
Test Case Speci�cation with Real-Time TTCNThomas Waltera and Jens GrabowskibaSwiss Federal Institute of Technology Zurich, Computer Engineering and Networks Laboratory (TIK),CH-8092 Zurich, Switzerland, e-mail: walter@tik.ee.ethz.ch, http://www.tik.ee.ethz.ch/bUniversity of L�ubeck, Institute for Telematics, Ratzeburger Allee 160, D-23538 L�ubeck, Germany,e-mail: jens@itm.mu-luebeck.de, http://www.itm.mu-luebeck.de/AbstractThe ever increasing dissemination of distributed real-time and multimedia applications makestesting of real-time constraints an important issue. The current conformance testing methodol-ogy does not de�ne the means to cope with this new requirement. Especially, the test notationTTCN (Tree and Tabular Combined Notation) cannot be used to express and thus test real-time behaviour. In order to adapt the well established conformance testing methodology tothis new need, we extend TTCNwith real-time features. This is achieved by annotating TTCNstatements with time intervals specifying the earliest and latest execution times. In this paperwe introduce real-time TTCN and discuss its features and characteristics. To motivate ourwork, in the main part of the paper we evaluate real-time TTCN against TTCN and assessits suitability for testing real-time constraints by de�ning test cases for real applications. Itturns out that without additional assumptions concerning the execution speed of test systems,TTCN cannot be used for testing real-time constraints.1 IntroductionFor years testing is known as a process for validating software, i.e., checking that software meets theexpectations of its users [19]. The advantages and disadvantages of testing compared to rigorousformal veri�cation are: Firstly, it is a generally applicable process. Secondly, it is a theoreticallywell understood process for which methods and techniques exist to derive test data from speci�ca-tions. Thirdly, testing is a cost-e�ective process, if one considers the trade-o� between resourcesspent and software quality achieved. One of the disadvantages is that testing does not proveabsence of errors in the tested software.Testing, or to be precise conformance testing, is also the generally applied process in validatingcommunication software. A conformance testing methodology and framework has been standard-ised by ISO (International Organisation for Standardisation) and ITU (International Telecom-munication Union) [8]. An essential part of this methodology is a notation for the de�nition ofconformance test cases, called TTCN (Tree and Tabular Combined Notation) [9]. TTCN has beendesigned for protocols and systems for which in general timing between communicating entitiesis not an issue. Test cases are speci�ed as sequences of test events. The relative ordering of testevents is de�ned in a behaviour description.For some years, the situation and thus the requirements for testing are changing. Two mainnew kinds of distributed services and systems can be identi�ed: real-time and multimedia systems.Real-time systems stem from the use of computers for controlling physical devices and processes.For these systems, real-time communication is essential for their correct behaviour. Multimediasystems on the other hand involve the transmission of several continuous streams (of bits) betweensource and sink and their timely reproduction at the sink (e.g., synchronisation of audio and video).As pointed out in, e.g., [1], TTCN is not an appropriate test notation for testing real-time andmultimedia systems: Firstly, test events in TTCN are meant to be used for message-based systemsand not for stream-based systems. Secondly, in TTCN, real-time can only be approximated butnot speci�ed exactly. In this paper we de�ne a real-time extension of TTCN as a contribution forsolving the latter problem.Our extension of TTCN to real-time TTCN is on a syntactical and a semantical level. Inparticular, the syntactical di�erence is that for real-time TTCN we allow an annotation of test

events with an earliest execution (EET) and a latest execution time (LET). Informally, a test eventmay be executed if it has been continuously enabled for at least EET units and it must be executedif it has been continuously enabled for LET units. Test events are executed instantaneously. Ourapproach is similar to [2, 3, 4, 7, 11, 12, 14, 17].The paper proceeds as follows: The next two sections introduce TTCN and real-time TTCN,respectively. A discussion of the features of real-time TTCN is done in Section 4, where real-timeTTCN is used for the de�nition of test cases for the generic cell rate algorithm used for tra�ccontrol in ATM networks. We conclude the paper with a characterisation of real-time TTCN andan outlook.2 TTCN - Tree and Tabular Combined NotationTTCN is a notation for the description of test cases to be used in conformance testing. For thepurpose of this paper we restrict our attention to TTCN concepts related to the description of thedynamic test case behaviour. Further details on TTCN can be found in [9, 10, 13, 16, 18].2.1 Abstract Testing Methods and TTCNA test case speci�es which outputs from an implementation under test (IUT) can be observed andwhich inputs to an IUT can be controlled. Inputs and outputs are either abstract service primitives(ASPs) or protocol data units (PDUs). In general, several concurrently running distributed testcomponents (TC) participate in the execution of a test case. TCs are interconnected by coordinationpoints (CPs) through which they asynchronously exchange coordination messages (CMs). TCs andIUT logically communicate by exchanging PDUs which are embedded in ASPs exchanged at pointsof control and observation (PCOs), which are interfaces above and below the IUT. Since in mostcases the lower boundary of an IUT does not provide adequate PCO interfaces, TCs and IUTcommunicate by using services of an underlying service provider.2.2 Test Case Dynamic Behaviour DescriptionsThe behaviour description of a TC consists of statements and verdict assignments. A verdictassignment is a statement concerning the conformance of an IUT with respect to the sequence ofevents that have been performed. A PASS verdict is assigned if the IUT passes the test, FAIL isgiven if the IUT contradicts the speci�cation, and INCONCLUSIVE is assigned if neither a PASSnor a FAIL verdict can be assigned. TTCN statements are test events (SEND, IMPLICIT SEND,RECEIVE, OTHERWISE, TIMEOUT and DONE), constructs (CREATE, ATTACH, ACTIVATE,RETURN, GOTO and REPEAT) and pseudo events (quali�ers, timer operations and assignments).Statements can be grouped into statement sequences and sets of alternatives. In the graphicalform of TTCN, sequences of statements are represented one after the other on separate lines andbeing indented from left to right. The statements on lines 1 - 6 in Fig. 1 are a statement sequence.Statements on the same level of indentation and with the same predecessor are alternatives. InFig. 2 the statements on lines 4 and 6 form a set of alternatives: they are on the same level ofindentation and have the statement on line 3 as their common predecessor.2.3 Test Component ExecutionA TC starts the execution of a behaviour description with the �rst level of indentation (line 1 inFig. 1), and proceeds towards the last level of indentation (line 6 in Fig. 1). Only one alternativeout of a set of alternatives is executed, and test case execution proceeds with the next level ofindentation relative to the executed alternative. For example, in Fig. 2 the statements on line 4and line 6 are alternatives. If the statement on line 4 is executed, processing continues with thestatement on line 5. Execution of a behaviour description stops if the last level of indentation hasbeen visited, a test verdict has been assigned, or a test case error has occurred.Before a set of alternatives is evaluated, a snapshot is taken [9], i.e., the state of the TC andthe state of all PCOs, CPs and expired timer lists related to the TC are updated and frozen untilthe set of alternatives has been evaluated. This guarantees that evaluation of a set of alternativesis an atomic and deterministic action.

Test Case Dynamic BehaviourNr Label Behaviour Description CRef V Comments1 CP ? CM connected RECEIVE2 (NumOfSends := 0) Assignment3 REPEAT SendData ConstructUNTIL [NumOfSends > MAX]4 START Timer Timer Operation5 ?TIMEOUT timer TIMEOUT6 L ! N-DATA request data SENDFigure 1: TTCN Behaviour Description - Sequence of StatementsTest Case Dynamic BehaviourNr Label Behaviour Description CRef V Comments1 [TRUE] Quali�er2 L1 (NumOfSends := NumOfSends + 1)3 +SendData ATTACH4 [NOT NumOfSends > MAX] Alternative 15 -> L1 GOTO6 [NumOfSends > MAX] Alternative 2Figure 2: TTCN Behaviour Description - Set of AlternativesAlternatives are evaluated in sequence, and the �rst alternative which is evaluated successfully(i.e., all conditions of that alternative are ful�lled [9]) is executed. Execution then proceeds with theset of alternatives on the next level of indentation. If no alternative can be evaluated successfully,a new snapshot is taken and evaluation of the set of alternatives is started again.3 Real-Time TTCNReal-time TTCN extends TTCN on a syntactical and a semantical level (see [22] for a preliminaryversion of real-time TTCN). Syntactically, in real-time TTCN we allow an annotation of test eventswith an earliest execution time (EET) and a latest execution time (LET). To be more precise,our extensions of TTCN comprise the de�nition of a table for the speci�cation of time names andtime units and the addition of two columns in the behaviour description tables for the annotationof TTCN statements. Informally, a test event may be executed if it has been continuously enabledfor at least EET units and it must be executed if it has been continuously enabled for LET units.Test events are executed instantaneously.In [22], we have de�ned an operational semantics based on timed transition systems [6]. Toemphasise the similarities of TTCN and real-time TTCN we follow an alternative approach for ade�nition of semantics, i.e., we propose a re�ned snapshot semantics which takes time annotationsof TTCN statements into account.3.1 Syntax of Real-Time TTCNIn real-time TTCN, timing information is added in the declarations and the dynamic part of a testsuite.As shown in Fig. 3 he speci�cation of time names, time values and units is done in an ExecutionTime Declarations table1. Time names are declared in the Time Name column. Their values andthe corresponding time units are speci�ed on the same line in the Value and Unit columns. Thedeclaration of time values and time units is optional.EET and LET2 are prede�ned time names with default values 0 and in�nity. Default timevalues can be overwritten (Fig. 3). If time values are not speci�ed the default time values 0 andin�nity apply for EET and LET .Besides the static declarations of time values in an Execution Time Declarations table, changingthese values within a behaviour description table can be done by means of assignments (Fig. 4).1Apart from the headings the table looks much like the TTCN Timer Declarations table.2We use di�erent font types for distinguishing between syntax, EET and LET, and semantics, EET and LET .

Execution Time DeclarationsTime Name Value Unit CommentsEET 1 s EET valueLET 1 min LET valueWFN 5 ms Wait For NothingNoDur min No speci�ed valueFigure 3: Execution Time Declarations TableTest Case Dynamic BehaviourNr Label Time TOptions Behaviour Description C V Comments1 L1 2, 4 M A ? DATA request Time labelMandatory EET2 (NoDur := 3) Time assignment3 2, NoDur A ! DATA ack4 (LET := 50) LET update (ms)5 A ? Data request6 L1 + WFN, M, N B ? Alarm Mandatory EETL1 + LET not pre-emptiveFigure 4: Adding EET and LET values to behaviour linesHowever, evaluation of time labels should alway result in EET and LET values for which 0 �EET � LET holds. As indicated in Fig. 4 we add a Time and a Time Options column to Test CaseDynamic Behaviour tables (and similar for Default Dynamic Behaviour and Test Step DynamicBehaviour tables). An entry in the Time column speci�es EET and LET for the correspondingTTCN statement. Entries may be constants (e.g., line 1 in Fig. 4), time names (e.g., the use ofNoDur on line 3), and expressions (e.g., line 6).In general, EET and LET values are interpreted relative to the enabling time of alternativesat a level of indentation, i.e., the time when the level of indentation becomes the current level.However, some applications may require to de�ne EET and LET values relative to the executionof an earlier test event, i.e, not restricted just to the previous one. In support of this requirement,a label in the Label column may not only be used in a GOTO but can also be used in the Timecolumn, so that EET and LET values are computed relative to the execution time of the alternativeidenti�ed by the label: In Fig. 4 on line 6 the time labels (L1 + WFN, L1 + LET) are referring tothe execution time of the alternative in line 1 (for which label L1 is de�ned).Entries in the Time Options column are combinations of symbols M and N. Similar to usinglabels in expressions, time option N allows to express time values relative to the alternative's ownenabling time even though some TTCN statements being executed in between two successive visitsof the same level of indentation.Thus, the amount of time needed to execute the sequence of TTCN statements in between twosuccessive visits is compensated. If time option N is de�ned, then execution of this alternative isnot pre-emptive with respect to the timing of all alternatives at the same level of indentation.In some executions of a test case, a RECEIVE or OTHERWISE event may be evaluated suc-cessfully before it has been enabled for EET units. If it is intended to de�ne EET as a mandatorylower bound when an alternative may be evaluated successfully, then time option M has to be spec-i�ed. Informally, if time option M is speci�ed and the corresponding alternative can be successfullyevaluated before it has been enabled for EET units, then this results in a FAIL verdict.3.2 Snapshot Semantics of Real-Time TTCNIn this section we develop a snapshot semantics for RT-TTCN (for more details see also [22]). Weassume that the current level of indentation has been expanded as de�ned in Annex B of [9] andthat its general form is A1[eexp1; lexp1]; : : : ; An[eexpn; lexpn], where Ai denotes an alternative andeexpi, lexpi are expressions for determining EET and LET values. The evaluation of expressionseexpi and lexpi depends on whether eexpi and lexpi make use of a label Ln. If so, absolute timereferences are converted into time references relative to the enabling time of the current set ofalternatives.

We de�ne the following functions used in the semantics de�nition. Let eval be a function fromtime expressions to time values for EET and LET . Let enablingTime(Ai) be a function thatreturns the time when alternative Ai has been enabled. Notice that for all Ai enablingTime(Ai) isthe same. Let executionTime(Ln) be a function that returns the execution time of an alternativeat the level of indentation are referred to by label Ln. And let NOW be a function that returnsthe current global time. For the evaluation of time expressions the following rules apply:1. If eexpi and lexpi do not involve any operator Ln, then EET = eval (eexpi) and LET =eval(lexpi). It is required that 0 � EET � LET holds.2. If eexpi and lexpi involve an Ln then, �rstly, executionTime(Ln) is substituted for Ln in eexpiand lexpi resulting in expressions eexp0i or lexp0i, and secondly, EET = eval (eexp0i)� NOWand LET = eval(lexp0i) � NOW. It is required that 0 � EET � LET holds. Notice thatabsolute time references eexpi and lexpi are converted into time references EET and LETrelative to the current global time NOW.We say that alternative Ai is potentially enabled if Ai is in the current set of alternatives. Aiis enabled if Ai is evaluated successfully (Sect. 2.3), Ai is executable if Ai is enabled and Ai hasbeen potentially enabled for at least EETi and at most LETi time units. The re�ned snapshotsemantics of real-time TTCN is de�ned as follows:1. (a) If the level of indentation is reached from a preceding alternative (not by a GOTO orRETURN), then all alternatives are marked potentially enabled and the global time istaken and stored. It is accessible by enablingTime(Ai).(b) If the level of indentation is reached by executing a GOTO or RETURN and enabling-Time(Ai) has been frozen earlier, then all alternatives are marked potentially enabledbut enablingTime(Ai) is not updated.(c) If the level of indentation is reached by executing a GOTO or RETURN but enabling-Time(Ai) has not been frozen earlier, then all alternatives are marked potentially enabledand the global time is taken and stored. It is accessible by enablingTime(Ai).(d) Otherwise, the steps 1- 4 are iterated again.EET and LET are computed as described above. PCO, CP and expired timer lists arelocked. If for an Ai enablingTime(Ai) + LETi < NOW, then test case execution stops witha FAIL verdict.2. All alternatives which can be evaluated successfully are marked enabled. If for an enabledalternative, say Ai, time option M is set and if NOW < enablingTime(Ai)+EETi, then testcase execution stops with a FAIL verdict. If no alternative in the set of alternatives can beevaluated successfully, then PCO, CP and timer lists are unlocked and processing continueswith Step 1.3. An enabled alternative Ai is marked executable provided that enablingTime(Ai) + EETi �NOW � enablingTime(Ai) + LETi and if there is another enabled alternative Aj withenablingTime(Aj) + EETj � NOW � enablingTime(Aj) + LETj , then i < j, i.e., the i-th alternative precedes the j-th alternative in the set of alternatives. If no alternative canbe marked executable, then PCO, CP and timer lists are unlocked and processing continueswith Step 1.4. An executable alternative Ai is executed. If a label Ln is speci�ed, then the execution time ofthe alternative is recorded (and can be accessed by executionTime(Ln)). If for the executedalternative time option N is speci�ed enablingTime(Ai) is frozen. PCO, CP and timer listsare unlocked. The next level of indentation is visited.Remarks: If any potentially enabled alternative cannot be evaluated successfully before LET , thena speci�ed real-time constraint has not been met and test case execution stops with a FAIL verdict.Conversely, if an alternative can be evaluated successfully before it has been potentially enabledfor EET time units (Step 2), then a de�ned real-time constraints is violated, too. In Step 3, theselection of alternatives for execution from the set of enabled alternatives follows the same rulesas in TTCN [9].

Test Case Dynamic BehaviourNr Label Time Time Options Behaviour Description CRef V C1 L1 2, 4 M PCO1 ? N-DATA indication info2 ...3 -> L14 0, INFINITY PCO2 ? N-ABORT indication abort5 ...Figure 5: Partial Real-Time TTCN Behaviour DescriptionTest Case Dynamic BehaviourNr Label Behaviour Description CRef V C1 L1 START T1(EET)2 ?TIMEOUT T1 START T2(LET-EET)3 PCO1 ? N-DATA indication data4 -> L15 PCO2 ? N-ABORT indication STOP T2 abort INCONC6 ?TIMEOUT T2 FAIL7 PCO2 ? N-ABORT indication STOP T1 abort INCONC8 PCO1 ? OTHERWISE STOP T1 FAILFigure 6: TTCN Behaviour Description for the ISDN Example4 Application of Real-Time TTCN | ISDN and GenericCell Rate AlgorithmIn ISDN (Integrated Services Digital Network) [5], the B-channels are used by applications fordata exchange whereas the D-channel is used for the management of connections between usersor application processes. We consider a scenario where an ISDN connection between test systemand IUT has been established and where PCO1 and PCO2 are the respective B- and D-channelinterfaces. At the B channels we expect to receive user data every EET1 = 2 to LET1 = 4 timeunits. At any time the ISDN connection may be aborted on the D channel.We consider the partial real-time TTCN behaviour description given in Fig. 5. The �rst alter-native A1 may be evaluated successfully and may be executed only in the interval EET1 = 2 andLET1 = 4 because time option M is set on line 1. Let us assume that at T 0 with enablingTime(A1)+EET1 � T 0 � enablingTime(A1) +LET1, an N-DATA indication is received. The �rst alternativemay be executed at T 00 with enablingTime(A1) + EET1 � T 0 � T 00 � enablingTime(A1) + LET1(Step 4) because no other alternative is executable (no N-ABORT indication has been receivedyet). Suppose that an N-DATA indication and an N-ABORT indication have been received atT 000 : T 0 � T 000 � T 00. Then, although both alternatives are executable, the �rst alternative isexecuted because of the ordering of alternatives in the set of alternatives (Step 3). If an N-DATAindication is received at T < enablingTime(Ai) + EET1, then test case execution stops with aFAIL verdict (Step 2). If no N-DATA indication and no N-ABORT indication have been receivedbefore LET1 time units after the alternatives have been potentially enabled, test case executionstops with a FAIL verdict (Step 1).In Fig. 6, a test case in TTCN is given for the ISDN example. The timing constraints on thereception of N-DATA indications are expressed using timers T1 and T2. The alternatives coded onlines 2 and 8 in combination check that an N-DATA indication should not be received before EET(= timer T1); otherwise, test case execution results in a FAIL verdict (line 8). The TIMEOUTevent on line 6 controls the latest execution time, and if timer T2 expires, then this gives a FAILverdict.Let us assume that test case execution is at the third level of indentation (lines 3, 5 and 6)and that TIMEOUT of timer T2 precedes reception of an N-DATA indication. Furthermore, letus assume that the system executing the test case is heavily loaded and therefore evaluation of aset of alternatives lasts too long, so that both events are included in the same snapshot. The latearrival of an N-DATA indication gets undetected because of the ordering of alternatives on line 3,5 and 6. This problem can be �xed if lines 3 and 6 are exchanged. But now let us assume that anN-DATA indication is received before TIMEOUT of timer T2. A fast system will take a snapshot

Non-Conforming Cell ta < TAT - t

TAT = taAt the time of arrival ta of the first cell of the connection,

No

Yes

Next Cell

Conforming Cell
tTAT = max(, TAT) + Ta

aArrival of a Cell at time t

Figure 7: Generic Cell Rate Algorithm (GCRA) - Virtual Scheduling [15]which includes the N-DATA indication only, whereas a slow system will take a snapshot whichincludes an N-DATA indication and a TIMEOUT. If the latter happens, the TIMEOUT succeedsover the RECEIVE event. Unfortunately, the behaviour description does not comply with therequirement stated in [8] \that the relative speed of the systems executing the test case should nothave an impact on the test result" and thus is not valid.In ATM (Asynchronous Transfer Mode) networks [15], network tra�c control is performed toprotect network and users, and to achieve prede�ned network performance objectives. Duringconnection set up a tra�c contract speci�cation is negotiated and agreed upon between usersand network. A contract speci�cation consists of the connection tra�c descriptor, the requestedquality-of-service class and the de�nition of a compliant connection.A connection is termed compliant as long as the number of non-conforming cells does notexceed a threshold value negotiated and agreed upon in the tra�c contract. If the number ofnon-conforming cells exceeds the threshold, then the network may abort the connection. Theprocedure that determines conforming and non-conforming cells is known as the generic cell ratealgorithm (GCRA, Fig. 7) [15]: The algorithm calculates the theoretically predicted arrival times(TAT) of cells assuming equally spaced cells when the source is active. The spacing between cells isdetermined by the minimum inter-arrival time T between cells, which computes to T = 1=Rp withRp being the peak cell rate (per seconds) negotiated for the connection. If the actual arrival timeof a cell ta is after TAT� � , � the cell delay variation tolerance caused, for instance, by physicallayer overhead, then the cell is a conforming cell; otherwise, the cell is arriving too early and thusis being considered as a non-conforming cell.A possible test purpose derivable from the informal de�nition of tra�c contract speci�cationand GCRA may be as follows: \It is to be tested that the amount of tra�c (in terms of ATMcells) generated at the UNI is compliant to the tra�c contract speci�cation".For the following discussion we assume a testing scenario as depicted in Fig. 8. The IUT,i.e., the end-system of the user, is connected to an ATM switch which in this scenario is the testsystem. Several tra�c sources may generate a continuous stream of ATM cells which is, by thevirtual shaper, transformed into a cell stream compliant with the tra�c contract. It is the testsystem that checks compliance of the received cell stream to the tra�c contract.The de�nition of a test case assumes that a connection has already been established, so thata tra�c contract speci�cation is available. From the tra�c contract, parameters Rp, T and � canbe extracted which are assigned to test case variables. The threshold value (for determining whena connection is to be aborted) is provided as a test suite parameter. For simplicity we let � = 0.The de�nition of the dynamic test case behaviour (Fig. 9) is based on the observation thataccording to the GCRA (Fig. 7), except for the �rst cell, at most every T (= EET) time units anATM cell is expected from the IUT. Since we do not expect an ATM cell to arrive before T timeunits, time option M is de�ned. If an ATM cell arrives before T time units, then the test case isterminated with a FAIL verdict.

MUX Virtual Shaper

Physical Layer

ATM Layer

Phy Laser SAP
T

ra
ff

ic
 S

ou
rc

es

CDV tolerance

UNI

ATM Switch
performing

control
traffic

Implementation Under Test Test SystemFigure 8: Generic Cell Rate Algorithm - Testing Scenario [15]Test Case Dynamic BehaviourNr L Time T Options Behaviour Description C V C1 0, INFINITY UNI ? ATM-Cell * First cell toinitialise GCRA2 L2 T, INFINITY M UNI ? ATM-Cell *3 -> L2Figure 9: Real-Time TTCN Behaviour Description for GCRA - Threshold = 0This test case implies a threshold value of zero. If we allow for a number of non-conformingcells (NCC) greater than zero, then the test case de�nition is as shown in Fig. 10. The di�erencecompared to the previously discussed test case is that whenever an ATM cell arrives before Ttime units, then counter NCC is incremented and is checked against the de�ned threshold. Timeoption N on line 2 instructs the system not to pre-empt the time constraint of the current set ofalternatives. If control returns to level L2 from line 5, the enabling time is not updated.We have shown the use of time labels and time options. Without time options the speci�cationof both test cases would have been more complex. For the �rst test case it would have beennecessary to introduce a second alternative similar to line 2 of Fig. 10 instead of using time optionM. For the second test case without time option N calculations of absolute and relative time valueswould have be necessary in order to adjust EET . Nonetheless, without real-time features, testcase speci�cation for both scenarios would have not been possible.Test Case Dynamic BehaviourNr L Time TOptions Behaviour Description C V C1 0, INFINITY UNI ? ATM-Cell (NCC := 0) *2 L2 0, T N UNI ? ATM-Cell *(NCC := NCC + 1)3 0, 0 [NCC > Threshold] FAIL4 0, 0 [NCC <= Threshold]5 -> L26 T, INFINITY UNI ? ATM-Cell *7 -> L2Figure 10: Real-Time TTCN Behaviour Description for GCRA - Threshold > 05 Conclusions and OutlookWe have de�ned syntax and semantics of real-time TTCN. On a syntactical level, TTCN statementscan be annotated by time labels. Time labels are interpreted as earliest and latest execution timesof TTCN statements relative to the enabling time of the TTCN statement. The operationalsemantics of real-time TTCN has been de�ned in terms of a re�ned snapshot semantics, thereby

emphasising the close relationship of TTCN and real-time TTCN. If we assume that no time valuesare de�ned (in this case EET and LET are zero and in�nity, respectively), execution of a test caseresults in the same sequence of state-transitions as in TTCN. Therefore, our de�nition of real-timeTTCN is compatible to TTCN.Real-time TTCN combines property and requirement oriented speci�cation styles. Time labelsfor TTCN statements, in general, de�ne real-time constraints for the test system. A test systemshould be implemented so that it can comply with all properties de�ned. Time labels for RECEIVEand OTHERWISE events, which imply a communication with the IUT, de�ne requirements on theIUT and the underlying service provider. For real-time TTCN, the underlying service providershould also be su�ciently fast with respect to the timing of activities. Therefore, if a timingconstraint of a RECEIVE or OTHERWISE event is violated, this clearly is an indication that theIUT is faulty and the test run should end with a FAIL verdict assignment.Our future work will focus on the de�nition of appropriate test architectures for testing real-time requirements and on the development of editors, compiler and run-time libraries for real-timeTTCN. A possible theoretical extension of our approach is to allow the use of time labels at a moredetailed level, e.g., the annotation of test events, assignments and timer operations (an extensionof [20, 21]).Acknowledgements. The authors are indebted to Stefan Heymer for proofreading and for hisdetailed comments on earlier drafts of this paper.References[1] A. Ates, B. Sarikaya. Test sequence generation and timed testing. In Computer Networks andISDN Systems, Vol. 29, 1996.[2] H. Bowman, L. Blair, G. Blair, A. Chetwynd. A Formal Description Technique SupportingExpression of Quality of Service and Media Synchronization. In Multimedia Transport andTeleservices. LNCS 882, 1994.[3] B. Berthomieu, M. Diaz. Modeling and Veri�cation of Time Dependent Systems Using TimePetri Nets. In IEEE Transactions on Software Engineering, Vol. 17, No. 3, March 1991.[4] S. Fischer. Implementation of multimedia systems based on a real-time extension of Estelle.In Formal Description Techniques IX Theory, application and tools, 1996.[5] F. Halsall, Data Communications, Computer Networks and Open Systems, Addison-Wesley,1994.[6] T. Henzinger, Z. Manna, A. Pnueli. Timed Transition Systems. In Real-Time: Theory inPractice. LNCS 600, 1991.[7] D. Hogrefe, S. Leue. Specifying Real-Time Requirements for Communication Protocols. Tech-nical Report IAM 92-015, University of Berne, 1992.[8] ISO/IEC. Information Technology - OSI - Conformance Testing Methodology and Framework- Part 1: General Concepts. ISO/IEC IS 9646-1, 1994.[9] ISO/IEC. Information Technology - OSI - Conformance Testing Methodology and Framework- Part 3: The Tree and Tabular Combined Notation (TTCN). ISO/IEC IS 9646-3, 1996.[10] F. Kristo�ersen, T. Walter. TTCN: Towards a formal semantics and validation of test suites.In Computer Network and ISDN Systems, Vol. 29, 1996.[11] L. L�eonard, G. Leduc. An Enhanced Version of Timed LOTOS and its Application to a CaseStudy. In Formal Description Techniques VI, North-Holland, 1994.[12] S. Leue. Specifying Real-Time Requirements for SDL Speci�cations - A Temporal Logic BasedApproach. In Protocol Speci�cation, Testing and Veri�cation XV, 1995.

[13] R. Linn. Conformance Evaluation Methodology and Protocol Testing. In IEEE Journal onSelected Areas in Communications, Vol. 7, No. 7, 1989.[14] P. Merlin, D. Faber. Recoverability of Communication Protocols. In IEEE Transactions onCommunication, Vol. 24, No. 9, September 1976.[15] M. Prycker. Asynchronous transfer mode: solutions for broadband ISDN, 3rd Edition, PrenticeHall, 1995.[16] R. Probert, O. Monkewich. TTCN: The International Notation for Specifying Tests of Com-munications Systems. In Computer Networks and ISDN Systems, Vol. 23, 1992.[17] J. Quemada, A. Fernandez. Introduction of Quantitative Relative Time into LOTOS. In Pro-tocol Speci�cation, Testing and Veri�cation VII, North-Holland, 1987.[18] B. Sarikaya. Conformance Testing: Architectures and Test Sequences. In Computer Networksand ISDN Systems, Vol. 17, 1989.[19] I. Sommerville. Software engineering. 3rd Edition, Addison-Wesley, 1989.[20] T. Walter, J. Ellsberger, F. Kristo�ersen, P.v.d. Merkhof. A Common Semantics Represen-tation for SDL and TTCN. In Protocol Speci�cation, Testing and Veri�cation XII, North-Holland, 1992.[21] T. Walter, B. Plattner. An Operational Semantics for Concurrent TTCN. In ProceedingsProtocol Test Systems V, North-Holland, 1992.[22] T. Walter, J. Grabowski.A Proposal for a Real-Time Extension for TTCN. In Kommunikationin Verteilten Systemen '97, Informatik aktuell, Springer Verlag, 1997.

