
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer zai-bsc-2011-17

Bachelorarbeit
im Studiengang "Angewandte Informatik"

Using Cloud Computing Resources in
Grid Systems: An Integration of Ama-

zon Web Services into UNICORE 6

Maik Doleys

am Institut für

Informatik
Gruppe Softwaretechnik für Verteilte Systeme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

October 14, 2011



Georg-August-Universität Göttingen
Zentrum für Informatik

Goldschmidtstraße 7
37077 Göttingen
Germany

Tel. +49 (5 51) 39-17 42010

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de



Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den October 14, 2011





Bachelor’s thesis

Using Cloud Computing Resources in Grid
Systems: An Integration of Amazon Web Ser-

vices into UNICORE 6

Maik Doleys

October 14, 2011

Supervised by Prof. Dr. Jens Grabowski
Software Engineering for Distributed Systems Group

Georg-August-Universität Göttingen



Abstract

The cloud computing paradigm overcomes its infancy. While the demand of resources for
scalable computational systems increases, the integration of cloud computing resources
into grid systems can become a potential extension for grid systems.
This thesis presents possible designs that integrate cloud computing resources into grid
systems. General requirements and aspects for such integration designs are provided and
discussed. Furthermore, we implement a design that automatically integrates resources
from the Amazon Web Services (AWS) cloud computing environment into the Uniform
Interface to Computing Reources (UNICORE) 6 grid environment.
This implementation has been validated with test specifications verifies, which shows the
possibility of extending grid resources with resources of a cloud environment.
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1 Introduction

The concept of grid systems evolved in the 1990s, since this time definitions and use cases
for grid systems were developed and defined. But never the less, use cases for grid com-
puting still evolves. The cloud computing paradigm is relatively new compared to grid
systems. It was developed by global companies as Amazon, Google and Yahoo. These
companies needed huge amounts of computing power to serve request peaks at their ser-
vices. At the beginning of the 21th century the companies had the idea to sell their com-
puting resources that they do not need in idle times to the public. Offering these computer
resources to the public was the beginning of the cloud computing paradigm; from then on
the term cloud computing was widely discussed. In the year 2009, the National Institute
of Standards and Technology (NIST) published a clear definition of the cloud-computing
paradigm that gains a wide range of agreement [78]. But during the writing of this thesis,
we notice the increase in the number and type of cloud services.
However, with the integration of cloud computing resources into grid systems, a new use
case for the cloud computer paradigm can be developed. We think in the combination of
grid systems and cloud computing environments lies huge possibilities for both, e.g. grid
systems can get more flexible in resource allocation and the cloud computing paradigm
could adopt techniques and standards from the grid systems. We want to provide ideas
and discussion about abstract scenarios on how to integrate cloud resources into grid sys-
tems. Furthermore, we implement our idea to proof that it is possible to integrate cloud
computing resources into grid systems. In a nutshell, we create a small piece towards the
integration of the cloud computing paradigma into grid systems.

Motivation

Grid systems provide services to use distributed computing resources and cloud comput-
ing provides computing resources and services. Because of the coherence between grid
and cloud computing the idea to integrate cloud computing, resources into grid systems
seems nearby. To increase the amount of available computing resources for grid environ-
ments, we identified two possibilities. First, buy and build physical computing hardware
resources and add them to the grid. Second add another already existing distributed com-
puting resource to the grid. In the first solution, the grid user needs time to create comput-
ing resources, furthermore long-term investments are necessary and altogether it seems to
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1 Introduction

be an inflexible solution to extend the grid resources dynamically by the users demand.
For the second solution, the grid user has to find stakeholders that offer the user the usage
of hardware resources, depending on the grid users demand. These already existing dis-
tributed computing resources from the second solution can be cloud computing resources.
To include cloud computing resources into grid systems dynamically seem to be a flexible
solution to extend the resources of existing grid environments.
However, to use cloud computing resources in grid systems promises some advantages.
The allocation of cloud computing resources seems to be very flexible. It is possible to rent
cloud computing resources on fixed time rates and the allocation of cloud resources can
absorb peaks of resource requests in grid systems.
Our grid system resources in the Institute of Computer Science at the Georg-August Uni-
versity are limited to the existing hardware resource. To increase the possible amount of
grid resources, we are not able to increase the physical amount of our computing hard-
ware. For this reason, it could be a solution for us to use cloud computing resources to
extend our grid resources on demand.

Goal Description

This thesis analyses possible abstract scenarios on how to integrate cloud computing re-
sources in grid environments. We present general requirements and aspects how to classify
such integration scenarios. Furthermore, we provide our implementation that integrates
automatically cloud computing resources in grid environments. In this implementation
we extend the UNICORE High Level (HiLA) shell with an extension that automatically
make cloud computing resources available from the AWS cloud. To validate our imple-
mented extension in the UNICORE HiLA shell, we provide test specification to test the
grid infrastructure and possible usability of the UNICORE grid in the AWS cloud.

Thesis Structure

The thesis is structured in five chapters. In Chapter 2, we describe the technical base for
our thesis that are computer clusters, grid computing and the cloud computing paradigm.
In Chapter 3, we provide abstract scenarios on how to extend grids with cloud comput-
ing resources. Furthermore, we list and discuss general requirements and aspects on how
to analyse scenarios that extend grid environments. In Chapter 4, we introduce and ex-
plain our implementation that extends UNICORE with resources from the AWS cloud. In
addition, we validate our implementation with example case studies about using AWS re-
sources in the UNICORE grid environment. In the Chapter 5, we summarize and discuss
our thesis and provide suggestions for ongoing works on the thesis content.
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2 Foundation

In this chapter, we explain the technical concepts and services that build the basis of this
thesis. In Section 2.1 we introduce the computer cluster paradigm. In Section 2.2, we
provide a introduction to grid computing systems and the UNICORE grid environment
and it’s components. Furthermore, in Section 2.3 we provide a definition for the cloud
computing paradigm and explain the technical details. In addition, we introduce the AWS
cloud computing environment with it components.

2.1 Computer Clusters

A computer cluster connects computer resources to achieve a computing machine with
more computing power than a single computer could ever reach. Computing power of
individual computers is always limited, because of physical laws or financial costs. How-
ever, by connecting different computing units, these limits can be overcome and a powerful
and inexpensive computing unit can be provided.
Computer cluster use several technologies, the communication between computers is real-
ized by local network connections, for example Local Area Network or InfiniBand. There-
fore the participating computers are arranged in a dedicated network. Computing tasks
can be distributed automatically between these connected computing instances. Cluster
systems are categorized into different categories; High-availability (HA) clusters, Load-
balancing clusters, and compute clusters.
Dividing a computing job into individual disjunctive tasks is the basis of cluster systems.
To dismantle the computing job, the cluster divide it into individual and disjunctive tasks.
The participating computers of the cluster system calculate the tasks. Finally the solution
of the computing job is composed out of the calculated tasks.

2.1.1 Local Resource Management

The Local Resource Management (LRM) concatenates the underlying cluster nodes to a
single system. In Figure 2.1, the LRM resides in the Cluster Middleware architecture. The
LRM creates a Single System Image (SSI) that is deployed on the the cluster resources
[69]. This gives the user of a cluster system the possibility to handle the cluster as a single
system. A cluster LRM system has four components with the following functionality [84]:
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Figure 2.1: Cluster Architecture, [70]

Resource Management The Resource Management component provides status informa-
tion of cluster resources, for example the processor load or the free capacity of disk
storage.

Queuing The queuing components maintains jobs until free cluster resources for execu-
tion are available.

Scheduling The scheduling component allocates cluster resources to jobs that depends on
scheduling policies.

Execution The execution component submits and executes computing taks on allocated
cluster notes and fetches results.

For LRM systems standards do not exist. Therefore information or data exchange between
different LRM is hard to achieve. Different cluster LRM systems are for example, Portable
Batch System (PBS), LoadLeveler, and Load Sharing Facility (LSF).
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2 Foundation

2.1.2 Portable Batch System

PBS is a computing job scheduling software package belonging to the LRM systems. It
was developed for the NASA in the 1990’s. It fits the POSIX Batch Environment Standard.
For this standard, it is able to accept batch jobs that calls a shell script and manage job
execution from scheduling to fetching the result [45].
Currently, there are three different versions of PBS available:

OpenPBS The OpenPBS version is not maintained anymore, but it is the source for the
following [44].

TORQUE The TORQUE version is an improved fork of the original OpenPBS system.
The TORQUE software is maintained by Cluster Resources Inc. and it is used in
subsection 4.5.3 later in this thesis [57].

PBS Professional The PBS Professional is a commercial version of PBS, developed by Al-
tair Engineering [47].

All three versions have a similar underlying architecture, as shown in Figure 2.2 [76], that
sketches a multi host environment. The Host A is the minimal working environment,
which can be extended by several execution hosts, such as Hosts B and Host C. A commu-
nication procedue between the components for job execution demonstrates the numbers
one to eight.

PBS contains four main components. They are categorized into user-level commands
and system-daemons. Together, they implement the four components of a cluster LRM
system. These components are described in the following [77] [57]:

Commands Negotiation possibilities with the PBS system are POSIX conform line com-
mands or a Graphical User Interface (GUI). Three categories of commands are avail-
able: user commands, operator commands, and administrator commands. They
achieve the monitoring and management of jobs or configure the system. These com-
mands can be executed on a machine without presence of the PBS daemons.

Job Server The PBS_server daemon is the heart of the PBS system. All other daemons and
commands interact over Internet Protocol (IP) protocols with this central instance.
The server manages the queues for the scheduler and takes supervision over the jobs.

Job Executer MOM The PBS_mom daemons move jobs into execution and fetch the out-
come. At least there must be a daemon on every worker node that executes jobs.

Job Scheduler The PBS_sched daemon manages resources and information for job execu-
tion between the moms and the PBS_server. The job scheduler daemon decides about
job execution and resource allocation depending on the sites policies.
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Figure 2.2: PBS Architecture [76]

2.2 Grid Computing

Grid computing systems connect distributed heterogeneous computers and computing re-
sources and provide applications to manage compute cluster and storage to achieve a co-
herent and powerful system for the user. Grid computing has a long time of groundwork
behind it. During the development of the grid computing concept many different defi-
nitions were published. In the beginning the term grid computing was widely used and
under this circumstance even normal personal computers could be called as grids. But
does, for example, accessing computing storage over a local network form a storage grid?
Could every personal computer be seen as a grid? To develop the grid computing further
a precise definition was necessary.
A widely accepted definition is mentioned in “The Grid: Blueprint for a New Computing
Infrastructure ” 1998 by I.Foster and C. Kesselman [75]. In the year 2000, I. Foster and C.
Kesselman overworked their definition from 1998 to deal with some upcoming social and
policy issues that where related to grid characteristics of coordinated and shared resources
from different control domains [? ]. The definition from the year 2000 evolves two years
later as a three points checklist that a system must conform to become a grid [74]. Accord-
ing to I. Foster’s and C. Kesselman’s, the three points checklist a grid system must satisfy
the three following points:

• A grid system “coordinates resources that are not subject to centralized control” and
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integrates resources and users from different control domains under the considera-
tion of security, policy, payment, and membership.

• Furthermore a grid system uses “standard, open, general-purpose protocols and in-
terfaces ”. As in difference to the application-specific systems, grid system protocols
and standards have to be standardized and open. And the multi-purpose protocols
and interfaces have to fulfil the grid’s requirements.

• Recently a grid system has “to deliver nontrivial qualities of service” and should
make it possible to combine various resources in a way that this combination is sig-
nificant greater than the sum of the parts.

Grid systems are layer-based architectures. On the top, the user- or access layer is the
entry point for the user. The user-layer comprises the grid-applications and programming
interfaces. In the middle-layer, the grid middleware connects the user-layer with resources
from the bottom layer. Examples for typical grid middleware’s are UNICORE [64], Globus
Toolkit [30], and g-lite [29]. The bottom-layer is responsible for accessing the hardware
specific resources in the grid [72].

2.2.1 Open Grid Service Architecture

The Open Grid Service Architecture (OGSA) that is developed by the Open Grid Forum
(OGF) makes different heterogeneous grid middleware systems interoperable with a stan-
dardized architecture. [43] The OGSA “does not define any standards or technical recom-
mendations” [41], the standard is a very abstract definition of interfaces and requirements
that provide mechanisms for heterogeneous systems in grid environments to communi-
cate and interact. The OGSA architecture defines requirements as “Interoperability and
Support for Dynamic and Heterogeneous Environments”, “Job Execution ”, “Availability
”, etc. [41], furthermore needed and optional components that has to implement these
requirements are defined. For example such components are “, Infrastructure Services ”,
and “ Execution Management ”. All components interact in an service orientated Service
Orieted Architecture (SOA) environment, all components are separated from each other to
achieve a high flexibility inside the OGSA architecture. The separation between the dif-
ferent components achieves to make changes in the OGSA architecture and instantiated
implementations easier [72].

2.2.2 Web Service - Resource Framework

To realize the communication between OGSA components, a stateful communication is
convenient, because it is possible that results from the OGSA components depend on each
other. Based on stateless web services, the grid community developed the Web Service
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- Resource Framework (WS-RF) standard. This service “defines a generic framework for
modelling and accessing persistent resources using Web services “[66] that simplifies the
development of stateful grid services based on the OGSA architecture. This framework
made it possible to achieve a high flexibility handling concrete implementations of the
OGSA components. WS-RF relies on the same technical standards as web services For com-
munication between grid services, the Simple Object Access Protocol (SOAP) [54] protocol
is used and grid services can be described by Web Service Description Language (WSDL)
[72].

2.2.3 UNICORE 6

The UNICORE grid system is a grid middleware. The development started 1997 with the
goal to “enable German supercomputer centres to provide their users with a seamless, se-
cure, and intuitive access to their heterogeneous computing resources “[61]. The project
Unicore plus that was ongoing until 2002 forms the basis for the UNICORE 6 implementa-
tion. Since 2004 UNICORE is published under the open source BSD license and available
in a public accessible subversion [62] repository and therefore open for every developer
[67].
In the year 2011, as the basic components of the project were established, new require-
ments became important. According to the UNICORE community, grid services become
more and more present in “day-to-day operation of e-infrastructure and in application-
driven use cases “[67] .The development focus of the UNICORE community moved from
the UNICORE basis, such as concepts, architecture and interfaces, to higher level services
such as the “integration of upcoming standards, deployment in e-infrastructures, setup of
interoperability use cases and integration of applications “.
The architecture of the UNICORE 6 middleware is displayed in Figure 2.3. The three-layer
architecture includes top to the bottom, the client-layer with scientific clients and applica-
tions, the service-layer with authentication wrapper and the grid components and at the
system-layer with the target systems. Based on the layered structure, we present a descrip-
tion for every layer:

Client layer In the client-layer, grid clients and abstract Application Programming Interface
(API) for accessing the grid reside. The UNICORE community distributes a simple
command-line client that calls the UNICORE Command-Client (UCC), an client with
a GUI that is based on the Eclipse Rich Client Platform (RCP) [26] named UNICORE
Rich-Client (URC), and the High Level application programming interface (HiLA
API) [82] .
Furthermore, a possible scenario to access grid resources is a grid portal [72]. The
UNICORE community does not provide a grid portal, but they try to create inter-
operable interfaces to access resources in UNICORE grid in a standardized manner,
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Figure 2.1: UNICORE 6 architecture

XUUDB component is a Web service in itself, which allows it to be used from
multiple UNICORE installations, e.g. within the same computing centre. Like
in many service-oriented environments, a central service registry is available,
where the different services can register once they are started. The central
service registry is necessary to build-up and operate a distributed UNICORE
infrastructure. This service registry is contacted by the clients in order to ”con-
nect to the Grid”. An infrastructure may have multiple central registries. From
the beginning, workflow support is of major importance for UNICORE. The two
layered design with a separation of the workflow engine and the service orches-
trator was primarily done for better scalability, but also offers the possibility to
plug-in domain-specific workflow languages and workflow engines. The work-
flow engine originates from the EU-project Chemomentum [5]. Besides simple
job-chains, while- and for-loops, workflow variables and conditional execution
are supported. The service orchestrator deals with brokering the execution,
monitoring of the workflow and its respective parts as well as provides call-back
mechanisms to the workflow engine. The resource brokering is performed via
pluggable strategies. More details are found in [5]. The workflow capabilities are
offered to the users on the client layer via the URC. Furthermore, the definition,
submission, monitoring and control of workflows is also possible from the UCC.
A Tracing Service collects runtime information from the workflow system, and
allows generating performance metrics. End users can use the tracer service to
visualise the execution of a complex workflow from within the URC.

14

Figure 2.3: UNICORE Architecture, [67]

for example the HiLA. Compatible portals for the UNICORE middleware are, for
example, the Vine Toolkit [65] and GridSphere [32].

Service layer The service layer is the heart of the grid middleware, “all services and com-
ponents of the UNICORE Service-Oriented Architecture (SOA) based on WS-RF 1.2,
SOAP, and WS-I standards “are arranged in the service layer. Main components in
the UNICORE6 grid middleware are:

• Gateway
The gateway is the main entry point to the grid. The gateway needs only one
port in a firewall configuration to communicate with the outside of a secured
local area network.

• Registry
The registry is the central registration point of the UNICORE grid. After the reg-
istration of a service, this service is viewable to all other grid services in the grid.
For distributed UNICORE grid infrastructures a registry is obsolete, because all
clients access the registry for accesible resources.

• Workflow Engine and Service Orchestrator
The Service Orchestrator executes jobs in a workflow. Both components are
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easily replaceable or configurable.

• UNICORE Virtual Organization Service (UVOS)
Provides user management upon the SAML standard. Can replace the xuudb.

• XNJS with UNICORE Atomic Service (UAS) and OGSA
The XNJS is the heart of every UNICORE site and is responsible for job manage-
ment and execution.

• XUUDB
The XUUDB is the user database and is responsible for the user authorization
with X.509 certificates based on eXtensible Access Control Markup Language
(XACML) policies.

• Incarnation Database (IDB)
The IDB translates from abstract Job Submission Description Language (JSDL)
job definitions to resource specific commands.

• Target System Interface (TSI)
The TSI component translates grid commands into system-specific commands.

System layer In the system layer resides the communication with the operating system
and resource specific services. The TSI component translates grid jobs to local system-
specific commands. For every job exists an environment such as a working directory
that can be used for input files and output files or error files and system variables.
TSI provides user abstraction, while the TSI runs with root privileges that make it
possible for the TSI to change between user accounts and user account environment
e.g., home directory and execute all services with the needed privileges.
While a job starts on the base operating system, normally a LRM system executes. In
UNICORE, many LRM systems are supported, e.g. LRMS, Torque, LoadLeveler, LSF,
SLURM, and OpenCCS.

In Figure 2.3, we show a multi site installation of UNICORE6. Behind the Gateway -
Central Services resides the central service point for user access, information management,
and workflow services. While the site one on the left and site two on the right are single
UNICORE sites, they register their resources at the middle central service point. The user
interacts directly with the central service point.
In the year 2011, the UNICORE 6 architecture is based on the requirements of the OGSA,
while the implementation is assisted by the WS-RF. According to the UNICORE commu-
nity “UNICORE 6 is currently the most up-to-date implementation of the core specifica-
tions such as WS-RF.
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2.3 Cloud Computing

Today, everything is connected with cloud computing. Microsoft and Toyota will build
a cloud car: “vehicles will be able to connect via the cloud to control and monitor their
car from anywhere - safely and conveniently “[58]. IT-companies offer many different
cloud services, for example, Apple connects their different hardware products as mobile
phones, desktop computers, and multimedia devices over the cloud [14]. This leads to
the possibility to synchronize data between all hardware products and access them over
the internet. Google offers a free office suite with, email, computing infrastructure and
multimedia services in the cloud. Even simple subversion-like storage services as drop
box that synchronizes files across different operating systems and hardware devices with
internet access [25] are available. By this variable use of the term “cloud computing “,
a clear definition is convenient, otherwise cloud computing arouses suspicion of a good
marketing.

2.3.1 Characteristics of Cloud Computing

The NIST [78] provides a widely accepted definition for cloud-computing that defines
cloud computing as; “a model for enabling convenient, on-demand network access to a
shared pool of configurable computing resources (e.g. networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction “. This definition clears that cloud computing
is more a new computing paradigm, than a new technology. Mainly the user needs were
guidance to the cloud computing architecture. To realize cloud computing implementa-
tions, common technologies are combined. These include as web services, virtualization,
parallelized and distributed computing. Together, these techniques form the service ori-
ented cloud computing paradigm.
Depending on the type of delivered service, cloud services are categorized into three dif-
ferent layers. With every layer, the technical abstraction gets more complex. These layers
comprise these service models and are from top to bottom the Software as a Service (SaaS)
layer that aims to end-uses, the Platform as a Service (PaaS) layer that aims to developers
and the Infrastructure as a Service (IaaS) layer at the bottom that aims to network archi-
tects. In the following list we provide a detailed explanation of every level:

SaaS The SaaS architecture is the most abstract service model of all three cloud services
models. Users access ready installed software in the cloud. The user does not have
to manage or administrate the software or the underlying systems, the focus lies on
usability. Furthermore, the software takes advantages from the dynamic resource
allocation in the cloud that makes it possible to scale the software to the users’ re-
quests. Examples for SaaS are Google Docs and eyeOS [27] that provides a complete
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web desktop in the cloud.

PaaS The PaaS architecture offers abstract access to system resources. This model offers
a ready configured computational environment without direct system access. This
enables the user to deploy and run applications on pre configured computing re-
sources. The user can focus on the development of applications and is not engaged
to run the underlying computational infrastructure. The resource requested by the
user are encapsulated into provider specific APIs that are event orientated and not
architecture orientated. For example, an API database request hides the underlying
database implementation. Through this abstraction, it is possible to gain a high flex-
ibility in scalability and technical implementation in this service layer. Examples for
PaaS are Microsoft Azure and Google App Engine.

IaaS The IaaS model provides computer resources to users with the focus on customizabil-
ity. In this service model, it is possible to allocate customized resources like storage,
processing power and software. All involved resources depend on virtualization.
Therefore, it is possible to configure all computing instances on the users prefer-
ences and achieve a high scalability in the possible hardware configurations. The
IaaS model makes it possible to be independent from long-term hardware invest-
ments and it is possible to rent customized needed hardware environment and pay
only for used resources.Example for IaaS are AWS [15] and Rackspace [50].

The three cloud service models, SaaS, PaaS, and IaaS can deploy their resources in different
cloud deployment models. The public cloud deployment model provides access to public
usage and can be free of charge or for payment. Often, a free access with limited resources
is available. For example Amazon, Microsoft or Google offer their cloud services with
limited resources for free. Private clouds are enclosed to public usage. Their service is only
used by the owning corporation, for example, eBay has it’s own private cloud or the private
cloud service is limited to dedicated user, for example Ubuntu One [60]. Combinations of
the public and private clouds are called hybrid clouds. Hybrid clouds separate different
parts of the cloud to public and private access and achieve the needed control over this
parts. The community cloud is under collaborative use by different interest groups.
Cloud computing is based on utility computing in a SOA environment. Contracts between
service providers and users are based on Service Level Agreement (SLA)s. The enabling
technique for cloud computing is virtualization. Abstract requested resources from the
underlying hardware enable a wide range of products for cloud users and vendors [79].

2.3.2 Amazon Web Services

AWS is an arrangement of web services that form a cloud platform. It was launched in
July 2002 by Amazon.com Inc.[7] and has grown to more than 20 different cloud services
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in the year 2011. These services reach from simple storage and monitoring services over
database services to more complex computing services that make it possible to build com-
plex applications in the AWS cloud environment. The AWS cloud infrastructure mainly
focuses on the IaaS and PaaS service models with the main focus on software developers
as target group. Thus, AWS achieves these cloud infrastructure or platforms in a flexible
way. These cloud computing services offer many advantages to developers. The devel-
opers only pay resources they use. Therefore, no big start-up investments with long time
financial obligations are necessary to use a huge amount of computing resources. Using
services from the cloud can release resources for concentrating on the core business, e.g. on
developing the web application and not managing the servers. Thus, this use of the AWS
cloud can seen as outsourcing [68]. Furthermore, the AWS cloud services are accessible for
a wide range of different developers, providing many different interfaces to platforms and
programming languages. These includes mobile platforms like iOS and Android, as well
as Java, .NET , and PHP Software Development Kit (SDK). All cloud services are accessible
through a web service, the AWS Management Console, and simple console commands for
Unix based clients. The most common services groups are [15] :

Compute The compute services provide services in the IaaS model. These include, for
example the Amazon Elastic Compute Cloud (EC2) that offers flexible and scalable
compute resources in the cloud. These compute resources include an automatic load
balancing service, the Amazon Auto Scaling service and services for handling and
processing huge amount of data, the Elastic MapReduce service. Fees for all compute
services apply only for used resources on hourly rates.

Database The Amazon database services contain the SimpleDB and Relational Database
Service (RDS) that offer database services in the PaaS model.

Networking Amazon offers Domain Name Service (DNS) network services with the Ama-
zon Route 53 service, a mechanism to separate isolated parts of the Amazon cloud for
private use with the Virtual Private Cloud (VPC) service, and a Elastic Load Balanc-
ing service that automatically distribute incoming traffic across multiple AWS cloud
computing resources. All networking services cooperate with the compute services
and are located in the IaaS model.

Storage The storage services provide redundant data storage that is accessible over the
web by Amazon Simple Storage Service (S3). The persistent storage for EC2 resources
over their incarnation time offers the Amazon Elastic Block Store (EBS) service.

Deployment and Management The Deployment and Management services deploy and
manage applications in the cloud. The Elastic Beanstalk service automatically han-
dles the deployment details of capacity provisioning, load balancing, auto scaling,
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and application health monitoring. The Deployment and Management service are
examples for the PaaS model.

Monitoring The Amazon CloudWatch service is a web service that monitors Amazon EC2,
Amazon RDS, and Amazon Data Base resources. This service is an example for a SaaS
model.
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3 Designs for Extending Grid Systems with Cloud
Resources

Grid systems connect local separated resources from distributed computer systems [74] to
provide access to these resources through a single access point. This access point is the grid
system. However, in cloud computing environments it is possible to allocate user-defined
computing resources and computer systems that comprehend, for example, compute stor-
age, networks services, databases and even special High Performance Computing (HPC)
infrastructures. Thus, extending grid systems with user-defined allocated resources from
cloud computing environments seems a practicable idea.
In this chapter, we discuss and present general requirements and aspects for such grid and
cloud computing combination designs. Furthermore, we discuss the presented designs of
grid and cloud systems based on general requirements and aspects and choose one design
that we implement in Chapter 4.
However, for all designs in Section 3.3, we made a common decision in the architecture
that is equal for all designs. This decision helps to present clear descriptions of our dif-
ferent designs and helps to avoid repeating descriptions of the same facts in all designs.
The decision for all designs depends on the design of the grid client software that we use
to access our grid with the cloud computing resources. Two different designs for the grid
client are possible, which are described in Section 3.1.

3.1 Design of the Grid Client

The basic design decision we made for the grid client to access cloud computing resources,
was to extend it with the cloud computing interface and name it Cloud Extension. Shown
in Figure 3.1 with the possibility B. The other possibility to design the grid client is to use a
standalone application that manages the cloud computing resources for the grid, shown in
Figure 3.1 with the possibility A. The most cloud computing vendors offer cloud comput-
ing management applications and interfaces, but these do not have the functionality to au-
tomatically configure and include cloud computing resources with running grid software
into the local grid environment. Therefore, we have to extend existing cloud computing
management applications.
In addition, users do not want to use two separated applications to use one system. Grid
systems and cloud computing environments are separated systems, but in this thesis we
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want to integrate cloud computing resources seamlessly into grid systems. Therefore, grid
and cloud computing system should act as one system. And the cloud computing re-
sources should act as a part of the grid and become a grid resource. In contrast to see the
cloud computing environment as an independent system.
In addition, to include the cloud computing resources into the grids system-layer, we inte-
grate the management of cloud computing resources into the client-layer of the grid envi-
ronment. With this we can test whether it is possible to include cloud computing manage-
ment interfaces into the designs in Section 3.3 and in the implementation in Chapter 4, too.
In summary, it is possible for all designs to separate the cloud extension into a separate
application as shown in Figure 3.1 possibility B. As well as include the cloud extension
into the grid client as shown in Figure 3.1 possibility A. Because of the discussed reasons
we include the cloud extension into the grid client and provide in our designs only the de-
scription for the grid client with included cloud extension. In addition, we want to avoid
iterative passages in the description of our possible designs.
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Figure 3.1: Possible designs of the Grid Client

3.2 General Requirements and Aspects

In this section, we give an overview of general requirements and aspects that can be rel-
evant within the combination of grid and cloud computing environments. We can not
ensure that we discuss all requirements and aspects for all possible users and use cases.
However, we discuss a list of common issues that mainly focus on cloud computing aspects
because we want to use cloud computing resources in grid systems. This approach should
give a guidance for all users and use cases to see what kind of requirements and aspects

21



3 Designs for Extending Grid Systems with Cloud Resources

are important for individual users and their according use cases. For us, this overview
of requirements and aspects provides a basis for a discussion on which we evaluate our
designs in Section 3.3 and our implementations in Chapter 4.

Management of cloud resources Cloud computing resource management is arranged over
different levels of abstraction. Possible levels are, for example, web interfaces and
web applications, desktop applications, direct console access within a common OS
command shell, or the embedding in programming languages with special APIs.
Thus, these levels require different knowledge from the user and can require spe-
cific technologies. Web applications are accessible across different operating sys-
tems, standalone desktop applications can only be developed for a specific operat-
ing system, and APIs depend on a specific programming language. Therefore, the
different pre-conditions and particular objectives from users in the management of
cloud-computing resources should lead to the right management solution.

Interoperability between clouds The interoperability between cloud computing environ-
ments is in development. In the year 2011, many different Standards Development
Organizations (SDO) that are working on cloud-computing standards exist. The
Institute of Electrical and Electronics Engineers (IEEE) started two working groups
on cloud computing interoperability, the Intercloud Working Group (ICWG) [37] and
the Cloud Portability and Interoperability Profiles (CPIP) [36] working group. Fur-
thermore, the Object Management Group (OMG) [42] founded the Cloud Standards
Customer Council (CSCC) [22], which is a consortium of different interest groups that
have the goal to standardize the cloud computing. The OMG provides an overview
of standardizing activities in a wiki, some of the CSCC members work on the cloud
computing interoperability aspect. For example, the Interoperable Clouds White Pa-
per from the Distributed Management Task Force (DMTF) or the Open Cloud Com-
puting Interface Core (OCCI) specification from the OGF contain information and
solutions for the cloud computing interoperability, for example several implemen-
tations exist for the OCCI [40]. Even for different cloud computing APIs exist the
libcloud [13] and deltacloud [24] that abstract differences among different cloud com-
puting APIs and make it possible to access simultaneously different cloud computing
APIs through one library. The Apache libcloud library is released in the version 0.5 in
July 2011 and became an Apache top level Project in May 2011, we think the libcloud
library and similar projects can be potentially great. However, the development in
cloud interoperability in the year 2011 is still in its infancy.

Reliability of cloud resources Cloud computing resources are not under the physical con-
trol of the user. They reside in computer centres that are under the control of cloud
computing vendors. These computer centres can be distributed around the world.
Often these computer centres act as black boxes that offer defined services without
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the user knowing how this service is realized inside the computer centres. Because
of the absence of information about the internal operation principles of cloud com-
puting services, scepticism towards the reliability of cloud computing services and
resources arise. In addition, the distribution of cloud computing centres around the
world in different countries can cause reliability problems. Data in cloud comput-
ing centres that reside physically in the United States of America (USA) is accessible
by the government of the USA [38] and it is possible that this data in the cloud can
be confiscated without provided reason. The government of the USA can forbid the
cloud computing vendor to contact the data owner about the reason or any other
details of the confiscation. Furthermore, data in cloud computing centres that reside
in the European Union can be confiscated if the cloud computing vendor reside in
the USA [38]. For example, Microsoft informed cloud computing users that they dis-
close data to satisfy legal requirements, or protect the rights or property of Microsoft
or other [39].
Furthermore, error-free hardware and software does not exist. In contrast, hardware
in server centres crashes on a regular basis [83]. Because of this failure rate, cloud
computing vendors do not offer a hundred percent durability. Only mechanisms to
enhance the durability and trust in cloud computing is offered to the user. These
mechanisms can be transparency from the vendor, SLAs, technical solution as for ex-
ample backup systems, and a personal contact person that can cultivate a personal
trust.
In summary, the reliability of cloud computing resources is a very complex issue.
Problems can occur in legal circumstances, hardware issues or maybe human fail-
ures. Furthermore, issues exist that cannot be influenced by cloud computing vendor
and user.

Cost of cloud resources The price model of cloud computing services has a wide range
across vendors. The cloud computing service levels in Section 2.3, do not implement
common standards and therefore, a wide range of different cloud computing sys-
tems exist and make comparison complicated. The pricing models of the IaaS and
PaaS service levels are more compareable among each other than the SaaS service
level, because in the IaaS and PaaS service level the user rents mostly computer in-
frastructure that is more related than software in the SaaS level.
Often, the cloud computing vendors offer monitoring and reporting services that af-
ford a detailed analysis of the occurred costs. These cloud computing usage analysing
mechanisms offer the possibility to increase the cloud computing fees, because the
analysis can detect unused running resources. But to plan the fees in advance is diffi-
cult and a detailed knowledge of the future use must exist. To plan the approximated
cost, cloud computing vendors offer price comparison tools, for example AWS sim-
ple Monthly Calculator [20], Rackspace [48], and GoGrid [31].

23



3 Designs for Extending Grid Systems with Cloud Resources

In general, the costs of cloud computing must be compared to the investment in own
hardware, because after a period of time the turning point of investment in cloud
computing resources can occur and the investment in own hardware can be more
profitable than paying constant fees.

Security aspects “Security is a process, not a product “this comment from Bruce Schneier
describes our process to develop a secure design to use cloud computing resources in
grid systems. In the process we begin with a less secure solution in Subsection 3.3.2
and at the end we come to a solution in Subsection 3.3.4 that has a architecture that
separates the design completely from all public access and therefore promises the
most secure solution. The security of grid systems we do not discuss further in this
thesis, because we think plenty of secure architectures and concepts for grid systems
exists. The problems of security in grid systems lies more in the secure configuration.
And for more information about the security of grids we refer to [71] and for the con-
figuration to the manuals of the used grid software.
However, security in cloud computing environments becomes a very fundamental
topic for all cloud computing providers and users. To develop security concepts,
cloud computing vendors founded the Cloud Security Alliance (CSA) [23] that pro-
vides a “Security Guidance for Critical Areas of Cloud Computing “. This security
guidance is a framework that helps to evaluate initial cloud risks and informs about
security decisions. Basis for this guidance is a detailed analysis of the users’ safety
requirements, because the risk tolerance for data and services that are used in cloud
computing environments can allow or forbid the usage of cloud computing. But in
general, the editors of this guidance think that “Cloud Computing is not necessarily
more or less secure than your current environment. As with any new technology, it
creates new risks and new opportunities. “.
Therefore, we provide secure architectures in this thesis to use cloud computing re-
sources in grid systems, but in the end the decision about the usage of cloud comput-
ing resources is at the user and the users’ acceptable risk level.

Performance aspects Performance limitations in possible architectures that include cloud
computing resources in grid systems can reside in three different domains. First in
the cloud computing environment, second in the connection between the cloud com-
puting environment and the local grid, and at last inside the local grid. Performance
issues of the local grid and grid systems in general we do not address in this thesis,
because it is out of scope.
However, the two other possible performance limitations we discuss. First, the data
transfer over the Internet between the local grid and the cloud computing environ-
ment can be a bottleneck. This bottleneck over a network that is mostly not under
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the physical control of the grid user can vary on the amount of data that have to be
transferred to the cloud environment. In addition, transfer rates rhough the public
Internet are not constant. The user must decide how the limitation of the data trans-
fer over the Internet constrains the usability of the cloud computing resources. For
example, the quotient of the data to send and the time this data is used in job execu-
tion in the cloud can differ and therefore makes the data transfer rates more or less
important.
The second domain of performance limitations is the cloud computing environment
that is also not under the user’s control. The performance in the cloud computing
environment correlates with the performance of single cloud resources, their connec-
tion and the maximal amount of cloud resources. All performance issues differ be-
tween cloud computing vendors. In general, many different single cloud computing
resources are possible. These can range from dedicated machines to slow virtualized
ones. But the connection between single cloud computing resources can not be con-
trolled by the user. At last, the amount of a cloud computing environment can be a
performance limitation, but we think a use case that exhausts the amount of cloud
computing resources from a special cloud computing vendor is unusual.
Therefore, both domains can not be completely controlled by the user. It should be
possible to create a solution, where these issues do not limit the usability.

Requirements of the local network A fundamental requirement of the local network is a
connection to the Internet. This is an essential requirement. If the local network re-
sides in an isolated environment with the leak of a possible connection to the Internet,
it is not possible to include cloud computing resources to the local grid, because all
cloud computing resources are only accessible over the Internet. Otherwise, the con-
nection to the Internet can be subject to a strict security policy which does not allow
connections to the cloud computing environment.
However, the connection between the local network and the cloud computing en-
vironment must be physically possible and no policy or other issues should restrict
the connection to the Internet and the cloud computing environment. We do not
discuss the configuration of the local network, because this is appointed by the tech-
nical specification and requirements of the grid software and the cloud computing
environment.

Amount of cloud resources Infinity cloud computing resources are good marketing slo-
gans but are rather not the reality. No cloud computing vendor publishes the amount
of resources that exist in the vendor’s cloud environment. In addition, the cloud com-
puting vendors avoid to specify the maximal usable resources for users. To guaran-
tee the user the boot-up and usage of a specific amount of resources specific SLAs
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between the cloud computing user and the cloud computing vendor are possible.
The SLA about resource requests differs with the demand of the user. Furthermore,
SLAs that guarantee specific time intervals between resource requests and resource
allocations can increase the cost of cloud computing resources.
Our solution to avoid bottlenecks in the local grid environment is to add on demand
cloud computing resources to the local grid. The user can decide this. Furthermore,
the user has to find a cloud computing provider that is able to allocate the needed
amount of cloud resources.

The discussed general requirements and aspects demonstrate that many different prob-
lems can occur in designs that include cloud computing resources in grid systems. How-
ever, the user can handle many of the issues with an analysis of the estimated usage design
of cloud computing resources in grid systems. Furthermore, an abstract design for cloud
computing usage in grid systems is needed to avoid problems in the first place because of
its architecture. In Section 3.3, we provide abstract designs that include cloud computing
resources in grid systems. In the Section 3.4 we discuss these abstract designs based on the
general requirements and aspects from this section and analyze the issues that can occur
in our abstract designs.

3.3 Extend the Grid by Cloud Computing

In this section, we discuss and develop abstract and possible designs that extend grid sys-
tems with cloud computing resources. In Section 3.2, we provide some general arguments
and requirements that give us a frame to classify these designs in Subsection 3.4.1.

3.3.1 Terminologies for the Grid and Cloud Combination

In the descriptions of all different designs, shown in Subsection 3.3.2, 3.3.3, and 3.3.4, for
the grid and cloud combination reside components that are always the same. Therefore,
we describe them in the following:

Gateway The gateway component is the entry point to a grid environment. The gateway
component can reside in the local grid as well as in the cloud computing environ-
ment. Behind a grid component all other grid components can hide and be invisible
from the outside and only the gateway component must be reachable to access the
resources behind the gateway. Furthermore, different gateway components can com-
municate with each other over a secure connection.

Cloud Interface Cloud computing vendors mostly offer propriety APIs or other common
interfaces that rely on basic web technologies. These interfaces reside in a SOA en-
vironment and allow to manage the cloud computing resources from out different
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programming languages and operating systems. An example for a cloud interface is
the AWS API, the libcloud library, or the deltacloud library. We provide more discus-
sion about interoperability between clouds in Section 3.2.

Grid (local Grid) The local grid is a grid environment with a fixed size and has all compo-
nents that a grid system of a special type needs to work probably. Furthermore, the
local grid is able to include compatible grid environments and grid resources from
locally separated grid systems. The configuration of the local grid never changes in
all designs and an example for a local grid is UNICORE 6.

Cloud Grid The cloud grid is a grid environment that resides in a cloud computing envi-
ronment. The grid in the cloud can consist of single or multiple grid resources and
a gateway can hide the grid resources in the cloud. In general, we describe in our
designs how it is possible to integrate these cloud grid into the local grid.

Cloud resources Cloud resources can be all different types of computing resources that
reside in the cloud computing environment. For example, cloud resources can be
networks specific management interfaces and computing resources as instances. The
term instance describes computing cloud resources at the IaaS model that are com-
parable with server systems. It is possible to run grid software on these resources.

Grid resources in the cloud All types of common grid services and resources can reside
in the cloud computing environment. Therefore, grid resources in the cloud are, for
example, the gateway, storage, or computing services.

VPN-Tunnel The VPN - Tunnel is an encrypted connection that connects different com-
puter networks. This secure connection can be realized with a wide range of different
software and hardware components.

In the following, we describe abstract designs to integrate cloud computing resources
into grid systems. In all designs the grid cloud differs in the connection to the local grid,
the configuration and arrangement in the cloud.

3.3.2 Local Grid with Public Instances from the Public Cloud

The first design is shown in Figure 3.2. This design contains one gateway that resides in
the local grid. This gateway acts as the central entry point for the grid client. Therefore,
all grid related communication as grid jobs, job information, grid storage usage, and etc.
flows through this gateway. Furthermore, this design contains a cloud interface, to enable
the cloud extension to configure, start or stop, and manage the cloud computing environ-
ment and the grid resources in the cloud.
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In this design, the cloud grid resides in the public domain of the cloud computing environ-
ment. Without security arrangements or technically separation from the other public cloud
computing resources, the allocated cloud grid resources are visible for all cloud users. If
the public domain in the cloud computing environment is accessible from the Internet,
then all user from the Internet can access the cloud grid resources.
To protect cloud resources, cloud computing environments offer security concepts, for ex-
ample, firewalls on instance level or firewalls on network level in the cloud. In this design
every resource needs a special security configuration, because it resides in the public do-
main of the cloud. In addition, to configure every resource separately causes configuration
overhead and therefore security failures can creep in. Furthermore, the software on the
cloud resources can contain security software to ensure the security of the single cloud re-
sources. But to configure these security software on every single resources, needs a very
detailed security analysis. Therefore, failures in the security configuration can appear, too.
The complex security configuration requirements in this design cause security issues. Fur-
thermore, the cloud computing environment, the software on the single instances, and the
grid software must support all needed security techniques to configure a secure design. To
overcome this configuration overhead and security requirements, we developed the next
design 3.3.3 that improves this design.
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Figure 3.2: Grid in the open Cloud

3.3.3 Local Grid with Instances from the Private Cloud.

The second design is shown in Figure 3.4. This design contains two gateways that connect
the grid resources in the cloud to the local grid. The gateway at the local grid is the central
entry point for the grid client similar to the first design in Subsection 3.3.2. The gateway in
the cloud computing environment connects the grid resources in the cloud with the local
grid. The traffic from the grid resources in the cloud flows through the cloud gateway to
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the gateway in the local grid. Grid resource in the cloud do not send data besides the cloud
gateway to the local grid. In addition, the cloud interface in this design that has the same
functionality as the cloud interface in the design in Subsection 3.3.2.
The difference to the first design in Subsection 3.3.2 is the separation from the cloud grid
resources to the public cloud. We created a private cloud inside the public cloud comput-
ing environment that contains all grid resources. This private cloud avoids public access
to the grid resources in the cloud. Therefore, this design approach promises a more secure
infrastructure. The private cloud is a technically separated environment inside the cloud
and only the gateway is visible.
In this design we overcome the security configuration overhead by creating a secure in-
frastructure. Only the communication between the both gateways uses the Internet and is
not under our control. Therefore this can be a security issue. To secure this communica-
tion, the grid middleware has to support encrypted gateway-to-gateway communication.
In the next design we provide an infrastructure that avoids public communication over the
Internet.
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Figure 3.3: Grid with Private Cloud

3.3.4 Local Grid with Instances from the Private Cloud over a VPN-Tunnel

The third design is shown in the Figure 3.4. This design contains one gateway and one
cloud interface similar to both designs in Subsections 3.3.2 and 3.3.3. In addition, all grid
resources in the cloud computing environment reside in a private cloud similar to the sec-
ond design in Subsection 3.3.3. The connection between the local grid and the cloud grid
is different to the previous designs. Because in this design the cloud grid is only accessible
over an encrypted connection between the local grid and the private cloud. Therefore, the
private cloud network extends the local network. All traffic in and out of the private cloud
flows through the encrypted VPN - tunnel between the local grid and the private cloud.
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This design avoids both security issues from the previous designs. Compared to the first
design, the cloud grid in the private cloud are not visible to all other cloud user as in the
first design in Subsection 3.3.2. In addition, the communication between the local grid and
the private cloud uses the Internet as in the second design in Subsection 3.3.3. But this
traffic is encapsulated from the public network by a VPN - tunnel. Therefore, this design
provides a complete detachment from public networks. Grid resources from the local grid
and the private cloud are arranged together in an encapsulated network. The cloud re-
sources appear as local resources inside the local grid network. All cloud resources can
be managed and configured similar to local grid network resources. Therefore, this design
provides the most secure architecture.

!"#$%&'()*

'$+,-$.

/%"0*
12+,(3$#,

'()*&/%),2+ /%"0*&45+,26)"2

789

/%"0*

8():$+,&/%"0*

/%"0*&'()*

Figure 3.4: Grid with Private Cloud

3.4 Discussion

In this section, we discuss our developed designs from Section 3.3 that integrate cloud
computing resources in grid systems. The frame and basis for our discussion and analyse
are the general requirements and aspects from Section 3.2. In Subsection 3.4.2 we chose the
design that we implement in Chapter 4.

3.4.1 Analysis of the Designs for Extending Grid Systems with Cloud Resources

In this subsection we do not want to assign the best design, because the requirements differ
between users and their corresponding use cases. But to provide an assessment can help
users to classify the designs and find the best design for their usage environment. The
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following key aspects are based on the discussion in Section 3.2 where we discussed them
in general.

Management of cloud resources In our designs, we manage the cloud computing resources
with a cloud extension that resides in our grid client. To realize the cloud extension,
we have to include a cloud management tool into it. This cloud management tool
can be, for example, a web interface, a desktop application, or an cloud management
API that depends on the abstraction level of the grid client. In summary, the cloud
management service has to be compatible with our grid client.

Interoperability between clouds In our designs, we did not define an exact specification
for our cloud interface, we assume that it has all functionality to manage, config-
ure, start and stop all cloud and grid resources. But without a clear definition of
the cloud interface it is barely possible to identify all cloud computing environments
that comprehend the functionality to implement our cloud interface. If we found
different cloud computing environments for our cloud interface, these could be ex-
changed theoretically. However, we think the interoperability approaches between
cloud computing environments seem to provide the possibility to use arbitrary cloud
computing environments, but without a clear specification this will be difficult.

Reliability of cloud resources The cloud can crash under two different circumstances. First
the cloud grid runs and contains user data. Second the cloud grid is in idle mode
or not started and does not contain user data. If the grid cloud crashes during the
running process, this could lead to undefined conditions and in the worst case the
complete uptime of the cloud grid is useless. Furthermore, in our designs we did not
develop rescue or safety mechanism that can restore data after a cloud crash. If none
of the resources are running, even then a cloud crash can cause problems. For exam-
ple, pre-configured images, or other data that is only stored in the cloud get lost. But
to avoid problems of a not running grid in the cloud seems to be easier, because, for
example, all data can be backed up in the local network.

Cost of cloud resources Cost of cloud resources correspond with the amount of usage.
But the cost differ between the designs, because in the second and third design we
use the private cloud and the VPN-tunnel feature that might be charged with extra
cost from a special cloud computing vendor. In summary, this possible extra cost is
quite small compared to the cost of the usage of cloud computing resources.

Security aspects With the three designs, we developed a increasingly secure infrastruc-
ture for the grid in the cloud. The last design minimizes the possible security leaks,
but has the most configuration and cloud computing feature requirements. Further-
more, the security can differ across cloud computing vendors and grid systems. For
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example, the cloud interface can be encrypted, or the private cloud can be completely
separated from the public cloud. The security in an implementation of our designs
relies on the used technologies and their configuration.

Performance aspects Performance differences between our three designs do not exist in
general. In Section 3.2, we discuss the performance aspect in general and analyze
three different domains towards performance limitations. The implementation of
the three different designs will make the difference. For example, a VPN-tunnel can
slow down the traffic speed, or the transfer over the Internet. Furthermore, a possible
improvement can be to configure multiple gateways.

Requirements of the local Network The requirements of the local network differ between
the three designs. In the first and second design, the architecture of our designs has
no requirements to the local network. A special case can occur in the first design, if
the grid resources in the cloud computing environment are configured to communi-
cate around the gateway directly with the local grid and this communication is not
allowed in the local grid network. But this should only be a configuration.
However, the architecture of the third design needs a VPN connection point at the
local network that can adopt the VPN - tunnel. This connection point can be a hard-
ware or software component and relies on the used technology.

Amount of cloud resources In general, all three designs should be able to use the same
amount of cloud resources and therefore the limits are set by the cloud computing
vendor. A difference can exist between the amount of cloud computing resources in
the public and private cloud, but that shall differ across the cloud computing ven-
dors.

3.4.2 Choosing a Design

We selected the second design for our implementation. As we analyzed in Subsection 3.4.1
the architectures of the different designs from Section 3.3 have advantages and disadvan-
tages. Design one needs too much security configuration. And based on the security issues
from design one, we developed the second design with a more secure architecture in the
cloud computing environment.
The infrastructure from the second design provides a separated environment for cloud
computing resources and therefore promises a more secure implementation. In addition,
the second design promises more interesting aspects in the implementation process, be-
cause more functionalities then the grid gateway and the private cloud are used. In con-
trast to the first model, where only the instances have to be configured and started what is
very similar to create local grid resources, in the second design we have to create a com-
plete infrastructure in the cloud with the private cloud that contains the grid resources.
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The third design promises the most secure solution, because all resources and traffic is en-
capsulated from public access. But as we analyzed in the previous subsection, the third
design has the most requirements to the local network, extra cost for the VPN-tunnel can
occur, and questions in the performance aspects can arise. Furthermore, the third design
seems to be very complex to implement, because of the configuration of the VPN-tunnel.
The transfer between gateway and gateway as in the second design can promise a se-
cure data transport if the grid system provides encrypted data transport. Normally, a grid
system should provide encrypted data transport, because grid systems are developed to
connect distributed computing resources.
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from the Private Cloud

In this chapter, we provide a description for the implementation of the chosen design from
Subsection 3.4.2. In Section 4.1, we give an overview of the implementation design and the
concrete technologies we use. In Section 4.2, we provide explanations for terms we use in
Chapter 4. Afterwards, we introduce detailed designs for the chosen scenario in Section
4.3.
In the Sections 4.4, we introduce the design of the grid client with the Cloud Extension.
In the Section 4.5, we describe the implementation of the Cloud Extension. In Subsection
4.5.1, we cover the implementation for the cloud functionality of the Cloud Extension. In
Subsection 4.5.2 we provide the description for the grid functionality of the Cloud Exten-
sion. In Subsection 4.5.3, we provide the possible usage of cluster resources in the cloud
computing environment. In the last Subsection 4.5.4, we describe the security implemen-
tation of the Cloud Extension.
At the end of Chapter 4, we provide a infrastructure and job execution validation for our
implementation in Section 4.6. In Section 4.7, we complete Chapter 4 with a discussion.

4.1 Overview

The Figure 4.1 shows the abstract architecture of the implementation that extends grid sys-
tems with cloud computing resources. With Figure 4.1, we introduce technical components
of the implementation to provide an overview and link to the abstract scenario chosen from
Subsection 3.4.2. In Section 4.3, we provide a detailed explanation of the different compo-
nents and the concrete implementation.

To access the local grid depricted in Figure 4.1 that contains a UNICORE6 grid system,
we use the UNICORE6 HiLA shell client within the Cloud Extension which is described in
Subsection 4.4. But in a nutshell, the main function of the Cloud-Extension that reside in
the HiLA shell is to communicate with the cloud computing services inside the cloud and
integrate the cloud resources into the local grid system. However, as cloud service we use
the AWS described in Subsection 2.3.2 that provides services in the IaaS cloud model. For
all UNICORE6 services, the local grid provides a central registry, where every UNICORE6
server, either from the local grid or from the cloud, registers. For user registration, we do
not provide a central component. Therefore, the XUUDB user management component
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Figure 4.1: Overview HiLA with AWS Extension

exists in both domains, the local grid and the cloud computing environment.
During the implementation process different issues occured that we were not able to solve,
because these originate in the technical limitation of the AWS. To overcome these techni-
cal limitations in the AWS, we develop different implementation designs for our chosen
scenario. In the next section, we provide an explanation of the technical limitations of the
AWS and our implementation designs that overcome these limitations.
In this special cloud service, it is only possible to have maximal five fixed IP addresses,
that are called Elastic Internet Protocoll (EIP) addresses. EIP addresses make compute re-
sources directly accessible from outside of the virtual private cloud. Resources without an
EIP cannot initiate traffic to the Internet, which is needed to interact with the local UNI-
CORE6 grid. With a private subnet and a Network Address Translation (NAT) resource in
the virtual private cloud the size of resources that are able to initiate traffic to the internet
can be extended as described in the next subsection in detail.

4.2 Terminology for the Grid and Cloud Implementation

Before we explain the implementation in detail, we provide an overview of terms we use
in this section. Most of the terms are technical components from the AWS environment:

Instance An instance is an server in the AWS EC2. Different instance types, operating
systems, and software packages are available. In addition, we use the term machine
simultaneously to instance.

EIP address The EIP addresses are static IP addresses that are provided by AWS. EIP ad-
dresses are bound to AWS user accounts and it is possible to associate EIP addresses
dynamically to different instances in the AWS cloud.
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In the AWS exists two different types of EIP, one associates only to EC2 instances that
do not reside in a virtual private cloud and the second can be associated only to EC2
instances that reside in a virtual private cloud. For our scenario we can only use the
five EIP that are usable inside a virtual private cloud.

AWS VPC The Amazon VPC isolates instances and cloud computing resources from pub-
lic access. Furthermore, it is possible to connect the Amazon VPC over a encrypted
VPN connection to already existing networks.

AMI An Amazon Machine Image (AMI) is an encrypted machine image that contains
information to boot an instance based on it. For example we use an AMI that contains
all software to act as a UNICORE6 server. Furthermore, an AMI can be private to a
particular user or public to all users.

NAT Instance AWS provides a NAT instance that is a pre-configured instance to perform
NAT. The AMI of the instance is ami-d8699bb1 and is always the same.

Availability Zone Availability zones are distinct locations that are engineered to be insu-
lated from failures in other Availability Zones. Furthermore, they provide inexpen-
sive, low latency network connectivity to other Availability Zones in the same Region
[5].

Region Regions consist of one or more Availability Zones, are geographically dispersed,
and will be in separate geographic areas or countries [5].

Multiple locations Multiple locations are composed out of Regions and Availability Zones.
Therefore, AWS provides the ability to place instances in multiple locations [5].

4.3 Design of the Cloud and Grid Configuration

In the AWS technical limitations exist that restrict our implementation possibilities. First,
the limit to allocate a maximum of maximal five EIP addresses. Second, the maximum
number of allowed subnets in an Amazon VPC. Furthermore, other limitations exist in
the AWS that do not influence our implementation. For example, the restriction of 16,500
simultaneously running instances in a VPC.
However, the amount and computing power of AWS instances has a wide range. For exam-
ple Cluster Computer instances exist with 33,5 EC2 Compute Units and 18GB of memory.
One EC2 Computer Unit is equivalent with a 1.0-1.2 GHz Opteron or Xeon Processor from
the year 2007. Furthermore, a VPC can contain more than 16,000 instances that promise a
huge computing resource and is enough for our implementation.
To overcome the EIP address and VPC limitation, we implemented two different archi-
tectures. We name them Single Subnet Virtual Private Cloud and Multi Subnet Virtual
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Private Cloud. In the next paragraphs, we provide an overview of both implementations.

4.3.1 Single Subnet Virtual Private Cloud

The first issue we discuss is the limitation to maximal five EIP addresses. The basis of this
issue is that only instances with an associated EIP can initiate traffic out of an Amazon
VPC subnet. With the EIP address limitation, we created the first solution for the chosen
scenario from Subsection 3.4.2. The Figure 4.2 shows the architecture of the implementa-
tion. In detail, we configured one subnet with a 16-bit subnet mask in the Single Subnet
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Figure 4.2: Single Subnet VPC

VPC implementation that resides inside the VPC. The subnet can contain at maximum
16,500 instances and 65,536 possible IP addresses. Furthermore, the subnet contains all
UNICORE6 resources that reside in the cloud computing environment. In addition, the
subnet contains AWS network resources that include a route table and a router. The AWS
Internet Gateway is the link to the Internet. Therefore, the communication to the local grid
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is done over the AWS Internet Gateway. The maximal five UNICORE6 instances are asso-
ciated with an EIP address. A detailed description of the cloud environment configuration
is provided in Subsection 4.5.1.1 and for the grid environment configuration see Subsection
4.5.2.

4.3.2 Multi Subnet Virtual Private Cloud

To overcome the limitation of maximal five grid servers in the VPC subnet, we created the
Multi Subnet VPC approach. Figure 4.3 shows a general view of the implementation. The
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Figure 4.3: Multi Subnet VPC

difference for the user is the possibility to run more than five UNICORE6 servers. In a
Multi Subnet implementation, every instance that resides in one of the private subnets can
initiate traffic to the Internet without an associated EIP address. To realize the communica-
tion between cloud instances and the Internet or the local grid, we created a NAT instance,
a Router, and the Route Table A and Route Table B, shown in Figure 4.3. Therefore, it is
possible for all instances of public and private subnets to communicate with the Internet.
In the Multi Subnet architecture, every instance from the public subnet or the private sub-
nets can act as UNICORE6 server. Therefore, the number of UNICORE6 servers can be
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enhanced in comparison to the Single Subnet VPC solution. We decided to logically iso-
late the UNICORE6 servers and configure a separate private subnet for every UNICORE6
server. Because this promises a balanced load, shows the possible usage of the cloud net-
works, and promises felxibility for the Uniform Interface to Computing Resources 6 (UNI-
CORE6) server arrangement. But this structure is not mandatory, for example, a private
subnet can also contain more than one UNICORE6 server. Furthermore, the configuration
of the 10.0.0.0/16 VPC network mask offers a complete flexibility to configure and arrange
private subnets. We configured 20 private subnets where every subnet has a 24 bit subnet
mask and can stud maximum 254 instances.

4.4 Design of the Grid Client - with the Cloud Extension

Clients to access UNICORE grid resources vary from command line clients, API clients,
and GUI clients, see Section 2.2.3. All clients have their respective merits. Therefore, we
analyzed the which of them is the best choice for us to get extended with the Cloud Ex-
tension. The Cloud Extension has mainly two functions: managing UNICORE resources
in the AWS and managing the AWS cloud environment. The preconditions and require-
ments of such a client need are described in the following. The client must support the
embedding of the AWS library. Furthermore, the client should be easy to use but provide
common grid operations to utilize all grid functionalities. In addition, the underlying code
of the client should be extendable.
For our implementation a grid client on the lowest layer of abstraction promised a fast de-
velopment. Therefore, we do not have to care about GUI programming. In addition, the
client could be extended with a GUI later on.
However, the UNICORE community provides the HiLA shell that is a grid client without
GUI. Furthermore the HiLA shell is open source, programmed in Java, and has a object
oriented code structure that is based on the HiLA API [82].
Concluding, the HiLA shell programming does not require GUI programming. However,
it promises all functionality similar to the UNICORE GUI clients, and its code can be ex-
tended. Therefore, we use the HiLA shell for our grid client and to progam its cloud ex-
tension.

HiLA - the base of the grid client

The HiLA API promises a programmatically infrastructure to access grid resources with a
minimal programming overhead. To access grid resources, the same tedious and repetitive
tasks are necessary; the HiLA API hides these tasks behind interfaces. For different grid
systems these interfaces are implemented including the ones for UNICORE 6 and UNI-
CORE 5 grid systems. An implementation for the OGSA Basic Execution Service (BES) are
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in development [73], [82]. Furthermore, implementations for other grid systems are possi-
ble, for example the Globus Toolkit or g-lite.
In detail, the HiLA interface methods to access grid environments follow a resource ori-
ented structure, rather than a task oriented. A grid environment includes different re-
sources, for example, the grid, sites, storages, files, and tasks. These grid resources depend
on each other. A grid site consists of storages, and storages consist out of files. This de-
pendency structure creates a navigable hierarchy of grid resources, as shown in Figure 4.4.
First the user enters a grid, then one of the storage resources, and for example, copies a file
from the storages location to another storage location inside another grid. This architec-
ture approach makes grid environments as browsable as common file system hierarchies.
The UNICORE community provides a shell client based on the HiLA API to browse grid
environments. This shell client is the HiLA shell that we use in this thesis.

HiLA 2.1 3

Location loc = new Locatin("unicore6:/sites/DEMO-SITE_201005231038 ←�
");

if(loc.isLocationOfType(Site.class) {
Site site = (Site) loc.locate();

}

Another option would be (assuming loc is still the same):

Resource res = loc.locate();
if(res instanceof Site) {
Site site = (Site) res;

}

4 The Grid API

The HiLA API with its notions of Location and Resource is very generic and merely
allows to create a navigable hierarchy of Resources that have Locations.

The basic artifacts, which can be accessed by HiLA and referenced via HiLA locations, are:

• Grid

• Site

• Storage

• Task

• File

Figure 1: Architectural overview of HiLA
Figure 4.4: Architecture Overview of HiLA [82]

4.5 Implementation of the Cloud Extension

We develop the Cloud Extension as a package of java classes inside the HiLA shell applica-
tion. Figure 4.5 shows all classes of the Cloud Extension package. The package contains the
CreateSingleSubnetVPC class and the CreateMultiSubnetVPC class that include the appli-
cation logic. During the runtime the classes SingleSubnetVPC and MultiSubnetVPC save
runtime specific data for the corresponding operation. Furthermore, the class EC2Methods
manages the AWS resources and the UnicoreConnection class manages the UNICORE6
resources. The class SHHToEC2 provides functions to connect over the ssh protocol to the
AWS instances. In addition, the helper classes ConfigHelper, ElasticIPAddress, and
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Figure 4.5: Cloud Extension Class Diagram
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EC2Connection load configuration files, save EIP address information for instances, and
provide a connection to the AWS EC2 service.
The base for our implemented HiLA shell commands is the general implementation of
HiLA shell commands. Every command, for example cp for copy, mkdir, monitor, or sub-
mit inherits from the class ShellCommandBase and implement the interface ShellCommand.
This approach standardizes all commands and ensures that all commands contain the same
methods. The central inherited method for all commands is the execute method. The exe-
cute method is the central point for every command that parses the input options and runs
the specific program logic.
However, we have developed two new commands, the CreateSingleSubnetVPC command
and the CreateMultiSubnetVPC command, both according classes are shown in Figure 4.5.
These commands automatically configure and start the AWS and UNICORE6 resources in
the cloud and include them into the local grid. Therefore, these commands start the Single
Subnet VPC scenario and the Multi Subnet VPC scenario from Section 4.3.
The CreateSingleSubnetVPC command starts the Single Subnet VPC environment. Hereby,
the option -number [1-5] is mandatory to start the environment, which defines the num-
ber of instances that are started in the Single Subnet VPC environment. Furthermore, the
option -delete is possible. The -delete option terminates all running resources in the
cloud and excludes them from the local grid. Therefore, the Single Subnet VPC environ-
ment is deleted.
In addition, the command CreateMultiSubnetVPC starts a Multi Subnet VPC environ-
ment. This command includes two options. The -subnets option specifies the number of
subnets that are started and is mandatory. The -delete option behaves similar to the Single
Subnet -delete option.

4.5.1 Automatic AWS Cloud Management

The class EC2Methods contains all methods to configure, start and stop the cloud envi-
ronments. To access the AWS web interface these methods use the AWS SDK for java in
version 1.2.6 [16]. Furthermore, the class EC2Methods needs helper classes and access cre-
dentials to make requests to the AWS SOAP API. Helper classes are the EC2Connection

class that provides the connection to the AWS services. And the ConfigHelper class that
provides the path to the AWS credentials and further information for the cloud environ-
ment configuration.
However, the central methods of the class EC2Methods are the method
createSingleSubnetVPC() and the method createMultiSubnetVPC() that both start the
corresponding cloud resources for the Single Subnet VPC scenario and the Multi Subnet
VPC scenario. In addition, the relations of these classes are depricted in a class diagram in
Figure 4.5.
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4.5.1.1 Single Subnet VPC

The method createSingleSubnetVPC() in the class EC2Methods starts and configures the
cloud environment for the Single Subnet VPC scenario. Figure 4.2 depicts the cloud envi-
ronment for this design.
The Amazon VPC is the base for all other components that reside in the cloud comput-
ing environment. After the VPC start-up, the network configuration of the VPC is un-
changeable. To reconfigure the network properties of the VPC, the VPC has to be deleted,
changed and restarted. In the method createSingleSubnetVPC() we create a VPC with
a 10.0.0.0/16 Classless Inter-Domain Routing (CIDR) block [21]. This CIDR configuration
creates 65,536 possible IP addresses in the VPC, it is the minimal allowed network mask
with about 28 bit. In our Single Subnet VPC scenario, we partition the 65,536 possible IP
addresses to one single subnet with 65,536 possible IP addresses. Therefore, the single sub-
net in the VPC contains 65,536 possible IP addresses with a 10.0.x.x prefix. But not all IP
addresses are available for simultaneous usage as running instances. AWS provides only
16,500 simultaneously running EC2 instances in this subnet. Furthermore, AWS reserves
the first four and the last IP address of a VPC subnet. But all other 10.0.x.x IP addresses are
reachable inside the VPC and separated from access outside the VPC.
However, to enable communication to the outside of the VPC subnet the method
createSingleSubnetVPC() starts and configures the Internet gateway. Amazon provides
the Internet gateway as a pre-configured component. The Internet gateway enables com-
munication to the Internet, to EC2 instances outside of the VPC, and especially important
for us the communication to the local grid. But only instances with associated EIP ad-
dresses are able to communicate over the Internet gateway. Therefore, a maximum of five
instances can send and receive traffic out of the VPC in this scenario. In addition, outgo-
ing traffic over EIP addresses always apply charges. The minimum cost are Regional Data
Transfer Rates [3].
To make the Internet gateway reachable for the VPC EC2 instances, Amazon provides a
implied router. The route table is shown in Table 4.1 and terms Route Table A. The first
entry routes all packages inside the VPC subnet. This route enables the instances to com-
municate with each other. The second route routes all packages to the Internet gateway
and therefore it enables the instances with associated EIP address to communication out-
side the VPC.

Destination Target
10.0.0.0/16 local
0.0.0.0/0 Internet Gateway

Table 4.1: Route table A
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The maximal five instances with associated EIP addresses include the UNICORE6 server,
but at least one of the instances contain a gateway component in addition. The class
UnicoreConnection that we describe in Subsection 4.5.2 configures and starts these UNI-
CORE6 components. The base for these instances is the Linux Ubuntu 10.04 LTS release
that the Ubuntu community provides as AMI [59]. Based on this AMI, we created the AMI
with the id ami-0c22d965 that contains the needed UNICORE6 components.
However, in the next paragraph, we describe the Multi Subnet VPC scenario that over-
comes the limitations of maximal five available UNICORE6 servers.

4.5.1.2 Multi Subnet VPC

The method createMultiSubnetVPC() from the class EC2Methods configures and starts the
cloud environment for the Multi Subnet VPC implementation. The Figure 4.3 displays the
cloud environment for this implementation. Similar to the single subnet implementation
there exists a VPC in the cloud environment. The configuration of the VPC is similar to
the single subnet VPC configuration. The difference is the configuration of the subnets in
the VPC, because the VPC is segmented in more than one subnet. The VPC subnet CIDR
blocks are limited by the configuration of the VPC netmask configuration which means
that the subnets can not contain more IP addresses than the VPC. Furthermore, the subnet
CIDR address blocks can not overlap.
However, AWS restricts the number of subnets inside a VPC up to 20. We exhaust this limit
of subnets while creating subnets with a 21 bit netmask. That means each subnet contains
2046 IP addresses, with the restriction that AWS reserves the first four and the last IP ad-
dress from every subnet.
Similar to the previous implementation is the router in the VPC. In addition, the route table
in the public subnet is the same route table as in the Single Subnet VPC implementation,
see Route Table A 4.1.

Different is the route table B shown in Table 4.2 in the private subnets that differs from

Destination Target
10.0.0.0/16 local
0.0.0.0/0 NAT Instance

Table 4.2: Route table B

route table A. In the Multi Subnet scenario the route table B is the main route table. Every
subnet that is not associated with the route table A uses the route table B. The first route in
the route table B enables all VPC instances with subnet specific IP addresses, for example
10.0.8.23, to communicate with each other. The second route in route table B sends all traf-
fic to a NAT instance in the public subnet. The NAT instance enables all instances in the
VPC to communicate with the Internet and therefore the NAT enables the communication
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with the local grid.
The configuration of the NAT instance is different to the other instances. Therefore an EIP
address has to be associated to the NAT instance and the source/destination checking at-
tribute has to be disabled. The disabled source/destination checking attribute allows the
instance to send and receive date from other instances. If the source/destination checking
is enabled, instances can only send and receive data that is initiated by themselves.
To start the Multi Subnet VPC implementation, we created the command
createMultiSubnetVPC in the HiLA shell. This command has two possible options. The
option -subnets specifies the number of subnets and UNICORE6 servers that will start in
the cloud computing environment. The option -delete stops and deletes all resources in
the cloud computing environment.
The difference between the Single Subnet VPC implementation and the Multi Subnet VPC
implementation is the higher amount of UNICORE6 servers. Besides, our arrangement
of subnets and UNICORE6 servers is not a definite arrangement. We start a single UNI-
CORE6 server in every subnet, but it is although possible to start more than one UNI-
CORE6 server in a VPC subnet. As a maximum, all instances in the VPC can be UNICORE6
servers. In contrast, the minimal number of subnets in this implementation should be two,
because one subnet with route table A and one subnet with route table B must be provided.
In the next subsection we describe the arrangement of UNICORE resources in detail.

4.5.2 Automatic Deployment and Configuration of UNICORE Grid Resources on
AWS Instances

After the start-up of the cloud computing resources that we explained in Subsection 4.5.1,
the Cloud Extension automatically starts the UNICORE resources on the cloud instances.
The class UnicoreConnection in the Cloud Extension, shown in Figure 4.5, contains all
methods to configure and start the UNICORE components in the cloud environment.
To configure the UNICORE6 components in the cloud, we connect it over the Secure Shell
2 (SSH-2) protocol to the instances [55]. We included the open source library ganymed-
SSH2 for Java [28] in the Cloud Extension. This library implements the SSH-2 protocol
in pure Java. Therefore, the ganymed-SSH2 library enables encrypted connections to the
cloud instances SSH-2 servers. We configured the user account unicore on every instance
and use this user account to receive these SSH-2 requests.
The library supports SSH-2 sessions with remote command execution and shell access.
This enables the methods from the class UnicoreConnection to edit the UNICORE6 con-
figuration files directly on the instances. Furthermore, the methods can start and stop the
UNICORE6 components by running the component according start-up shell script. These
editing and start-up happens under the user account unicore.
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Similar to the implementation in the cloud environment that we described in Subsection
4.5.1, different methods for the Single Subnet und Multi Subnet implementation exist in
the class UnicoreConnection. Because of both implementations, we provide a detailed de-
scription for the both implementations in the Subsections 4.5.2.1 and 4.5.2.2.
But both implementations have some similar characteristics. All UNICORE resources reg-
ister at the registry in the local grid. Therefore, both implementations do not need the
registry component. Furthermore, the UNICORE TSI component that enables the usage of
cluster resources is optional. We described clusters in Section 2.1, and the usage of clusters
in the Multi Subnet VPC and Single Subnet VPC implementations in the Subsection 4.5.3.

4.5.2.1 Single Subnet VPC

The methods configUnicoreSingleSubnetInstance(Instance unicoreInstance) and
startUnicoreSingleSubnetInstance(Instance unicoreInstance) in the class
UnicoreConnection configure and start the UNICORE components on the passed uni-
coreInstance variable, shown in Figure 4.5. Both methods connect with the user account
unicore to the EIP address of the passed instance. The UNICORE6 components that get
configured and started are the gateway, unicorex, and the xuudb component, described in
Subsection 2.2.3.
However, the concrete configuration of UNICORE6 components is as follows. The name of
the UNICORE6 server site and the Group component Identification (GcID) is set to AWS-
Grid-“InstanceID ”. The “InstanceId” is the ID of the AMI and is a unique identifier. The
address of the external registry is set to the local grid gateway, behind which the external
registry resides that all UNICORE servers use for registration. Furthermore, the publica-
tion IP address of the unicorex server component is changed from the private IP address
to the EIP address. Because the unicorex server publishes this address to the external reg-
istry at the local grid, only the EIP address is available from the Internet. Afterwards the
publication IP and local DNS name of the VPC subnet have to be set in the /etc/hosts

file. Because UNICORE6 uses the hosts file for DNS lookup, it crashes if the correct entry
does not exists. The last configuration step we do, is to add the site name AWS-Grid-
“InstanceID” to the xuudb.
After the configuration of the maximum five UNICORE6 servers, these are ready to start.
Therefore, the program logic in the command createSingleSubnetVPC() calls the method
startUnicoreSingleSubnetInstance(Instance unicoreInstance) that start-up the con-
figured UNICORE6 servers.

4.5.2.2 Multi Subnet VPC

For the MultiSubnet VPC implementation we added methods in the UnicoreConnection

class, shown in Figure 4.5. Two configuration methods reside in this class: one for the
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UNICORE gateway in the public subnet and the other for UNICORE6 servers in the pri-
vate subnets. In addition to the configuration methods, we have two start-up methods to
start the UNICORE gateway and the UNICORE servers. These methods establish a SSH-2
connection to configure and start the UNICORE processes on the UNICORE instances.
However, the UNICORE gateway in the public subnet consists of the UNICORE gateway
component, the UNICORE/X component, and the xuudb user database. In the private
subnets, we start UNICORE6 servers that contain only the UNICORE/X component.
The configuration of the UNICORE gateway component is similar to the configuration of
the UNICORE6 servers in the Single Subnet VPC implementation described in Subsection
4.5.2.1. Only the name of the gateway site is different, we call the gateway site DEMO-
SITE-VPC-GW.
Furthermore, the first configuration steps of the private subnet UNICORE6 servers are
similar to the configuration of the Single Subnet UNICORE6 servers. But the Multi Subnet
VPC private subnets UNICORE6 servers require one more step. For these servers, we set
the private address of the UNICORE6 gateway that reside in the public subnet as gate-
way host address. Furthermore, the UNICORE6 servers in the private subnets use the
xuudb user database from the UNICORE6 gateway instance in the public subnet. Because
of that we set the private IP address of the UNICORE6 gateway as xuudb user database
server address for the private subnets UNICORE6 servers. Finally, we add the combina-
tion of site name and private IP address of the private subnets UNICORE6 servers to the
connections.properties list at the UNICORE gateway. This list matches site names with
their corresponding private subnet IP addresses. Therefore, this list enables the availability
of the UNICORE6 servers in the private subnets. The last step, is to add the site names to
the xuudb user database at the UNICORE gateway in the public subnet.
The problem during the configuration and start-up process is the accessibility of the private
subnets instances. All instances in the private subnets are not accessible from outside of the
VPC. Therefore, we have two possibilities to connect to the private subnet machines. First,
we login over the SSH-2 protocol to a public subnet instance and from there we can con-
nect to all private subnet machines. Second, during the configuration process we change a
private subnet to a public subnet configure to all resources. And after the complete config-
uration, we change the subnet back to a private subnet.
We implemented the second solution. Therefore, we associate an EIP address to the in-
stance in the temporary public subnet, before we configure and start-up the UNICORE
components on that instance. The change of the subnet and association of the EIP address
is implemented in the program logic from the command createMultiSubnetVPC and uses
methods from the class EC2Methods.
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4.5.3 Deployment and Configuration of PBS Cluster Resources on AWS Instances

In the Cloud Extension we did not implement methods that automatically start-up clus-
ter resources in the cloud computing environment, because to implement a class as the
UnicoreConnection that starts automatically cluster resources inside the VPC is out of
scope. In both implementations we can use the leftover from the 16,500 possible instance
inside the VPC as cluster resources. For test purpose we started the Single Subnet VPC
environment and the Multi Subnet VPC environment and configured manually an cluster
inside these environments.
As cluster software we used the PBS that we described in the Subsection 2.1.2. Two gen-
eral steps to include the cluster resources into the cloud grids are necessary. First, the TSI
component on the UNICORE servers must be configured and installed. Second, the PBS
system must run and be connected to the UNICORE TSI components. For the configura-
tion and start-up of the TSI component, we refer to the UNICORE documentation [63]. For
the configuration of the PBS we refer to several PBS user guides and documentations, [46]
and [76].
The configuration of the cluster resources in the cloud subnets is similar to subnets that do
not reside in a cloud environment. Therefore, the user should be able to configure the clus-
ter resources with the standard PBS user guides. Furthermore, the configuration process
in both implementations is almost the same. Only the possible arrangement of the cluster
resources differs.

4.5.3.1 Single Subnet VPC

In the Single Subnet VPC implementation, cluster resources reside in the public subnet
together with the UNICORE servers. We configured pbs_mom daemons to IP blocks
and mapped these groups to one of the UNICORE servers. For example, we configured
pbs_mom daemons in the subnet block 10.0.1.x and mapped these to the UNICORE server
one. The pbs_mom daemons in the subnet block 10.0.2.x we associated to the UNICORE
server two. This fragmentation promises a structure that makes the association of cluster
resources transparent.

4.5.3.2 Multi Subnet VPC

In the Multi Subnet VPC implementation we configured the cluster resources reside in the
private subnets. Therefore, the arrangement of the subnets already provides a structure
that fragments the cluster resources. The subnets contain 2046 possible IP addresses, where
2040 IP addresses are available for PBS daemons.
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4.5.4 Security Management

In the development, we located three interesting issues for security concerns. First, the
security of the local grid, second, the security of the connection between the local grid and
the AWS, and third, the security of the AWS.
The first point that regards a secure configuration of the local grid is not a great security
concern. The local grid resides in a productive and running local network and we did
not notice any security issues. Besides that, a firewall protects this local network against
threads from the Internet. To reach the local grid behind the firewall, the UNICORE gate-
way needs only one open port in the firewall. We opened port 22223 and configured the
local grid gateway for this port.
The second point is the security of the communication between the UNICORE6 gateway
components. This security concern is only a problem of secure configuration. Because the
UNICORE installation across multiple physical locations that are behind firewalls is well
established and documented from the UNICORE community and these reasons promise
the possibility to configure a secure communication between UNICORE6 gateways. Fur-
thermore, from an abstract point of view, the AWS cloud is just another physical location.
We do not discuss the security feature of the UNICORE components and mechanism any
further and refer to the UNICORE6 documentation [81].
We analyse the third point with the security concerns of the cloud environment in de-
tail. For example, possibilities to create policies in the VPC or in the subnets that only
the UNICORE6 gateways are accessible, similar to the local grid security configuration.
Furthermore, we analyse the secure connection of the AWS API to the cloud environment
and what kind of security concepts exist in the AWS. To analyse these security issues, we
describe the security concepts and techniques of the AWS VPC and introduce secure possi-
bilities to connect to the VPC instances. Furthermore, we explain the security mechanism
of the AWS API.

The AWS VPC environment provides two possibilities to ensure security for VPC in-
stances. Security Groups act on instance level and provide a firewall for single instances.
In addition, network Access Control List (ACL) act on subnet level and provide security
policies for subnets. It is possible to secure all instances only with security groups, but
the usage of ACL can provide some advantages, as described in Table 4.3. To provide an
overview of the different features from ACL and security groups, we provide the Table 4.3
where we compare security groups and network ACLs.
Furthermore, the security of the AWS SOAP API request is ensured over X.509 certificates
in a public key infrastructure. Therefore, the private key that accords to the public X.509
certificate encrypts the AWS API request. With the public X.509 that is included in every
API request, AWS confirms that the request sender is correct.
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Security Groups Network ACLs
Security groups act on the instance level ACLs act at the subnet level
Only allow rules for ingress and egress traffic Allow rules and deny rules for ingress and

egress traffic
Stateful: They allow return traffic always Stateless: For return traffic must exist network

ACLs
To allow traffic, all rules must allow the traffic The first match in a definite order determines

the traffic.
In the instance startup request, the security
group must be added manually, this is error-
prone.

ACLs can be automatically assigned to in-
stances.

Table 4.3: Compare security groups and network ACLs

However, to connect with the ganymed-ssh library for Java or another Secure Shell (SSH)
client to the AWS EC2 instances or launch an EC2 instance, Amazon provides an extra key
pair. This key pair contains of a key pair name, a private key file, and a public key file.
In every launch request, the key pair name defines the key pair that is used for this par-
ticular instance. The private key pair should only reside on the system that handles the
connection or launches requests. Amazon stores the public key and copies it during the
start-up to the instances that are started with the particular key pair name. Therefore, only
the person with the private key can access the instances [18].
In the next two subsections we describe the usage of the AWS security features in our im-
plementations in detail. In addition, we mention that all usage of the security features from
the AWS environment is implemented in the class EC2Methods in the Cloud Extension.
Therefore the Cloud Extension starts and stops the security configurations automatically.

4.5.4.1 Single Subnet VPC

In the Single Subnet VPC implementation, the Cloud Extension creates security groups
and network ACL to secure the instances. Every UNICORE6 server becomes a member
of the security group “bigVPC”. This security group allows inbound traffic for SSH access
on port 22 and grid access on port 8080. Furthermore, a loop inbound permission that
allows inbound connections from the particular instance to itself is created. This loop per-
mission enables the UNICORE6 gateway component, the UNICORE/X component and
the xuudb user database on the instance to be reachable for particular instances. The per-
missions for the security Group “bigVPC” are displayed in the Table 4.4. In the security
group “bigVPC” only exists one outbound rule, displayed in the Table 4.5. Because secu-
rity groups are state-full, no other outbound rules are needed. Only the 8080 outbound
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rule is obsolete, because the UNICORE/X components on the UNICORE servers need to
initiate traffic to the local grid without inbound traffic. For example, for the registration at
the local grid registry.
However, the configuration of these in- and outbound rules is configured for our particu-
lar IP address of the local grid gateway. We configured the source for inbound SSH and
gateway access to the fixed IP address 134.76.81.106, shown in Table 4.4. These fixed IP
addresses are changeable to any other possible configuration. Setting fixed inbound IP ad-
dress promises the security advance that only the allowed IP is permitted for connection.
For the outbound rule of the gateway in Table 4.5 we configured a fixed IP address, too.

port usage source
22 ssh 134.76.81.106/32
8080 unicore gateway 134.76.81.106/32
7777 Unicore/X private IP
9128 Unicore/X jmxPort private IP
34463 xuudb private IP

Table 4.4: Security Groups Inbound rules

port usage destination
8080 gateway 134.76.81.106/32

Table 4.5: Security Groups Outbound rules

Additional to the security groups, the Cloud Extension creates network ACL for the
subnets in the VPC. This network ACL configuration secures the complete subnet in the
VPC against access from outside. In the complete VPC subnet, we only allow inbound
traffic over the port 8080 for the UNICORE gateway server and inbound traffic over the
port 22 that is opened for SSH connections. Table 4.6 shows the inbound rules for the
network ACL. In contrast to the inbound traffic, we do not restrict the outbound traffic.
Furthermore, for inbound rules we do not configure a fixed source IP address or range as
in the security groups. But similar to security groups, the concrete definition of source IP
addresses is possible. We decided not to configure them, because we demonstrated and
tested the possibility in the security group configuration.
In addition, the configuration of the network ACLs is optional in contrast to the obsolete
security groups. The network ACLs have to open two ports to ensure that the UNICORE
components can work probably. Through these both open ports, it is possible to access
the resources in the VPC subnet. Because of this possible access the security groups are
necessary, and secure these open ports on instance level. Based on this discussion, the
network ACLs become really interesting if the VPC subnet contain more resources, for
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example a computer cluster.

port source type
22 0.0.0.0/0 ALLOW
8080 0.0.0.0/0 ALLOW
ALL 0.0.0.0/0 DENY

Table 4.6: Network ACLs Inbound rules

4.5.4.2 Multi Subnet VPC

In the Multi Subnet VPC environment the Cloud Extension creates three security groups
and two network ACLs to ensure the security of the resources. First we provide a list of
security groups:

multiSubnetVPC security group This security group is for the UNICORE6 gateway in the
public subnet.

privateSubnetUnicoreServers security group This security group is for the UNICORE6
servers in the private subnets.

NATsecGroup This security group is for the NAT instance in the public subnet.

port usage source
22 ssh 134.76.81.106/32
8080 unicore gateway 134.76.81.106/32
ALL subnet loop privateSubnetUnicoreServers sec. group

Table 4.7: multiSubnetSecurity group Inbound rules

The Table 4.7 shows the inbound rules for the multiSubnetSecurity group. The UNI-
CORE gateway instance resides in this security group. Similar to the Single Subnet VPC
implementation, this security group has inbound rules for the UNICORE gateway and SSH
access. In addition, an inbound rule exists for all instances that reside in the privateSubne-
tUnicoreServers security group. The inbound rules for the privateSubnetUnicoreServers
are depicted in Table 4.8. The loop rule allows all instances to connect to themselves which
is similar to the Single Subnet VPC implementation. The public subnet rule allows the
UNICORE gateway to connect to the UNICORE servers in the private subnets. Because
the UNICORE servers in the private subnets reside in the privateSubnetUnicoreServers
security group. Outbound restrictions do not exist in the privateSubnetUnicoreServers se-
curity group. The NATsecGroup security group has only one inbound rule that allows the
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port usage source
ALL loop privateSubnetUnicoreServers security group
ALL public subnet multiSubnetSecurity security group

Table 4.8: privateSubnetUnicoreServers security group Inbound rules

connections from the instances in the privateSubnetUnicoreServers security group. There-
fore, the NATsecGroup gives the instances in the private subnet the permission to access
the NAT instance in the public subnet. Similar to the other two security groups, the NAT-
secGroup does not have any outbound restrictions.
In the Multi Subnet implementation, the Cloud Extension creates network ACLs, too. The
first network ACL is for the private subnets. This network ACL is the default network ACL
that is created automatically by the AWS during the VPC start-up. In this default network
ACL we have no restrictions, all traffic is allowed. This network ACL can be configured
based on the possible cluster systems that can reside in the private subnets. Furthermore,
the private subnets are only accessible over the NAT instance which provides a simple
network protection. For the public subnet the Cloud Extension creates a more restrictive
network ACL. In this network ACL inbound traffic is only possible for SSH access and
UNICORE access, similar to the network ACL in the Single Subnet implementation. In
addition, in this implementation the Cloud Extension creates access for the private subnet
instances. For outbound traffic we allow all traffic that comes out of the VPC.

4.6 Validation

In this section, we provide a validation of our implementations. To validate our implemen-
tation, we define test purposes that describe the estimated behaviour and functionality of
our implementations. Furthermore, we monitor the behaviour of our implementation in
two isolated parts. The first part starts, configures, and includes the cloud computing re-
sources in the local grid. Therefore we name it infrastructure validation for the Single or
Multi Subnet VPC implementation which we described in the Subsection 4.6.1. The sec-
ond part executes jobs at the grid resources in the cloud. Therefore, we use the Single or
Multi Subnet VPC as desired and we name this validation job execution validation which
is described in Subsection 4.6.2.
We execute all validations manually, for example, by running the commands in the HiLA
shell, check the started cloud resources over the AWS web interface or verify the output
files manually. The basis for this validation approach is further described in [80].
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4.6.1 Infrastructure Validation

In this subsection, we validate for both implementations that they boot-up the expected
cloud infrastructure and register the cloud resources into the local grid. In a nutshell, the
test purpose for both architectures is: start and configure a UNICORE 6 infrastructure in
the AWS cloud computing environment and register the grid resources in the cloud in the
local grid.
The infrastructure validation description for the Single Subnet VPC is shown in the Table
4.9. The validation description for the Multi Subnet VPC is nearly similar to this, therefore
we did not show a table for the Multi Subnet VPC validation. For both implementations
we use the HiLA shell with the Cloud Extension as test application. With the AWS Service
Health Dashboard [19] and the AWS Management Console we check the pre-test condition
that all cloud resources are available. Furthermore, we start the HiLA shell and verify that
no error messages occur in the log files during the boot-up process. At last, we check if
the local grid is available by verifying the log files and accessing the local grid with a UNI-
CORE6 client. If these pre-conditions are checked, we can start the test sequence.
The test sequence runs over 10 steps. In step one we start the boot-up of the Single Sub-
net VPC or the Multi Subnet VPC infrastructure through the according commands. The
creatSingleSubnetVPC -number a, with a from one to five starts the Single Subnet VPC.
And the command createMultiSubnetVPC -subnets b, with b from 1-20 starts the Multi
Subnet VPC. In step two to eight we verify that the cloud resources has started as esti-
mated. To verify the started resources, we use the AWS Management Console and look
in the logging files of the HiLA shell for error messages. In nine and ten we login over
SSH to the single cloud instances and check that all estimated UNICORE6 processes are
running. In addition, we search the UNICORE6 start-up log files for error messages that
might accure during the start-up. Furthermore, we check in the local grid if the grid re-
sources from the cloud have registered probably. After this infrastructure validation, the
grid infrastructure in the cloud is ready for job execution.

4.6.2 Job Execution Validation

After we validated that our grid infrastructure in the AWS cloud runs and is registered in
the local grid, we validate the job execution which shows that it is possible to execute grid
jobs on grid resources in the cloud. Therefore, we define test-purpose that checks if a grid
job can be submitted and run on AWS cloud computing resources. To validate the job exe-
cution, we provide three use cases. In the first use case, we send a grid job over the HiLA
shell to the grid. In the second use case, we programmed a Java standalone application
that sends jobs to the grid. The third use case uses the UNICORE6 Rich Client to send a
job to the grid.
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Single Subnet VPC infrastructure Test Description
Summary HiLA shell with Cloud Extension starts and configures the UNI-

CORE6 infrastructure in the cloud correctly

Pre-test conditions
The cloud resources are available
HiLA shell with the Cloud Extension runs
The local grid is available for registration

Test Sequence

Steps Action
1 User enters the command to start the Single Subnet VPC
2 Verify that the VPC is correctly created
3 Verify that the Public Subnet is correctly created
4 Verify that the Router is correctly created
5 Verify that the Internet Gateay is correctly created
6 Verify that the Custom Route Table is correctly created
7 Verify that the UNICORE 6 instances are started
8 Verify the EIP addresses
9 Verify that the UNICORE processes run correctly
10 Verify that the UNICORE servers are registered in the local registry
Table 4.9: Single Subnet VPC Infrastructure Test description

4.6.2.1 Jobs in the HiLA shell

For the validation with the HiLA shell we provide a test description which is depicted
in Table 4.10. The test application is the HiLA shell with the Cloud Extension. To fulfil
our pre-test purposes, we use the HiLA shell with the Cloud Extension to automatically
start the Single Subnet VPC or Multi Subnet VPC infrastructure. We need these pre-test
conditions, because they establish the grid infrastructure in the cloud on which we execute
the grid jobs. As additional pre-test condition, we establish the input file bash.jsdl for the
test command in the home directory of the current test user at the local grid server.

To start the test sequence with step one, we execute the HiLA shell command “submit”
that executes jobs in grid environments. The submit command has four possible argu-
ments, -r to run a job right away, -j specify the JSDL document to be submitted, -s select
the site to which the job is submitted, and -h display the help text. We use the complete
command to run a job on a UNICORE6 server in the AWS cloud as depicted in the Listing
4.1.

Listing 4.1: submit a job in the HiLA shell
1 s i t e s : > submit −r − j bash . j s d l −s unicore6 :/ s i t e s /AWS−Grid−i−b1b899d0
2 unicore6 :/ s i t e s /AWS−Grid−i−b1b899d0/ t a s k s /43465d95−804a−46df−8ef3−f2540a6c4198
3 s i t e s : > export stdout stdout_43465d95 −804a−46df−8ef3−f2540a6c4198
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Execute jobs on cloud resources
Summary The HiLA shell with cloud Extension submits and runs a

grid job in the cloud

Pre-test conditions
The Single/Multi Subnet VPC infrastructure is available
HiLA shell with the cloud extension runs
The input file from the local grid is available

Test Sequence

Steps Action
1 User enters the command to start submit and run the job
2 Verify that the job is successfully finished
3 Verify that the stdout data is copied to the local host
4 Verify that the output file is correct

Table 4.10: Job Execution validation with the HiLA shell

To ensure that our job executes on a cloud resource, we set the -s option to an UNICORE6
server that resides in the cloud. In our example, we run the job on the server with the
site name AWS-Grid-i-b1b899d0. After we have executed the submit command, the HiLA
shell prints the task directory for the submitted job on the console (line two Listing 4.1).
With the information about the unique id of the task directory, we can validate step two
by changing to the tasks directory and check if the command is successfully accomplished.
The task directory is the directory of the current job. In step three, we export the output
from the job to our local home directory (line 3 Listing 4.1). In step four, we use the output
from the job to validate that the job was executed on the estimated cloud resource. In the
output file, the IP address of the site AWS-Grid-i-b1b899d0, the actual date, and time of the
execution from the bash.jsdl JSDL file should be printed.
The input file defines the content of the output file. The content of the input file is the
print date and print hostname command. We defined this input file in the bash.jsdl

as command input file (line 23 Listing 4.2). Furthermore, the bash.jsdl file defines the
information which applications the job runs on the cloud server. In the bash.jsdl we
define the /bin/bash shell-script that runs and executes the commands from its input file.
After the /bin/bash shell-script has been executed the commands from the input file, the
output is passed to the stdout file in the task directory. To view the stdout file, we can
access it directly in the task directory on the server. Alternatively, we can export it to our
home directory in the local grid on which the HiLA shell is executed. Line three in Listing
4.1 demonstrates the command to export the output file to our home directory.

Listing 4.2: bash.jsdl for job execution validation
1 <?xml vers ion = " 1 . 0 " encoding ="UTF−8"?>
2 < j s d l : J o b D e f i n i t i o n xmlns=" ht tp ://www. example . org /"
3 xmlns : j s d l =" ht tp :// schemas . ggf . org/ j s d l /2005/11/ j s d l "
4 xmlns : j s d l−posix =" ht tp :// schemas . ggf . org/ j s d l /2005/11/ j s d l−posix "
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5 xmlns : x s i =" ht tp ://www. w3 . org /2001/XMLSchema−i n s t a n c e ">
6 < j s d l : JobDescr ipt ion >
7 < j s d l : J o b I d e n t i f i c a t i o n >
8 < j s d l : JobName>HiLA s h e l l va l ida t ion </ j s d l : JobName>
9 </ j s d l : J o b I d e n t i f i c a t i o n >

10 < j s d l : Applicat ion >
11 < j s d l : ApplicationName>Bash s h e l l </ j s d l : ApplicationName>
12 < j s d l−posix : POSIXApplication >
13 < j s d l−posix : Executable >/bin/bash</ j s d l−posix : Executable >
14 < j s d l−posix : Environment name="SOURCE"> input </ j s d l−posix : Environment>
15 < j s d l−posix : Environment name="STANDARD_ERROR"> stderr </ j s d l−posix : Environment>
16 < j s d l−posix : Environment name="STANDARD_OUT"> stdout </ j s d l−posix : Environment>
17 </ j s d l−posix : POSIXApplication >
18 </ j s d l : Applicat ion >
19 < j s d l : DataStaging >
20 < j s d l : FileName>input </ j s d l : FileName>
21 < j s d l : Source >
22 < j s d l : URI>
23 unicore6 :/ s i t e s /DEMO−SITE−GRID2_201108191352/s t o r a g e s/Home/ f i l e s /input
24 </ j s d l : URI>
25 </ j s d l : Source >
26 </ j s d l : DataStaging >
27 </ j s d l : JobDescr ipt ion >
28 </ j s d l : JobDef in i t ion >

4.6.2.2 Jobs with the HiLA API

For job execution validation with our implemented standalone application that is based on
the HiLA API, we provide a test description in the Table 4.11. In our test application “Grid
Application” two Java classes exist. The class “RunJob” contains the logic and the class
“Grid” contains helper methods. During the application procedure, the Grid Application
first prints all grid sites to the standard output. Then, the application prints the content
of a JSDL file that is created in the class Grid with the JSDLBuilder Factory from the UNI-
CORE6 HiLA implementation. The JSDL file is similar to the bash.jsdl in Listing 4.2.
Afterwards, the Grid Application submits and executes the JSDL job to a random cloud
site. Alternatively, it is possible to set the CandidateHosts element in the bash.jsdl. In the
last step, the application exports the output from the job to the temporary directory on the
host on which the application is executed.
However, the pre-test-conditions are the same as in the previous validation with the HiLA
shell which means that the Single Subnet VPC or the Multi Subnet VPC infrastructure must
be started and contain at least one grid site in the cloud before test execution.
To start the test sequence, we execute the standalone application. Then the application
prints the status of the test sequence, steps two and three to the standard output, and a log
file. If the output prints SUCCESSFUL for both test sequence steps, the output from the grid
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job is written to a file that resides in the local temp directory. To verify the output of the
grid job, we verify the content of this file which should be similar to the output file in the
job execution validation with the HiLA shell.

Execute jobs on cloud resources
Summary The Standalone Application with HiLA API submits and

runs a grid job in the cloud

Pre-test conditions
The Single/Multi Subnet VPC infrastructure is available
The standalone application is executeable

Test Sequence

Steps Action
1 User runs the standalone application
2 Verify that the job is successfully finished
3 Verify that the stdout data is copied to the local host
4 Verify that the output file is correct

Table 4.11: Job Execution Validation with the HiLA API

4.6.2.3 Jobs with the UNICORE6 Rich Client

At last, we want to mention the possible validation with the UNICORE6 Rich Client. The
test description for the rich client is similar to the previous ones. The rich client has ca-
pabilities to display the grid resources, to browse through their storages directory, execute
grid jobs, and monitor grid jobs.
An improvement in the job execution compared to both our previous solutions is the capa-
bility of the rich client to schedule jobs between not fully loaded grid sites. The user runs
the job on the grid and the rich client chooses the execution site for the job.
In this subsection we provided a validation approach to validate our Cloud Extension that
automatically creates a UNICORE6 grid in the AWS cloud. Furthermore, we validated the
possibility to use these cloud resources in the UNICORE6 grid environment.

4.7 Discussion

In this section, we discuss our implemented scenarios. This discussion is based on the gen-
eral requirements and aspects we analyzed in Section 3.2. However, our implementation
can serve a wide range of use cases. The Cloud Extension implementation is usable in shell
context, standalone applications, and in the UNICORE6 GUI client. In the shell context and
in the standalone application, we can manage the cloud resources directly from the shell or
include the Cloud Extension in a standalone application. To use the Cloud Extension in the
UNICORE6 GUI client, we have to use the shell client to manage the cloud resources, or

58



4 Implementation of the Local Grid with Instances from the Private Cloud

we have to include the Cloud Extension in the GUI. In this discussion we give suggestions
to classify the Cloud Extension for the users particular use cases.

Management of cloud resources Two different domains there that need to be managed in
the AWS cloud computing environment. First, the AWS cloud resources, for exam-
ple, instances, NATs, subnets, and security groups servers. Second, the UNICORE6
components need to be managed. To manage the AWS cloud resources, we use the
AWS Java SDK which is described in Section 4.3. The SDK is the lowest level of ab-
straction to manage the cloud resources, but it promises to be the most flexible to
integrate in our client, because all UNICORE6 components are programmed in Java.
In contrast to the SDK, it is possible to manage the cloud resources over a graphical
web interface. But with the graphical web interface, it is not possible to start and stop
our implementations with an automatic start-up sequence. For testing purposes and
during the implementation process we used this web interface. In addition, we used
it to monitor our resources.
Furthermore, a plug-in for the Eclipse Integrated Development Environment (IDE)
that promises basic monitoring and managing functionality for the cloud resources
is available. We use the IDE plug-in during the implementation process similar to the
graphical web interface, even if the IDE plug-in does not provide the same amount
of managing possibilities. This IDE plug-in can be a basis for an integration of cloud
resources management in the UNICORE6 GUI clients, since both rely on the RCP ar-
chitecture.
However, for the management of the UNICORE6 components an API or web inter-
face does not exist. Therefore, we developed the Cloud Extension to overcome this
limitation and take a step towards a management software for the UNICORE6 com-
ponents.

Interoperability between clouds The focus during the implementation was not to imple-
ment a solution that is portable between different cloud vendors. We used the AWS
Java SDK that is a particular cloud computing vendor SDK to manage our cloud re-
sources. Because of the focus during the implementation and the particular SDK, our
implementation is hard to port to another cloud vendor, especially with only little
changes in the implementation. These changes can be necessary on different points,
for example the exchange of the AWS Java SDK, the configuration of the UNICORE6
components, and even in the job execution on the grid client side.
If the implementation changes to another cloud computing vendor, all requests against
the cloud might have to be changed. Especially, the class EC2Methods makes exten-
sive use from the AWS Java SDK. Furthermore, another cloud environment should
provide the same configuration possibilities of subnets, gateways, possible IP ad-
dresses, etc. Only with the same cloud configuration, it is possible that no changes in
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the configuration methods of the UNICORE6 components are necessary. Problems
on job execution can occur, too. It is possible to integrate the candidateHostName
attribute in a JSDL file, but if the host name changes, these JSDL files have to be
changed.
A possible solution is the use of a cloud software that is specified by the OCCI. Al-
ternatively, a layer that translate from AWS cloud commands to common cloud com-
mands can be created. This layer can be used to integrate a unified interface to the
cloud request. An example for such cloud APIs is the Apache libcloud.

Reliability of cloud resources Amazon promises a 99.95% availability for their EC2 re-
sources across the Amazon EC2 Regions [4]. The 99.95% availability promises less
then 5 hours unavailability per year. During the writing and implementation of this
thesis, disruptions in the AWS cloud occurred and data was lost [56], [35]. These
failures do not bother our implementation process, but within a productive running
implementation data would be lost.
However, in august AWS offered a credit voucher for that crash for all customers [6].
Furthermore, Amazon states that the crash does not affect the SLA uptime, because
only one of two regions were down. These reliability problems make very clear how
important it is to have a backup plan for a possible crash of the cloud. In addition,
the SLAs are not easy to understand and cloud users are well advised to have a crit-
ical look into the SLAs. Caused of the both AWS crashes, a controversal discussion
arisesd in the AWS community, if the crashes affect the SLA uptime.
However, an approach to secure data against the patriot act that we mentioned in
the Section 3.2 provides the security provider for clouds Porticor Cloudsecurity [49].
Furthermore, AWS updated their VPC features and added the multiple Availability
Zone feature to the VPC [10]. With this feature, the crashes mentioned above are
partly absorbed.

Cost of cloud resources AWS offers three different purchasing models to rent Amazon
EC2 instances. These three are On-Demand Instances, Reserved Instances, and Spot
Instances. For all purchasing models no minimum fee exists and in all purchasing
models the cost depends on the region where the instances are running. The price
differs on the instance type in all purchasing models. Available are instance types
with more or less computing power.
However, On-Demand Instances can be rented on an hourly basis. They offer the
opportunity to increase or decrease the amount of instances every time. For On-
Demand Instances, only the used uptime is purchased. For Reserved Instances, the
user pays in advance for an estimated time and therefore reserves an arranged usage
time for this instance. The fees for running Reserved Instances are less than the fess
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of an On-Demand Instance. The third purchasing model is the Spot Instance Model.
To run Spot Instances, the user sets a maximum fee that is acceptable to pay for an
particular instance type. In fixed time intervals Amazon sets a Spot Price for all in-
stance types in an Availability Zone. This Spot Price depends on demand and supply.
If this Spot Price drops below the maximum fee the users defined, the instance runs
[3].
For our implementation we only used On-Demand Instances, because in the devel-
opment process we could not estimate how much instance time we would need and
therefore we could not use Reserved Instances. Furthermore, to wait for a implemen-
tation test until the chosen Spot Price is reached, is not a practicable way, too. In a pro-
ductive environment, the different purchasing models could maintain to economies.
If the estimated usage for a job is clear, the Reserved Instance can lead to lower costs.
In the Spot Instances purchasing model, a problem can occur with the saving of the
grid state in the cloud when the Spot Price forces the instances to shut down. There
must be a clear approach, how the running job in the cloud grid can be paused and
restored.
In the future, the number of pricing models of cloud resources will increase. With
more interoperability between cloud resources, it can be possible that there will be
cloud resource stock exchanges at which cloud computing resources can be handled
like fuel. Even AWS searches for new employees that will work on concepts to sell
cloud computing resources [33] in standardized ways.

Security aspects The security mechanisms offered by AWS, provide the possibility to con-
figure secure cloud computing environments. In Subsection 4.5.4 we created secure
implementations that used many possible capabilities of the AWS.
However, risks reside in the detail of configuration and usage. For example, re-
searches from the Center for Advanced Security Research Darmstadt (CASED) found
vulnerabilities in the usage of the AWS [11]. The vulnerability lies in the publishing
of AMIs. In a nutshell, AWS users make their AMIs public without deleting all pri-
vate data from the public AMIs. In detail, the CASED scientists found private keys
for authentication to the users AWS services, private SSH keys for root access, valid
Secure Socket Layer (SSL) certificates with associated private keys, and other private
data in over 30% of the inspected AMIs. To check an AMI for security or private crit-
ical data, the AMI aiD (AMID) tool was created. This AMID tool scans a AMI system
for critical data [12].
Furthermore, AWS offers a wide range of manuals on how to publish the AMIs with-
out security issues [53], [34],[52]. But the rate of 30% AMIs with private data shows
that even good documentation makes it not easy to configure a secure cloud envi-
ronment. In general, a user should be aware that the publishment of AMIs could
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cause vulnerabilities of more than the cloud systems. With a private root SSH key, an
attacker can access the private local network of a company or any other facility that
has been published the AMI.
To develop a secure cloud computing environment, the user should be aware at this
issue in every process phase, from the design to the implementation and the moni-
toring and management. In Section 3.2, we provide some general aspects on cloud
computing security. Furthermore, AWS supplies lots of information about the secu-
rity in their cloud environment, too [17].

Performance Aspects We did not experience performance concerns in our implementa-
tion. Also, we did not stress tested our implementation. The available resources and
services in the AWS VPC that affect the performance are increasing continuously [51],
for example, maximum of available resources, dedicated instances, type of available
resources, etc. In addition, AWS published an VPC update on the August 4th 2011
that allows up to five VPC environments for each user account. The possibility of five
VPC environments increases the maximum of available instances dramatically. We
discuss this in the issue amount of cloud resources. Together with the wide variety of
possible instances [2] and tHigh Performance Computing [9] instances AWS a wide
range of computing resources can be used.

Requirements of the local Network The requirements for our implementations to the lo-
cal network are simple. For the UNICORE6 gateway, the port 22223 in our local
network firewall must be open. No further requirements are necessary. Except that
the local grid must be reachable, but for that the open port is needed.

Amount of cloud resources In the Section 4.3, we discussed the limits of the AWS cloud
and provided implementations to overcome these limitations. For example the limits
are maximal one VPC per user account, the maximum of 5 EIP, the maximum of 20
subnets in the VPC. But AWS limits more components as discussed above, a com-
plete overview is provided in the AWS VPC documentation [8]. The limits are set
by AWS that include, for example, security groups, network ACLs, route tables, and
gateways. The limits reside in resource limitations and in configuration limits. If a
user changes the implementation, the user must be aware of the resource limitations.
Another limitation can occur at the start-up request for On-Demand instances. AWS
does not ensure that it is always possible to start On-Demand instances directly. On-
Demand Instances are maybe not able to start for “short periods of time “during high
demand periods [1].
But during our implementation and validation process, we did not have any prob-
lems with lazy starting On-Demand Instances. We also did not have any problems
with lack of cloud resources.
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In this chapter, we conclude the thesis by providing a summary of our work. Further-
more, we discuss our thesis in general and provide an outlook on how the work could be
extended.

Summary

We analyzed general requirements and aspects of the integration of cloud computing re-
sources into grid systems and provided different abstract scenarios to integrate cloud com-
puting resources into grid systems. We provided a discussion about the regarding sce-
narios regarding general requirements and aspects. Furthermore, we chose one abstract
scenario for implementation that promises to be a combination of a secure and reliable so-
lution. The scenario can be implemented without overhead in the configuration and the
programming requirements.
We developed two implementation models for our chosen abstract scenario that provide
possibilities to overcome limitations of the AWS cloud. Both these implementation models
have been implemented and we provided a validation with example uses cases. The vali-
dation verified that both implementations integrate AWS cloud computing resources into
the UNICORE6 grid environment. Furthermore, we provided a discussion about our two
implemented scenarios that focuses on the general requirements and aspects.

Discussion

During the implementation of the design different problems occur. For example, we were
not able to implement our chosen abstract scenario from Subsection 3.4.2 directly, because
we had to overcome limitations of the AWS cloud. In other cloud environments, limitations
and restrictions might be different. This difference can cause an increasing implementation
effort and even different implementation solutions.
During the writing of this thesis, the AWS API changed twice. API methods got depre-
cated and over this two API versions some got even erased. In addition, we needed some
time to understand the HiLA API because for this API, UNICORE provides just one paper
as documentation. Beside that the code from the HiLA API is not documented.
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Outlook

Our implementation works and can be the foundation for further development. In the fol-
lowing paragraphs we provide possible extensions for this work and implementation.
If the cloud computing interoperability evolves further, this evolvement promises a possi-
bility to get more independent from a specific cloud vendor. Our implementation is only
compatible to the AWScloud. The possibility exists, to integrate a layer in the implementa-
tion that is able to communicate with different cloud environments. Therefore, it is possible
to plug-in different cloud computing environments easily.
The possibility to exchange the cloud environment arbitrarily, directs to the configuration
of the grid environment in different cloud computing environments. To develop concepts
and functionalities for the grid systems, on how to configure the grid systems across dif-
ferent cloud computing environments promises more flexible environments. The grid con-
figuration could be implemented into a layer, similar to the cloud computing connection.
This approach could make the exchange of grid systems possible. In a nutshell, our Cloud
Extension in the HiLA environment could be extended to an abstract framework that can
be integrated into different types of grid and clouds.
Furthermore, it could be an approach to change the TSI component from the UNICORE
server suite to be able to run on cloud computing resources without the presence of other
parts of the UNICORE server suite. In addition, the TSI component must be changed to
communicate with the UNICORE grid component. These changes could enable the con-
figuration of cloud instances with the TSI component and a cluster system. Then this in-
stance could be integrated into an existing UNICORE grid environment. The benefit from
this approach is to get grid resources in the cloud with a minimum number of UNICORE
components.
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List of Abbreviations

ACL Access Control List

AMI Amazon Machine Image

AMID AMI aiD

API Application Programming Interface

AWS Amazon Web Services

BES Basic Execution Service

CASED Center for Advanced Security Research Darmstadt

CIDR Classless Inter-Domain Routing

CPIP Cloud Portability and Interoperability Profiles

CSA Cloud Security Alliance

CSCC Cloud Standards Customer Council

DMTF Distributed Management Task Force

DNS Domain Name Service

EC2 Elastic Compute Cloud

EBS Elastic Block Store

EIP Elastic Internet Protocoll

GcID Group component Identification

GUI Graphical User Interface

HiLA API High Level application programming interface

HiLA High Level
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HPC High Performance Computing

IDB Incarnation Database

JSDL Job Submission Description Language

LRM Local Resource Management

IaaS Infrastructure as a Service

IEEE Institute of Electrical and Electronics Engineers

ICWG Intercloud Working Group

IDE Integrated Development Environment

IP Internet Protocol

NAT Network Address Translation

NIST National Institute of Standards and Technology

OCCI Open Cloud Computing Interface Core

OGF Open Grid Forum

OGSA Open Grid Service Architecture

OMG Object Management Group

PaaS Platform as a Service

PBS Portable Batch System

RCP Rich Client Platform

RDS Relational Database Service

S3 Simple Storage Service

SaaS Software as a Service

SAML Security Assertion Markup Language

SDO Standards Development Organizations

SDK Software Development Kit
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SLA Service Level Agreement

SOA Service Orieted Architecture

SOAP Simple Object Access Protocol

SSH-2 Secure Shell 2

SSH Secure Shell

SSI Single System Image

SSL Secure Socket Layer

TSI Target System Interface

UAS UNICORE Atomic Service

UCC UNICORE Command-Client

UNICORE Uniform Interface to Computing Reources

UNICORE6 Uniform Interface to Computing Resources 6

URC UNICORE Rich-Client

USA United States of America

UVOS UNICORE Virtual Organization Service

VPC Virtual Private Cloud

VPN Virtual Private Network

WS-RF Web Service - Resource Framework

WSDL Web Service Description Language

XACML eXtensible Access Control Markup Language
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