Test Case Specification with Real-Time TTCN

Thomas Walter® and Jens Grabowski®

“Swiss Federal Institute of Technology Zurich, Computer Engineering and Networks Laboratory (TIK),
CH-8092 Zurich, Switzerland, e-mail: walter@tik.ee.ethz.ch, http://www.tik.ee.ethz.ch/

YUniversity of Liibeck, Institute for Telematics, Ratzeburger Allee 160, D-23538 Liibeck, Germany,
e-mail: jens@itm.mu-luebeck.de, http://www.itm.mu-luebeck.de/

Abstract

The ever increasing dissemination of distributed real-time and multimedia applications makes
testing of real-time constraints an important issue. The current conformance testing methodol-
ogy does not define the means to cope with this new requirement. Especially, the test notation
TTCN (Tree and Tabular Combined Notation) cannot be used to express and thus test real-
time behaviour. In order to adapt the well established conformance testing methodology to
this new need, we extend TTCN with real-time features. This is achieved by annotating TTCN
statements with time intervals specifying the earliest and latest execution times. In this paper
we introduce real-time TTCN and discuss its features and characteristics. To motivate our
work, in the main part of the paper we evaluate real-time TTCN against TTCN and assess
its suitability for testing real-time constraints by defining test cases for real applications. It
turns out that without additional assumptions concerning the execution speed of test systems,
TTCN cannot be used for testing real-time constraints.

1 Introduction

For years testing is known as a process for validating software, i.e., checking that software meets the
expectations of its users [19]. The advantages and disadvantages of testing compared to rigorous
formal verification are: Firstly, it is a generally applicable process. Secondly, it is a theoretically
well understood process for which methods and techniques exist to derive test data from specifica-
tions. Thirdly, testing is a cost-effective process, if one considers the trade-off between resources
spent and software quality achieved. Omne of the disadvantages is that testing does not prove
absence of errors in the tested software.

Testing, or to be precise conformance testing, 1s also the generally applied process in validating
communication software. A conformance testing methodology and framework has been standard-
ised by ISO (International Organisation for Standardisation) and ITU (International Telecom-
munication Union) [8]. An essential part of this methodology is a notation for the definition of
conformance test cases, called TTCN (Tree and Tabular Combined Notation) [9]. TTCN has been
designed for protocols and systems for which in general timing between communicating entities
is not an issue. Test cases are specified as sequences of test events. The relative ordering of test
events 1s defined in a behaviour description.

For some years, the situation and thus the requirements for testing are changing. Two main
new kinds of distributed services and systems can be identified: real-time and multimedia systems.
Real-time systems stem from the use of computers for controlling physical devices and processes.
For these systems, real-time communication is essential for their correct behaviour. Multimedia
systems on the other hand involve the transmission of several continuous streams (of bits) between
source and sink and their timely reproduction at the sink (e.g., synchronisation of audio and video).
As pointed out in, e.g., [1], TTCN is not an appropriate test notation for testing real-time and
multimedia systems: Firstly, test events in TTCN are meant to be used for message-based systems
and not for stream-based systems. Secondly, in TTCN, real-time can only be approximated but
not specified exactly. In this paper we define a real-time extension of TTCN as a contribution for
solving the latter problem.

Our extension of TTCN to real-time TTCN is on a syntactical and a semantical level. In
particular, the syntactical difference is that for real-time TTCN we allow an annotation of test

events with an earliest execution (EFET') and a latest execution time (LET). Informally, a test event
may be executed if it has been continuously enabled for at least £ ET units and it must be executed
if it has been continuously enabled for LET units. Test events are executed instantaneously. Our
approach is similar to [2, 3, 4, 7, 11, 12, 14, 17].

The paper proceeds as follows: The next two sections introduce TTCN and real-time TTCN,
respectively. A discussion of the features of real-time TTCN is done in Section 4, where real-time
TTCN is used for the definition of test cases for the generic cell rate algorithm used for traffic
control in ATM networks. We conclude the paper with a characterisation of real-time TTCN and
an outlook.

2 TTCN - Tree and Tabular Combined Notation

TTCN is a notation for the description of test cases to be used in conformance testing. For the
purpose of this paper we restrict our attention to TTCN concepts related to the description of the
dynamic test case behaviour. Further details on TTCN can be found in [9, 10, 13, 16, 18§].

2.1 Abstract Testing Methods and TTCN

A test case specifies which outputs from an implementation under test (IUT) can be observed and
which inputs to an IUT can be controlled. Inputs and outputs are either abstract service primitives
(ASPs) or protocol data units (PDUs). In general, several concurrently running distributed test
components (TC) participate in the execution of a test case. TCs are interconnected by coordination
points (CPs) through which they asynchronously exchange coordination messages (CMs). TCs and
IUT logically communicate by exchanging PDUs which are embedded in ASPs exchanged at points
of control and observation (PCOs), which are interfaces above and below the TUT. Since in most
cases the lower boundary of an IUT does not provide adequate PCO interfaces, TCs and TUT
communicate by using services of an underlying service provider.

2.2 Test Case Dynamic Behaviour Descriptions

The behaviour description of a TC consists of statements and verdict assignments. A verdict
assignment is a statement concerning the conformance of an IUT with respect to the sequence of
events that have been performed. A PASS verdict is assigned if the IUT passes the test, FAIL is
given if the IUT contradicts the specification, and INCONCLUSIVE is assigned if neither a PASS
nor a FAIL verdict can be assigned. TTCN statements are test events (SEND, IMPLICIT SEND,
RECEIVE, OTHERWISE, TIMEOUT and DONE), constructs (CREATE, ATTACH, ACTIVATE,
RETURN, GOTO and REPEAT) and pseudo events (qualifiers, timer operations and assignments).

Statements can be grouped into statement sequences and sets of alternatives. In the graphical
form of TTCN, sequences of statements are represented one after the other on separate lines and
being indented from left to right. The statements on lines 1 - 6 in Fig. 1 are a statement sequence.
Statements on the same level of indentation and with the same predecessor are alternatives. In
Fig. 2 the statements on lines 4 and 6 form a set of alternatives: they are on the same level of
indentation and have the statement on line 3 as their common predecessor.

2.3 Test Component Execution

A TC starts the execution of a behaviour description with the first level of indentation (line 1 in
Fig. 1), and proceeds towards the last level of indentation (line 6 in Fig. 1). Only one alternative
out of a set of alternatives is executed, and test case execution proceeds with the next level of
indentation relative to the executed alternative. For example, in Fig. 2 the statements on line 4
and line 6 are alternatives. If the statement on line 4 is executed, processing continues with the
statement on line 5. Execution of a behaviour description stops if the last level of indentation has
been visited, a test verdict has been assigned, or a test case error has occurred.

Before a set of alternatives is evaluated, a snapshot is taken [9], i.e., the state of the TC and
the state of all PCOs, CPs and expired timer lists related to the TC are updated and frozen until
the set of alternatives has been evaluated. This guarantees that evaluation of a set of alternatives
i1s an atomic and deterministic action.

Test Case Dynamic Behaviour
Nr | Label | Behaviour Description CRef V | Comments
1 CP 7 CM connected RECEIVE
2 (NumOfSends := 0) Assignment
3 REPEAT SendData Construct
UNTIL [NumOfSends > MAX]
4 START Timer Timer Operation
5 ?TIMEOUT timer TIMEOUT
6 L ! N-DATA request data SEND

Figure 1: TTCN Behaviour Description - Sequence of Statements

Test Case Dynamic Behaviour
Nr | Label | Behaviour Description CRef | V | Comments
1 [TRUE] Qualifier
2 L1 (NumOfSends := NumOfSends + 1)
3 +SendData ATTACH
4 [NOT NumOfSends > MAX] Alternative 1
5 -> 11 GOTO
6 [NumOfSends > MAX] Alternative 2

Figure 2: TTCN Behaviour Description - Set of Alternatives

Alternatives are evaluated in sequence, and the first alternative which is evaluated successfully
(i.e., all conditions of that alternative are fulfilled [9]) is executed. Execution then proceeds with the
set of alternatives on the next level of indentation. If no alternative can be evaluated successfully,
a new snapshot is taken and evaluation of the set of alternatives is started again.

3 Real-Time TTCN

Real-time TTCN extends TTCN on a syntactical and a semantical level (see [22] for a preliminary
version of real-time TTCN). Syntactically, in real-time TTCN we allow an annotation of test events
with an earliest execution time (FET) and a latest execution time (LET). To be more precise,
our extensions of TTCN comprise the definition of a table for the specification of time names and
time units and the addition of two columns in the behaviour description tables for the annotation
of TTCN statements. Informally, a test event may be executed if it has been continuously enabled
for at least E'ET units and it must be executed if it has been continuously enabled for LET units.
Test events are executed instantaneously.

In [22], we have defined an operational semantics based on timed transition systems [6]. To
emphasise the similarities of TTCN and real-time TTCN we follow an alternative approach for a
definition of semantics, i.e., we propose a refined snapshot semantics which takes time annotations
of TTCN statements into account.

3.1 Syntax of Real-Time TTCN

In real-time TTCN, timing information is added in the declarations and the dynamic part of a test
suite.

As shown in Fig. 3 he specification of time names, time values and units is done in an Execution
Time Declarations table'. Time names are declared in the Time Name column. Their values and
the corresponding time units are specified on the same line in the Value and Unit columns. The
declaration of time values and time units is optional.

EET and LET? are predefined time names with default values 0 and infinity. Default time
values can be overwritten (Fig. 3). If time values are not specified the default time values 0 and
infinity apply for EET and LET.

Besides the static declarations of time values in an Execution Time Declarations table, changing
these values within a behaviour description table can be done by means of assignments (Fig. 4).

I Apart from the headings the table looks much like the TTCN Timer Declarations table.
2We use different font types for distinguishing between syntax, EET and LET, and semantics, EET and LET.

Execution Time Declarations
Time Name | Value | Unit | Comments
EET 1 3 EET value
LET 1 min LET value
WFEFN 5 ms Wait For Nothing
NoDur min No specified value

Figure 3: Execution Time Declarations Table

Test Case Dynamic Behaviour

Nr | Label | Time TOptions | Behaviour Description C | V | Comments

1 L1 2,4 M A 7 DATA request Time label
Mandatory EET

2 (NoDur := 3) Time assignment

3 2, NoDur A ' DATA ack

4 (LET := 50) LET update (ms)

5 A 7 Data request

6 L1+ WFN, | M, N B 7 Alarm Mandatory EET

L1+ LET not pre-emptive

Figure 4: Adding EET and LET values to behaviour lines

However, evaluation of time labels should alway result in EET and LET values for which 0 <
EET < LET holds. As indicated in Fig. 4 we add a Time and a Time Options column to Test Case
Dynamic Behaviour tables (and similar for Default Dynamic Behaviour and Test Step Dynamic
Behaviour tables). An entry in the Time column specifies FET and LET for the corresponding
TTCN statement. Entries may be constants (e.g., line 1 in Fig. 4), time names (e.g., the use of
NoDur on line 3), and expressions (e.g., line 6).

In general, EET and LET values are interpreted relative to the enabling time of alternatives
at a level of indentation, i.e., the time when the level of indentation becomes the current level.
However, some applications may require to define FET and LET values relative to the execution
of an earlier test event, 1.e, not restricted just to the previous one. In support of this requirement,
a label in the Label column may not only be used in a GOTO but can also be used in the Time
column, so that £ ET and LET values are computed relative to the execution time of the alternative
identified by the label: In Fig. 4 on line 6 the time labels (L1 + WFN, L1 4+ LET) are referring to
the execution time of the alternative in line 1 (for which label L1 is defined).

Entries in the Time Options column are combinations of symbols M and N. Similar to using
labels in expressions, time option N allows to express time values relative to the alternative’s own
enabling time even though some TTCN statements being executed in between two successive visits
of the same level of indentation.

Thus, the amount of time needed to execute the sequence of TTCN statements in between two
successive visits 18 compensated. If time option N is defined, then execution of this alternative is
not pre-emptive with respect to the timing of all alternatives at the same level of indentation.

In some executions of a test case, a RECEIVE or OTHERWISE event may be evaluated suc-
cessfully before it has been enabled for ¥ ET units. If it 1s intended to define FET as a mandatory
lower bound when an alternative may be evaluated successfully, then time option M has to be spec-
ified. Informally, if time option M is specified and the corresponding alternative can be successfully
evaluated before it has been enabled for FET units, then this results in a FAIL verdict.

3.2 Snapshot Semantics of Real-Time TTCN

In this section we develop a snapshot semantics for RT-TTCN (for more details see also [22]). We
assume that the current level of indentation has been expanded as defined in Annex B of [9] and
that its general form is A [eexp,lexp], ..., Apleeap,, lexp,], where A; denotes an alternative and
eexp;, lexp; are expressions for determining £ ET and LET values. The evaluation of expressions
eexp; and lexp; depends on whether eexp; and lexp; make use of a label Ln. If so, absolute time
references are converted into time references relative to the enabling time of the current set of
alternatives.

We define the following functions used in the semantics definition. Let eval be a function from
time expressions to time values for EET and LET. Let enablingTime(A;) be a function that
returns the time when alternative A; has been enabled. Notice that for all A; enablingTime(A;) is
the same. Let erecutionTime(ILn) be a function that returns the execution time of an alternative
at the level of indentation are referred to by label Ln. And let NOW be a function that returns
the current global time. For the evaluation of time expressions the following rules apply:

1. If eexp; and lexp; do not involve any operator Ln, then FET = eval(eexp;) and LET =
eval(lexp;). Tt is required that 0 < FET < LET holds.

2. If eexp; and lexp; involve an Ln then, firstly, executionTime(Ln) is substituted for Ln in eexp;
and lexp; resulting in expressions eexp! or lexp;, and secondly, EET = eval (eexp}) — NOW
and LET = eval(lexp}) — NOW. Tt is required that 0 < FET < LET holds. Notice that
absolute time references eexp; and lexp; are converted into time references FET and LET
relative to the current global time NOW.

We say that alternative A; is potentially enabled if A; is in the current set of alternatives. A;
is enabled if A; is evaluated successfully (Sect. 2.3), A; is executable if A; is enabled and A; has
been potentially enabled for at least EET; and at most LET; time units. The refined snapshot
semantics of real-time TTCN is defined as follows:

1. (a) If the level of indentation is reached from a preceding alternative (not by a GOTO or
RETURN), then all alternatives are marked potentially enabled and the global time is
taken and stored. Tt is accessible by enablingTime(A;).

(b) If the level of indentation is reached by executing a GOTO or RETURN and enabling-
Time(A;) has been frozen earlier, then all alternatives are marked potentially enabled
but enablingTime(A;) is not updated.

(c) If the level of indentation is reached by executing a GOTO or RETURN but enabling-
Time(A;) has not been frozen earlier, then all alternatives are marked potentially enabled
and the global time is taken and stored. It is accessible by enablingTime(A;).

(d) Otherwise, the steps 1- 4 are iterated again.

EET and LET are computed as described above. PCO, CP and expired timer lists are
locked. If for an A; enablingTime(A;) + LET; < NOW, then test case execution stops with
a FAIL verdict.

2. All alternatives which can be evaluated successfully are marked enabled. If for an enabled
alternative, say A;, time option M is set and if NOW < enablingTime(A;) + EET;, then test
case execution stops with a FAIL verdict. If no alternative in the set of alternatives can be
evaluated successfully, then PCO, CP and timer lists are unlocked and processing continues
with Step 1.

3. An enabled alternative A; is marked executable provided that enablingTime(A;) + EET; <
NOW < enablingTime(A;) + LET; and if there is another enabled alternative A; with
enablingTime(A;) + EET; < NOW < enablingTime(A;) + LET;, then i < j, i.e., the ¢
th alternative precedes the j-th alternative in the set of alternatives. If no alternative can

be marked executable, then PCO, CP and timer lists are unlocked and processing continues
with Step 1.

4. An executable alternative A; is executed. If a label Ln is specified, then the execution time of
the alternative is recorded (and can be accessed by ezecutionTime(Ln)). If for the executed
alternative time option N is specified enablingTime(A;) is frozen. PCO, CP and timer lists
are unlocked. The next level of indentation is visited.

Remarks: If any potentially enabled alternative cannot be evaluated successfully before LET | then
a specified real-time constraint has not been met and test case execution stops with a FAIL verdict.
Conversely, if an alternative can be evaluated successfully before it has been potentially enabled
for EET time units (Step 2), then a defined real-time constraints is violated, too. In Step 3, the
selection of alternatives for execution from the set of enabled alternatives follows the same rules

as in TTCN [9].

Test Case Dynamic Behaviour
Nr | Label | Time Time Options | Behaviour Description CRef | V | C
1 L1 2,4 M PCO1 7 N-DATA indication info
2
3 -> L1
4 0, INFINITY PCO2 7 N-ABORT indication | abort
5

Figure 5: Partial Real-Time TTCN Behaviour Description

Test Case Dynamic Behaviour
Nr | Label | Behaviour Description CRef | V C
1 L1 START T1(EET)
2 ?TIMEOUT T1 START T2(LET-EET)
3 PCO1 7 N-DATA indication data
4 -> L1
5 PCO2 7 N-ABORT indication STOP T2 | abort | INCONC
6 TTIMEOUT T2 FATL
7 PCO2 7 N-ABORT indication STOP T1 abort | INCONC
8 PCO1 7 OTHERWISE STOP T1 FATL

Figure 6: TTCN Behaviour Description for the ISDN Example

4 Application of Real-Time TTCN — ISDN and Generic
Cell Rate Algorithm

In ISDN (Integrated Services Digital Network) [5], the B-channels are used by applications for
data exchange whereas the D-channel is used for the management of connections between users
or application processes. We consider a scenario where an ISDN connection between test system
and TUT has been established and where PCO1 and PCO2 are the respective B- and D-channel
interfaces. At the B channels we expect to receive user data every FET) = 2 to LET), = 4 time
units. At any time the ISDN connection may be aborted on the D channel.

We consider the partial real-time TTCN behaviour description given in Fig. 5. The first alter-
native A; may be evaluated successfully and may be executed only in the interval EET] = 2 and
LET) = 4 because time option M is set on line 1. Let us assume that at 7" with enablingTime(A;)+
EET, <T' <enablingTime(A;)+ LET), an N-DATA indication is received. The first alternative
may be executed at 7" with enablingTime(A;) + EET) < T’ < T" < enablingTime(A;) + LET)
(Step 4) because no other alternative is executable (no N-ABORT indication has been received
yet). Suppose that an N-DATA indication and an N-ABORT indication have been received at
7" T < T" < T". Then, although both alternatives are executable, the first alternative is
executed because of the ordering of alternatives in the set of alternatives (Step 3). If an N-DATA
indication is received at T < enablingTime(A;) + FET), then test case execution stops with a
FAIL verdict (Step 2). If no N-DATA indication and no N-ABORT indication have been received
before LET] time units after the alternatives have been potentially enabled, test case execution
stops with a FAIL verdict (Step 1).

In Fig. 6, a test case in TTCN is given for the ISDN example. The timing constraints on the
reception of N-DATA indications are expressed using timers T1 and T2. The alternatives coded on
lines 2 and 8 in combination check that an N-DATA indication should not be received before EET
(= timer T1); otherwise, test case execution results in a FAIL verdict (line 8). The TIMEOUT
event on line 6 controls the latest execution time, and if timer T2 expires, then this gives a FAIL
verdict.

Let us assume that test case execution is at the third level of indentation (lines 3, 5 and 6)
and that TIMEOUT of timer T2 precedes reception of an N-DATA indication. Furthermore, let
us assume that the system executing the test case is heavily loaded and therefore evaluation of a
set of alternatives lasts too long, so that both events are included in the same snapshot. The late
arrival of an N-DATA indication gets undetected because of the ordering of alternatives on line 3,
5 and 6. This problem can be fixed if lines 3 and 6 are exchanged. But now let us assume that an
N-DATA indication is received before TIMEOUT of timer T2. A fast system will take a snapshot

Arrival of aCell attime t,

Next Cell

Non-Conforming Cell |- Y& t < Tﬁ>
No

TAT = max(t, , TAT)+ T
Conforming Cell

At thetime of arrival taof thefirst cell of the connection, TAT =t

Figure 7: Generic Cell Rate Algorithm (GCRA) - Virtual Scheduling [15]

which includes the N-DATA indication only, whereas a slow system will take a snapshot which
includes an N-DATA indication and a TIMEOQUT. If the latter happens, the TIMEOUT succeeds
over the RECEIVE event. Unfortunately, the behaviour description does not comply with the
requirement stated in [8] “that the relative speed of the systems executing the test case should not
have an impact on the test result” and thus is not valid.

In ATM (Asynchronous Transfer Mode) networks [15], network traffic control is performed to
protect network and users, and to achieve predefined network performance objectives. During
connection set up a traffic contract specification is negotiated and agreed upon between users
and network. A contract specification consists of the connection traffic descriptor, the requested
quality-of-service class and the definition of a compliant connection.

A connection is termed compliant as long as the number of non-conforming cells does not
exceed a threshold value negotiated and agreed upon in the traffic contract. If the number of
non-conforming cells exceeds the threshold, then the network may abort the connection. The
procedure that determines conforming and non-conforming cells is known as the generic cell rate
algorithm (GCRA, Fig. 7) [15]: The algorithm calculates the theoretically predicted arrival times
(TAT) of cells assuming equally spaced cells when the source is active. The spacing between cells is
determined by the minimum inter-arrival time 7' between cells, which computes to T'= 1/R,, with
R, being the peak cell rate (per seconds) negotiated for the connection. If the actual arrival time
of a cell t, is after TAT — 7, 7 the cell delay variation tolerance caused, for instance, by physical
layer overhead, then the cell is a conforming cell; otherwise, the cell is arriving too early and thus
is being considered as a non-conforming cell.

A possible test purpose derivable from the informal definition of traffic contract specification
and GCRA may be as follows: “It is to be tested that the amount of traffic (in terms of ATM
cells) generated at the UNI is compliant to the traffic contract specification”.

For the following discussion we assume a testing scenario as depicted in Fig. 8. The IUT,
1.e., the end-system of the user, 1s connected to an ATM switch which in this scenario is the test
system. Several traffic sources may generate a continuous stream of ATM cells which is, by the
virtual shaper, transformed into a cell stream compliant with the traffic contract. It is the test
system that checks compliance of the received cell stream to the traffic contract.

The definition of a test case assumes that a connection has already been established, so that
a traffic contract specification is available. From the traffic contract, parameters R,, T" and 7 can
be extracted which are assigned to test case variables. The threshold value (for determining when
a connection is to be aborted) is provided as a test suite parameter. For simplicity we let 7 = 0.

The definition of the dynamic test case behaviour (Fig. 9) is based on the observation that
according to the GCRA (Fig. 7), except for the first cell, at most every T(= EFET) time units an
ATM cell is expected from the IUT. Since we do not expect an ATM cell to arrive before T time
units, time option M is defined. If an ATM cell arrives before T' time units, then the test case is
terminated with a FAIL verdict.

UNI
1
|
,,,,,,,,,,,,,,,,,,,,,,,,,,,, CDV tolerance :
|
8 = i
|
| ; Phy Laber SAP | | ATM switch
i Virtual Shaper @ | performing
= |
B ! \ control
L ATM Layer | |
Physical Layer |
|
|
Implementation Under Test Test System

Figure 8: Generic Cell Rate Algorithm - Testing Scenario [15]

Test Case Dynamic Behaviour

Nr | L Time T Options | Behaviour Description | C | V | C

1 0, INFINITY UNI ? ATM-Cell * First cell to
initialise GCRA

2 L2 | T, INFINITY | M UNI ? ATM-Cell *

3 -> L2

Figure 9: Real-Time TTCN Behaviour Description for GCRA - Threshold = 0

This test case implies a threshold value of zero. If we allow for a number of non-conforming
cells (NCC) greater than zero, then the test case definition is as shown in Fig. 10. The difference
compared to the previously discussed test case i1s that whenever an ATM cell arrives before T'
time units, then counter NCC is incremented and is checked against the defined threshold. Time
option N on line 2 instructs the system not to pre-empt the time constraint of the current set of
alternatives. If control returns to level L2 from line 5, the enabling time is not updated.

We have shown the use of time labels and time options. Without time options the specification
of both test cases would have been more complex. For the first test case it would have been
necessary to introduce a second alternative similar to line 2 of Fig. 10 instead of using time option
M. For the second test case without time option N calculations of absolute and relative time values
would have be necessary in order to adjust FET. Nonetheless, without real-time features, test
case specification for both scenarios would have not been possible.

Test Case Dynamic Behaviour
Nr | L Time TOptions | Behaviour Description C |V C
1 0, INFINITY UNI 7 ATM-Cell (NCC :=0) | *
2 L2 |0,T N UNI ? ATM-Cell *

(NCC := NCC + 1)

3 0,0 [NCC > Threshold] FAIL
4 0,0 [NCC <= Threshold]
5 -> L2
6 T, INFINITY UNI ? ATM-Cell *
7 -> L2

Figure 10: Real-Time TTCN Behaviour Description for GCRA - Threshold > 0

5 Conclusions and Outlook

We have defined syntax and semantics of real-time TTCN. On a syntactical level, TTCN statements
can be annotated by time labels. Time labels are interpreted as earliest and latest execution times
of TTCN statements relative to the enabling time of the TTCN statement. The operational
semantics of real-time TTCN has been defined in terms of a refined snapshot semantics, thereby

emphasising the close relationship of TTCN and real-time TTCN. If we assume that no time values
are defined (in this case EET and LET are zero and infinity, respectively), execution of a test case
results in the same sequence of state-transitions as in TTCN. Therefore, our definition of real-time
TTCN is compatible to TTCN.

Real-time TTCN combines property and requirement oriented specification styles. Time labels
for TTCN statements, in general, define real-time constraints for the test system. A test system
should be implemented so that it can comply with all properties defined. Time labels for RECEIVE
and OTHERWISE events, which imply a communication with the IUT, define requirements on the
IUT and the underlying service provider. For real-time TTCN, the underlying service provider
should also be sufficiently fast with respect to the timing of activities. Therefore, if a timing
constraint of a RECEIVE or OTHERWISE event is violated, this clearly is an indication that the
IUT is faulty and the test run should end with a FAIL verdict assignment.

Our future work will focus on the definition of appropriate test architectures for testing real-
time requirements and on the development of editors, compiler and run-time libraries for real-time
TTCN. A possible theoretical extension of our approach is to allow the use of time labels at a more
detailed level, e.g., the annotation of test events, assignments and timer operations (an extension

of [20, 21]).

Acknowledgements. The authors are indebted to Stefan Heymer for proofreading and for his
detailed comments on earlier drafts of this paper.

References

[1] A. Ates, B. Sarikaya. Test sequence generation and timed testing. In Computer Networks and
ISDN Systems, Vol. 29, 1996.

[2] H. Bowman, L. Blair, G. Blair, A. Chetwynd. A Formal Description Technique Supporting
Ezpression of Quality of Service and Media Synchronization. In Multimedia Transport and
Teleservices. LNCS 882, 1994.

[3] B. Berthomieu, M. Diaz. Modeling and Verification of Time Dependent Systems Using Time
Petri Nets. In IEEE Transactions on Software Engineering, Vol. 17, No. 3, March 1991.

[4] S. Fischer. Implementation of multimedia systems based on a real-time extension of Estelle.
In Formal Description Techniques IX Theory, application and tools, 1996.

[6] F. Halsall, Data Communications, Computer Networks and Open Systems, Addison-Wesley,
1994.

[6] T. Henzinger, Z. Manna, A. Pnueli. Timed Transition Systems. In Real-Time: Theory in
Practice. LNCS 600, 1991.

[7] D. Hogrefe, S. Leue. Specifying Real-Time Requirements for Communication Protocols. Tech-
nical Report TAM 92-015, University of Berne, 1992.

[8] ISO/IEC. Information Technology - OSI - Conformance Testing Methodology and Framework
- Part 1: General Concepts. ISO/TEC IS 9646-1, 1994.

[9] ISO/IEC. Information Technology - OSI - Conformance Testing Methodology and Framework
- Part 3: The Tree and Tabular Combined Notation (TTCN). ISO/IEC IS 9646-3, 1996.

[10] F. Kristoffersen, T. Walter. TTCN: Towards a formal semantics and validation of test suites.
In Computer Network and ISDN Systems, Vol. 29, 1996.

[11] L. Léonard, G. Leduc. An Enhanced Version of Timed LOTOS and its Application to a Case
Study. In Formal Description Techniques VI, North-Holland, 1994.

[12] S. Leue. Specifying Real-Time Requirements for SDL Specifications - A Temporal Logic Based
Approach. In Protocol Specification, Testing and Verification XV, 1995.

[13] R. Linn. Conformance FEvaluation Methodology and Protocol Testing. In TEEE Journal on
Selected Areas in Communications, Vol. 7, No. 7, 1989.

[14] P. Merlin, D. Faber. Recoverability of Communication Protocols. In IEEE Transactions on
Communication, Vol. 24, No. 9, September 1976.

[15] M. Prycker. Asynchronous transfer mode: solutions for broadband ISDN, 3rd Edition, Prentice
Hall, 1995.

[16] R. Probert, O. Monkewich. TTCN: The International Notation for Specifying Tests of Com-
munications Systems. In Computer Networks and ISDN Systems, Vol. 23, 1992.

[17] J. Quemada, A. Fernandez. Introduction of Quantitative Relative Time into LOTOS. In Pro-
tocol Specification, Testing and Verification VII, North-Holland, 1987.

[18] B. Sarikaya. Conformance Testing: Architectures and Test Sequences. In Computer Networks
and ISDN Systems, Vol. 17, 1989.

[19] 1. Sommerville. Software engineering. 3rd Edition, Addison-Wesley, 1989.

[20] T. Walter, J. Ellsberger, F. Kristoffersen, P.v.d. Merkhof. A Common Semantics Represen-
tation for SDL and TTCN. In Protocol Specification, Testing and Verification XII, North-
Holland, 1992.

[21] T. Walter, B. Plattner. An Operational Semantics for Concurrent TTCN. In Proceedings
Protocol Test Systems V, North-Holland, 1992.

[22] T. Walter, J. Grabowski. A Proposal for a Real-Time Extension for TTCN. In Kommunikation
in Verteilten Systemen 97, Informatik aktuell, Springer Verlag, 1997.

