. Ex-
ecuting the scheduling transition is a state activity that changes the processor
control variable p. In the initial state of a test system, the variable p is assigned
with the identifier of the MTC. In a computation of a test system scheduling
transitions are interleaved with state activities and time steps. Unlike as in [7],
scheduling another TC does not pre-empt any potentially enabled, enabled or
executable transition of any other TC. A test system satisfying the defined real-
time constraints must be sufficiently fast and scheduling of TCs must be done

properly.



3.4 Discussion of the Proposal

If we assume that no time values are defined (in this case EET and LET are set
to zero and oo, respectively), execution of a test case results in the same sequence
of state-transitions as in TTCN. In this sense our definition of real-time TTCN
1s downwards compatible.

Execution of a statement is modelled as an instantaneous change of state.
However, it is common knowledge that execution of a statement has a finite
duration. The point we would like to emphasise i1s that during execution of a
statement a state becomes “transient” in the sense that the result of execut-
ing a statement is not available (or observable) immediately. If execution of a
statement has come to an end, the result becomes permanent (or observable).
In the approach employed, time instance when processing of a statement has
terminated is recorded.

Real-time TTCN combines property and requirement oriented specification
styles. Time labels for TTCN statements, in general, define real-time constraints
for the test system. The test system is assumed to be sufficiently fast, so that a
correctly behaving test system complies with the properties defined in the real-
time TTCN behaviour description. Time labels for RECEIVE and OTHERWISE
events, which imply a communication with the IUT, define requirements on
the IUT and the underlying service provider. As well as the test system, the
underlying service provider is assumed to be sufficiently reliable, particularly
with respect to the timing of activities. Therefore, if a timing constraint of a
RECEIVE or OTHERWISE event is violated, this clearly i1s an indication that
the TUT is faulty and the test run should end with a FAIL verdict assignment.

4 An Application of Real-Time TTCN

Figure 6 is an example of a (partial) behaviour description for defining two real-
time constraints. Firstly, every two time units the test system should generate
an N-DATA request (lines 1 and 2). Secondly, the test system should receive
every two to three time units a T-DATA indication (lines 3 and 4). Assuming
a constant delay for the transmission of PDUs from an LT to the TUT the
second constraint implies the requirement on the TUT that the TUT is capable
of generating a T-DATA indication every two to three time units.

A TTCN behaviour description almost equivalent to the real-time TTCN
behaviour description for the second constraint is shown in Fig. 7. The first
timer is used for the lower execution time and the second timer is used to control
the latest execution time. If the second TIMEOUT event can be observed, this
is an indication for a erroneous behaviour of the TUT. This TTCN behaviour
description, however, only is correct under the assumption that the test system is
wnfinitely fast, so that no extra delay is introduced due to the execution of TTCN
statements. In real-time TTCN all assumptions which are to be fulfilled by a test
system are made explicit. Besides its conciseness (compare Figs. 6 and 7) this is
a further advantage.



Test Case Dynamic Behaviour
Nr|Label| Time|Behaviour Description Constraints Ref|Verdict|Comments
1 |L1 2,2 |PCO ! N-DATA request req
2 -> L1 GOTO
3 |L2 2,3 |PCO ? T-DATA indication |[ind
4 -> L2 GOTO

Fig. 6. Continuous Sending and Receiving in Real-Time TTCN

Test Case Dynamic Behaviour
Label |Behaviour Description Constraints Ref|Verdict|Comments
L2 START timer(2)
?TIMEOUT timer
START timer(1)
PCO ? T-DATA indication |ind
STOP timer
-> L2
?TIMEOUT timer FAIL

i)

\ICT)UT»#DJ[\DHZ

Fig. 7. Time constraints in TTCN for Continuous Receiving

Test Case Dynamic Behaviour
Nr|Label|Time|Behaviour Description Constraints Ref|Verdict|Comments
1 (NumOfSends := 0) Assignment
2 REPEAT SendData (L) UNTIL
[NumOfSends > MAX]

3 10,12 L ! N-DATA request req

4 SendData (PCO)
2 |PCO ! N-DATA request req

Fig. 8. Real-Time TTCN Test Case for QoS Testing

A more concrete example is an application of real-time TTCN to quality-
of-service (QoS) testing [5, 19, 22]. Suppose that for a transport connection a
specific throughput* QoS parameter value has been negotiated. A possible test
purpose is that the IUT should abort the connection if the actual monitored
throughput is less than the negotiated throughput.

Let the TUT be the receiving transport protocol implementation. The corre-
sponding real-time TTCN test case is shown in Fig. 8. The behaviour description
for the UT receiving transport data is similar to the one shown in Fig. 6 lines 3
and 4. From the negotiated throughput QoS parameter value we can compute
the time interval between successive T-DATA indication ASPs that satisfies the
negotiated throughput. The LT transmits transport data with N-DATA request
at the computed rate. Delaying an N-DATA request (line 3 in Fig. 8) should
cause the connection to be aborted (not shown in Fig. 8).

* Throughput is the ratio of the size of the last received transport service data unit to
the time elapsed between the corresponding last and next T-DATA indications (and
similar for the sending site) [3].



5 Conclusions and Outlook

In this paper we have discussed a proposal for a real-time extension of TTCN.
The motivation for our work has been given by the demand for a test language
that can express real-time constraints. This demand mainly comes from the use of
multimedia applications which are quite restrictive with respect to the fulfilment
of real-time requirements. Since TTCN cannot express real-time constraints, we
have made a proposal for a syntactical and semantical extension of TTCN. On
a syntactical level TTCN statements can be annotated by time labels which
specify earliest and latest execution times. The operational semantics of our
TTCN extension is based on timed transition systems [7]. In the paper we have
described how real-time TTCN test cases are interpreted in timed transition
systems.

In our approach a TTCN statement is annotated by time labels. The advan-
tages of this approach are twofold: Firstly, only a few syntactical changes are
necessary. Secondly, the extension of TTCN to real-time TTCN is downwards
compatible: If we assume that zero and oo are earliest and latest execution times,
a computation of a real-time TTCN test case is the same as in standard TTCN.
A possible extension of our approach 1s to allow the annotation of test events,
assignments and timer operations that are combined on a single statement line
with time labels. A mapping of TTCN to transition systems at that level of
detail has been investigated in [20, 21]. This mapping may be further extended
and evaluated.

Based on the real-time extension of TTCN as proposed in this paper tech-
niques for the analysis of the real-time behaviour of testers against specified
test cases are to be defined. For this it seems necessary that the discussion
of an operational semantics of real-time TTCN as discussed in Sect. 3.3 is be-
ing extended. Particularly, the different processing models (multiprocessing and
multiprogramming models) have to be refined and, in a second step, the mod-
elling of communication channels (PCOs, CPs and service provider) have to be
integrated. Our future work will focus on these aspects.
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