Georg-August-Universitat ISSN 1612-6793
\ 'J Gottingen Nummer ZAI-MSC-2015-02

Zentrum fir Informatik

773

Masterarbeit

im Studiengang "Angewandte Informatik”

Automated Deployment and Distributed
Execution of Scientific Software in the Cloud
using DevOps and Hadoop MapReduce

Michael Gottsche

am Institut fur Informatik

Gruppe Softwaretechnik fiir Verteilte Systeme

Bachelor- und Masterarbeiten
des Zentrums fiir Informatik
an der Georg-August-Universitat Gottingen

21. April 2015

Georg-August-Universitat Gottingen
Zentrum fiir Informatik

GoldschmidtstraBe 7
37077 Gottingen
Germany

Tel. +49 (551) 39-172000

Fax +49 (551) 39-14403

Email office@informatik.uni-goettingen.de
WWW www.informatik.uni-goettingen.de

Ich erklare hiermit, dass ich die vorliegende Arbeit selbstandig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Gottingen, den 21. April 2015

Master’s thesis

Automated Deployment and Distributed
Execution of Scientific Software in the Cloud
using DevOps and Hadoop MapReduce

Michael Gottsche

April 21, 2015

Supervised by
Prof. Dr. Jens Grabowski
Institute of Computer Science
Georg-August-University of Gottingen, Germany

Dr. Steffen Herbold
Institute of Computer Science
Georg-August-University of Gottingen, Germany

Abstract

Researchers of various disciplines that employ quantitative modelling techniques are con-
fronted with an ever-growing need for computation resources to achieve acceptable execution
times for their scientific software. This demand is often fulfilled by the use of distributed
processing on mid- to large size research clusters or costly specialized hardware in the form
of super computers. However, to many users these resources are either not available due to
financial constraints or their usage requires in-depth experience with parallel programming
models. The acquisition of respective knowledge and the provisioning of an autonomous
computation infrastructure are both often too time-intensive tasks to be an option.

This thesis presents an approach that requires the researcher neither to have the finan-
cial resources to purchase hardware or concern herself with administrative tasks, nor to
implement a complex parallel programming model into the software. Instead, we propose a
Cloud-based system that transparently provisions computing resources from Infrastructure-
as-a-Service providers with the goal of a reduced overall runtime. Besides others, utilizing
such providers offers the benefit of a pay-per-use model. Our solution consists of two com-
ponents based on DevOps tools: (1) A tool for the provisioning and deployment of a Hadoop
cluster on the Cloud computing resources based, (2) A tool for the automated deployment
and distributed execution of scientific software with minimal effort on the user’s side.

We perform two case studies to compare the performance of our solution with the non-
distributed execution of the software as well as with a native MapReduce implementation.
The results show that our approach outperforms both alternatives with negligible setup
effort by the user and thus is a viable choice for the scenario outlined above. While we focus
on scientific software in this thesis, the suitability of our approach is by no means inherently
limited to this category, but is much rather applicable to a wide variety of domains.

Contents

1.

Introduction
1.1. Goals and Contributions o
1.2. Outline e

Background
2.1. Parallel Computing
2.2. Cloud Computing
2.2.1. Definition and Characteristics,
2.2.2. Service Models
2.2.3. Deployment Models
2.2.4. Virtualization
2.3. Deployment Management with DevOps
2.3.1. Infrastructure Management
2.3.1.1. Vagrant Lo
2.3.2. Software Configuration Management
2.32.1. Ansible
2.4. Hadoop e
2.4.1. MapReduce
2.4.2. HDFS o e
2.4.3. Streaming Lo
2.4.4. Yet Another Resource Negotiator (YARN)

Conceptual Design
3.1. Situation Analysis
3.1.1. Potential Use Cases
3.1.2. Status Quoo
3.2. Cluster Deployment
3.2.1. User Interaction L
3.2.2. Deployment Process
3.2.2.1. Imitialization
3.2.2.2. Configuration L
3.3. Job Management L

ii

3.3.1. Required Application Structure

4. Implementation

4.1.
4.2.

4.3.

3.3.2. Job Description L.
3.3.3. Job Execution
3.3.4. Output Retrieval
Architectural Overview
Cluster Tool
4.2.1. Function Overview
4.2.2. Configuration Files
4.2.3. Functions o
4.23.1. init
4232, deploy.
4.2.3.3. destroy
4.2.3.4. project_init
4.2.3.5. project_destroy
JobTool
4.3.1. Function Overview
4.3.2. Job Description Format
4.3.3. Functions
4.33.1. init
43.3.2. start.
4.3.3.3. download
4.3.34. delete

5. Case Studies

o.1.

5.2.
5.3.

0.4.

Environment o000
5.1.1. Cluster Specifications
5.1.2. Software Versions.
Metrics
CrossPare
5.3.1. Application Description
5.3.2. Ewvaluation Setup
5.3.3. Results
TaskTreeCrossvalidation
5.4.1. Application Description
5.4.2. Evaluation Setup
54.3. Results,

6. Comparison with MapReduce

42
42
42
43
43
44
44
45
46
48
48
49
49

51

iii

6.1. General Considerations. e
6.2. CrossPare MapReduce port
6.3. Evaluation s

7. Related Work
7.1. Application Deployment Lo
7.2. Simplified Hadoop Deployment and Management

8. Conclusion and Outlook
8.1. Future Research Directions

A. Abbreviations and Acronyms

B. Source Code Excerpts
B.1. Vagrantfile Template L o
B.2. cluster --project_init Ansible Code,
B.3. cluster --project_destroy Ansible Code
B.4. job --start Ansible Code
B.5. SerializationHelper Class e
B.6. WekaTraining Class 0
B.7. TrainerMapper Class 0 e

List of Figures
Listings
List of Tables

Bibliography

66
67

68

70
70
72
73
74
76
78
82

84
84
85

87

iv

1. Introduction

Over the last decade a growing number of academic disciplines has either begun to employ
quantitative models or intensified their use. For example, while for some research directions
like meteorology or engineering modelling has long been an established tool of scientific
work, other disciplines such as the humanities and even some natural sciences only later
began adapting it at a broader scale. Not only has the application of mathematical models
in science spread, the models have also become more and more complex.

Solving such complex models requires appropriate computing power and, as is well known,
such has increased vastly in terms such as floating point operations per second and speed
and capacity of storage. A well-known ranking of the world’s fastest supercomputers even
sometimes referred to in general audience news, the "Top 500’ list, shows that since its incep-
tion in 1994 the aggregated performance has grown exponentially from one Teraflop/second
to more than half an Exaflop/second [43].

The architectures of these supercomputers, or more broadly large-sized hardware including
compute clusters in general, however often requires vast knowledge about parallel comput-
ing on the user’s side or is even designed for a very specific set of applications and thus
not available to the average modeller that has extensive domain and average programming
knowledge, but no sufficient knowledge about parallel computation models or system ad-
ministration.

Having at one extreme such large and hardly accessible compute clusters and at the other
extreme the researcher’s lone desktop computer leaves a gap for the case of shortening com-
putation times of small to average applications: (1) Scientists often lack adequate hardware
for their problems due to financial constraints, (2) Writing parallel software or parallelizing
existing software is a non-trivial task as is configuring and administrating the underlying
software infrastructure.

The advent of public Cloud Computing with steadily falling prices has rectified the first
problem, because it is now possible for everyone to rent an arbitrary amount of compute
power for an arbitrarily long or short timeframe. This "per-pay-use” model allows cost sav-
ings compared to acquisition of physical resources for such use cases where the compute
resources would be underused for a substantial part of the year [51]. Still, having access to

1. Introduction

a set of virtual servers provided by his cloud provider does not relief the researcher from
the burden of configuring them and developing his/her software in a way that it utilizes the
compute resources in a parallel fashion with an automated deployment process.

Addressing that second problem is the topic of this thesis. More specifically, it explores the
issue of combining established technology into accessible tools that hide from the researcher
the underlying complexity. The topic can broadly be separated into three questions:

e What software stack is well suited for building an easy-to-use Cloud infrastructure for
automated deployment and parallel execution of existing software?

e How can such a tool be designed and implemented?

e How does it perform, i.e. does it fulfill the goal of shortening computation times for
modelling problems and how well does it do so?

At the core of our proposed solution will be the Hadoop [17] framework developed by
the APACHE SOFTWARE FOUNDATION which — next to supporting tools — implements a dis-
tributed file system (called HDF'S) that we will employ for sharing data between servers and
the MapReduce paradigm which is a system for parallel processing of data sets. The Cloud
infrastructure employed for our practical evaluation was provided by the GESELLSCHAFT
FUR WISSENSCHAFTLICHE DATENVERARBEITUNG GOTTINGEN (GWDG).

1.1. Goals and Contributions

The goals and contributions of the thesis can be summarized as follows:

e Explore an approach for transparent automated deployment and parallel execution of
scientific software in the Cloud.
e Development of accessible tools that can be used by researchers for

— provisioning and deploying clusters in the Cloud with a software stack appropriate
for parallel execution of scientific software.

— parallelizing execution of software with minimal effort on the researcher’s side.

e Case studies evaluating the performance of our approach with the status quo, i.e.
non-distributed execution.

e A comparison of our approach with parallelization using the MapReduce. paradigm.

1. Introduction

1.2. Outline

The outline for this thesis is as follows. In the chapter following this introduction we will
document the foundations for this work, more specifically Cloud Computing as a concept,
the software-based management of Cloud infrastructures and configuration management
for software deployment onto such infrastructures (Chapter 2). Moreover, it will introduce
Hadoop as the core piece upon which our solution is built and its different modes of operation
relevant for us, namely Hadoop Streaming and MapReduce. Chapter 3 covers the conceptual
design of our approach from a high level perspective, i.e. the interactions of the system’s
different components and the user’s interaction with the system. The actual implementation
of our approach is afterwards detailed in Chapter 4. Chapter 5 presents two case studies
to evaluate the performance of our approach as well as the effort needed to deploy and
distributedly execute applications with it. To further compare it with a native MapReduce
application, Chapter 6 will describe both the general steps for migrating a non-parallel
application to the MapReduce paradigm as well as carry out these steps for one of our case
study applications. Also, we will compare both approaches’ performance with each other.
Chapter 7 provides an overview of related work. Finally, Chapter 7 concludes the thesis
and points out possible directions for future research.

2. Background

In this chapter we will describe the concepts and frameworks that form the foundation of
the thesis. We will briefly recall the taxonomy of parallel computing in Section 2.1. Sec-
tion 2.2 introduces the cloud computing model that has emerged to play an essential role
in many organization’s I'T infrastructures and which we will employ for our infrastructure.
Section 2.3.1 discusses the software-supported management of such virtualized infrastruc-
tures. Configuration management as the complementing part on the operating system level
is discussed in Section 2.3.2. An overview of the Hadoop framework concludes this chapter
(Section 2.4).

2.1. Parallel Computing

Different definitions and taxonomies for parallel computing exist, but at their core lies the
idea that problems are solved concurrently by dividing them up into smaller problems [50].
One of the eldest taxonomies, published already in 1966 by Michael J. Flynn, that is still
often cited, is known as Flynn’s taxonomy. Though it classifies computer architectures,
the classifications are also applicable to software-level parallelism. In total, there are four
classifications which are depicted in Table 2.1.

Single Instruction | Multiple Instruction
Single Data SISD MISD

Multiple Data | SIMD MIMD

Table 2.1.: Flynn’s Taxonomy

As shown, Flynn distinguishes alongside two dimensions, instructions and data:

e Single Instruction, Single Data: A single processor unit executes one single instruction
at a time. This equals the von Neumann-model.

o Single Instruction, Multiple Data: Again there is only a single instruction stream,
but multiple data streams. Examples include e.g. vector processors that operate on
arrays.

2. Background

o Multiple Instruction, Single Data: Multiple processors execute different operations on
the same single data. This architecture is not practically relevant except for highly
specialized use cases.

e Multiple Instruction, Multiple Data: Multiple processors execute different instructions
on different data. This is the de-facto standard for parallel computing.

Another more recent way to distinguish parallelization on the software level is by the terms
of task parallelism and data parallelism. While the former describes a form of parallelization
that emphasizes the distribution of tasks, i.e. that different processors execute different
threads which may execute the same or different code, data parallelism emphasizes the
distribution of data. In an SIMD system this means that different processors on different
pieces of data perform the same task [52]. The approach developed in the context of this
thesis is built on the data parallelism paradigm.

2.2. Cloud Computing

2.2.1. Definition and Characteristics

Although there is a multitude of definitions for the term Cloud Computing, the definition
most often cited is the definition by the NATIONAL INSTITUTE OF STANDARDS AND TECH-
NOLOGY (USA):

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider interac-
tion. This Cloud model is composed of five essential characteristics, three service
models, and four deployment models.“ [60]

The object of the definition, namely “a shared pool of configurable computing resources”
which is broadly defined by not only including physical resources such as servers, but
also non-physical resources like applications, is further defined by five characteristics. On-
demand self service describes the fact that customers can unilaterally provision resources
without human interaction with the provider, e.g. via Application Programming Inter-
faces (APIs). The capabilities need to be available “over the network and accessed through
standard mechanisms” [60] for use by heterogeneous clients including e.g. smartphones to
fulfill the broad network access requirement. The term resource pooling means that the
service provider dynamically assigns and reassigns physical and virtual resources according
to the customer’s demand while the customer usually “has no control or knowledge over the
exact location of the provided resources” [60]. According to the rapid elasticity requirement

2. Background

resources can be dynamically provisioned and released while the available capabilities should
appear to be unlimited to the customer. Finally, measured service describes that the service
usage can be “monitored, controlled and reported” [60] to establish transparency for both
sides.

2.2.2. Service Models

There are three service models in Cloud Computing which can be differentiated based on
the layer they operate on and their targeted audience [60]:

e Infrastructure as a Service (IaaS): On the IaaS level customers provision “processing,
storage, networks, and other fundamental computing resources” [60], e.g. virtual ma-
chines, and are able to run arbitrary software on it, including the choice of operating
systems. The service provider manages the underlying infrastructure.

e Platform as a Service (PaaS): Paa$S providers operate on top of the IaaS layer and pro-
vide the customer with the possibility to deploy self-created or acquired applications
on the Cloud infrastructure. These applications can be created using “programming
languages, libraries, services, and tools supported by the provider” [60].

e Software as a Service (SaaS): SaaS providers offer ready-to-use applications to cus-
tomers which are available for different client devices via e.g. a web browser or
application interface. In this model the customer does not control any part of the
infrastructure, but can only change user-specific application settings.

2.2.3. Deployment Models

Based on who is eligible to access the Cloud’s services they can further be differentiated by
their deployment models, which are the following [60]:

e Private Cloud: The Cloud infrastructure is exclusively used by a single organization,
e.g. a company or a university. It can, but is not necessarily owned and/or managed
by this organization.

e Public Cloud: In contrast to a private Cloud a public Cloud is open for use by the
general public and is usually owned and managed by a company, but could also be a
government’s or some different organization’s service.

e Hybrid Cloud: Hybrid Clouds are composed of two or more distinct infrastructures
which are “bound together by standardized or proprietary technology that enables
data and application portability” [60]. An example use case would be Cloud bursting
to account for load balancing.

2. Background

e Community Cloud: Finally, community Clouds are provisioned for use by a community
of consumers that belong to different organizations which have shared concerns and
for this purpose establish a shared Cloud.

2.2.4. Virtualization

The use of the term virtualized resources” in the previous sections conveys that Cloud
Computing users do not acquire direct access to physical resources from their provider.
Instead, the service provider abstracts away from the user the underlying infrastructure by
creating a virtual infrastructure on top of it. The user neither has nor needs knowledge about
the physical hardware because performance characteristics of the services are expressed by
means of alternative metrics, e.g. Input/Output Operations Per Second (IOPS) for virtual
storage. This is an on-going development, which besides established technologies, as for
example virtual storage, extends to other parts of the infrastructure for which Network
Functions Virtualization (NFV) is a recent example [14].

Most important in the context of this thesis is however the virtualization of servers through
the use of Virtual Machines (VMs) of which usually many share one physical machine
called the host. This approach has a number of advantages for both the service provider
and consumer including [59]:

e Server Consolidation: Workloads between multiple unter-utilized machines can be
consolidated.

o Multiple execution environments: By creating multiple execution environments the
Quality of Service can be increased through load balancing and removing Single Point
of Fuilures.

e Debugging and Sandboxing: Users can define different execution environments making
it possible to test software on different platforms and in a secure way because machines
are isolated from one another.

e Software Migration: Applications can be migrated more easily, e.g. for scaling to
higher demand.

The ability of Cloud providers to maximize hardware utilization is the bottom line of the
economics of Cloud Computing: On average, independently run servers are not operating
anywhere near their capacity limit, but Cloud Computing providers attempt to allocate VMs
to them with optimal resource utilization in mind. This fact, together with other factors
such as economies of scale, allows Cloud services to offer rates cheap enough to provide
users cost savings compared with investments in physical hardware while still operating
profitable. [51]

2. Background

2.3. Deployment Management with DevOps

Setting up clusters with more than just a handful of nodes by hand, be it in a traditional
environment or a Cloud Computing platform, is an unmanageable task which can roughly
be separated into the management of the infrastructure and the management of the software
configuration, but they are also interconnected.

In recent years, roughly at the same time of the emergence of the term DevOps, tools for these
tasks have been developed and gained popularity. There is not yet an accepted academic
definition of the term, but its name — being a portmanteau of the words “development”
and “operations” — stresses the interdependence of these two fields [48]. Specifically, the
increased use of automation tools is one of its characteristics. Therefore, since our approach
is also developed with heavy use of such tools, we subsume them under the term DevOps.

2.3.1. Infrastructure Management

Since this thesis addresses only Cloud Computing-based architectures, we refer here to
“infrastructure management” as such software which helps automating the provisioning of
virtual machines based on user-defined rules. Provisioning here is defined as the instantiation
of the virtual machine with the base operating system image, but without further software
setup and configured, which is handled by the configuration management software illustrated
in the next section.

The need for infrastructure management software arises mainly from the complexity of
multi-machine architectures and the related need for extensively testing, i.e. also repeatedly
rebuilding them. Without tool support, the administrator and/or developer has to either
manually interact with the Cloud platform at hand every time or write her own set of scripts
that repeat these actions and perform error checking.

Infrastructure management tools replace this approach by providing the user with the
possibility of describing the desired infrastructure in a file-based fashion and handle its
provisioning, suspension, unprovisioning and possibly other actions.

2.3.1.1. Vagrant

For the remainder of this section we will use Vagrant [45] for illustrating this concept which
we also employ as part of our approach.

Listing 2.1: Vagrant Example
VAGRANTFILE_API VERSION = 727

Vagrant. configure (VAGRANTFILE_APLVERSION) do |config |

config .vm. define ”web” do |web]

© 00 O

10

12
13
14

2. Background

web.vm.box = “apache”
end

config .vmm. define ”db” do |db]
db.vm.box = "mysql”
end

config .vim.synced_folder ”data/”, ”/vagrant_data”
end

With Vagrant, the infrastructure is defined in a so-called Vagrantfile (Listing 2.1) that is
written in Ruby [40] syntax and supports embedding arbitrary Ruby code to enhance the
infrastructure description with dynamic parts. In the example above, two virtual machines
are defined, one under the name "web” and the other under the name ”db”. The zz.vm.box
lines refer to the image that should be installed on the machines, in this example they refer to
user-defined images for web and database servers, respectively. Vagrant’s vendor HashiCorp
[28] also provides a Cloud service where vendors and community users can upload general
or special purpose operating system images which users can then directly make use of in
their Vagrantfiles. Also, new image files can easily be created from running machines using
the package command. The last line instructs Vagrant to set up a directory synchronization
between the host machine’s data directory and the virtual machines linked as vagrant_data
on them.

There is no mentioning of where the virtual machines should be created in the example just
given. By default, Vagrant works with the virtualization software VirtualBox, however one
of its strengths is that it provides a plugin system to add additional so-called providers. For
instance, there are providers for AMAZON WEB SERVICES (AWS), VMware or the OpenStack
TaaS platform which we are going to use later on. Since different providers may require
different or additional user input, the example above cannot be applied to all of them
without modification. In the case of OpenStack, the plugin requires at least login credentials
and information about the Cloud provider besides the infrastructure rules already given.
Depending on the provider in use, Vagrant also supports up to some point the specification
of network settings for the described infrastructures, e.g. which IP to use for the machine
or whether to assign just a local IP address or also a public ("floating”) one.

Once the user has defined the infrastructure, the next step in the workflow is to provision
it using the vagrant up command. Vagrant will communicate with the specified provider, e.g.
using calls to the VirtualBox utilities or using API calls to a Cloud provider, to provision the
requested virtual machines. After successful initialization, vagrant ssh <machine_name> es-
tablishes a SSH connection to a particular machine. As Vagrant covers the whole lifecycle of
an infrastructure, it also provides commands for e.g. incorporating changes of the Vagrant-

2. Background

file (vagrant reload), checking the infrastructure status (vagrant status) as well as shutting
down (vagrant halt) or permanently removing the virtual machines (vagrant destroy).

2.3.2. Software Configuration Management

The infrastructure management described in the previous section covers only the provi-
sioning of the infrastructure. The software-level configuration of the machines including
installation, configuration and advanced system settings needs to be handled by other mea-
sures, for example using Software Configuration Management (SCM) software packages. A
handful of popular SCM tools have been developed and gained popularity in recent years
such as Chef [7], Puppet [39] or — the tool our approach is relying on — Ansible [2].

All these software packages are built upon the maxim that a system’s setup should be
declared in the form of rules in a Domain-Specific Language (DSL) rather than in con-
glomerated bash scripts and/or by manual interaction. This approach is often referred to
as "Infrastructure as Code” (where infrastructure refers to both, computing resources and
software installed on it) in the DevOps community [32] and associated with a number of
advantages compared to the manual approach:

o Structured Approach: The system’s configuration can be decomposed into manageable
pieces and hierarchically structured. This, as is usually the case with complex entities
of any kind, allows for better manageability.

e Reproducibility: Infrastructures can be recreated in the same or replicated to a new
environment in the exact same way. This is beneficiary under different circumstances
including

— Failure: In case of deterioration of the system it can systematically be rebuilt by
rerunning the SCM tool.

— Debugging Software: Often errors in software show up only in particular setups.
When these can be replicated exactly, it helps developers debug such errors which
otherwise could not be retraced by them.

e Versioning: Changes to the infrastructure can be managed using version control sys-
tems, thus making them transparent.

2.3.2.1. Ansible

Listing 2.2 shows a very basic Ansible example Playbook which is its language for defining
configuration, deployment and orchestration of the infrastructure.

10

© 00 J O U i W N~

S o g g o g et
O J O UL i W N~ O

2. Background

Listing 2.2: Ansible Example

— hosts: webservers
vars:
http_port: 80
max_clients: 200
remote_user: root
tasks:
— name: ensure apache is at the latest version
yum: pkg=httpd state=latest
— name: write the apache config file
template: src=/srv/httpd.j2 dest=/etc/httpd.conf
notify :
— restart apache
— name: ensure apache is running
service: name=httpd state=started
handlers:
— name: restart apache
service: name=httpd state=restarted

Ansible uses the simple YAML [49] format which ensures human-readable configuration files
and a structure that is, to a large extent, self-explanatory. The given example defines that
for the hosts in the webservers group the tasks listed in section tasks should be executed as
user root and defines two variables. These can be used in the tasks section which defines
an update procedure for the Apache web server in three steps. Each task consists of a
descriptive name and an action. For the latter, Ansible provides a pool of modules for
different purposes, e.g. yum for the corresponding packet management software, template
for setting system files based on templates (which can include the variables defined earlier).
Finally, the example defines a handler for restarting Apache using the service module. This
handler is called by the second task to incorporate the changes to the configuration file.

2.4. Hadoop

Hadoop [17] is a framework for distributed processing of large data sets developed as a
project of the APACHE SOFTWARE FOUNDATION (ASF). As previously mentioned, large-
scale computation is often performed on either expensive special-purpose hardware designed
for High Performance Computing (HPC) or on high availability clusters appearing as a single
machine to the user. Rather than relying on hardware to ensure high availability, Hadoop
has been designed to operate fail-safe on commodity hardware for which occasional failure

11

© 00 J O U i W N~

e Syt
w N = O

2. Background

is expected. By splitting up large problems into smaller chunks and distributing them to
the cluster it can utilize the capabilites of all nodes and account for hardware failures by
simply reassigning jobs to other nodes.

Hadoop’s development started as an open-source implementation of a new programming
model called MapReduce soon after its inventor, GOOGLE, published its first paper[54] about
it. In the remainder of this section we will describe this programming model as well as the
other core parts of the Hadoop framework.

2.4.1. MapReduce

MapReduce emerged at Google out of the need for a programming model for processing
large datasets in a variety of tasks that enables the developer to concentrate on the —
sometimes very short — application-specific code without having to write boilerplate code
for the common problems such as data partitioning, failure handling, load balancing et al.
The description in this section is based on their often cited paper MapReduce: Simplified
Data Processing on Large Clusters [54].

At the most basic level, a MapReduce program consists of a map and a reduce function,
an abstraction inspired by primitives in Lisp and other functional programming languages.
The map function takes as input key/value pairs and produces new intermediate key/value
pairs as output. The library sorts these by key and passes those with same key to the
reduce function which usually merges the values for that key together by some action to
— most often — just zero or one values. An often cited example for the application of this
paradigm is the problem of counting words in text documents (see [23] for a Hadoop-based
implementation). Using MapReduce this can be expressed in pseudo-code as follows:

Listing 2.3: MapReduce WordCount in Pseudo-code [54]

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate (w, ”17);

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += Parselnt (v);
Emit (AsString (result));

12

2. Background

In this example, the map function emits ”1” for every word found and the reduce function
iterates over the values for each key — here just ”1” a single or multiple times — and sums
them up to calculate the number of occurrences for each word. More formally we can express
the model as:

map: (k1, v1) — list(k2, v2)
reduce: (k2, list(v2)) — list(v2)

User
Program
- -"'—.“] fork

(1) fork .- .
[!]gﬁ:rk)
[2].-'. (2)
assign assign

; inap reduce
_ N
split 0 oo (6) write output
split 1 . © ‘re et
: 3) read 4) local write /
split 2
split 3
p output
split 4 file 1

Input Map Intermediate files Reduce Output
files phasr (on local disks) phase files

Figure 2.1.: MapReduce Ezecution Phases [54]

The execution steps depend on the actual implementation of the MapReduce paradigm
and, as the authors point out, optimality depends on the underlying hardware. Google’s
implementation was designed similar to Hadoop’s with average commodity PCs in mind
with the following seven processing phases:

1. The MapReduce framework splits the input file(s) into M smaller pieces of a pre-
configured size. Each map job will receive one of these pieces as input.

2. One node is assigned the master status and assigns idle nodes map tasks.

13

2. Background

3. The worker nodes read their assigned input split, parse the key/value pairs and pass
them to the user-defined map function. The key/value pairs generates as output of
this function are held in memory.

4. Periodically these pairs are partitioned into regions and written to disk. The master
node receives the locations of the buffered pairs and passes them to the reduce workers.

5. The reduce workers read the data assigned to them and sorts it by key to account for
the fact that usually different keys are usually passed to one reducer.

6. For each key of the input data the reducer node executes the user-defined reduce
function and appends its output to the final output file.

7. Upon completion of the map and reduce tasks the user program is notified and can
now either process the output files of which there are as many as reducers.

The process just described is depicted in figure 2.1.

2.4.2. HDFS

Because all worker nodes of a Hadoop cluster need access to shared data sets, it requires a
shared file system. This is due to the fact that, in addition to other reasons, a centralized
storage system would induce a Single Point of Failure and be inconsistent with the approach
of employing commodity hardware. Hadoop therefore instead relies on its own distributed
file system called Hadoop Distributed File System (HDFS). HDFS has been designed with
the assumption that hardware failures are the norm so that fail-safeness has to be imple-
mented on the software level rather than investing in hardware measures such as RAID.
Conceptually, part of this is the quick detection of faults and automatic recovery, which in
practice is achieved primarily by redundant data replication between nodes which we will
elaborate on after introducing HDFS’s architecture (figure 2.2).

HDFS uses a master/slave approach where one node is designated as the Namenode.
The Namenode is responsible for the file system namespace (depicted as "Metadata” in the
figure) and access control and is the entry point for input/output requests from users by
mapping them to the corresponding Datanodes. Datanodes act as slaves in HDFS which
store the data and serve read and write requests from clients. However, in contrast to
other filesystems, in HDFS Datanodes do not store complete files, but blocks that result
from splitting the files based on a user-defined block size which, at the time of this writing,
defaults to 64MB.

These blocks are replicated to different nodes. The number of replicas is configurable
down to the level of single files with a default count of 3. The placement of the replicas is
chosen with respect to reliability and performance via HDFS’s concept of rack awareness
(i.e. nodes are aware in which rack they reside). With the default number of three one

14

2. Background

Metadata (Name, replicas, ...):

Namenode /homeffoo/data, 3, ...

Metadata ops |

Read Datanodes Datanodes
' \ \
N N B I Replication a8 =
m = Ju Blocks
Rack 1 Wiite Rack 2

Figure 2.2.: HDFS Architecture [18]

replica is placed on one node, the second on another node in the same rack and the third
on a node in a different rack, possibly even in a different data centre. While the split to
different racks insures against rack failures, placing two replicas in one rack reduces inter-
rack network traffic and thus improves performance. The concept of rack awareness also
plays a role in Hadoop’s MapReduce implementation as map and reduce jobs are distributed
with the goal of maximizing data locality, i.e. assigning nodes those jobs whose input data
is near.

Although this architecture impedes data loss conceptually very well (and the more the
higher the replication factor), the reliance on a single Namenode renders the filesystem
inaccessible in case of its outage. Hadoop supports a so-called Secondary Namenode that
periodically checkpoints the first Namenode and thus can be used to restore filesystem
metadata onto another node. It however cannot be contacted by the Datanodes or replace
the primary Namenode in any way so if the Namenode fails, no access to the filesystem will
be possible until it has recovered or been replaced. [25]

2.4.3. Streaming

Hadoop’s MapReduce API has been written in and for Java and thus requires Java know-
ledge from the user in order to write MapReduce applications. To execute existing appli-
cations in a distributed fashion on a Hadoop cluster, users would have to write a wrapper
application first if there was only the API, which is the reason why Hadoop introduced a
utility called Hadoop Streaming that allows the creation of Map/Reduce jobs with arbitrary
scripts or executables as a replacement for a map or reduce function.

15

QU W N =

2. Background

Listing 2.4 shows an example call:

Listing 2.4: Hadoop Streaming WordCount Example

hadoop jar hadoop—streaming —2.6.0.jar \
—input myInputDirs \
—output myOutputDir \
—mapper /bin/cat \
—reducer /usr/bin/wc

In this example, the Unix utility cat — which simply prints the contents of the files passed
to it to Standard Output (STDOUT)) — serves as the mapper and the utility we — which,
besides other measures, prints the number of words in a file — as the reducer. In other words,
this Streaming call is equivalent to the MapReduce example above except that it also prints
out other statistics.

Technically, Hadoop Streaming operates by passing the mapper its input split line by
line via the Standard Input (STDIN). The mapper processes the input and its output is
interpreted line-wise as key/value pair where everything up to the first tab character is the
key and the rest its value. The same applies to the reducer. This default input format can
be changed via the -inputformat switch. Hadoop Streaming will be an essential part of our
approach and we will come back to the topic of input formats later.

2.4.4. Yet Another Resource Negotiator (YARN)

The description of Hadoop’s MapReduce architecture has been postponed to this section in
order to put it into context with YARN. YARN, also referred to as MapReduce 2.0, has
been introduced in Hadoop version 2.0 with the goal of allowing users to write more general
purpose applications outside of the MapReduce schema but with HDFS as the data backend
and Hadoop’s resource management library for load distribution. In this model MapReduce
is just one potential data processing paradigm and others can be added via user-defined
applications which are not limited to running in batch mode. The architecture is depicted
in Figure 2.3. [62]

Clients of the Hadoop cluster interact with its ResourceManager which consists of a
Scheduler and an ApplicationManager. The latter is primarily responsible for handling job
submissions and negotiating the first container, while the Scheduler is responsible for the
allocation of resources to the different running applications under the constraints of the
available resources. [27]

The counterpart on each node is the NodeManager that monitors the local resource usage
of its applications and reports back to the ResourceManager. Both parts together form the
data-computation framework. On the application side, each application has an Application-
Master responsible for negotiating resources from the Scheduler in the form of Containers
that are distributedly running on the various nodes and monitors their status. [27]

16

2. Background

MapReduce Status ———
Job Submission
Mode Status

Resource Reguest «.........

Figure 2.3.: YARN Architecture Overview [27]

17

3. Conceptual Design

In this chapter we will present the design of our approach from a high level perspective.
Prior to that, we will describe the current situation that researchers in the need of higher
computing power than their local resources provide are confronted with (Section 3.1). This
will justify the need for an alternative approach which the remainder of the chapter will
present split into two major topics: First, Section 3.2 illustrates the automated provisioning
and configuration of computing resources with minimal user interaction. Second, Section
3.3 covers the job management component that allows users to move their computations
into these acquired resources with no or only small adaptations to the original program.

3.1. Situation Analysis

3.1.1. Potential Use Cases

The forms of parallel computing are extremely diverse along different dimensions ranging
from different hardware architectures over different parallel programming models up to vary-
ing implementations of these. We have already elaborated on the different forms of parallel
computing in Section 2.1 and pointed out that we are employing the data-parallelism ap-
proach.

Furthermore, the applications of parallel programming are no less diverse than its forms of
implementation. Nowadays, parallelization is utilized in all possible kinds of environments
and use cases from desktop applications running on commodity desktop hardware for better
user experience to large-scale scientific experiments both in research and industry running
on specialized supercomputers. This diversity warrants for a definition of the use cases our
approach is designed for from a high-level perspective which will later be specified more
technically.

Examplary Use Case

Steve is a computer scientist working as research fellow at the University of Tardiness.
In a software he developed for his research he employs machine learning techniques
via the popular Weka [47] library. In the beginning, the execution of the software on

18

3. Conceptual Design

his work machine finishes in acceptable time frames of minutes to a few hours. As
his experiments get more numerous over time and more complex in nature due to the
application of more machine learning algorithms, the run times grow substantially
and now range from a day to even weeks.

Steve knows about parallel programming and works on a multicore computer so he
adapts his software in a way that it spawns as many threads as there are cores
available handing one experiment (each defined in its own input file) to each of them.
The speedup is satisfying, however the absolute run times are still unacceptably high.
As Steve knows, the university’s data centre runs a HPC cluster for message passing
applications. However, he reckons rewriting his software from the ground up for MPI
is too time-consuming and the queue for the cluster is long due to recently increased
user demand. The purchase of an own cluster for himself and his research group is
out of question due to financial constraints, so he instead considers the use of Cloud
Computing resources. Though this would be a more economical choice, it still requires
Steve to know about *nix-like system administration and even if the servers are setup
the question of how to parallelize his computations across them remains open.

The example in the box above informally describes the targeted user base and use cases
for our approach. More generally, the following characteristics define our area of application:

e Hardware: Users have limited local computing resources that are not sufficient to ex-
ecute their research software in an acceptable time frame. Furthermore, it is assumed
that either the financial resources are a constraint for the purchase of adequate hard-
ware or the computations are too large to be finished on a single machine in acceptable
time.

e Software: The software has not been designed upon a parallel programming model.
At best, it launches threads for different inputs, thereby utilizing multiple CPU cores,
but it has no support for cross-node parallelization models. All that can be assumed
is that the computation the software performs is configurable via its input parameters
and that the total computation can be split up into chunks by these means.

e Users: The users are technologically savvy, usually writing their own software which
at the same time is the software that should be parallelized. Their experience with par-
allel programming is however either limited or time constraints limit the possibilities
for a post hoc adaptation to a parallel programming model.

As a side note, our approach is built upon Ubuntu Linux and while it can be adapted
to other Linux distributions easily, this is not the case for non-Unix-type operating sys-
tems. This implies that the user applications also need to be runnable on Linux. In the

19

3. Conceptual Design

next sections we will briefly evaluate the status quo for such scenarios and its potential
shortcomings.

3.1.2. Status Quo

With a scenario as exemplified in the previous section the user can make choices alongside
the dimensions of hardware and software while the user side naturally is constant. The
sheer multitude of potential combinations makes it impossible to describe them all, so only
those that seem most practically relevant will be mentioned.

On the hardware side there are mainly two options:

1. Utilizing existing infrastructure for computationally intensive applications. Leaving
aside specialized supercomputers, which are usually neither designed nor available
to the average researcher, this infrastructure comes most often in the form of small
clusters belonging to a single institution (e.g. a university data centre) which is made
available to its researchers or as federated resources from multiple organizations.

2. Renting hardware resources in the form of Cloud Computing.

Often, option one will not be available, because not all research institutions maintain re-
spective infrastructure. When both options are available, a cost comparison may — depend-
ing on the particular use case and pricing models — put existing infrastructure in favour of
Cloud Computing, but from a technical perspective it may be inferior. Firstly, its flexibility
may be limited due to organizational constraints. For example, there may be an application
process researchers have to go through because of scarcity of computing resources and once
they have been given access they may still be limited by a priority queue and an overall
insufficient resource quota. Secondly, and this brings us to the other dimension, the software
side of the infrastructure may be incompatible with the defined scenario.

Research clusters are often designed for explicitly parallel applications that are built upon
the message-passing idiom — for example in the form of an Message Passing Interface (MPI)
application — or a shared memory model, for example OpenMP applications. In other words,
the application contains the parallelization logic and is started as one long-running task
which exits after completion. Adapting a non-parallelized application for aforementioned
programming models is generally a challenging task [61] and even intractable in the worst
case due to hardly reversible prior design choices.

Underlying the execution of parallel programs in such clusters is usually a batch system
that queues, launches and monitors user jobs (e.g. TORQUE [44]). Conceptually, these
batch systems allow for task parallelism in that instead of launching one inherently parallel
application the same non-parallel application can be launched concurrently multiple times
with different input parameters. Given that, it is in principle a solution for the scenario we

20

3. Conceptual Design

defined. The general problems of the use of shared clusters however remain.

Our approach will hence focus on the use of on-demand Cloud resources and aims to provide
an accessible user interface which hides from the user all aspects of parallelization so that
the distributed job execution is almost no more complicated than local execution of the
software.

3.2. Cluster Deployment

The first step in the workflow of our approach is the provisioning and configuration of
resources at a IaaS Cloud provider where resources here means a set of Linux-based virtual
machines. As described in the backgrounds chapter this process is twofold: First, virtual
machines have to be provisioned, i.e. created on the service provider’s hardware with a base
operating system and then the virtual machines need to be configured with the necessary
software. Both tasks are handled by our cluster tool. Figure 3.1 depicts the process from
the point of view of the user.

3.2.1. User Interaction
Cluster Specifications

O

\J

Cluster Tool

User Credentials

User __,y Cloud Provider

Figure 3.1.: Cluster Deployment Overview

The figure shows that the user’s involvement in the deployment process is limited to
providing two sets of inputs to the cluster tool. The first are the user credentials which
the cluster tool needs to interact with the Cloud provider. As is usually the case with
online services, Cloud providers have a database of user accounts for their customers against
which they need to authorize themselves. Table 3.1 lists the credentials needed as input for
our tool.

21

3. Conceptual Design

Parameter L Purpose

Username | Identifier for the user, e.g. email address
Password | Secret key only known to the user
Tenant Project identifier

Table 3.1.: User Credentials

While username and password are well-known parameters for login procedures, tenants
are specific to OpenStack — the TaaS software stack that the GWDG employs for its Cloud
infrastructure — and represent a project within the Cloud, i.e. resources that conceptually
belong to each other. The second set of inputs is the cluster specification which gives the
cluster tool the necessary parameters for determining the size and computational capabilities
of the cluster to create (Table 3.2).

Parameter L Purpose

Node Count | Number of virtual machines

Node Flavor | Computational capabilities of each node

Access key Access key for remote control of the nodes
Table 3.2.: Cluster Specification

The size of the cluster is defined by the number of virtual machines it operates with
and each machine’s computational capabilities expressed by the so-called flavour of the
machines which is an identifier for a particular combination of CPU cores, memory and disk
space, besides potentially other specifications. Finally, the access key is needed to securely
remote control the machines. We will further concretise the inputs in the context of the
implementation (Chapter 4).

3.2.2. Deployment Process
3.2.2.1. Initialization

With the user credentials and the desired cluster specification the cluster tool can com-
municate with the Cloud provider on behalf of the user in order to instantiate the virtual
machines.

The first step in the process is the creation request by the cluster tool of which there
is one request for each virtual machine. The request is directed to the API of the Cloud
provider. The Cloud provider processes the request by creating the virtual machines, given
that the usual conditions — valid login credentials, eligibility to utilize further resources etc.
— are met. Finally, if the request was successful, the information needed for accessing the
virtual machines are returned to the cluster tool.

22

3. Conceptual Design

Cloud Provider
(1) Creation Request

{3) WM Information

Cluster Tool

(2) Creation

Virtual Machines|
]

VML VM2

|
I
I
|
I
I
|
I
I
|
I
]

Figure 3.2.: Virtual Machine Instantiation

3.2.2.2. Configuration

The virtual machines with the base operating system are available for use after the initial-
ization step. At this step, they have no knowledge about each other and therefore don’t
operate as a cluster. Thus, the next step in the workflow is the configuration of the nodes.

(1) Instructions

Cluster Tool

Virtual Machine

(2) Feedback

Figure 8.3.: Virtual Machine Configuration

The process is exemplified in Figure 3.3 for one node and it is repeated for each node.
The cluster tool directly communicates with the machine to send instructions and receives
feedback from the machine about success or failure of these instructions or additional infor-
mation attached to it. Instructions here include all steps required to build a cluster with
the virtual machines, i.e. changes to the system setup so the different nodes are known to
each other, installation of required software as well as its configuration.

At the end of the configuration process the cluster is ready to receive jobs from the second
utility in our toolbox, the job tool.

23

3. Conceptual Design

3.3. Job Management

Once the cluster tool has setup the infrastructure, the user can execute her applications
on it. For this second part of the workflow, the job management, we introduce the job tool
which requires (1) that the user’s application adheres to a particular application structure
and (2) that the user describes the desired execution scenarios of the application in job
description files.

Figure 3.4 depicts the job management which will be described in the following section.

Cluster Specifications
Job Tool i
User Credentials

Main Node
User ___/7

Figure 8.4.: Job Management Overview

3.3.1. Required Application Structure

Frameworks always to a certain degree impose a structure onto the applications that uti-
lize them and our approach marks no exception. This is paramount, because regardless of
which parallelization approach is chosen, the framework needs to make assumptions about
the application to bring it to execution in the intended way. In the context of this work,
satisfying the requirement that user applications should be parallelized without implement-
ing a parallel programming model in the application itself, the prerequesites are limited to
(1) the way the application receives input specification from the user, i.e. how the user tells
the application which input data to process when starting it manually and (2) the directory
structure of the application including the input data and run configurations.

There are only minimal requirements to the first point, i.e. that the application can be
executed via the command line and takes as last input to its call a path for the input file it
should process.

The applications need further be layed out in three directories:

o fixed: The fized directory contains the application executable as well as all other
constant data, for example third-party libraries or data sets which the application
processes. The data in this directory remains fixed over the course of the life-cycle in
the Cloud.

24

3. Conceptual Design

e transient: Data that may change between different executions belongs to the transient
directory. This includes e.g. run configurations for which the user would like to retain
the possibility of modifications during the lifecycle in the cluster.

e out: The out directory is initially empty and later on holds the output data the
application writes.

It is noteworthy that the transient directory is optional from the point of view of our

framework. Technically, the user could place all input files in the fized folder if no later
changes are intended, but the convention is to place them in the designated directory
nonetheless.
Besides for technical reasons which will be described in Chapter 4 this directory structure
was chosen to cover a wide variety of applications with few or no modifications given the
simplicity of the layout. The case studies in Chapter 5 will also discuss the steps that were
necessary to adapt them to our structure.

3.3.2. Job Description

Besides adhering to the required application structure, the user needs to define in so-called
job configuration files which input files the application should process, where its output
should be saved and which parameters the program needs for its execution. In our termi-
nology, a job is a particular combination of program parameters and inputs that represents
an analysis. As an example, a job could represent the program configuration for the analysis
of the weblog data of a specific one-day period or the clustering of recently (e.g. during the
last hour) crawled data.

Parameter L Purpose

Name An arbitrary identifier that describes the job

Command The executable’s name

Parameters Further parameters that the user wants to pass to the application
Output Type Whether the application prints its output to screen or to file
Input/Output mapping | Relates input to output files

Table 3.3.: Job Description Input

The job description (Table 3.3) requires only a handful of parameters from the user.
Besides an arbitrarily chosen name which helps the user identify the purpose for which he
wrote the description it contains the name of the application’s executable, parameters the
application should get passed and specifications regarding the inputs and outputs of the
program. The latter inform the job tool about how the application outputs its results, i.e.
whether it prints to screen or directly writes to files — which requires different treatment by

25

3. Conceptual Design

the tool — and how the output files should be called.
With the completed description file the user can proceed to executing the job.

3.3.3. Job Execution

Prior to execution of the application, it needs to be deployed on the cluster. Because this is a
cluster-specific operation and generally not related to just a particular job of an application,
the cluster tool was chosen to carry out this task. The purpose of the import is to bring
the application directory into a filesystem shared by the nodes so that all of them have
access to the application’s data once jobs are run. We pointed out earlier, that the fized
directory is assumed to stay constant. This assumption is made because data sets are often
complex in size and should not be transferred from the user to the cluster every time a job
executes in order to reduce network traffic. For technical reasons out of our reach that will
be detailed in Chapter 4, it is not possible to transfer just the changes in fized to the cluster,
i.e. to perform an incremental update, so a complete new upload of the files is rendered
necessary.

To execute the application on the Cloud cluster, the user passes the job description and
its corresponding application directory — structured as described in Section 3.3.1 — to the
job tool along with the requested operation, in this case "start”. This will commence the
following operations:

e Parsing of the job description file.

e Syncing of the application directory to the cluster.
e Scheduling of the job for distributed execution.

o Distributed execution and output aggregation.

Since this chapter covers the conceptual concepts of our approach we omit the technical
details here which we instead will elaborate on in the next chapter. It is noteworthy however,
that although for efficiency reasons the fized directory may not be changed after import onto
the cluster, the sync operation does commit changes to the transient directory.

3.3.4. Output Retrieval

The user application will typically produce one or more output files during its execution
phase. Once the application run is finished, the job tool can be employed to download the
output files from the cluster to the user’s computer. Since all output files by convention
reside in the out folder, the tool simply pulls this directory.

26

4. Implementation

The previous chapter covered the conceptual design of our approach from a higher-level
perspective to give an overview of the system without going into the technical details. This
chapter will make up leeway and present the implementation side. Section 4.1 will firstly
give an architectural overview, putting the components introduced in the previous chap-
ter into relation from a global perspective. Following, our two tools, the cluster and
the job tool and their interactions with the other components will be described in Sections
4.2 and 4.3, covering not only the client side, but also the implementation on the server side.

We will not give a real-world application example in this chapter, because Chapter 5 will
present two real-world examples in-depth.

4.1. Architectural Overview

This section will connect the foundations introduced in Chapter 2 and our tools introduced
in the previous chapter. Figure 4.1 depicts our architecture.

Shown on the left are our two tools with their executables’ names. Both of them are writ-
ten in Python. The arrows in the diagram are labeled with the primary way of interaction
between the different components. The fact that they are directional simply indicates who
establishes the interaction, but does not imply that it is a one-sided communication. In
fact, in multiple cases the communication is two-sided, e.g. between Vagrant and the Cloud
APL
Our tools do not communicate with the Cloud provider or the virtual machines directly via
SSH. Instead, the software configuration management tool Ansible is used as an abstraction
layer. This applies to the cluster as well as the job tool and to all client/server communi-
cation. Furthermore, Vagrant, which is used by cluster.py, in turn also employs Ansible
for the virtual machine configuration. This homogeneous approach has — besides the advan-
tages of SCM already described in Section 2.3 — the benefit of having a common internal
way of interacting with the cluster’s nodes which unloads the source code from cluttering
with administrative directives. The second component Vagrant interacts with is the Cloud
API, in our case that of GWDG’s Compute Cloud service which is based on OpenStack.
The Cloud API is only involved in the creation and destruction of the nodes as well as
possibly rebooting or suspending them. All other management tasks are carried out using
Ansible on behalf of the other tools. This is because Cloud APIs are generally only designed

27

4. Implementation

cluster.py job. py
Uses
[Ty} 55}
a o
155} 155}
> o
Y Y
Vagrant > Ansible

sAoulsag/sa1ea.4]

! Calls
Cluu[API
Y

Hadoop/HDFS)

SRIEISTYII0

MameMode Resource Slavel Slave 2 Slave n
Manager

Figure 4.1.: Architectural Overview

28

4. Implementation

to support infrastructure management operations, but are not involved in system manage-
ment tasks.

Finally, the right side of the figure depicts the virtual machines with their respective roles.
These are determined by Hadoop’s client/service architecture which we elaborated on in
Section 2.4. Therefore, there is always a designated NameNode, a ResourceManager and
a number of slaves, where slave means those machines that run the DataNode and Node-
Manager services. While there are always only two dedicated nodes running the master
services, the number of slaves is variable depending on the specifications by the user which
in turn will depend on her quota. Though the nodes are independent in the sense that they
don’t appear as one logical machine to the user, they together form a cluster because of
the running Hadoop services. This is illustrated by the ellipse around the nodes labelled
"Hadoop/HDFS” to indicate that the objectives are to provide a Hadoop managed compute
cluster with a shared file system (HDFS).

4.2. Cluster Tool

The cluster tool is responsible for the operations described in Section 5.1 plus a few
minor ones. We will first give an overview of the corresponding functions, then describe
the necessary configuration files and afterwards sketch the implementation of the different
functions.

4.2.1. Function Overview

cluster.py has five different user-visible functions (i.e. not functions in the sense of Python
functions) of which three belong to the cluster instantiation/destruction process and two to
application management.

— init: Initializes the configuration for a new cluster.

— deploy: Deploys the specified cluster, i.e. initializes and configures the virtual ma-
chines.

— destroy: Irreversibly destroys the specified cluster, i.e. deletes its nodes and the local
files associated with it.

The application management specific functions are:

— project_init: Initializes the project by syncing it to the specified cluster.

— project_destroy: Removes the project from the cluster. Counterpart to the previous
operation.

29

0O 3 O U i W N+

N O TR W N

4. Implementation

4.2.2. Configuration Files

The program requires two configuration files. One is needed for the user to define the desired
cluster size, the other in order for the tool to be able to communicate with the Cloud
provider’s API on behalf of the user. Both files are written in JSON (JavaScript Object
Notation), which is a lightweight human-readable file format often used as an alternative to
XML [31]. An example for the first file, cluster_config.json is given in Listing 4.1.

Listing 4.1: cluster_config.json Example

{

"cluster”: {
"flavor ”: "ml.small”,
"key_name”: ”"gwdgcc”,
"key_path”: 7”7 /.clusters/<clustername>/gwdgcc.pem”,
"number_of_nodes”: 777

The file contains one single object named cluster with the configuration parameters as

its members. The flavor defines the virtual hardware template that should be used for the
virtual machines. The flavors are defined by the Cloud provider and vary in terms of number
of cores, RAM size, disk space and others. The number_of nodes parameter configures the
number of nodes that should be instantiated. The number includes the NameNode and
ResourceManager nodes, i.e. the number of slaves will be the total count minus two.
The remaining two parameters, key_name and key_path are related to authentication: In
OpenStack and other TaaS stacks users upload the public part of their public/private key
pair and tag it with a name. The locally stored private key part is identified by the key_path
parameter, while the key_name corresponds to the identifier assigned to the key pair on the
Cloud side. It is worth noting that the key upload to the provider is a manual task that the
user needs to perform prior to deploying a cluster with the cluster tool.

Listing 4.2: user_config.json Example

{

"user”: {
"username”: "mgoettsche”,
"password”: ”secretl123”,
"tenant_name”: 712345”

30

4. Implementation

The user_config.json file is similarly structured. The user object containts a username, a
password and a tenant_name parameter. The first two parameters are the login credentials
for the user’s account at the Cloud provider, the tenant-name identifies the OpenStack
project in which the virtual machines should be created. We do not make further use of
this concept, but only note that the tenant needs to be specified in order for Vagrant to
communicate with the OpenStack API.

4.2.3. Functions
4.2.3.1. init

The init function creates a configuration skeleton for the cluster with a user-specified name.
This step is very basic and consists of the following steps:

1. Creating a sub-directory in ~/.clusters with the specified name of the cluster.
2. Copying a user_config.json and a cluster_config.json template to this directory.
3. Copying a Vagrant template (Vagrantfile.tpl).

4. Generating a SSH key pair for the user to upload to the Cloud provider. The user is
free to replace it with her own in case she already has a key pair.

In summary, init does neither instantiate nor configure the cluster, but prepares the local
files needed for the next step.

4.2.3.2. deploy

The most complex operation implemented in the program is deploy which performs both
the instantiation and the configuration of the virtual machines. We will therefore split up
the discussion into two sections.

Instantiation As illustrated in Figure 4.1, Vagrant carries out the task of communicating
with the Cloud provider via the OpenStack API. We described the foundations of the
application in Section 2.3.1.1 and pointed out the need for a Vagrantfile that includes the
infrastructure definition, i.e. which and how many virtual machines should be created
alongside other settings.

deploy in this phase executes the following steps:

1. Parse the user_config.json and cluster_config.json files.

2. Modify the Vagranifile template prepared in the previous step according to these
configuration files.

31

U W N =

=~ W N

o Ot

10
11
12

4. Implementation

3. Execute Vagrant.

In the default installation, Vagrant does not support interaction with OpenStack. To

enable this support, we utilize a third-party plugin [46] that provides easy access to the
most important API calls.
We will focus the discussion on the second step since the other steps are straightforward.
Large parts of the Vagrantfile (full source code in Appendix B.1) consist of obligatory boiler-
plate code such as credential or network configuration (lines 11-26). Also, the instantiation
of the NameNode and ResourceManager are statically defined, because there is always ex-
actly one for each cluster. The aforementioned dynamic nature through the inclusion of
arbitrary Ruby code however comes into play in the definition of the slave nodes due to the
possibility of configuring the cluster size in cluster_config.json.

Listing 4.3: Vagrant Slave Instantiation

SLAVES_COUNT. times do |1 |
config.vm. define ”slave#{i+1}” do |slave|
slave .vm.hostname = ”slave#{i+1}”

end
end

The slave instantiation (Listing 4.3) is performed in a Ruby loop with the number of
iterations equalling the number of slaves to be created. For each iteration, the loop body
defines one virtual machine via the config.vm.define directive and assigns it a hostname.
As depicted in the architectural overview figure, Vagrant calls Ansible to actuate the con-
figuration of the nodes. Listing 4.4 shows the necessary code for this setup.

Listing 4.4: Setup of Vagrant/Ansible Interaction

resourcemanager.vm. provision :ansible do |ansible |
ansible.verbose = "v”
ansible .sudo = true
ansible . playbook = "$MITHOME/cluster /deployment/site .
yml”

ansible.limit = ”all”

slaves = (1..SLAVES.COUNT).to_a.map {|id| "slave#{id
17

ansible . groups = {
"NameNode” => [”namenode”],
"ResourceManager” => [”"resourcemanager”],
"Slaves” => slaves

32

13

4. Implementation

end

The Ansible setup is placed in the last virtual machine definition of the file to pre-
vent premature execution, i.e. before all nodes are ready. Ansible requires primarily
two components, the Playbook containing the cluster configuration code and an Inven-
tory mapping IPs to hostnames as well as grouping them. The main Playbook resides in
SMTT_HOME/cluster/deployment where the environment variable $MTT _HOME stands
for the path where our tools are installed. Lines 8-12 define the Inventory, creating a group
for each of the different roles.

The result of this phase — cluster.py having executed vagrant up --no-provision — are a
number of virtual machine instances running the base operating system (in our case Ubuntu
Server 14.04). The next paragraph will give attention to their actual configuration.

Configuration In this step, all the cluster tool does is to execute wvagrant provision,
thereby indirectly launching Ansible with the Playbook configured. Ansible encourages a
modularized configuration via the concept of roles which are analogous to include files, i.e.
the logically split up configuration is aggregated upon execution.

Role L Purpose

common Installation of required base software
hadoop_common | Hadoop download and system preparation
configuration Hadoop configuration

format_hdfs HDFS formatting

services Hadoop services start /restart

Table 4.1.: Ansible Roles for Cluster Deployment

One role should encapsulate the automation of a specific task or service. We use five
roles in total as described in Table 4.1. These are executed in the shown order because
they depend on the outcome of prior execution of other roles. For example, the Hadoop
configuration cannot be replaced with our production configuration before the base one has
been installed and the respective services cannot be started without Java being installed.
Some of the role files are themselves lengthy or involve lengthy templates and do not have
parts that stand out, so for brevity their code will be omitted here. Instead, we will shortly
describe the state after execution of each role and which Ansible modules dominates:

e common: Required base software that is not part of the default Ubuntu Server de-
ployment has been installed, e.g. Java and Network File System (NFS). The different
virtual machines have aliases set up in the network configuration so that they are
known to each other via their name (e.g. slavel) instead of just their respective IP

33

4. Implementation

addresses. The installation procedures were performed via the apt package and the
network configuration via template.

hadoop_common: The Hadoop package has been downloaded from a mirror (module
get_url and uncompressed to its target directory (module shell). The system user
and system group have been created and the hadoop user been given sudo permissions.
The modules user, group, lineinfile and file have been utilized for these tasks.

configuration: The data directories for Hadoop and its NFS wrapper (making the
HDFS available via a POSIX compatible file system) have been created via the file
module as well as that its mount point has been set up. The multitude of required
Hadoop configuration files for the setup of YARN, MapReduce et al. has been copied
from previously written local templates into the target directories (module template).

format_hdfs: The HDFS file system has been formatted using the shell module.
Arguably, this small task could be part of the previous step as well.

services: The various Hadoop services have been started via the shell module. For
services that can be managed using standard init systems, the service module is
utilized for this, but Hadoop services in its standard distribution are started differently.
This step takes into account the different roles the nodes play, Table 4.2 shows which
service(s) are started on which machine. Finally, the HDFS is mounted via the NFS
wrapper on all nodes using the mount module.

Service L Hosts
NameNode namenode
ResourceManager (YARN) resourcemanager
JobHistoryServer resourcemanager
Portmap (required for NFS wrapper) | namenode

NFS Wrapper namenode
NodeManager All slaves
DataNode All nodes

Table 4.2.: Services running on different Node Types

Notably, all tasks in the configuration process are idempotent, meaning in this context
that repeated runs of the process will not change the resulting system. This may seem
unnecessary for a configuration step that is supposed to be performed only once, but can
be helpful in at least two cases. The first would be a later upscaling of the cluster, i.e.
the addition of nodes which need to be configured while ensuring that the other nodes are

34

4. Implementation

not affected. The second would be temporary network problems that cause some opera-
tions during the process to fail, thus leaving one or multiple nodes in a transitional state.
Rerunning the deployment configuration then finishes it and brings them into the desired
state.

4.2.3.3. destroy

The destroy operation is very straightforward and simply a shorthand to the equivalent
Vagrant operation. Besides executing vagrant --destroy the tool removes the corresponding
local cluster directory in ~/.clusters. The only motivation for implementing this operation
is to provide the user with a thorough interface so that she does not have to work with
Vagrant directly.

In effect, destroy shuts down and removes all virtual machines including the data stored
in the cluster, thereby freeing up resources in the user’s Cloud account. Output data
contingently stored in the cluster that has not been downloaded yet must be retrieved prior
to the destruction in order to avoid data loss.

4.2.3.4. project_init

We explained earlier that the motivation to make the initialization of the project a cluster
operation rather than a job operation. To recall, the assumption is that a project consists
of fixed data that remains constant and transient data such as experiment configurations
which the user may want to edit e.g. as a result of new information. The initialization takes
this into account by performing the initial upload of the project directory as a one-time
operation, thereby putting the cluster into a state where corresponding jobs can be started.
Job operations upon execution resync only the transient directory.

The rationale for this is the lack of random read/writes in HDFS. Under the assumption
that files once created need not be changed, the Hadoop team decided in favour of a write-
once-read-many access model [18]. This poses a problem for synchronization software that
follows the principle of transferring only deltas for modified files instead of replacing the
files altogether to save network traffic and reduce the amount of input/output operations.
Since the assumption of a constant fized folder appears justified by our two case studies,
the user can simply destroy and reinitialize the project in the rare occasions of changes to
fixed.

The --project_init function imports the data to the cluster in two steps:

1. Upload of data to the NameNode via Ansible’s synchronization module.
2. Copying of the data to HDFS.

We use the NameNode as the entry point to the cluster to upload the data to it, but
any other node could just as well be used, because naturally all of them have access to the

35

4. Implementation

shared file system. Once copied to the node, the data can be moved from the node’s local
storage to HDFS, thereby making it available to all nodes. The Ansible code is listed in
Appendix B.2.

Besides importing the data into the cluster, the init operation creates an invisible
.job_config directory in the project folder which initially only contains a file that links the
project to the cluster it has been imported to and will later on hold the job description files.

4.2.3.5. project_destroy

The counterpart to the project initialization is its removal via --project_destroy. This oper-
ation reverses the initialization step by removing the data from the HDFS file system and
the NameNode. Again, these steps are supported by Ansible. The corresponding code is
listed in Appendix B.3.

4.3. Job Tool

This section covers the operations of the job tool that implements the functionality de-
scribed in Section 3.3. Again, we will first provide an overview of its functions, then its job
description format and finally sketch the implementation of the functions.

4.3.1. Function Overview
job.py has the following four user-visible functions.
e init: Initializes the configuration for a new job.
e start: Starts the given job.
e download: Downloads the output of the job if it has finished already.

e delete: Deletes files corresponding to a job.

In our terminology, a job is the template for runs of an application with a particular
combination of input files and input parameters. Therefore, a job does not describe a single
execution of the application, but the configuration for (possibly repeated) executions.

4.3.2. Job Description Format

As in the case of the cluster configuration, we chose JSON as the file format for the job
descriptions. Each job is defined in its own file with the parameters introduced earlier
(Section 3.3.2). Listing 4.5 presents an example for a simple job description.

36

© 00 J O U i W N~

e Sy S S gy S
T W N = O

16

4. Implementation

Listing 4.5: Job Description Example

—

7job 7 {
"name”: “mdbsum of input files”,
”command ”: ”mdbsum”
"parameters”: 77
“output_type”: ”stdout”,
“input_output”: {
"directory”: |
{
“input”: ”../transient /7,
“output”: 7../out/”

The purpose of this job is to execute the md5sum command on all files in the transient
directory. md5sum [12], as the name suggests, computes the MD5 hash sum of the input and
prints it to the standard output.

All parameters are members of the single object named job of which there is exactly one for
each job description file. Since the parameters have already been described earlier, we will
focus on the technical aspects of the output type parameter and the input/output-mapping
here.

Some applications print their results to the system standard output, others write them
directly to files. Our job tool cannot distinguish these two types without user support, but
needs knowledge about the type to handle the applications differently: Since the applications
are executed in the context of the servers, any output to the screen is lost if not redirected.
This redirection and storing to files is performed by job.py if the output_type is specified
as "stdout”. In this case, the tool redirects the output to files of the same name as the input
files in the respective output directory so they can be retrieved later on. If output_type is
set to 7file”, the user application is responsible for writing the output to files directly. Since
the file system is POSIX compatible, this does not require any particular precautions in the
application. The only requirement is that it writes to the “out” folder.

The input/output-mapping is an array whose members are either “directory” or “file”. For
directories, all files in that path are regarded as input files which is a shorthand for the user
to listing all files individually via the “file” type. The latter option will be used if only a
subset of the files should be processed. This is useful if the available pool of files should be
divided up into different smaller experiments. The case studies in Chapter 5 will present

37

4. Implementation

examples for this kind of job description.

4.3.3. Functions
4.3.3.1. init

As in the case of cluster.py, the init function here also serves to initialize a new object,
in this case a job. This operation consists of just two steps:

1. Creating a sub-directory in the invisible .job_config with the name of the newly created
job.

2. Placing a job description template in the .job_config directory.

The job template contains no runnable description, but is well structured and contains
all parameters to ease adaptation by the user before starting the job.

4.3.3.2. start

The start operation is the most complex one of the job tool involving logic on both the
client and server side which we will explain separately.

Client Side First, start parses the job description file and checks whether its input/output-
mapping is valid. While this mapping may by design include both, directories and files
sections, the server side — for reasons to be explained in the next paragraph — requires a
file-based mapping. This conversion is performed upon job start to incorporate any changes
that the user may have made to the job description. Technically, file entries are simply
copied into an associative array and the directory entries are converted into file entries by
scanning the directory’s contents and creating an entry in the array for each file found.
job.py then serializes this associative array for later transfer to the cluster.

Second, using the parameters from the job description, the function creates a Python script
from a template that will later serve as the Hadoop Streaming mapper script. See below
for a discussion of this script.

Lastly, the Ansible job_start.yml playbook (Appendix B.4) is launched. The first part of the
playbook synchronizes the project files to the cluster, more specifically just the transient
directory. The second part launches the Hadoop Streaming job which marks the transition
to the server side.

38

IS GURN NI

4. Implementation

Server Side We begin our description of the server side job execution with the correspond-
ing Hadoop call:

Listing 4.6: Server-side Job Ezecution

/opt /hadoop/bin /hadoop jar /opt/hadoop/share/hadoop/tools/lib/
hadoop—streaming —x*.jar
—D mapreduce.map.cpu.vcores=2
—input /{{ project_name }}/.job_config/{{ job }}/
input_list .txt
—output /mr_tmp
—mapper /mnt/hdfs/{{ project_name }}/.job_config/{{ job
}}/mr_job.py
—inputformat org.apache.hadoop.mapred.lib.NLinelnputFormat
&& touch /mnt/hdfs/{{ project_name }}/.job_config/jobdone

Line 1 references the JAR file for Hadoop Streaming. Line 2 assigns each map task two
cores. As described in Section 2.4.3, Hadoop expects an input and an output location.
In this case (line 4), the output directory is a dummy, because we are not interested in
Hadoop’s diagnostic output. The input parameter refers to a file created on the client side,
which simply lists line by line the files that should be processed and thus equals keys of the
serialized associative array discussed above. This array is used in the mapper script specified
in line 5 (more on that below), but cannot be used as the input parameter because it does
not comply with any of the supported file types. Of these, we chose the NLinelnputFormat
instead of the default TextInputFormat, because it ensures that each map task receives just
one input file and each a separate one which is what we need for optimal distribution of the
workload. Finally, upon successful execution of the Hadoop job, the jobdone file is created
as an indicator for job.py that the output can be downloaded. The variables in the call —
identifiable by their encapsulation in double curly braces — are replaced by Ansible prior to
execution.

From the start of the Hadoop job on it remains in charge of managing the different map
processes, monitoring the overall progress, failure handling et cetera, but the actual execu-
tion of the user application is encapsulated in the mapper script which will be discussed
now. A version shortened to the key parts is shown in Listing 4.7.

Listing 4.7: Mapper Script

module imports
variable declarations

io_mapping_file = open(’/mnt/hdfs/$project /.job_config/$job/
io_mapping. pickle’, 'r’)

39

5
6
7
8
9

10
11
12
13
14
15
16
17
18

4. Implementation

io_mapping = pickle.load (io_mapping_file)

for task in sys.stdin:
(key, task) = task.rstrip().split(’\t’)

Build task command
cmd = command + '’ + parameters + '’ + task

if output_type = ’stdout ’:
cmd += >’ + io_mapping|task]

Frecute task
status = os.system (cmd)

os.system ('cp_/tmp/local_job_out /* _%s’ % os.path.join(projectdir ,
‘out’))

Line 4-5 open the serialized input/output-mapping and deserialize it. Importantly, the
file string in line 4 is modified prior to the execution as $project and $job are variables. The
replacement of these variables with the true values occurs on the client side prior to the job
execution. The mapper script receives its input from Hadoop via the STDIN channel. The
Streaming call above implies that each mapper process normally receives just one input
file. However, for fail safety the script iterates over its input (line 7) to be able to deal
with multiple input files loop-wise. Due to the choice of NLinelnputFormat as the input
format, the mapper receives not just the file name from the input list, but a key/value pair
separated by a tabular character with the key corresponding to the character position of the
input list (line 8). The remainder of the for loop prepares the call to the user application
and executes it. Line 13 marks the different treatment depending on the output type of the
application: If the user application prints to STDOUT, the command line call arranges for
the output redirection into the file name specified by the user in the input/output-mapping
(line 13). Finally, after the user application has exited (line 16), the script copies the locally
cached output files to the HDFS so that all node’s output files are available at a common
location.

4.3.3.3. download

The download function allows the user to retrieve the output files generated by her job run.
The download needs to be implemented as a pull operation (i.e., the user initiates the data
transfer) separate from the job execution, because the job may finish at a time when the
user’s machine is not running and the data could not be transferred if that is the case.
The download operation uses an Ansible play shown in Appendix B.4.

40

4. Implementation

Listing 4.8: Ansible File for Result Download

1 —

2 # job —download play

3

4 — hosts: namenode

) remote_user: root

6 sudo: yes

7 sudo_user: hadoop

8 tasks:

9 — stat: path=/mnt/hdfs/{{ project_name }}/.job_config/jobdone

10 register: jobdone

11 — fail: msg="Job has not finished yet”

12 when: not jobdone.stat.exists

13 — synchronize: mode=pull src=/mnt/hdfs/{{ project_name }}/out
dest={{ project_path }}

14 when: jobdone.stat.exists

Prior to the tasks, the Ansible file specifies that it should work with the namenode machine
and be executed as the user hadoop, which is the user that also runs the Hadoop services.
The actual tasks section employs three different Ansible modules. First, stat checks whether
there exists a file called jobdone in the project directory and registers the result of the check
in a variable of the same name. The jobdone file is created after the job run has finished
and thus tells job.py if the download may be started. If the result of the check is negative,
Ansible aborts with a message that the job has not finished yet. Otherwise, synchronize
performs a pull operation, syncing the project’s out folder on the server side to the client’s
machine.

4.3.3.4. delete

The delete operation solely removes local traces of a configured job, i.e. its directory and
job description file in .job_config.

41

5. Case Studies

In this chapter we will examine the practicability of our approach with the help of two
applications written by researchers of the group of SOFTWARE ENGINEERING FOR DIis-
TRIBUTED SYSTEMS. We chose these two applications because they represent real-world
use cases for our approach and therefore they can provide realistic results for the judgement
of the feasibility of our work. We will begin with the description of our test environment
in Section 5.1. Following, in Section 5.2 we will discuss the metrics with which we evaluate
the performance of our approach. The remainder of the chapter will then cover the two case
studies and their results (Sections 5.3 and 5.4).

5.1. Environment

5.1.1. Cluster Specifications

For mainly two reasons, we chose the COMPUTE CLOUD service of the GWDG as the Cloud
service for our evaluation. The first reason is that the GWDG is the main provider of IT
services for the University of Gottingen. Therefore, should the approach turn out to be
useful and also generalizable enough, it may be interesting for other local researchers for
whom the Compute Cloud is possibly the most cost-effective choice. The second reason is
that research grants of e.g. AMAZON are no longer as easily available as in the past and
there were no resources available for purchasing commercial Cloud resources for this thesis.
The GWDG provided an account with an initial quota of 10 virtual machines of a custom
flavour which was later on extended to 15 for testing the deployment of a second cluster
next to an existing one.

In expectation of possibly large data sets, the storage-rich private flavour hadoop was created
for us with the specifications listed in Table 5.1.

Virtual CPUs | 2 Cores
Memory 4GB RAM
Storage 275GB HDD
Architecture | 64 bit

Table 5.1.: Hadoop Flavour

42

5. Case Studies

Our evaluations were performed on a cluster consisting of 10 machines of this flavour.
Naturally, using a different flavour with other characteristics would yield different results,
which may be better or worse depending on the respective user application. However,
the rationale of our evaluation was not to find the best suited infrastructure for our case
studies, but to execute them in an average setup to explore the performance in non-optimized
configurations.

5.1.2. Software Versions

We here list the versions of all software that we used and deem directly relevant. Noteworthy,
while our approach may be more sensible to changes in some software than in other, it should
not be affected by minor or even major version changes due to the backward compatibility
in the underlying foundations. Table 5.2 lists the software.

Software L Versions
Hadoop | 2.5.2

Ansible | 1.9
Vagrant | 1.6.5
Java OpenJDK 1.7.0

Python | 2.7.6
Linux Ubuntu Server 14.04

Table 5.2.: Environment Software Versions

5.2. Metrics

The most widely used metric to express the relative performance gain from parallelization
of a task is the speedup which is defined as[58]:

Execution timegig
Execution timepew

Speedup =

where the old execution time is the wall-clock time for executing the entire task without par-
allelization and the new execution time the duration with parallelization. Ideally — ignoring
cases of super-linear speedup irrelevant for our case — the speedup for p processors/nodes is
itself p, meaning that for p nodes the execution time reduces to 1/p.

We will employ the speedup as our main and only metric for the following reasons:

e Most importantly, the speedup is the metric motivating this thesis, i.e. we want to
evaluate how much speedup can be gained with no effort on the user side. Again, we
are interested in the wall-clock time, because it is the metric of interest for the user.

43

5. Case Studies

e Other metrics such as the average utilization of the infrastructure depend too much on
the particular use case. As an example, given a fixed cluster size of n it is obvious that
a job with m input files where m < n, the cluster cannot possibly be fully utilized,
without this being a drawback of our approach. Even with m > n, the utilization
depends primarily on the degree of input heterogeneity, as will become clear from the
discussion of our case studies.

e Yet other low-level metrics such as the communication overhead which is of interest
e.g. in message-passing parallelization are neither measurable nor of interest here
because — being determined by Hadoop — they are out of scope of our implementation,
thus not improvable and implicitly a determinant of the overall speedup.

Our evaluation of the speedup, here being the quotient of the execution time on just one
node (i.e. the time of non-parallelized execution) and the time of a parallelized job in the
cluster, will investigate if it is beneficial to use our approach in terms of reduced execution
times and quantify this for different scenarios.

5.3. CrossPare

5.3.1. Application Description

CrossPare is an application developed by one supervisor of this thesis, Steffen Herbold,
that employs machine learning algorithms on software project data to identify potentially
erroneous application components. More specifically, it takes as input data from the TERA-
PROMISE REPOSITORY [42] that collects metrics from the different components of a pool
of open-source projects on the source code level as well as the information whether each
component contains bugs or not. Examples for such metrics are the lines of code (LOC) or
the number of methods in a class. By feeding this data into a set of configurable machine
learning algorithms, CrossPare attempts to identify the most predictive metrics. Depending
on the type and number of selected algorithms — which are defined in so-called experiments —
the run time can vary substantially. We will describe this in more detail in the next section.
The application directory structure had to be slightly adjusted to fit our requirements
detailed in Section 3.3.1. However, since the application has no hard-coded input/output-
mapping defined in its code, but rather reads it from its input files, the restructuring merely
involved some file moves and slight modifications to the experiments, but no changes on the
source code level.

Figure 5.1 depicts the directory organization after the restructuring. crosspare.jar as the
application’s JAR file resides in fized along with a directory containing libraries it depends
on (lib) and the data directory that contains the input data. The experiments are stored in
a sub-directory of transient because there may be changes to the pool of experiments. For
example, an algorithm may be regarded as unnecessary after the first run or new experiments

44

© 00 O Ut

5. Case Studies

E crosspare. jar

Figure 5.1.: CrossPare Directory Structure

may be added, while the application itself remains unchanged.

Finally, it is important to note that CrossPare uses thread-level parallelization, i.e. each
process launches as many threads as there are CPU cores if the number of input files to
that process is large enough. Thus, for a dual core machine with two or more input files,
two threads will be started. This fact will be important in our evaluation.

5.3.2. Evaluation Setup

As mentioned above, experiments are defined in XML files. Listing 5.1 shows exemplarily
one of the experiment configurations we examined. Important for our discussion are the lines
3 and 13 as well as 9-12. The prior define the input and output data locations and mark
those parameters that needed to be adapted to match our directory structure. The latter
lines define the trainers, i.e. the machine learning classification algorithms, that should be
applied to the input data.

Listing 5.1: Ezxperiment Configuration (SMALLI1)

<?xml version="1.0”" encoding="UTF-8”7>

<config xmlns="experimentconfig” xmlns:xsi="http://www.w3.org
/2001 /XMLSchema—instance” xsi:schemaLocation="experimentconfig_
experimentconfig .xsd”>

<loader name="CSVFolderLoader” datalocation="../fixed /data”
relative="false” />

<versionfilter name="MinClassNumberFilter” param="5”" />

<setwisepreprocessor name="Normalization” param=""/>
<setwisepreprocessor name="AverageStandardization” param="" />
<setwisepostprocessor name="Undersampling” param="" />
<postprocessor name="Undersampling” param="" />

<trainer name="WekaTraining” param="RandomForest_weka.classifiers.
trees . RandomForest —CVPARAM_ I 5 _25_5" />

45

10

11

12

13

14
15

5. Case Studies

<trainer name="WekaTraining” param="C4.5—DTree_weka.classifiers.
trees.J48 —CVPARAM C_0.1,_0.3_5" />

<trainer name="WekaTraining” param="Logistic_,weka.classifiers.
functions . Logistic” />

<trainer name="WekaTraining” param="NeuralNetwork weka.classifiers
.functions . MultilayerPerceptron -CVPARAM M 1.5 _,2.5_,3.0_L 0.2,

0.4.3.0”7 />
<resultspath path="../out/results”/>
<eval name="NormalWekaEvaluation” param="" />
</config>

The computational complexity of these trainers is extremely heterogeneous, ranging from
less than a minute to hours. For example, the logistic regression algorithm finishes a lot
faster than the neural network given the parameters from the experiment. For the purpose
of our evaluation, we define three experiments: SMALL, MEDIUM and LARGE. The first,
as already shown in 5.1 consists of four trainers with varying run times. MEDIUM doubles
the trainers, LARGFE quadruples them.

For the sake of comparing performance in different scenarios, we define the following cases:

1. 2x SMALL
2. 4x SMALL
3. 8x SMALL

The rationale for the first case is to measure the overhead induced by our approach. If
the overhead was zero, the execution time on one machine with two times the SMALL
experiment as input should be as fast as the parallelization to two nodes. This may be
counterintuitive at first, because the execution on two nodes should ideally be twice as fast.
However, as each map task receives just one input file, it cannot make use of the thread-
level parallelism in CrossPare and thus each node takes approximately the same time for the
processing of two input files as for one. We will discuss this shortcoming in the conclusion.

The rationale for the second and third case are to measure the speedup for parallelizing
to four or eight nodes. Ideally, the execution time should have between 2x SMALL and
4x SMALL and again between 4x and 8x. The other two experiment files, MEDIUM and
LARGE are not part of our evaluation in this section. Instead, they will play a role in the
comparison with a native MapReduce implementation in Chapter 6.

5.3.3. Results

We execute each case parallelized via our approach and non-parallelized on just one machine.
For consistent results, we chose one virtual machine of the cluster as the reference setup

46

5. Case Studies

for local execution to ensure that the computational capabilities are comparable in both
scenarios.

Also, since we have no control over the Cloud system as a whole, we can not be sure if and
how many other virtual machines of other customers are operating on the same physical
servers at the same time. This can influence our results if the workload the other customers
induce on the hardware differs between the runs. To account for this noise, we execute each
scenario two times and take the average.

Scenario L Non-Distributed O L Distributed @ L Speedup
2x SMALL | 16:00h 12:01h 1.33
4x SMALL | 24:10h 11:58h 2.01
8x SMALL | 52:32h 23:44h 2.21

Table 5.8.: CrossPare Results

Contradicting the expectations from our discussion above, even the first case exhibits a
speedup greater than one (1.33), obviously outweighing the overhead introduced by Hadoop.
Since the individual runtimes are consistent with this average-based observation, the most
likely explanation appears to be that the per-experiment processing time is noticeably lower
for a single input than for two inputs despite the thread-level parallelism.

The second case, i.e. executing the SMALL experiment four times, leads to an speedup
factor of 2.01 which is optimal given our expectations. Again, the optimal speedup in this
context is just half the theoretically optimal speedup of 4.0 due to the fact that CrossPare
is able to utilize two cores in the reference case.

The speedup in the last case is approximately equal to the former case and thus only
a quarter of the optimal speedup. While in the reference case the eight input files are
processed in chunks of two concurrently on two cores, our approach processes seven input
files in parallel which takes roughly half the total execution time of the reference case.
However, because one slave node runs the ApplicationMaster, it is not available to run the
actual user application. Hence, the task for the eighth file can only then be started when
another map task has finished which leads to a doubled runtime. In other words, had we
chosen 7x SMALL instead, the speedup would have been substantially larger, because all
input files could have been processed concurrently. This also demonstrates that the optimal
cluster size depends on the respective use case.

47

5. Case Studies

5.4. TaskTreeCrossvalidation

5.4.1. Application Description

Our second case study, for the lack of an official name here referred to as
TaskTreeCrossvalidation, is an application written by a researcher of the SOFTWARE
ENGINEERING FOR DISTRIBUTED SYSTEMS group in the context of his PhD thesis, Patrick
Harms. Again, we will briefly introduce the background of the application before discussing
the adaptations needed to be compatible with our approach.

Harms research is partially concerned with the usability analysis of websites. Part of this is
the use of so-called task trees to formally describe user interactions in a tree structure where
parent nodes define the order of actions and leaf nodes the actual actions performed by the
user, called tasks (e.g. clicks, text input etc.). The rationale for the trees is to analyse them
later on to detect potential usability issues [57] [56]. The recording of the user actions is
performed using the AutoQUEST tool suite [6].

The application for our case study is an intermediate tool that verifies whether the trees the
approach generates are similar trees for different recordings of the same website, because
otherwise they would not be considered suitable for the usage analysis.

The changes needed to the application for the use with our approach were small, especially
in terms of the application structure. Basically, there is only one folder structured as follows:

o autoquest-distribution: Contains the AutoQUEST tool suite with the verification code.
e run.sh: A wrapper script for executing AutoQUEST.
e crossvalidation.data: The recording of the user interactions.

e Script files: Configuration files that instruct run.sh. Equivalent to the experiment
configuration files of CrossPare.

The structure could remain the same for execution with our framework, though moving the

experiment configurations to the transient directory is recommended for reasons explained
earlier. However, because no changes to the files were planned for the course of the case
study and to demonstrate that our approach can be used with minimal overhead, we left
the structure as is.
Before planning of the case study, run.sh relied heavily on command line switches for the
run configurations. Since our approach assumes the same parameters for all runs, this poses
a problem because all run-specific informations need to be passed via the input file. To
account for this, TaskTreeCrossvalidation has been modified as to receive its configuration
via one single file, the script file.

48

ST W N

5. Case Studies

5.4.2. Evaluation Setup

The runtime of the application is determined by the complexity of the experiment defined in
the input file. More specifically, depending on the experiment configuration, the application
needs to perform more or less task tree comparisons on the data set. The size of the
experiment is expressed as the percentage of the data set which is used to generate the task
trees for comparison, e.g. crossvalidation_10_1_script (Listing 5.2) defines an experiment
where task trees are generated and compared for 10% subsets of the data.

Listing 5.2: TaskTreeCrossvalidation Configuration Example

load ../crossvalidation .data

generateTaskTree sequences_subset_10_1 tasktree_subset_10_1
generateTaskTree sequences_subset_10_2 tasktree_subset_10_2
getTaskModelSimilarity tasktree_subset_10_1 tasktree_subset_10_2
save ../../out/crossvalidation_10_1—results.data

exit

The larger the subsets, the more comparisons are needed and the longer the execution
time. Subset sizes in the distribution provided to us range from 1% to 20%. Further-
more, in addition to the crossvalidation_* experiment configurations, there are crossvali-
dation_fullrecall_* files that compares the subsets with the full dataset, leading to a sub-
stantially longer runtime. For our case study, we define two scenarios for evaluating our
approach’s performance:

1. The heterogeneous case: Consists of each two times 1%, 2.5%, 5% and 10% size
experiment configurations, i.e. 8 input files in total.

2. The homogeneous case: Consists of 6 input files in total, but this time only 10%
experiment configurations.

The rationale for the two cases is to evaluate whether there is a difference in the speedup
for heterogeneous and homogeneous experiments. This contrasts our first case study where
instead of evaluating differently structured inputs, we examined the use of a varying number
of input files, i.e. a different number of parallel processes.

5.4.3. Results

We perform the evaluation in the same fashion as in our first case study. To measure the
reference (i.e. non-parallelized) performance, we execute the application on one machine of
our cluster and repeat both the reference and parallel case to mitigate the effects of volatile
Cloud performance. Table 5.4 summarizes the results.

49

5. Case Studies

Scenario L Non-Distributed O L Distributed @ L Speedup
Heterogeneous Input | 4:24h 2:02h 2.16
Homogeneous Input | 9:57h 2:10h 4.57

Table 5.4.: TaskTreeCrossvalidation Results

As can be seen from the table, our approach processes both scenarios faster than the

non-distributed execution. However, the speedup is twice as large for the homogeneous
case compared to the heterogeneous case. The explanation for this circumstance is simple:
In both cases, six worker nodes are each assigned one of the input files. While in the
heterogeneous case the smaller experiments finish after just some minutes and the respective
nodes are then in an idle state, in the homogeneous case the nodes are all utilized for
approximately the same time, leading to a higher average utilization and thus to a higher
speedup.
The situation for the heterogeneous case would improve with an increased problem size.
Assuming that each input file exists e.g. ten times, the average utilization of each worker
node would also increase, because once the smaller input configurations have been processed,
there were still larger ones in the queue.

50

6. Comparison with MapReduce

In the approach we presented in the previous chapters, we have utilized Hadoop Streaming
as a wrapper to MapReduce for executing arbitrary applications. The results of our case
studies were promising with regard to the possible runtime reductions involved in using
our approach. In this chapter, we are going to compare these results with that of a native
MapReduce application.

Section 6.1 will present general considerations needed for transforming an application into
a MapReduce application. It is important to note that while we try to keep them as general
and high-level as possible, they will not apply to any potential application. Section 6.2,
following this guideline, shows the steps involved in porting the CrossPare application.
Finally, in Section 6.3, we compare its performance with both the non-distributed execution
and with the execution via our Streaming-based approach.

6.1. General Considerations

In this section we attempt to generalize the procedure of parallelizing an existing application
using MapReduce in the form of a few general steps that should be executed in the respective
order. Naturally, applications vary a lot in terms of many dimensions such as their intended
purpose, program structure, employed libraries et cetera and not all applications will be
compatible with the schema presented. To start with the most basic level, the software will
need to be implemented in Java to use Hadoop’s API.

Following, we will describe the 6 steps we identified on a high-level basis prior to showing
their implementation in CrossPare, one of our case study applications.

1. Identify Parallelizable Tasks The perhaps most critical step is the identification of par-
allelizable tasks in the software. This is not only of concern for our context, but for appli-
cation parallelization in general. Naturally, strictly sequential (atomic) operations cannot
be distributed across different nodes because each of them depends on the result of the op-
erations preceding it. Therefore, the developer needs to identify self-contained tasks whose
execution process is independent of others.

Also, as a second criterion, the identified tasks should be complex enough to qualify for
parallelization. Complex enough here means (1) that the runtime of the tasks accounts
for a non-negligible share of the overall runtime of the application and (2) that each task’s

o1

6. Comparison with MapReduce

runtime justifies the overhead involved in distributing them. The rationale for the first
requirement is that it only when it is fulfilled, there is a possibility to substantially reduce
the application’s runtime. The second requirement arises from the fact that parallelization
itself comes with an overhead (most importantly communication), that, if it is too large
compared to the gains of distributed processing, leads to an increased overall runtime in-
stead of a reduction. The Hadoop documentation recommends a minimum map task time
of one minute [26].

2. ldentify Needed Objects Technically, MapReduce tasks run in their own JVM and
have no access to the object space of the user application. This has severe implications for the
parallelization of tasks because the developer needs to think of the map tasks as independent
programs that need to receive input from the calling application in a substantially different
way than e.g. simply calling a Java method.

We call this this input ”objects”, because the Java objects the mapper class needs are the
fundamental entity: While static input data to the application such as experiment data can
be read by the mapper class directly from the shared file system (HDFS) and parameters
of certain types (e.g. Strings) can be passed via the Hadoop API, objects of other types of
the user application that are needed for performing the tasks to be parallelized cannot be
accessed directly, thus establishing the need to identify and transfer these explicitly.
Which parts of the program these are exactly can hardly be generalized in a satisfactory
way. Our example in the next section will shed more light on this step.

3. Serialize Objects We noted in the previous step that the map tasks share access to
Hadoop’s filesystem. Consequently, it is also predestined to provide the storage for the
previously identified objects to the corresponding map tasks. The de-facto standard to
share objects between processes is to serialize them, i.e. converting their state to a byte
stream adhering to a certain specification which can be transformed back into the same
object [29]. By serializing the identified objects and storing them in files in the HDFS, the
map tasks gain access to their required input.

4. Implement Mapper Class As explained in the overview on the MapReduce paradigm
in Section 2.4.1, at the very least a map function is required for each MapReduce application.
In Hadoop’s API, this function is embedded in classes that implement the Mapper interface.
In this context, the mapper class is responsible for the processing of the parallelized task
and thus contains all code related to its execution.

Its schema can be described as (1) Deserialize (2) Process (3) Serialize: In step (1), the map
function deserializes the previously serialized objects to use them in (2) for processing the
task and (3) serializing the result for later use in the user application.

52

6. Comparison with MapReduce

5. Prepare MapReduce task Once the mapper class is ready and the data it needs avail-
able, the actual MapReduce task can be launched. This is done using the Hadoop API
and occurs at the point in the program flow where the parallelization replaces the original
non-distributed processing.

6. Deserialize Processed Data After all tasks have finished, the control flow returns to
the user application. Now, the objects serialized by the map tasks can be deserialized and
used for further non-distributed processing in the user application.

6.2. CrossPare MapReduce port

Having introduced a guideline for introducing MapReduce parallelism into existing applica-
tions, we are now going to apply it to one of our case study applications, namely CrossPare,
and describe the steps in the same order as above. For a better understanding, we will first
very roughly sketch CrossPare’s program flow:

1. For each experiment configuration passed via the command line, the main() func-
tion calls a createConfig() function that parses the file and creates an object of type
Ezperiment from it.

e As shown in Listing 5.1, an experiment configuration consists of different com-
ponents, in the given example: setwisepreprocessor, postprocessor, trainer. Other
experiment configurations also include setwiseselector or setwisetrainer. We don’t
want to concern us with the exact purpose these components serve. What is rel-
evant for our context is that for each experiment configuration, each of the items
belonging to the same category are executed together in a loop.

2. In the run() method of Ezperiment, the software metrics data is split up into a test
and a training set as is usually done for model validation in statistical analysis.

3. Following, the different components are applied to the data. The components are
represented by corresponding Java classes from the respective packages created using
introspection (e.g. the setwisepreprocessor named Normalization is represented by
de.ugoe.cs.cpdp.dataprocessing. Normalization). The outcome of this step are trained
models, in our example e.g. a decision tree model.

4. Finally, an evaluator is applied to the models, generating the resulting output in the
corresponding CSV file.

1. Identify Parallelizable Tasks Recalling the requirements for the identification of paral-
lelizable tasks we laid out above, the first criterion is to find operations that can potentially

93

6. Comparison with MapReduce

be distributed. We find these in the run() operation of the Ezperiment class that consists
of eight loops similar to the one in Listing 6.1.

Listing 6.1: Exemplary Loop from run() Method

for (ITrainingStrategy trainer : config.getTrainers()) {
Console. traceln (Level .FINE, String.format (”[%s]_[%02d/%02d
| %s:_applying_trainer %s”, config .
getExperimentName () , versionCount, testVersionCount ,
testVersion.getVersion (), trainer.getName()));
trainer.apply(traindata);

In principle, all these loops can be distributed by having each map task apply 1/n’th —
where n is the number of nodes — of the processors to the data.
We can however filter them by the second criterion, i.e. whether the tasks are complex
enough to justify their distributed processing. We find that the runtimes vary substantially
within and between the different components, but that on average only the trainers have
a runtime that appears to satisfy our criterion. Noteworthy, we say “appears”, because
despite the general recommendation that map tasks should last at least one minute, only a
case-specific analysis can judge optimality. Our measures however show that the trainers
are clearly the most complex task, account for the majority of the overall runtime and thus
should be parallelized first regardless of the other components. In the following, we will
thus detail the parallelization of the trainers, but the approach is representative.

2. Ildentify Needed Objects From the description of the program flow above we know
that the trainers need the traindata as input. traindata is of Weka type Instances which is
a collection class for storing objects of types that implement the Instance interface which
represents an instance of the experiment data. Consequently, since we aim to parallelize the
execution of the trainers, their input data needs to be made available.

Obviously, if the trainers should be distributed, they are themselves also objects that need
to be serialized. This however poses a problem due to the different serialization interfaces
of Java and Hadoop. We will cover this in the next paragraph.

3. Serialize Objects Specifically, in our case the concern is to convert the trainers into
Writable objects to make them Hadoop-compliant (see box below).

54

6. Comparison with MapReduce

Java vs. Hadoop Serialization

Java and Hadoop employ different serialization implementations which differ both in
their underlying storage and in their user-visible interface. CrossPare contains mul-
tiple trainer classes for different purposes which all implement the ITrainingStrategy
interface and extend the WekaBaseTraining class, but which are also differ in their
suitability for being serialized as Writables.

In Java, classes need to implement the java.io.Serializable [30] interface. Given
this and that all of its members themselves are serializable or marked as be-
ing transient, this suffices to serialize objects of the class using an ObjectOutput-
Stream. In the case of Hadoop, classes that should be serializable implement the
org.apache.hadoop.io. Writable [21] interface. Noteworthy, all objects that appear as
input or output in map or reduce operations need to be serializable. While in Java se-
rialization no further methods need to be implemented, the Hadoop interface expects
the developer to add the void write(DataOutput out) and void readFields(Datalnput
in) to the class. The latter’s purpose is to serialize the fields of the object to the
given DataQOutput stream, while the first is the reverse operation, i.e. it deserializes
the fields of the object. A crucial limitation of DataQutput is that its write operations
are limited to Java’s primitive types. This implies that user-defined classes cannot
usually be serialized without effort. The two operations are typically complemented
by a third static method read(Datalnput in) that instantiates an object of the class
and calls readFields() on it to populate the object.

This relates to the internal differences in both approaches. Java does not assume that
the class of the stored objects is known, Hadoop on the other hand does assume this
because the application creates the instance of the class before calling readFields().
Therefore, because the type of the object does not have to be stored in the byte
stream, Hadoop serialization is less input/output-intensive. Since MapReduce is very
input/output-intensive due to the fact that objects regularly need to be transferred
across the network, reducing the required communication is paramount. [19]

The differences outlined here have the important implication that both serialization
approaches are not interchangeable, therefore not allowing plain Serializable classes
to be used in the context of Hadoop operations.

This is due to the way they are implemented: Some of the classes contain inner classes and

multiple class members, making it hard to serialize them in this scheme. More concretely,
part of the problem is that because Hadoop’s DataOQutput supports only primitive types,
complex types need to be converted into one of these types first, e.g. a byte array. This,
however, requires a prior serialization of the object using Java’s serialization which again is
only practicable for classes supporting it, which does not apply to all of those used in the

95

6. Comparison with MapReduce

trainer classes.

Hence, to avoid making substantial changes to CrossPare, we have to limit ourselves to
the WekaTraining class that does not add any additional members to its base class (Wek-
aBaseTraining) and thus only contains the members as depicted in Figure 6.1. Though this
trainer does not cover all experiments in use with CrossPare, it covers a great part of them
and thus a speedup-involving distribution of them would contribute to an overall runtime
improvement.

Object

de::ugoe::cs:cpdp:training:
WekaBaseTraining
Fields
classifierClassName : 5tring

classifierMame : String
classifierParams : String(]

Froperties
«readOnlys
+ classifier : Classifier
«readOnly»

+name : String

Constructors
+WekaBaseTraining() : void

Methods
+ setParameter(String J : void
+ setupClassifier() : Classifier

Figure 6.1.: WekaBaseTraining Class Diagram

We split up our discussion of the serialization into two parts, the training data and the
actual trainers. Finally, we will show how to make the serialized data available to the
MapReduce portion of the program.

Training data

We recall that traindata is of type weka.core.Instances which is a Java Serializable because
Weka has been designed to support serialization in its core types. Since the training data is
relevant to all of our map tasks instead of just a specific one as in the case of the trainers, we
alm to make it available globally. Hadoop supports this via its concept of the Configuration
object used for setting up a job. This object can be assigned values via its set(String name,
String value) operation. In our case, we can utilize this concept in the following way:

1. Convert the instances to a ByteArrayQutputStream via an ObjectOutputStream.

2. Convert this byte array to a Base64 String using the Apache Commons library [4].

o6

(=} U > W N~

© 00

10

12

13
14

6. Comparison with MapReduce

3. Set this string as the value for the configuration option "traindata”.
Now, this serialized version of the training data is available to all map tasks. We will see

how the mapper class accesses it in the next paragraph.

Trainers
The second class of objects to serialize are the trainers. Listing 6.2 shows the corresponding
code.

Listing 6.2: Serialization of Trainers

ArrayList<String> inputFiles = new ArrayList<String >();
for (ITrainingStrategy i : config.getTrainers()) {
WekaTraining trainer = (WekaTraining) 1i;
try {
String filename = Long.toString (System.nanoTime ())
+ 7.ser”;
Path serializationFile = new Path(
serializationTrainerInputDir , filename);
OutputStream os = fs.create(serializationFile);
os.write(SerializationHelper.serialize (trainer));
os.close();
inputFiles.add(serializationFile.toString());
} catch (Exception e) {
System.out . println (”Exception_serializing
to_disk: "7 + e);

}

We iterate over the trainers and cast them to WekaTraining by our assumption that we only
use trainers of that type in this context. Our aim is to serialize the trainers to HDFS-backed
files that can be read by the map tasks. The order is arbitrary, so a random filename (line 5)
suffices, for which the corresponding HDFS path is setup (line 6) and OutputStream opened
(line 7). The trainer then gets serialized and the resulting binary stream is written to the
file (line 8). Finally, the file is added to the list of filenames that should be processed. The
SerializationHelper class called in line 8 is simply a helper class for wrapping the serializa-
tion to and deserialization from Writables (see Appendix B.5). For brevity, we don’t show
the corresponding write() and readFields() of the WekaTraining class here (see Appendix
B.6 for the complete code).

At this point, all needed objects are serialized, notably in different fashion: While the
training data is available to the Hadoop tasks via its Configuration object, the trainers have

o7

W N

© 00 N & O

10

12
13

ST W N

6. Comparison with MapReduce

been serialized to disk. Conceptually, we could have serialized the former to disk, too, but
not the other way around. However, since there is an overhead involved in serializing to
disk, our approach is preferable and more straightforward to implement.

4. Implement Mapper Class In our context, the task of the mapper class (see Appendix
B.7 for the complete class code) is to apply a trainer to the training data and transfer
back the result of this operation to the program. Like in all Hadoop applications, our class
implements the map() method that is called by the framework. Additionally, we implement
the setup() method which is called once prior to the execution to the actual map operations.

Listing 6.3: setup() Method of TrainerMapper

protected void setup(Context context) {
conf = context.getConfiguration () ;
serializationTrainerOutputDir = new Path(conf.get (”
outputpath”));

String serializedTraindata = conf.get(”traindata”);
try {
byte b[] = Base64.decodeBase64(serializedTraindata);
ByteArraylnputStream bi = new ByteArrayInputStream (b);
ObjectInputStream si = new ObjectInputStream (bi);
traindata = (Instances) si.readObject();

} catch(Exception e) {
System.out . println (e);

}

In setup() (Listing 6.3), we retrieve two parameters from the Configuration object of the
job. The first is the path where the processed trainers should be stored. We will discuss
this point in the next paragraph. The other parameter is the serialized training data. Line
4 reads this data as a Base64-formatted String and deserializes it back with the help of
Apache Commons (lines 5-8). The resulting Instances object is assigned to a static variable
of the class, thereby making it available to all map tasks.

Listing 6.4: map() Method of TrainerMapper

public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
// Read serialized trainer from HDFS
Path inputFile = new Path(value.toString());
FileSystem fs = FileSystem.get(conf);
FSDatalnputStream in = fs.open(inputFile);

o8

© 00

10

12

13
14
15
16
17

18
19
20
21

T W N =

6. Comparison with MapReduce

final int available = in.available();
byte serializedTrainer [] = new byte|available |;
in.readFully (0, serializedTrainer);

// Deserialize and apply trainer

WekaTraining trainer = SerializationHelper.asWritable (
serializedTrainer , WekaTraining. class);

trainer.apply(traindata);

// Serialize trainer and write to HDES

String filename = Long.toString (System.nanoTime()) + ”.ser”;

Path serializationFile = new Path (
serializationTrainerOutputDir , filename);

OutputStream os = fs.create(serializationFile);

os.write(SerializationHelper.serialize (trainer));

os.close ();

The concept of the map() method is to read a previously serialized trainer from the
HDFS, deserialize it, execute it using its apply() method and serialize it back. Notably, the
apply() method is the time-intensive task that trains the model. Which trainer the partic-
ular map task reads depends on the contents of the value parameter, which is fed in by the
Hadoop framework. The SerializationHelper again assists in the serialization/deserialization
process. Processed trainers are saved in the directory specified by the static serialization-
TrainerOutputDir with a random file name. By this procedure, the non-distributed part
of the application can simply collect the results of the distributed processing as we will see
below.

5. Prepare MapReduce Job Having the serialized data and the mapper class allows the
setup of a MapReduce job. This setup is performed in the class in which we also serial-
ized the needed objects and which usually executes the trainers non-distributedly, namely
Ezxperiment. Listing 6.5 shows our code for the job setup.

Listing 6.5: MapReduce Job Setup

Configuration conf = new Configuration () ;
(... trainer serialization ...)

// Create input index file (using NLinelnputFormat)
Path indexFilePath = new Path(serializationSequencelnputDir ,
input.idx”);

b

99

© 00 O

10

12
13
14
15
16
17
18
19
20
21
22

6. Comparison with MapReduce

OutputStream os = fs.create (indexFilePath);
for (String filename : inputFiles) {
filename += "\n";
os.write (filename.getBytes());

}

os.close ();

// Job execution

conf.set (”outputpath”, serializationTrainerOutputDir.toString());
Job job = Job.getlnstance (conf, "Weka_ Trainers”);
job.setJarByClass (TrainerMapper. class);

job.setMapperClass (TrainerMapper. class) ;

job.setInputFormatClass (NLinelnputFormat . class);
NLineInputFormat.addInputPath(job, serializationSequencelnputDir);
NLineInputFormat.setNumLinesPerSplit (job, 1);

FileOutputFormat .setOutputPath (job, serializationOutputDir);
job.waitForCompletion (true) ;

Line 1 creates the aforementioned instance of the Configuration class. Following, in lines
4-10 the input file for the Hadoop job is created by writing the filenames of the serialized
trainers to it separated by newlines. We will not elaborate on the concept of input formats
here other than to mention that Hadoop supports different input specifications of which
the NLinelnputFormat we employ is one. This format creates input splits — which can be
thought of as the portion of input data a map task receives — from n lines of the specified
input file, where n is set to 1 in our case (line 19) [20]. That way, each map task receives
exactly one filename as its value, thus giving it the information necessary to complete the
processing of one trainer.

The actual job creation occurs in lines 15-21. Using the Configuration object, we can create
a job instance (line 15) and set its mapper class (lines 16-17). The job’s input format is then
set to the mentioned NLinelnputFormat and its input and output path configured. As the
names indicate, these paths inform the input format about where it should read the input
from and write its output to.

Finally, line 22 launches the job and blocks the program flow until it is finished.

6. Deserialize Processed Data The outcome of the successfully executed MapReduce job
is the set of processed trainer objects that the mapper class has serialized to the HDFS
storage. The final step in our scheme is to integrate the processed data back into the
non-parallel part of the application. This is performed right after the job execution in the
Ezperiment class. Listing 6.6 shows the necessary code.

60

1

© 00 O U W N

—_
o

11

6. Comparison with MapReduce

Listing 6.6: Trainer Deserialization

Remotelterator<LocatedFileStatus> iter = fs.listFiles(
serializationTrainerOutputDir , false);
while(iter .hasNext()) {
LocatedFileStatus stat = iter.next();
Path inputFile = stat.getPath();
FSDatalnputStream in = fs.open(inputFile);
final int available = in.available();
byte serializedTrainer [| = new byte[available |;
in.readFully (0, serializedTrainer);
WekaTraining trainer = SerializationHelper.asWritable (
serializedTrainer , WekaTraining. class);
processedTrainers.add(trainer);

}

We iterate over the filenames in the HDF'S output directory, read them and deserialize the
contents back to WekaTraining objects. The deserialized trainers are added to the container
processedTrainers. This container then replaces the previously unprocessed trainers for the
remainder of the program which only applies evaluators to the trainers to generate output
files for the user. Since this evaluation step is computationally inexpensive, the program
comes to a halt shortly after its MapReduce job.

6.3. Evaluation

In this section we evaluate the performance of the MapReduce’d version of CrossPare, both
against the local execution of the unmodified program and against the distributed execution
using the Hadoop Streaming approach we developed. Again, for the same reasons described
earlier, the speedup is our only criterion for the evaluation.

Also, we use the same experiment configurations as defined in Section 5.3.2, but unlike in
the earlier evaluation of our approach, we this time also utilize the MEDIUM and LARGE
configurations. The rationale for this is that while the parallelization of our approach
is file-based, i.e. the elementary unit is an experiment configuration, the MapReduce
version is trainer-based, i.e. the elementary unit is a trainer. Therefore, it can only
launch as many tasks as there are trainers if multiple parallel MapReduce jobs (i.e. one per
input configuration) are not desired. Because the SMALL configurations contains just four
trainers, it cannot fully utilize our test cluster with just one experiment configuration.
Again, as in our evaluation in Section 5.3.3, it is important to note that there may be
variations in runtime caused by differing workload on the hardware underlying our virtual
machines smoothed out by taking the average.

61

6. Comparison with MapReduce

Streaming vs. MapReduce A balanced comparison between our Streaming-based ap-
proach and the MapReduce variant demands the use of differently structured input experi-
ment configurations for the two. As mentioned before, the former requires multiple inputs
for parallel processing while the latter solely takes into account the number of trainers.
Hence, a scenario with only one input file cannot lead to any speedup with Streaming and
thus multiple input configurations are required. On the other hand, the MapReduce variant
creates one job per input file, which is an unnecessary overhead if the same experiment can
be represented with a single configuration. Exactly this is the case with our configurations.
For example, configuration LARGE simply contains the trainers of SMALL, but repeated
four times. Thus, using 4z SMALL or 1z LARGE as input is functionally equivalent aside
from the fact that in the first case the model output will be split across four output files
and aggregated into one in the latter. We therefore use the most efficient combination of
inputs for our comparison to rule out the possibility that runtime differences are caused by
suboptimal input choice.

Table 6.1 summarizes our comparison where the left side of the first column represents the
input for the streaming approach and the right side the input for the MapReduce version.

Scenario (Input 1| Input 2) L Streaming @ L MapReduce O L Speedup
2x SMALL | 1x MEDIUM 12:00h 12:31h 0.96
4x SMALL | 1x LARGE 11:58h 12:59h 0.92
8x SMALL | 1x XLARGE 23:44h 25:29h 0.93

Table 6.1.: Streaming vs. MapReduce

As can be seen in the table, in no scenario the MapReduce version outperforms our
approach. This can be explained with the fact that the runtime of the MapReduce version
is determined by the longest-running trainer: Even if most trainers finish faster than in the
given runtime and there are free nodes available for further processing, the whole process
cannot exit before the last trainer is finished. The same applies to the Streaming-based
approach, however without the overhead induced by our transformation to a MapReduce
problem which appears to slow down the computation linearly by problem size, however not
by much.

Local vs. MapReduce Similar considerations regarding the input files for the evaluation
apply to our second comparison. In our test environment, each node has two cores and
these are both utilized by the unmodified CrossPare application due to its thread-based
parallelism, given that there are at least two input files. However, unlike in the case of the
MapReduce version, there is only a negligible difference between using e.g. 8z SMALL or 2z
LARGE as the input for local execution, because more inputs in this environment do not

62

6. Comparison with MapReduce

lead to a higher degree of parallelization. We therefore employ the same scenarios. Table

6.2 shows the results.

Scenario (Input 1 | Input 2) L Local O L MapReduce O L Speedup
2x SMALL | 1x MEDIUM 16:00h 12:31h 1.28
4x SMALL | 1x LARGE 24:10h 12:59h 1.86
8x SMALL | 1x XLARGE 52:32h 25:29h 2.06

Table 6.2.: Local vs. MapReduce

The results show that the MapReduce version is superior compared to local execution
and that the benefits of MapReduce are greater for larger inputs. This conforms to our
expectations, because the runtime for the local execution is expected to grow proportionally
to the input size, while at this scale the growth for MapReduce is less than proportional.

63

7. Related Work

To the best of our knowledge, there is no work similar to the approach presented in this
thesis so far in the narrower sense. We here define the narrower sense as the combination of
both software for the automated deployment of a Hadoop computation cluster in a Cloud
environment and helper tools for executing a broad variety of software on it in a parallel
fashion with negligible effort on the user side.

Therefore, we will give an overview over related work in this chapter that addresses certain
similar aspects of our approach. First, in Section 7.1 we will present cloud orchestration
frameworks for the deployment of applications in the cloud. Following, in Section 7.2 we
refer to solutions for the automated setup of Hadoop clusters.

7.1. Application Deployment

cloudinit.d [11], part of the Nimbus project [35], is "a tool designed for launching, con-
trolling, and monitoring complex environments in the cloud” [11] that is compatible with
different Cloud providers and IaaS stacks. Users define so-called launch plans that instruct
cloudinit.d which virtual machine images and types should be launched in a specified order,
thereby seeking to build a Cloud equivalent to the init.d-style systems known from the
Linux world. Further, it offers the user to specify programs that should be executed upon
booting and termination of the machines, which allows to perform setup, teardown and
other operations. cloudinit.d aims to provide monitoring and automatic error correction of
the deployed system based on the hierarchization of runlevels. By the usage of specially
crafted VM images and respective setup scripts, cloudinit.d can be employed to deploy ar-
bitrary software.

Neptune [53] is a Ruby-based domain-specific language "that automates configuration and
deployment of existing HPC software via cloud computing platforms” [53]. It operates at
the cloud platform layer to control both the system and application level. For the job man-
agement side it utilizes AppScale [5] which is an open source Cloud computing platform
for running Google App Engine [16] applications. Being targeted towards HPC software,
Neptune provides some modules for its DSL for popular scientifically used frameworks such
as MPI. We were not able to test Neptune because its latest release seems incompatible
with current versions of AppScale and its development appears to have been discontinued
with the latest change having been committed in 2012.

64

7. Related Work

7.2. Simplified Hadoop Deployment and Management

There is a wide variety of possibilities to deploy Hadoop clusters in Cloud environments. At
the extreme in terms of manual work involved, there are commercial offerings for ready-to-
use clusters such as Amazon’s Elastic MapReduce (EMR) [1] or Google’s Compute Engine
with a click-to-deploy offering [24] for Hadoop. Naturally, these can only be used on the
respective provider’s Cloud platform.

For the deployment on provider-independent platforms there exist a number of software
packages. A prominent commercial one is Cloudera Enterprise [9] by CLOUDERA [8]. The
vendor also provides a free version called Cloudera Express that also includes its Hadoop
distribution and its proprietary management tool, but comes with less functionality. Both
aim to ease the deployment and management tasks as well as extending Hadoop further with
enterprise features.

On the non-commercial side, Apache’s Ambari ”is aimed at making Hadoop management
simpler by developing software for provisioning, managing, and monitoring Apache Hadoop
clusters” [3]. For providing the cluster monitoring it leverages the established projects
Ganglia [15] and Nagios [34].

While Ambari makes no assumptions about the underlying infrastructure, the OpenStack
project Sahara provides means "to provision a data-intensive application cluster (Hadoop or
Spark) on top of OpenStack” [38]. Hence, a running OpenStack installation is a prerequisite
for utilizing Sahara. Given that, users can describe their desired cluster in the form of
templates and have the deployment handled by Sahara.

65

8. Conclusion and QOutlook

We have developed a Hadoop-based approach for automated deployment and distributed
execution of applications in Cloud environments with minimal effort on the user side. An
important aspect of our work was to impose as few requirements as possible onto the set
of potential applications that can be executed using our framework to design it as generic
as possible. Besides Hadoop, we employed tools for the provisioning and configuration of
virtual computing resources.

To evaluate our approach, we performed two case studies using applications developed by
researchers of the SOFTWARE ENGINEERING FOR DISTRIBUTED SYSTEMS group of this
university. Our interest besides investigating the effort needed to deploy and execute ap-
plications using our solution was to measure the speedup gained in comparison to a non-
distributed execution of the application, i.e. how much time the users can save from using
the Cloud-based approach in relation to running the application on their local working
machine. In both cases, our results showed that our approach is favourable. First, the
applications could be adapted easily to fit our modest requirements. Second, under most
scenarios we observed a speedup which was varying in size depending on the structure of
the particular scenario.

Since our approach is based on Hadoop Streaming, which is a wrapper to execute arbi-
trary applications using the MapReduce framework, a logical consequence was to compare
our approach’s performance with that of a native MapReduce application to be able to
draw qualified conclusions about either option’s advantages and disadvantages. Again, the
speedup was our primary criterion of interest. Moreover, we also documented the effort
needed to modify an existing application to employ MapReduce for its compute-intensive
tasks. Naturally, due to the heterogeneity of software, it is only possible to examine these
questions on a per-case basis. For the context of this thesis we chose one of our case study
applications as the object of investigation.

Again, the results were in favour of our approach. Though the MapReduce version per-
formed better than the reference situation,i.e. the non-distributed execution, and thus is an
improvement in itself, our approach still outperformed it, though not by much. Also, the
development work the user needs to invest is by far larger than to adapt the application to
our requirements.

66

8. Conclusion and Outlook

Summarizing, the approach developed in the context of this thesis is an applicable solu-
tion for automatically deploying and executing applications in Cloud environments with
the goal of reducing the overall execution time and without the user having to learn about
Cloud Computing internals.

8.1. Future Research Directions

Currently, there is a fixed one-file-one-task-mapping implying that each node processes ex-
actly one file at a time. As we have seen in one of our case studies, it might be beneficial to
give the user the possibility to influence this mapping while retaining the simplicity of the
configuration. A basic solution may introduce an additional parameter in the job descrip-
tion for specifying the files-per-task-mapping.

Further, the cluster size is currently set by the user prior to any job execution and then
remains constant. However, depending on the particular job it may be desirable to add or
remove compute resources to either shorten the execution time or to save costs. While our
deployment software is already prepared for scaling of the cluster, the required scaling logic
is a topic for future research.

Here, both a user-configurable and a machine learning-based approach is conceivable.

Throughout this thesis we used an OpenStack Cloud and our software is currently hard-
coded to work with this TaaS platform. For use with other systems a Cloud-agnostic im-
plementation would be necessary. Supporting other providers would only require modest
changes to our approach as long as there is a Vagrant plugin available for the desired
provider.

Finally, we did not consider the issue of keeping the software on the cluster up-to-date
or security issues in general. Rather, we treat the clusters as just short-lived compute re-
sources that are created and destroyed on-demand. For real-world application where security
considerations are warranted our approach needs to be extended in this direction.

67

A. Abbreviations and Acronyms

API Application Programming Interface
ASF Apache Software Foundation

AWS Amazon Web Services

DSL Domain-Specific Language

HDFS Hadoop Distributed File System

EMR Elastic MapReduce

GWDG Gesellschaft fiir wissenschaftliche Datenverarbeitung Gottingen

HPC High Performance Computing
laaS Infrastructure as a Service
I0PS Input/Output Operations Per Second

JSON JavaScript Object Notation

LOC Lines of Code

MPI Message Passing Interface

NFS Network File System

NFV Network Functions Virtualization
Paa$S Platform as a Service

POSIX Portable Operating System Interface
RAID Redundant Array of Independent Disk
Saa$S Software as a Service

SCM Software Configuration Management

68

A. Abbreviations and Acronyms

SIMD Single Instruction Multiple Data
STDIN Standard Input

STDOUT Standard Output

VM Virtual Machine

YARN Yet Another Resource Negotiator

69

1
2
3
4
)
6
7
8

9

B. Source Code Excerpts

B.1. Vagrantfile Template

Listing B.1: Vagrantfile Template for Cluster Provisioning

#
7*
7*
7

Vagrantfile template for
DO NOT EDIT UNLESS YOU KNOW WHAT YOU ARE DOING.

—x— mode: ruby —x—
vi: set ft=ruby

VAGRANTFILE_API VERSION = 727
SLAVES COUNT = $count

cluster .py tool.

10 Vagrant.configure (VAGRANTFILE_APLVERSION) do |config |

11
12
13
14
15
16
17
18

19
20
21
22
23

24
25
26
27

config
config
config
config
config

config
08s

oS .
oS .

0S

oS .
oS .

oS .

0s
end

.vin. box = ’dummy’

.ssh .username = ’root’
.ssh.private_key_path = ’$key_path’

)

.vin. synced_folder

.vin. boot_timeout = 600

)

)

'/vagrant ’

.vin. provider :openstack do |os]

.openstack_auth_url
.0/ tokens’
username

password
.tenant_name

flavor

image

e731adb59f3e’
floating_ip_pool
.keypair_name

"https://api.cloud.gwdg.de:5000/v2

"$username ’
"$password ’
"$tenant_name’
"$flavor ’

= ’'7d9dabd4—2b56 —477c—bb03—4

)

"public
"$key_name’

70

B. Source Code Excerpts

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47

48
49
50
51
52
53
54
55 end

config.vm. define ”namenode” do |namenode |

namenode .vm. hostname = ”namenode”
end

SLAVES_COUNT. times do |1i]
config.vm. define ”slave#{i+1}” do |slave|
slave .vin. hostname = "slave#{i+1}”
end
end

config .vm. define ”resourcemanager” do |resourcemanager |
resourcemanager .vin. hostname = ”resourcemanager”

resourcemanager.vm. provision :ansible do |ansible |
ansible.verbose = "v”
ansible .sudo = true
ansible .playbook = "$MITHOME/cluster /deployment/site .
yml”

ansible.limit = ”all”

slaves = (1..SLAVES.COUNT).to_a.map {|id| "slave#{id
17}

ansible . groups = {
"NameNode” => [”namenode”],
"ResourceManager” => [”"resourcemanager”],
"Slaves” => slaves

end
end

71

B. Source Code Excerpts

B.2. cluster --project_init Ansible Code

Listing B.2: Ansible Play Code for Project Initialization

Playbook for synchronization step in cluster —project_init
— hosts: namenode

N O U W N

10
11
12
13
14
15
16
17

remote_user: root
tasks:
— name: Synchronize input data to NameNode
synchronize: src={{ dir_path }} dest=/home/hadoop delete=yes
recursive=yes
— name: Change ownership to Hadoop user
shell: chown —R hadoop:hadoop /home/hadoop/{{ dir_name }}

hosts: namenode
remote_user: root
sudo: yes
sudo_user : hadoop
tasks:
— name: Import input data to HDES
shell: c¢p —R /home/hadoop/{{ dir_name }} /mnt/hdfs/ # TODO:
Move instead of copy

72

1

\)

—_
— O © 00~ O Ok W

—_

B. Source Code Excerpts

B.3. cluster --project_destroy Ansible Code

Listing B.3: Ansible Play Code for Project Remowval

Playbook for server—side data removal in cluster —
project_destroy
— hosts: namenode
remote_user: root
sudo: yes
sudo_user: hadoop
tasks:
— name: Remove directory from HDFES
shell: rm —rf /mnt/hdfs/{{ dir_name }}
— name: Remove directory from NameNode
shell: rm —rf /home/hadoop/{{ dir_name }}

73

B. Source Code Excerpts

B.4. job --start Ansible Code

Listing B.4: Ansible Play Code for Job Execution

1 ——

2 # job —start playbook

3

4 — hosts: namenode

5 remote_user: root

6 tasks:

7 — name: Synchronize input data to NameNode

8 synchronize: src={{ project_path }} dest=/home/hadoop delete
=yes recursive=yes

9 — name: Change ownership to Hadoop user

10 shell: chown —R hadoop:hadoop /home/hadoop/{{ project_name
i3

11 — name: Make MapReduce mapper executable

12 file: path=/home/hadoop/{{ project_name }}/.job_config/{{
job }}/mr_job.py mode="ut+rwx” owner=hadoop

13

14 — hosts: namenode

15 remote_user: root

16 sudo: yes

17 sudo_user : hadoop

18 tasks:

19 — name: Remove temporary files from HDFS

20 shell: rm —rf /mnt/hdfs/{{ project_name }}/.job_config /mnt/
hdfs /{{ project_name }}/transient /mnt/hdfs/{{
project_name }}/out

21 — name: Wait 3 seconds

22 pause: seconds=3

23 — name: Import input data to HDES

24 shell: c¢p —R /home/hadoop/{{ project_name }}/.job_config /
home/hadoop /{{ project_name }}/transient /home/hadoop/{{
project_name }}/out /mnt/hdfs/{{ project_name }}

25

26 — hosts: all

27 remote_user: root

28 tasks:

29 — name: Unmount temporary directory (1/3)

74

30

31
32

33
34

35
36
37
38
39
40
41
42
43
44

B. Source Code Excerpts

mount: src=/tmp/local_job_out name=/mnt/hdfs/{{ project_name
}}/out fstype=bind state=unmounted
— name: Unmount temporary directory (2/3)
mount: src=/tmp/local_job_out name=/mnt/hdfs/{{ project_name
}}/out fstype=bind state=unmounted
— name: Unmount temporary directory (3/3)
mount: src=/tmp/local_job_out name=/mnt/hdfs/{{ project_name
}}/out fstype=bind state=unmounted

— hosts: namenode
remote_user: root
sudo: yes
sudo_user : hadoop
tasks:
— name: Remove temporary output directory
shell: rm —rf /mnt/hdfs/mr_tmp
— name: Execute MapReduce task
shell: screen —dmS mr_job sh —c ”/opt/hadoop/bin/hadoop jar /
opt /hadoop/share /hadoop/tools/lib /hadoop—streaming —x*.jar —D
mapreduce . map.cpu.vcores=2 —input /{{ project_name }}/.
job_config /{{ job }}/input_list.txt —output /mr_tmp —mapper
/mnt/hdfs /{{ project_name }}/.job_config/{{ job }}/mr_job.
py —inputformat org.apache.hadoop.mapred.lib .
NLineInputFormat && touch /mnt/hdfs/{{ project_name }}/.
job_config/jobdone; sleep 307

75

© 00 O Utk W

—_
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29
30
31

32
33

B. Source Code Excerpts

B.5. SerializationHelper Class

Listing B.5: SerializationHelper Class (taken from [41])

package de.ugoe.cs.cpdp.mapreduce;
import org.apache.commons.io.IOUtils;
import java.io.x;

import org.apache.hadoop.io.Writable;

public class SerializationHelper {
public static byte[] serialize(Writable writable) throws

IOException {

ByteArrayOutputStream out = new ByteArrayOutputStream () ;

DataOutputStream dataOut = null;

try {
dataOut = new DataOutputStream (out);
writable . write (dataOut) ;

} catch (Exception e) {
System.out.println (e);

}
finally {

I0Utils. closeQuietly (dataOut) ;
}

return out.toByteArray () ;

}

public static <T extends Writable> T asWritable(byte[] bytes,
Class<I> clazz)
throws IOException {

T result = null;
DatalnputStream dataln = null;
try {
result = clazz.newlnstance();
ByteArrayIlnputStream in = new ByteArrayInputStream (
bytes) ;
dataln = new DatalnputStream (in);

result .readFields (dataln);

76

34
35
36
37
38
39
40
41
42
43
44
45

B. Source Code Excerpts

7

© 00 O Utk W

DO DO DD = = b e e e e e e
N O © 00O Uik W N H—= O

23

24
25
26
27
28
29

30

31
32

B. Source Code Excerpts

B.6. WekaTraining Class

Listing B.6: WekaTraining Class

package de.ugoe.cs.cpdp.training;

import java.io.x;

import java.util.Arrays;

import java.util.List;

import java.util.logging.Level;

import org.apache.commons. io.output.NullOutputStream ;

import de.ugoe.cs.util.console.Console;
import weka.core.Instances;
import weka.classifiers. Classifier ;

import org.apache.hadoop.io.Writable;

/

* ¥ X X K X K X

¥ X X X X ¥

Programmatic WekaTraining

first parameter is Trainer Name.
second parameter is class name

all subsequent parameters are configuration params (for example
for trees)
Cross Validation params always come last and are prepended with

—CVPARAM

XML Configurations for Weka Classifiers:

<pre>

{@code

<l— examples —>

<trainer name="WekaTraining” param="NaiveBayes weka.classifiers
.bayes.NaiveBayes” />

<trainer name="WekaTraining” param="Logistic weka.classifiers.
functions.Logistic -R 1.0E-8 -M —-1” />

}

x </pre>

78

33
34
35

36
37
38
39
40

41
42
43

44
45
46
47
48
49
50
51
52
53
o4

95

56
o7
58
99
60
61
62
63
64
65
66

B. Source Code Excerpts

*/

public class WekaTraining extends WekaBaseTraining implements
ITrainingStrategy , Writable {

@Override
public void apply(Instances traindata) {

}

PrintStream errStr = System.err ;
System . setErr (new PrintStream (new NullOutputStream

());
try {
if(classifier = null) {
Console. traceln (Level .\WARNING,
String . format (" classifier null
7))
}
classifier.buildClassifier (traindata);
} catch (Exception e) {
throw new RuntimeException(e);
} finally {
System.setErr (errStr);
}

public void write (DataOutput out) throws IOException {

ByteArrayOutputStream bo = new
ByteArrayOutputStream () ;
ObjectOutputStream so = new ObjectOutputStream (bo)

)

// Write classifier (Instance of Classifier)
so.writeObject (classifier);

so. flush ();

byte[] b = bo.toByteArray () ;

int length = b.length;

out.writelnt (length);

out.write (b);

// Write classifierClassName / classifierName
out . writeUTF (classifierClassName) ;

79

67
68
69

70
71
72

73
74
75
76
77
78
79
80
81
82
83
84

85
86

87
88
89
90
91

92
93
94
95
96
97
98
99
100

B. Source Code Excerpts

}

out . writeUTF (classifierName) ;

// Write classifierParams (Instance of String](],
convert to List before)

bo = new ByteArrayOutputStream () ;

so = new ObjectOutputStream (bo);

List<String> classifierParamsList = Arrays.asList (
classifierParams);

so.writeObject (classifierParamsList);

so. flush ();

b = bo.toByteArray () ;

length = b.length;

out.writelnt (length);

out.write (b);

public void readFields(Datalnput in) throws IOException {

// Read classifier
final int classifierLength = in.readInt () ;
byte classifierArray [] = new byte[classifierLength
I
in.readFully (classifierArray);
ByteArraylnputStream bi = new ByteArraylnputStream
(classifierArray);
ObjectInputStream si = new ObjectInputStream (bi);
try {
classifier = (Classifier) si.readObject();
} catch (Exception e) {
System .out.println (" Exception caught
trying to deserialize classifier”);

}

// Read classifierClassName / classifierName
classifierClassName = in.readUTF () ;
classifierName = in.readUTF () ;

// Read classifierParams

final int classifierParamsLength = in.readInt () ;

byte classifierParamsArray [] = new byte]|
classifierParamsLength |;

80

B. Source Code Excerpts

101
102

103
104
105

106

107
108

109
110
111
112

113
114
115
116
117
118
119
120
121 }

in.readFully (classifierParamsArray);
bi = new ByteArraylnputStream (
classifierParamsArray) ;
si = new ObjectInputStream (bi);
try {
List<String> classifierParamsList = (List<
String >) si.readObject () ;
classifierParams = (String[])
classifierParamsList .toArray () ;
} catch(Exception e) {
System.out. println (" Exception caught
trying to deserialize classifierParams

77),
)

public static WekaTraining read(Datalnput in) throws
IOException {

WekaTraining w = new WekaTraining () ;
w.readFields (in);

return w;

public String|[] getParams() {

return classifierParams;

81

© 00 O Utk W

Lo W W W W WD NNDNDNDDDDNDDNDDNDN = o e e e e = =
U W H O OO0 IDUER WD O OWOW=IO Uk WO

B. Source Code Excerpts

B.7. TrainerMapper Class

Listing B.7: SerializationHelper Class

package de.ugoe.cs.cpdp.mapreduce;

import
import
import
import

import
import
import
import
import
import

import
import
import
import
import
import
import
import
import

import

java
java
java
java

org .
org .
org
org .

org .
org
org .
org
org .
org .
org .
org .
org .

de . ugoe. cs.

.io.ByteArraylnputStream ;
.io.IOException;
.io.ObjectInputStream ;
.10 .OutputStream ;

apache.commons. codec . binary . Base64 ;
.hadoop. fs.FSDatalnputStream ;
.hadoop. fs . FileSystem ;
.hadoop.io.LongWritable;

weka . core.Instances;
weka . classifiers .

apache

.apache

apache

apache.
.apache.
apache.
.apache.
apache.
apache.
apache.
apache.
apache.

hadoop .
hadoop .
hadoop .
hadoop .
hadoop.
hadoop .
hadoop.
hadoop .
hadoop.

Classifier ;

conf. Configuration ;

fs .Path;

io.IntWritable;

io.Text;

mapreduce .

mapreduce

mapreduce .
mapreduce .
mapreduce .

Job;

. Mapper ;

Reducer;
lib .input . FileInputFormat ;
lib .output . FileOutputFormat ;

cpdp. training . WekaTraining ;

public class TrainerMapper
extends Mapper<LongWritable, Text, Object, Object> {
private static Configuration conf = null;
private static Instances traindata = null;
private static Path serializationTrainerOutputDir = null;

protected void setup(Context context) {
conf = context.getConfiguration () ;

82

B. Source Code Excerpts

36 serializationTrainerOutputDir = new Path(conf.get (”
outputpath”));

37 String serializedTraindata = conf.get (”traindata”);

38 try {

39 byte b[] = Base64.decodeBase64 (serializedTraindata);

40 ByteArraylnputStream bi = new ByteArrayInputStream (b);

41 ObjectInputStream si = new ObjectInputStream (bi);

42 traindata = (Instances) si.readObject ()

43 } catch(Exception e) {

44 System .out . println(e);

45 }

46 }

47

48 public void map(LongWritable key, Text value, Context context)

49 throws IOException, InterruptedException {

50 // Read serialized trainer from HDFS

51 Path inputFile = new Path(value.toString());

52 FileSystem fs = FileSystem.get(conf);

53 FSDatalnputStream in = fs.open(inputFile);

54 final int available = in.available ();

55 byte serializedTrainer [] = new byte[available];

56 in.readFully (0, serializedTrainer);

57

58 // Deserialize and apply trainer

59 WekaTraining trainer = SerializationHelper.asWritable (
serializedTrainer , WekaTraining. class);

60 trainer.apply (traindata) ;

61

62 // Serialize trainer and write to HDFS

63 String filename = Long.toString (System.nanoTime()) + ”.ser

64 Path serializationFile = new Path(
serializationTrainerOutputDir , filename);

65 OutputStream os = fs.create(serializationFile);

66 os.write(SerializationHelper.serialize (trainer));

67 os.close ();

68 }

69 }

83

List of Figures

2.1.
2.2.
2.3.

3.1.
3.2.
3.3.
3.4.

4.1.

5.1.

6.1.

MapReduce Execution Phases [54] 13
HDFS Architecture [18] 15
YARN Architecture Overview [27] L. 17
Cluster Deployment Overview 21
Virtual Machine Instantiation 0oL 23
Virtual Machine Configuration 23
Job Management Overview 24
Architectural Overview L 28
CrossPare Directory Structure. oL 45
WekaBaseTraining Class Diagram 56

Listings

2.1.
2.2.
2.3.
2.4.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

Vagrant Example L 8
Ansible Example 11
MapReduce WordCount in Pseudo-code [54] 12
Hadoop Streaming WordCount Example 16
cluster_config.json Example L. 30
user_config.json Example oo 30
Vagrant Slave Instantiation L. 32
Setup of Vagrant/Ansible Interaction 32
Job Description Example o0 37
Server-side Job Execution 39

84

4.7.
4.8.

5.1.
0.2.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

B.1.
B.2.
B.3.
B.A4.
B.5.
B.6.
B.7.

List

2.1.

3.1.
3.2.
3.3.

4.1.
4.2.

5.1.
0.2.
5.3.
0.4.

Mapper Scripto 39
Ansible File for Result Download 41
Experiment Configuration (SMALL1) 45
TaskTreeCrossvalidation Configuration Example 49
Exemplary Loop from run() Method 54
Serialization of Trainers 57
setup() Method of TrainerMapper 58
map() Method of TrainerMapper 58
MapReduce Job Setup 59
Trainer Deserialization 60
Vagrantfile Template for Cluster Provisioning 70
Ansible Play Code for Project Initialization 72
Ansible Play Code for Project Removal 73
Ansible Play Code for Job Execution 74
SerializationHelper Class (taken from [41]) 76
WekaTraining Class o 78
SerializationHelper Class 82

of Tables

Flynn’s Taxonomy 4
User Credentials 22
Cluster Specification 22
Job Description Input L oo 25
Ansible Roles for Cluster Deployment 33
Services running on different Node Types 34
Hadoop Flavour 42
Environment Software Versions o L. 43
CrossPare Results 47
TaskTreeCrossvalidation Results 50

85

List of Tables

6.1. Streaming vs. MapReduce Lo
6.2. Local vs. MapReduce

86

Bibliography

1]

[11]

[12]

[13]

[14]

[15]

Amazon Elastic MapReduce. Online: http://aws.amazon.com/de/elasticmapreduce/.
Accessed: 2015-04-15.

Ansible is Simple IT Automation. Online: http://www.ansible.com/home. Accessed:
2015-04-15.

Apache Ambari. Online: https://ambari.apache.org/. Accessed: 2015-04-15.
Apache Commons. Online: http://commons.apache.org/. Accessed: 2015-04-15.
AppScale. Online: http://www.appscale.com/. Accessed: 2015-04-15.

AutoQUEST. Online: https://autoquest.informatik.uni-goettingen.de. Accessed:
2015-04-15.

Chef - Code Can. Online: https://www.chef.io/. Accessed: 2015-04-15.
Cloudera. Online: http://www.cloudera.com/. Accessed: 2015-04-15.

Cloudera Enterprise. Online: http://www.cloudera.com/content/cloudera/en/products-
and-services/cloudera-enterprise.html. Accessed: 2015-04-15.

Cloudera Express. Online: http://www.cloudera.com/content/cloudera/en/products-
and-services/cloudera-express.html. Accessed: 2015-04-15.

cloudinit.d. Online: http://www.nimbusproject.org/doc/cloudinitd/latest/. Accessed:
2015-04-15.

coreutils - GNU Core Utilities. Online: http://www.gnu.org/software/coreutils/.
Accessed: 2015-04-15.

Crosspare Application. Online: https://crosspare.informatik.uni-
goettingen.de/svn/crosspare/trunk/CrossPare/. Accessed: 2015-04-15.

ETSI - Network Functions Virtualisation. Online: http://www.etsi.org/technologies-
clusters/technologies/nfv. Accessed: 2015-04-15.

Ganglia. Online: http://ganglia.sourceforge.net/. Accessed: 2015-04-15.

87

Bibliography

[16] Google App Engine. Online: https://cloud.google.com/appengine. Accessed: 2015-
04-15.

[17] Hadoop. Online: http://hadoop.apache.org/. Accessed: 2015-04-15.

[18] Hadoop. HDFS Architecture. Online: http://hadoop.apache.org/docs/r2.6.0/hadoop-
project-dist /hadoop-hdfs/HdfsDesign.html. Accessed: 2015-04-15.

[19] Hadoop Mailing List - Why not use Serializable? ~ Online: http://www.mail-
archive.com/hadoop-user@lucene.apache.org/msg00378.html. Accessed: 2015-04-15.

[20] Hadoop Main 2.6.0 API - NLineInputFormat Class. Online:
https://hadoop.apache.org/docs/stable/api/org/apache /hadoop/mapred/lib/NLineInputFormat.html.
Accessed: 2015-04-15.

[21] Hadoop Main 2.6.0 API - Writable Interface. Online:
https://hadoop.apache.org/docs/current/api/org/apache /hadoop/io/ Writable.html.
Accessed: 2015-04-15.

[22] Hadoop. MapReduce. Online: http://wiki.apache.org/hadoop/HadoopMapReduce.
Accessed: 2015-04-15.

[23] Hadoop MapReduce tutorial. Online:
http://hadoop.apache.org/docs/current /hadoop-mapreduce-client /hadoop-
mapreduce-client-core/ MapReduceTutorial.html. Accessed: 2015-04-15.

[24] Hadoop on the Google Cloud Platform. Online:
https://cloud.google.com/solutions/hadoop/. Accessed: 2015-04-15.

[25] Hadoop. What is the Purpose of the Secondary Name-node? Online:
http://wiki.apache.org/hadoop/FAQ#What_is_the_purpose_of_the_secondary_name-
node.3F. Accessed: 2015-04-15.

[26] Hadoop Wiki - How Many Maps And Reduces. Online:
http://wiki.apache.org/hadoop/HowManyMapsAndReduces. Accessed: 2015-
04-15.

[27] Hadoop. YARN. Online: http://hadoop.apache.org/docs/stable/hadoop-
yarn/hadoop-yarn-site/ YARN.html. Accessed: 2015-04-15.

[28] HashiCorp. Online: https://hashicorp.com/. Accessed: 2015-04-15.

[29] Java Documentation - Serializable Objects. Online:
http://docs.oracle.com/javase/tutorial /jndi/objects/serial.html. Accessed:
2015-04-15.

88

Bibliography

Java Platform SE7 - Serializable Interface. Online:
http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html. Accessed:
2015-04-15.

JavaScript Object Notation. Online: http://json.org/. Accessed: 2015-04-15.

Meet Infrastructure as Code- DevOps.com. Online: http://devops.com/blogs/meet-
infrastructure-code/. Accessed: 2015-04-15.

Message Passing Interface (MPI). Online:
http://www.mcs.anl.gov /research/projects/mpi/. Accessed: 2015-04-15.

Nagios. Online: http://www.nagios.org. Accessed: 2015-04-15.

Nimbus Project. Online: http://www.nimbusproject.org/. Accessed: 2015-04-15.
OpenMP. Online: http://openmp.org/. Accessed: 2015-04-15.

OpenStack. Online: http://www.openstack.org/. Accessed 2014-09-26.

OpenStack Sahara. Online: https://wiki.openstack.org/wiki/Sahara. Accessed: 2015-
04-15.

Puppet Labs: IT Automation Software for System Administrators. Online:
http://puppetlabs.com/. Accessed: 2015-04-15.

Ruby Programming Language. Online: https://www.ruby-lang.org/. Accessed: 2015-
04-15.

Stack Overflow - How To Unit Test Hadoop Writable. Online:
http://stackoverflow.com/questions/13288214 /how-to-unit-test-hadoop-writable.
Accessed: 2015-04-15.

Tera-Promise Repository. Online: http://openscience.us/repo/. Accessed: 2015-04-
15.

TOP 500 Supercomputer Sites - Statistics. Online:
http://www.top500.org/statistics/. Accessed: 2015-04-15.
TORQUE Resource Manager. Online:

http://www.adaptivecomputing.com/products/open-source/torque/. Accessed:
2015-04-15.

Vagrant. Online: https://www.vagrantup.com/. Accessed: 2015-04-15.

89

Bibliography

[46]

[47]

[48]

[49]
[50]

[51]

[52]
[53]

Vagrant OpenStack Cloud Provider. Online: https://github.com/ggiamarchi/vagrant-
openstack-provider. Accessed: 2015-04-15.

Weka 3 - Data Mining with Open Source Machine Learning Software in Java. Online:
http://www.cs.waikato.ac.nz/ml/weka/. Accessed: 2015-04-15.

What is DevOps? Online: http://radar.oreilly.com/2012/06 /what-is-devops.html.
Accessed: 2015-04-15.

YAML Specification. Online: http://www.yaml.org/spec/. Accessed: 2015-04-15.

G. S. Almasi and A. Gottlieb. Highly Parallel Computing. Benjamin-Cummings
Publishing Co., Inc., Redwood City, CA, USA, 1989.

M. Armbrust, A. Fox, R. Griffith, et al. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28, University of California at Berke-
ley, February 2009.

C. Boyd. Data-parallel computing. Queue, 6(2):30-39, 2008.

C. Bunch, N. Chohan, C. Krintz, and K. Shams. Neptune: a domain specific lan-
guage for deploying hpc software on cloud platforms. In Proceedings of the 2nd inter-
national workshop on Scientific cloud computing, pages 59-68. ACM, 2011.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clus-
ters. Commun. ACM, 51(1):107-113, January 2008.

M. Flynn. Some Computer Organizations and Their Effectiveness. Computers, IEEE
Transactions on, C-21(9):948-960, Sept 1972.

P. Harms and J. Grabowski. Usage-Based Automatic Detection of Usability Smells.
In Human-Centered Software Engineering, pages 217-234. Springer, 2014.

P. Harms, S. Herbold, and J. Grabowski. Trace-based task tree generation. In ACHI
2014, The Seventh International Conference on Advances in Computer-Human Inter-
actions, pages 337-342, 2014.

J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th
edition, 2011.

S. Nanda and T. Chiueh. A Survey on Virtualization Technologies. Technical Report
TR~179, Stony Brook University, February 2005.

90

Bibliography

[60] National Institute of Standards and Technology. The NIST Definition of Cloud Com-
puting. NIST Special Publication, (800-145), 2011.

[61] P. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 2011.

[62] S. Wadkar, M. Siddalingaiah, and J. Venner. Pro Apache Hadoop. Apress, Berkely,
CA, USA, 2nd edition, 2014.

91

	1 Introduction
	1.1 Goals and Contributions
	1.2 Outline

	2 Background
	2.1 Parallel Computing
	2.2 Cloud Computing
	2.2.1 Definition and Characteristics
	2.2.2 Service Models
	2.2.3 Deployment Models
	2.2.4 Virtualization

	2.3 Deployment Management with DevOps
	2.3.1 Infrastructure Management
	2.3.1.1 Vagrant

	2.3.2 Software Configuration Management
	2.3.2.1 Ansible

	2.4 Hadoop
	2.4.1 MapReduce
	2.4.2 HDFS
	2.4.3 Streaming
	2.4.4 Yet Another Resource Negotiator (YARN)

	3 Conceptual Design
	3.1 Situation Analysis
	3.1.1 Potential Use Cases
	3.1.2 Status Quo

	3.2 Cluster Deployment
	3.2.1 User Interaction
	3.2.2 Deployment Process
	3.2.2.1 Initialization
	3.2.2.2 Configuration

	3.3 Job Management
	3.3.1 Required Application Structure
	3.3.2 Job Description
	3.3.3 Job Execution
	3.3.4 Output Retrieval

	4 Implementation
	4.1 Architectural Overview
	4.2 Cluster Tool
	4.2.1 Function Overview
	4.2.2 Configuration Files
	4.2.3 Functions
	4.2.3.1 init
	4.2.3.2 deploy
	4.2.3.3 destroy
	4.2.3.4 project_init
	4.2.3.5 project_destroy

	4.3 Job Tool
	4.3.1 Function Overview
	4.3.2 Job Description Format
	4.3.3 Functions
	4.3.3.1 init
	4.3.3.2 start
	4.3.3.3 download
	4.3.3.4 delete

	5 Case Studies
	5.1 Environment
	5.1.1 Cluster Specifications
	5.1.2 Software Versions

	5.2 Metrics
	5.3 CrossPare
	5.3.1 Application Description
	5.3.2 Evaluation Setup
	5.3.3 Results

	5.4 TaskTreeCrossvalidation
	5.4.1 Application Description
	5.4.2 Evaluation Setup
	5.4.3 Results

	6 Comparison with MapReduce
	6.1 General Considerations
	6.2 CrossPare MapReduce port
	6.3 Evaluation

	7 Related Work
	7.1 Application Deployment
	7.2 Simplified Hadoop Deployment and Management

	8 Conclusion and Outlook
	8.1 Future Research Directions

	A Abbreviations and Acronyms
	B Source Code Excerpts
	B.1 Vagrantfile Template
	B.2 cluster --project_init Ansible Code
	B.3 cluster --project_destroy Ansible Code
	B.4 job --start Ansible Code
	B.5 SerializationHelper Class
	B.6 WekaTraining Class
	B.7 TrainerMapper Class

	List of Figures
	Listings
	List of Tables
	Bibliography

