
A Proposal for a Real-Time Extension of TTCNThomas Walter1 and Jens Grabowski21 Eidgen�ossische Technische Hochschule Z�urich, Institut f�ur Technische Informatik(TIK), 8092 Z�urich, Schweiz, e-mail: walter@tik.ee.ethz.ch2 Medizinische Universit�at zu L�ubeck, Institut f�ur Telematik, Ratzeburger Allee 160,23538 L�ubeck, Deutschland, e-mail: jens@itm.mu-luebeck.deAbstract. In this paper we propose an extension of TTCN (Tree andTabular Combined Notation) to real-time TTCN. The extension is de-�ned on a syntactical and semantical level. Syntactically, we providefacilities to annotate TTCN statements with two time values, namely anearliest execution time (EET ) and a latest execution time (LET ). Theinformal interpretation of these time values is that a TTCN statementmay be executed if it has been continuously enabled for at least EETunits and it must be executed if it has been continuously enabled for LETunits. The operational semantics of real-time TTCN is de�ned by meansof timed transition systems. In timed transition systems an execution ofa system is modelled by a timed state sequence which counts for time(progress of time) and state (execution of TTCN statements) activities.We de�ne a mapping of real-time TTCN to timed transition systems andgive examples in order to show the applicability of our approach.1 IntroductionTTCN (Tree and Tabular CombinedNotation) [10] is a notation for the de�nitionof conformance test suites for OSI (Open Systems Interconnection) protocolspeci�cations. Test suites are used for ensuring that di�erent implementationsof the same protocol speci�cation are checked for the same set of requirements[8, 9]. Test suites are collections of test cases where each test case is de�nedwith a speci�c test purpose in mind. Test cases are speci�ed as sequences of testevents. Essentially, test events are input and output events of abstract serviceprimitives (ASP) or protocol data units (PDU). A test case describes how atester should drive an implementation under test (IUT) through a sequence oftest events in order to reach the test purpose. The relative ordering of test eventsis de�ned in a behaviour description. A behaviour description may also includetester speci�c events, e.g., initialisation of variables or start of timers.Although TTCN provides a timer mechanism which allows to set timersand to check their status, the absolute and relative timing of events cannotbe speci�ed. The TTCN timer mechanism might be su�cient for functionaltests of traditional OSI protocols, but it is insu�cient for testing non-functionalrequirements of multimedia and real-time communication protocols.Due to the increasing dissemination of multimedia applications, testing ofthe corresponding protocol implementations will become an issue. We propose a



real-time extension of TTCN so that TTCN can be used in testing multimediaand real-time communication protocols.Our extension of TTCN to real-time TTCN is on a syntactical and a seman-tical level. In particular, the syntactical di�erence is that for real-time TTCNwe allow an annotation of test events with an earliest execution time (EET )and a latest execution time (LET ). Informally, a test event may be executed ifit has been continuously enabled for at least EET time units and it must beexecuted if it has been continuously enabled for LET time units. Test eventsare executed instantaneously. For the de�nition of an operational semantics ofreal-time TTCN we adopted timed transition systems [7].A number of techniques for the speci�cation of real-time constraints havebeen proposed: time Petri Nets [2, 15], LOTOS [1, 6, 12, 17], SDL [6, 13] andESTELLE [4]. As in the cited literature, our approach allows the timing of ac-tions relative to the occurrence of previous actions. The di�erence of the citedapproaches and ours is that the former are used for the speci�cation of func-tional and real-time requirements of systems whereas our emphasise is put ontesting real-time requirements. Real-time TTCN is used for the speci�cation ofproperties of a test system and requirements on the IUT.In this paper we focus on mechanisms for the speci�cation of real time re-quirements in test cases. Other important issues like test suite validation, testrealization and tool support are for further study.The paper is structured as follows: Section 2 gives a brief introduction toTTCN. Section 3 explains real-time TTCN. The feasibility of our approach isshown in Section 4. Section 5 concludes the paper with an assessment of ourapproach and the identi�cation of open issues.2 TTCN - Tree and Tabular Combined NotationTTCN is a notation for the description of test cases to be used in conformancetesting. TTCN provides two syntactical forms, TTCN/MP as a machine pro-cessable (i.e., pure textual) form, and TTCN/GR as a graphical representation.For the purpose of this paper we mainly restrict our attention to TTCN/GR andTTCN concepts related to the description of the dynamic test case behaviour.Further details on TTCN can be found in [10, 14, 16, 18].2.1 Abstract Testing Methods and TTCNA test case speci�es which outputs from an implementation under test (IUT) canbe observed and which inputs to an IUT can be controlled. Inputs and outputsare either abstract service primitives (ASPs) or protocol data units (PDUs).An example of an abstract test method is the Multi-Party Testing Context [9].Abstract testing functions, such as lower tester (LT), upper tester (UT) andlower tester control function (LTCF), are the active components. LTs and UTscontrol and observe the IUT at points of control and observation (PCOs) whichare interfaces above and below the IUT. The LTCF is responsible for the creation



and coordination of LTs and UTs. LTs, UTs and LTCF are referred to as testcomponents (TCs). They run in parallel. TCs are interconnected by coordinationpoints (CPs) through which they exchange coordination messages (CMs). LTand IUT logically communicate by exchanging PDUs which are embedded inASPs exchanged at PCOs. Since in most cases the lower boundary of an IUTdoes not provide adequate PCO interfaces, LTs and IUT communicate by usingservices of an underlying service provider. PCOs and CPs are based on the sameabstract model: a pair of unbounded FIFO queues (one for each direction ofcommunication) which allow an asynchronous exchange of ASPs and CMs.2.2 Test Case Dynamic Behaviour DescriptionsThe behaviour description of a TC consists of statements and verdict assign-ments. A verdict assignment is a statement concerning the conformance of anIUT with respect to the sequence of events that have been performed. A PASSverdict is assigned if the IUT passes the test, FAIL is given if the IUT contra-dicts the speci�cation, and INCONCLUSIVE is assigned if neither a PASS nor aFAIL verdict can be assigned. TTCN statements are test events, constructs andpseudo events.Test events are SEND, IMPLICIT SEND, RECEIVE, OTHERWISE, TIME-OUT and DONE. SEND and IMPLICIT SEND specify the sending of ASPs,PDUs and CMs. RECEIVE and OTHERWISE denote the processing of receivedASPs, PDUs and CMs. TIMEOUT events check for the expiration of a timer.DONE is used to check whether TCs have terminated. Test events may be qual-i�ed and/or followed by assignments and timer operations.Constructs are CREATE, ATTACH, ACTIVATE, RETURN, GOTO andREPEAT. CREATE speci�es the creation of a TC. The created TC executesin parallel with all other running TCs. ATTACH is a construct which allows totransmit control to a sub-behaviour description, called test step. The mechanismis comparable to the procedure concept in programming languages. ACTIVATEand RETURN deal with default behaviour descriptions. Usually, a default be-haviour description handles all incoming events which are not treated in themain behaviour description. ACTIVATE allows to change the default behaviourduring the test run and RETURN allows to return from a default behaviourback to the main description. GOTO transfers control to a speci�ed statement.REPEAT is used for the speci�cation of loops.Pseudo-events are quali�ers (i.e. Boolean expressions), timer operations andassignments.Statements can be grouped into statement sequences and sets of alternatives.In TTCN/GR, sequences of statements are represented one after the other onseparate lines and being indented from left to right. The statements on lines1 - 6 in Fig. 1 are a statement sequence. Statements on the same level of in-dentation and with the same predecessor are a set of alternatives. In Fig. 2 thestatements on lines 4 and 6 form a set of alternatives. They are on the same levelof indentation and have the statement on line 3 as their common predecessor.



Test Case Dynamic BehaviourNr Label Behaviour Description Constraints Ref Verdict Comments1 CP ? CM connected RECEIVE2 (NumOfSends := 0) Assignment3 REPEAT SendData ConstructUNTIL [NumOfSends > MAX]4 START Timer Timer Operation5 ?TIMEOUT timer TIMEOUT6 L ! N-DATA request data SENDFig. 1. TTCN Behaviour Description - Sequence of StatementsTest Case Dynamic BehaviourNr Label Behaviour Description Constraints Ref Verdict Comments1 [TRUE] Quali�er2 L1 (NumOfSends := NumOfSends + 1)3 +SendData ATTACH4 [NOT NumOfSends > MAX] Alternative 15 -> L1 GOTO6 [NumOfSends > MAX] Alternative 2Fig. 2. TTCN Behaviour Description - Set of Alternatives2.3 Test Case Execution and Test Component ExecutionTest case execution starts with only the main test component running. Themain test component which ful�ls the role of the LTCF, creates all other TCs.Immediately after creation the TC starts executing its behaviour description.The execution of a behaviour description starts with the �rst level of inden-tation (line 1 in Fig. 1), and proceeds towards the last level of indentation (line6 in Fig. 1). If on a level of indentation a set of alternatives is found, only onealternative is executed and test case execution proceeds with the next level ofindentation relative to the executed alternative. For example, in Fig. 2 the state-ments on line 4 and line 6 are alternatives. If the statement on line 4 is executed,processing continues with the statement on line 5. Each TC maintains its ownset of local variables and may make use of a number of implicitly de�ned vari-ables. Execution of a behaviour description stops if the last level of indentationis visited, a test verdict is assigned or a test case error occurs.Before a set of alternatives is evaluated, a snapshot is taken [10], i.e., thestate of the TC and the state of all PCOs, CPs and timers related to the TCare updated and frozen until the set of alternatives is evaluated. This guaranteesthat evaluation of a set of alternatives is an atomic and deterministic action.Alternatives are evaluated in sequence and the �rst alternative which is eval-uated successfully (i.e., all conditions of that alternative are ful�lled [10]) isexecuted. Then execution proceeds with the set of alternatives on the next levelof indentation. If no alternative can be evaluated successfully, a new snapshot istaken and evaluation of the set of alternatives is started again.



2.4 TTCN and Real-Time ConstraintsIn TTCN no explicit time model is assumed in the sense that no predictionsof the execution time of TTCN statements or the transmission times of ASPs,PDUs and CMs can be made. Only timers and the corresponding TIMEOUTevent are a means for specifying real-time behaviour in TTCN. However, asstated in [10], a test case should be de�ned such that the relative speed of thesystems executing the test case does not have an impact on the test result.Timers can be started (with a timeout value from picoseconds to minutes),can be stopped and timer values can be read. The status of a timer can be checkedin a set of alternatives using the TIMEOUT event. But, whenever a timer expiresthis has no immediate in
uence on the execution of a test component. If a timerexpires while evaluation of a set of alternatives is in progress, expiration of thattimer is not visible until the next snapshot is taken. An immediate reaction onthe timeout event is not possible. Depending on the ordering of alternatives anexpired timer may get undetected at all.3 Real-Time TTCNThe extension of TTCN to real-time TTCN includes syntactical changes andthe de�nition of an operational semantics. For the latter we de�ne a mappingof real-time TTCN to timed transition systems [7]. Our choice of timed transi-tion systems has been inspired by our work on the de�nition of an operationalsemantics for TTCN [20, 21].3.1 Timed Transition SystemsAs stated in the literature [2, 7, 15], real-time behaviour of systems can beexpressed by assuming that execution of events is restricted by a �nite intervalof earliest and latest execution times and which assume that execution of eventsis instantaneous. In our approach we use timed transition systems for modellingreal-time behaviour. In this section we quote the main de�nitions of [7].A transition system [11] consists of a set V of variables, a set � of states,a subset � � � of initial states and a �nite set T of transitions which alsoincludes the idle transition tI . Every transition t 2 T is binary relations overstates; i.e., it de�nes for every state s 2 � a possibly empty set t(s) � � ofso-called t-successors. A transition t is said to be enabled on state s if and onlyif t(s) 6= ;. For the idle transition tI we have that tI = f(s; s) j s 2 �g.An in�nite sequence � = s0s1 : : : is a computation of the underlying transitionsystem if s0 2 � is an initial state, and for all i � 0 there exists a t 2 T suchthat si+1 2 t(si), denoted si t�! si+1, i.e., transition t is taken at position i ofcomputation �.The extension of transition systems to timed transition systems is that weassume the existence of a real-valued global clock and that a system performsactions which either advance time or change a state [7]. Actions are executedinstantaneously, i.e., they have no duration.



A timed transition system consists of an underlying transition system and,for each transition t 2 T , an earliest execution time EETt 2 IN (with IN thenatural numbers including zero) and a latest execution time LETt 2 IN[f1g isde�ned. We assume that EETt � LETt and, by default, EETt is zero and LETtis 1. For a transition t which is enabled on an initial state we have LETt =1and so for the idle transition tI : LETtI = 1. EETt and LETt de�ne timingconstraints which ensure that transitions cannot be performed neither to early(EETt) nor too late (LETt).A timed state sequence � = (�; T ) consists of an in�nite sequence � of statesand an in�nite sequence T of times Ti 2 IR (with IR the real numbers) and Tsatis�es the following two conditions:{ Monotonicity: 8i � 0 either Ti+1 = Ti or Ti+1 > Ti ^ si+1 = si.{ Progress: 8t 2 IR 9 i � 0 such that Ti � t.Monotonicity implies that time never decreases but possibly increases by anyamount between two neighbouring states which are identical. If time increasesthis is called a time step. The transition being performed in a time step is theidle transition which is always enabled (see above). The progress condition statesthat time never converges, i.e., since IR has no maximal element every timed statesequence has in�nitely many time steps. Summarising, in timed state sequencesstate activities are interleaved with time activities. Throughout state activitiestime does not change, and throughout time steps the state does not change.A timed state sequence � = (�; T ) is a computation of a timed transition sys-tem if and only if state sequence � is a computation of the underlying transitionsystem and for every transition t 2 T the following requirements are satis�ed:{ for every transition t 2 T and position j � 0 if t is taken at j then thereexists a position i, i � j such that Ti + EETt � Tj and t is enabled onsi; si+1; : : : ; sj�1 and is not taken at any of the positions i; i + 1; : : : ; j � 1,i.e., a transition must be continuously enabled for at least EETt time unitsbefore the transition can be taken.{ for every transition t 2 T and position i � 0, if t is enabled at position i,there exists a position j, i � j, such that Ti + LETt � Tj and either t isnot enabled at j or t is taken at j, i.e., a transition must be taken if thetransition has been continuously enabled for LETt time units.A �nite timed state sequence is made in�nite by adding idle transitions, so thatwe have an in�nite sequence of time activities.3.2 Syntax of Real-Time TTCNFor our real time extension of TTCN we add time information in the declara-tions and the dynamic part of a TTCN test suite. In the declarations part wespecify time names and units to be used in TTCN behaviour descriptions. In thedynamic part we add time values to behaviour lines of behaviour descriptions.



Execution Time DeclarationsTime Name Value Unit CommentsEET 1 s EET valueLET 1 min LET valueWFN 5 ms Wait For NothingNoDur min No speci�ed valueFig. 3. Execution Time Declarations TableExtensions of the Declarations Part. For the speci�cation of EET andLET values and time units we introduce an Execution Time Declarations table(Fig. 3) and the keywords EET and LET.3 The Time Name column can be usedto declare names for EET and LET values. The names can be used instead ofconcrete values within behaviour description tables. Value and Unit columns areused to associate a time value and a time unit to a time name. As time unitswe allow the time units already used in TTCN (picoseconds (ps) to minutes(min)). Time values are converted to the default time unit whenever necessary,e.g., before time values are evaluated in a behaviour description.EET and LET are prede�ned variables with 0 and1 as initial values. Theseinitial values can be overwritten as shown in Fig. 3. Apart from column headingsthe table looks much like the TTCN Timer Declarations table.For the time name NoDur (Figure 3) only the time unit min is given butno value. In this case, a value has to be provided during test case execution bymeans of an assignment. If a name is evaluated and no value is assigned, the testcase will end with a dynamic test case error.Due to practical reasons it is not appropriate to require that for each TTCNstatement EET and LET values are speci�ed. In this case the default values forEET (= 0) and LET (=1) are used. Additionally, we allow to overwrite thesedefault values within an Execution Time Declarations table. For changing thedefault time values the keywords EET and LET are used. In Fig. 3, the defaultvalues for EET and LET are changed to 1 second and 1 minute, respectively.Besides the static declarations of time values, a change of these values isalso allowed within a behaviour description. During a test run time values canbe changed by means of assignments. We only require that concrete EET andLET values can be determined when the corresponding TTCN statement isevaluated successfully and that the condition 0 � EET � LET holds. In allother cases the test case will end with a dynamic test case error.Examples for the dynamic change of time values within a behaviour descrip-tion can be found in Fig. 4. On line 2 the value 3 is assigned to the time nameNoDur and on line 4 the default LET value is changed. This change becomese�ective on the next level of indentation, i.e., for the TTCN statements on lines5 and 6. As shown on line 6 it is also allowed to refer to default time valuesexplicitly by using the keyword LET.3 We use di�erent fonts for distinguishing between syntax, i.e., EET and LET, andsemantics, i.e., EET and LET .



Test Case Dynamic BehaviourNr Label Time Behaviour Description Constraints Ref Verdict Comments1 2, 4 A ? DATA request2 (NoDur := 3) Time assignment3 2, NoDur A ! DATA ack4 (LET := 50) LET update (ms)5 A ? Data request6 WFN, LET B ? AlarmFig. 4. Adding EET and LET values to behaviour linesExtensions of the Dynamic Part. The changes in the dynamic part of aTTCN test suite are related to behaviour lines in Test Case Dynamic Behaviour,Default Dynamic Behaviour and Test Step Dynamic Behaviour tables. The struc-ture of the behaviour lines is the same in all these tables. Therefore, we discussthe syntactical changes by using a Test Case Dynamic Behaviour table only.As indicated in Fig. 4 we add a Time column. An entry in the Time columnspeci�es EET and LET values for the corresponding behaviour line. Entriesmay be variables or constants, e.g., the entry in Fig. 4 line 1 sets EET = 2 andLET = 4 with default time unit ms. Within the Time column EET and LETmay also be speci�ed by means of name references which have to be looked upwithin the declarations part of the test suite. For instance, on line 3 of Fig. 4the time name NoDur is used. NoDur has been declared in table Fig. 3 and hasbeen assigned a value on line 2 of Fig. 4.3.3 Operational Semantics of Real-Time TTCNThe operational semantics of real-time TTCN is de�ned in two steps: Firstly, wede�ne the semantics of a TC in terms of a timed transition system which hasthe real numbers IR as abstract time domain (in contrast to the concrete timedomain in the syntactical extension of TTCN described in the previous section).Secondly, we extend this de�nition so that the behaviour of several concurrentTCs is modelled.Operational Semantics of a Real-Time Test Component. With a givende�nition of a TC we associate the following timed transition system: A states 2 � of a TC is given by a mapping of variables to values. The set of variablesV includes all variables de�ned for the TC in the test suite and, additionally,a variable for each timer. Furthermore, we introduce a control variable � whichindicates the location of control in the behaviour description of the TC. � isupdated when a new level of indentation is visited. We even let PCOs andCPs be pairs of variables so that each holds a queue of ASPs, PDUs or CMssent and received, respectively. PCO and CP variables and timer variables areshared variables which can also be accessed from the environment of a TC.For instance, received ASPs are put on the corresponding PCO variable by theenvironment. Similarly, when a timer expires the value of the correspondingtimer variable is updated by the environment. The environment performs itsactivities concurrently to the execution of the TC.



The initial state of a TC is the state with all variables having assigned theirinitial values (if speci�ed) or being unde�ned. All PCO and CP variables haveassigned an empty queue and all timer variables have assigned the value stop.The control variable � is initialised to the �rst level of indentation. If the TCis not running, i.e., the TC has not been created yet, then all variables areunde�ned.The set T of transitions contains a transition for every TTCN statement inthe TC behaviour description and the idle transition tI . Furthermore, we havea transition tE which models activities of the environment, i.e., reception of anASP or expiration of a timer. tE is not performed by the TC but may changethe state of the TC, because a shared PCO, CP or timer variable is updated.In the following we assume that the currently visited level of indentationhas been expanded as de�ned in Annex B of [10] and has the following generalform: A1[EET1; LET1]; : : : ; An[EETn; LETn], where Ai denotes an alternativeand EETi; LETi denote the earliest and latest execution times of alternative Ai.We say that Ai[EETi; LETi] is potentially enabled if Ai[EETi; LETi] is inthe set of alternatives. Ai[EETi; LETi] is enabled if Ai[EETi; LETi] is evalu-ated successfully (Sect. 2.3), Ai[EETi; LETi] is executable if Ai[EETi; LETi] isenabled and Ai[EETi; LETi] has been potentially enabled for at least EETi.The mapping described above de�nes the set of possible computations of aTC as a set of timed state sequences with potentially enabled substituted forenabled in the de�nitions of Sect. 3.1. If an alternative cannot be successfullyevaluated within LET time units then test case execution stops with an errorindication. To make the evaluation of a real-time TTCN behaviour descriptionmore explicit we introduce the following re�ned snapshot semantics (Sect. 2.3).For the rest of this section we let T; T 0; T 00 2 IR with T � T 0 � T 00.1. The TC is put into its initial state.2. If the level of indentation is visited for the �rst time then all alternativesare marked potentially enabled and the global time T is saved. The state ofPCO and CP variables and expired timer variables is locked, so that theycannot be updated by the environment.If for an Ai[EETi; LETi] in A1[EETi; LETi]; : : : ; An[EETi; LETi], LETi <T 0�T , where T 0 the current global time and T the time when the alternativehas been marked potentially enabled, then test case execution stops.3. All alternatives which can be evaluated successfully are marked enabled. Ifno alternative in the set of alternatives can be evaluated successfully thenPCO, CP and timer variables are unlocked (and the environment may againupdate these variables). Processing continues with Step 2.4. An enabled alternative Ai[EETi; LETi] is marked executable provided thatEETi � T 0�T � LETi and if there is another enabled alternative Aj [EETj;LETj ] with EETj � T 0 � T � LETj then i < j, i.e., the i-th alternativecomes before the j-th alternative in the set of alternatives.If no alternative can be marked executable then PCO, CP and timer variablesare unlocked. Processing continues with Step 2.



Test Case Dynamic BehaviourNr Label Time Behaviour Description Constraints Ref Verdict Comments1 2, 4 PCO1 ? N-DATA indication info2 ... next level3 2, 4 PCO2 ? N-ABORT indication abort4 ... next levelFig. 5. Partial Real-Time TTCN Behaviour Description5. The alternative Ai[EETi; LETi] marked executable in Step 4 is executedand control variable � is updated to the next level of indentation. PCO, CPand timer variables are unlocked. A test case terminates if the last level ofindentation is reached, otherwise evaluation continues with Step 2.Remarks: If a new level of indentation is visited for the �rst time (Step 2) then allalternatives become potentially enabled and time starts running although somealternatives may wait for some further conditions to become ful�lled. If a poten-tially enabled alternative cannot be evaluated successfully before the speci�edlatest execution time then a speci�ed real-time constraint has not been met andtest case execution stops. If no alternative can be evaluated successfully (Step 3)then a next iteration of Steps 2 - 5 must be performed. But before, PCO, CPand timer variables are unlocked. In Step 4, the selection of alternatives for exe-cution from the set of executable alternatives follows the same rules as in TTCN[10]. If a TC stops (Step 5) then the �nite timed state sequence is extendedto an in�nite sequence by adding an in�nite sequence of idle transitions. Everyiteration of Steps 2 - 5 is atomic. This complies with the snapshot semantics ofTTCN [10].Example 1. We consider the partial behaviour description in real-time TTCNgiven in Fig. 5. Assume that the level of indentation with the two alternativeson lines 1 and 3 has been visited for the �rst time at T . The �rst alternativemay be executed in the interval EET1 = 2 and LET1 = 4 provided that a N-DATA indication with data info has been received at PCO PCO1. Furthermore,let us assume that at T 0 an N-DATA indication is received. Then, the �rstalternative may be executed at T 00 with EET1 � (T 00�T ) � LET1, because thisalternative is enabled (Step 3) and is executable (Step 4) and no other alternativeis executable (no N-ABORT indication has been received yet). A correspondingcomputation might be:: : : �! (s; T ) tI�! (s; T 0) tE�! (s0; T 0) tI�! (s0; T 00) t1�! (s00; T 00) �! : : :The reception of an N-DATA indication at time T 0 is a state activity, (s; T 0) tE�!(s0; T 0), because a PCO variable is updated by the environment performing tran-sition tE .Suppose that an N-DATA indication and an N-ABORT indication have beenreceived from the environment at some T 000 � T 00. Then, although both alterna-tives are executable, the �rst alternative is executed according to Step 4 becauseof the ordering of alternatives in the set of alternatives.



If no N-DATA indication and no N-ABORT indication have been receivedbefore LET1 or LET2 time units after the alternatives have been potentiallyenabled, test case execution stops (Step 2).Operational Semantics of a Real-Time Test System. In general, morethan one TC participates in the execution of a test case and, because of themultiplicity of executable alternatives, several TTCN statements may be exe-cuted in parallel. In timed transition systems the parallel behaviour of TCs ismodelled as �nite sequences of state activities which are not interleaved withtime activities. Each state activity is performed by another test component.Example 2. We assume a test system of n active or running TCs TC1; : : : ; TCn.Each TC has its own processor. Given these assumptions we associate the fol-lowing timed transition system with the test system:V = V1 [ : : : [ Vn where Vi \ Vj = ; for 0 � i; j � n and i 6= j, i.e., theset of variables is the union of the set of variables of all TCs. � contains allinterpretations of V , i.e., the mapping from variables to values. The initial state(2 �) of the test system is the one where only the MTC is initialised. The setT of transitions consists of the idle transition tI and the environment transitiontE plus the sets of transitions of all TCs labelled with the corresponding timevalues EET and LET of TTCN statements.Assuming that during a test run every TC has an executable alternative readyat time T then execution of all executable alternatives may yield the followingcomputation:: : : (s0; T ) t1�! (s1; T ) t2�! : : : tn�1�! (sn�1; T ) tn�! (sn; T ) : : :i.e., a sequence of n state activities. Note that, scheduling the executable alter-natives in a di�erent order would have yielded another computation.The model described above, which assumes that a processor is available forevery TC, is termed multiprocessing model in [7]. In amultiprogramming model, asingle processor is shared among a number of TCs. All TCs which are running onthe same processor and which have an executable transition have to be scheduledfor execution. Fortunately, as shown in [7], the semantics of the multiprogram-ming model can also be de�ned in terms of timed transition systems. The onlyadditional constructs necessary are a special processor control variable � whichholds the identi�er of the currently executing TC, and a scheduling transition tSthat changes the status of TCs by resuming a temporarily suspended TC. Ex-ecuting the scheduling transition is a state activity that changes the processorcontrol variable �. In the initial state of a test system, the variable � is assignedwith the identi�er of the MTC. In a computation of a test system schedulingtransitions are interleaved with state activities and time steps. Unlike as in [7],scheduling another TC does not pre-empt any potentially enabled, enabled orexecutable transition of any other TC. A test system satisfying the de�ned real-time constraints must be su�ciently fast and scheduling of TCs must be doneproperly.



3.4 Discussion of the ProposalIf we assume that no time values are de�ned (in this case EET and LET are setto zero and1, respectively), execution of a test case results in the same sequenceof state-transitions as in TTCN. In this sense our de�nition of real-time TTCNis downwards compatible.Execution of a statement is modelled as an instantaneous change of state.However, it is common knowledge that execution of a statement has a �niteduration. The point we would like to emphasise is that during execution of astatement a state becomes \transient" in the sense that the result of execut-ing a statement is not available (or observable) immediately. If execution of astatement has come to an end, the result becomes permanent (or observable).In the approach employed, time instance when processing of a statement hasterminated is recorded.Real-time TTCN combines property and requirement oriented speci�cationstyles. Time labels for TTCN statements, in general, de�ne real-time constraintsfor the test system. The test system is assumed to be su�ciently fast, so that acorrectly behaving test system complies with the properties de�ned in the real-time TTCN behaviour description. Time labels for RECEIVE and OTHERWISEevents, which imply a communication with the IUT, de�ne requirements onthe IUT and the underlying service provider. As well as the test system, theunderlying service provider is assumed to be su�ciently reliable, particularlywith respect to the timing of activities. Therefore, if a timing constraint of aRECEIVE or OTHERWISE event is violated, this clearly is an indication thatthe IUT is faulty and the test run should end with a FAIL verdict assignment.4 An Application of Real-Time TTCNFigure 6 is an example of a (partial) behaviour description for de�ning two real-time constraints. Firstly, every two time units the test system should generatean N-DATA request (lines 1 and 2). Secondly, the test system should receiveevery two to three time units a T-DATA indication (lines 3 and 4). Assuminga constant delay for the transmission of PDUs from an LT to the IUT thesecond constraint implies the requirement on the IUT that the IUT is capableof generating a T-DATA indication every two to three time units.A TTCN behaviour description almost equivalent to the real-time TTCNbehaviour description for the second constraint is shown in Fig. 7. The �rsttimer is used for the lower execution time and the second timer is used to controlthe latest execution time. If the second TIMEOUT event can be observed, thisis an indication for a erroneous behaviour of the IUT. This TTCN behaviourdescription, however, only is correct under the assumption that the test system isin�nitely fast, so that no extra delay is introduced due to the execution of TTCNstatements. In real-time TTCN all assumptions which are to be ful�lled by a testsystem are made explicit. Besides its conciseness (compare Figs. 6 and 7) this isa further advantage.



Test Case Dynamic BehaviourNr Label Time Behaviour Description Constraints Ref Verdict Comments1 L1 2, 2 PCO ! N-DATA request req2 -> L1 GOTO3 L2 2, 3 PCO ? T-DATA indication ind4 -> L2 GOTOFig. 6. Continuous Sending and Receiving in Real-Time TTCNTest Case Dynamic BehaviourNr Label Behaviour Description Constraints Ref Verdict Comments1 L2 START timer(2)2 ?TIMEOUT timer3 START timer(1)4 PCO ? T-DATA indication ind5 STOP timer6 -> L27 ?TIMEOUT timer FAILFig. 7. Time constraints in TTCN for Continuous ReceivingTest Case Dynamic BehaviourNr Label Time Behaviour Description Constraints Ref Verdict Comments1 (NumOfSends := 0) Assignment2 REPEAT SendData (L) UNTIL[NumOfSends > MAX]3 10, 12 L ! N-DATA request req4 SendData (PCO)5 2, 2 PCO ! N-DATA request reqFig. 8. Real-Time TTCN Test Case for QoS TestingA more concrete example is an application of real-time TTCN to quality-of-service (QoS) testing [5, 19, 22]. Suppose that for a transport connection aspeci�c throughput4 QoS parameter value has been negotiated. A possible testpurpose is that the IUT should abort the connection if the actual monitoredthroughput is less than the negotiated throughput.Let the IUT be the receiving transport protocol implementation. The corre-sponding real-time TTCN test case is shown in Fig. 8. The behaviour descriptionfor the UT receiving transport data is similar to the one shown in Fig. 6 lines 3and 4. From the negotiated throughput QoS parameter value we can computethe time interval between successive T-DATA indication ASPs that satis�es thenegotiated throughput. The LT transmits transport data with N-DATA requestat the computed rate. Delaying an N-DATA request (line 3 in Fig. 8) shouldcause the connection to be aborted (not shown in Fig. 8).4 Throughput is the ratio of the size of the last received transport service data unit tothe time elapsed between the corresponding last and next T-DATA indications (andsimilar for the sending site) [3].



5 Conclusions and OutlookIn this paper we have discussed a proposal for a real-time extension of TTCN.The motivation for our work has been given by the demand for a test languagethat can express real-time constraints. This demand mainly comes from the use ofmultimedia applications which are quite restrictive with respect to the ful�lmentof real-time requirements. Since TTCN cannot express real-time constraints, wehave made a proposal for a syntactical and semantical extension of TTCN. Ona syntactical level TTCN statements can be annotated by time labels whichspecify earliest and latest execution times. The operational semantics of ourTTCN extension is based on timed transition systems [7]. In the paper we havedescribed how real-time TTCN test cases are interpreted in timed transitionsystems.In our approach a TTCN statement is annotated by time labels. The advan-tages of this approach are twofold: Firstly, only a few syntactical changes arenecessary. Secondly, the extension of TTCN to real-time TTCN is downwardscompatible: If we assume that zero and1 are earliest and latest execution times,a computation of a real-time TTCN test case is the same as in standard TTCN.A possible extension of our approach is to allow the annotation of test events,assignments and timer operations that are combined on a single statement linewith time labels. A mapping of TTCN to transition systems at that level ofdetail has been investigated in [20, 21]. This mapping may be further extendedand evaluated.Based on the real-time extension of TTCN as proposed in this paper tech-niques for the analysis of the real-time behaviour of testers against speci�edtest cases are to be de�ned. For this it seems necessary that the discussionof an operational semantics of real-time TTCN as discussed in Sect. 3.3 is be-ing extended. Particularly, the di�erent processing models (multiprocessing andmultiprogramming models) have to be re�ned and, in a second step, the mod-elling of communication channels (PCOs, CPs and service provider) have to beintegrated. Our future work will focus on these aspects.Acknowledgements. The authors are indebted to Stefan Heymer for proof-reading and for his detailed comments on earlier drafts of this paper. We arealso grateful to the anonymous reviewers providing detailed comments and valu-able suggestions which have improved contents and presentation of this paper.References1. H. Bowman, L. Blair, G. Blair, A. Chetwynd. A Formal Description TechniqueSupporting Expression of Quality of Service and Media Synchronization. Multi-media Transport and Teleservices. LNCS 882, 1994.2. B. Berthomieu, M. Diaz. Modeling and Veri�cation of Time Dependent SystemsUsing Time Petri Nets. IEEE Transactions on Software Engineering, Vol. 17, No. 3,March 1991.3. A. Danthine, Y. Baguette, G. Leduc, L�eonard. The OSI 95 Connection-ModeTransport Service - The Enhanced QoS. High Performance Networking, IFIP, 1992.
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