
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZAI-MSC-2013-03

Masterarbeit
im Studiengang ”Angewandte Informatik”

A MapReduce Input Format
for Analyzing Big High-Energy Physics Data

Stored in ROOT Framework Files

Fabian Glaser

am Institut für Informatik

Gruppe Softwaretechnik für Verteilte Systeme

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

31. Mai 2013

Georg-August-Universität Göttingen
Zentrum für Informatik

Goldschmidtstraße 7
37077 Göttingen
Germany

Tel. +49 (5 51) 39-17 20 00

Fax +49 (5 51) 39-1 44 03

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den 31. Mai 2013

Masterthesis

A MapReduce Input Format
for Analyzing Big High-Energy Physics Data

Stored in ROOT Framework Files

Fabian Glaser

May 31, 2013

Supervised by
Prof. Dr. Jens Grabowski

Dr. Thomas Rings
Institute of Computer Science

Georg-August-University of Göttingen, Germany

Prof. Dr. Helmut Neukirchen
Faculty of Industrial Engineering, Mechanical Engineering

and Computer Science
University of Iceland, Iceland

Acknowledgments

I would like to thank Prof. Dr. Jens Grabowski for offering me to write this thesis and ac-
companying me during my master studies. With his help I was able to spend some fruitful
time at the university of Iceland, where the idea for this thesis was born. Many thanks to
Prof. Dr. Helmut Neukirchen, who welcomed me in Iceland and contributed a lot to my
graduate experience. We had a lot of fruitful discussions regarding the project addressed in
this thesis. Back in Göttingen, Dr. Thomas Rings took care that I was able to continue my
work and contributed a lot with suggestions and good advice.
I also thank Prof. Dr. Michael Schmelling and Dr. Markward Britsch from the LHCb group
at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg for providing the
case study, consisting of a toy Monte-Carlo program for event data generation and the
ROOT-based sample C++ analysis code underlying the evaluations.

The cloud resources have been provided by Amazon.

i

Abstract

Huge scientific data, such as the petabytes of data generated by the Large Hadron Collider
(LHC) experiments at CERN are nowadays analyzed by grid computing infrastructures us-
ing a hierarchic filtering approach to reduce the amount of data. In practice, this means
that an individual scientist has no access to the underlying raw data and furthermore, the
accessible data is often outdated as filtering and distribution of data only takes places every
few months. A viable alternative to perform analysis of huge scientific data may be cloud
computing, which promises to make a “private computing grid” available to everyone via
the Internet. Together with Google’s MapReduce paradigm for efficient processing of huge
data sets, it provides a promising candidate for scientific computation on a large scale.
This thesis investigates the applicability of the MapReduce paradigm, in particular as im-
plemented by Apache Hadoop, for analyzing LHC data. We modify a typical LHC data
analysis task so that it can be executed within the Hadoop framework. The main challenge
is to split the binary input data, which is based on ROOT data files, so that calculations are
performed efficiently at those locations where the data is physically stored. For Hadoop, this
is achieved by developing a ROOT-specific input format. Services of the Amazon Elastic
Compute Cloud (EC2) are utilized to deploy large compute clusters to evaluate the solution
and explore the applicability of the cloud computing paradigm to LHC data analysis. We
compare the performance of our solution with a parallelization of the analysis using the
PROOF framework, a standard tool specialized in parallelized LHC data analysis. Our
results show that the Hadoop-based solution is able to compete with the performance using
PROOF. Additionally, we demonstrate that it scales well on clusters build from several
hundred compute nodes inside the EC2 cloud.

Contents

1. Introduction 1
1.1. Goals and contributions . 3
1.2. Outline . 3

2. Foundations 5
2.1. High Energy Physics data analysis . 5

2.1.1. The Large Hadron Collider . 5
2.1.2. Data recorded at the Large Hadron Collider (LHC) 6
2.1.3. The Worldwide LHC Computing Grid 6

2.2. ROOT/PROOF and SCALLA . 7
2.2.1. Architecture . 7
2.2.2. The TSelector framework . 10
2.2.3. ROOT File Format and TTrees . 10
2.2.4. Structured Cluster Architecture for Low Latency Access 11

2.3. MapReduce and the Google File System . 12
2.3.1. Architecture . 13
2.3.2. The Google File System . 13

2.4. Hadoop and the Hadoop Distributed File System 13
2.4.1. Architecture . 14
2.4.2. The Hadoop File System . 15
2.4.3. Hadoop Streaming . 16
2.4.4. Hadoop Pipes . 17

2.5. Cloud Computing . 17
2.5.1. Characteristics . 17
2.5.2. Virtualization . 18
2.5.3. Deployment and service models . 19

2.6. The Amazon Web Services . 20
2.6.1. Availability Zones . 20
2.6.2. Simple Storage Services and Elastic Block Store 20
2.6.3. Elastic Compute Cloud . 21
2.6.4. Virtual Private Clouds . 21
2.6.5. Elastic MapReduce . 22

v

2.6.6. Usage fees . 22

3. Analysis 25
3.1. Comparison between Hadoop and PROOF . 25
3.2. The example HEP analysis . 26

3.2.1. Input data . 27
3.2.2. Implementation . 28

3.3. Application of MapReduce to the example analysis 29
3.4. The physical structure of the input data . 32
3.5. Definition of HDFS block selection workflow 33
3.6. Remarks on general applicability . 34

4. Implementation 37
4.1. The HDFS plugin for ROOT . 37
4.2. Analysis implementation in Hadoop . 38

4.2.1. Design decisions . 38
4.2.2. The StreamingMapper . 38
4.2.3. The StreamingReducer . 39

4.3. The input format implementation . 40
4.3.1. Design decisions . 40
4.3.2. The RootFileMapper . 41
4.3.3. The RootFileInputFormat . 42
4.3.4. The StreamingInputFormat . 45

4.4. Analysis implementation in PROOF . 45
4.4.1. MySelector::SlaveBegin() . 46
4.4.2. MySelector::Process() . 46
4.4.3. MySelector::Terminate() . 47

4.5. Parallelization of event data generation . 47

5. Deployment 49
5.1. Remarks on Elastic MapReduce . 49
5.2. Cluster node configuration . 49

5.2.1. Conducted benchmark tests . 50
5.2.2. Benchmark results . 52
5.2.3. Final node configuration . 52
5.2.4. Software . 54

5.3. Cluster monitoring . 54
5.4. Cluster layout . 55

5.4.1. Hadoop cluster layout . 55
5.4.2. PROOF cluster layout . 56

vi

5.5. Cluster management . 57
5.5.1. Authentication . 57

5.6. Limitations and costs of utilizing the AWS services 58

6. Evaluation 61
6.1. Metrics . 61

6.1.1. Total execution time . 61
6.1.2. Events per second . 61
6.1.3. Average network throughput . 62
6.1.4. Average CPU utilization . 62
6.1.5. Remarks on scalability . 62

6.2. Evaluation of the RootFileInputFormat . 63
6.3. Comparison of the Hadoop and PROOF cluster performance 65
6.4. Scalability of Hadoop-based solution . 68

7. Related Work 71
7.1. Application of MapReduce to scientific computing 71
7.2. Different MapReduce implementations . 72
7.3. Hadoop/HDFS in the HEP community . 73

8. Conclusions and Outlook 75
8.1. Future research directions . 76

A. Abbreviations and Acronyms 79

B. Changes to the ROOT HDFS plugin 81

C. Steps to deploy clusters in EC2 83

List of Figures 85

Listings 86

List of Tables 86

Bibliography 87

vii

1. Introduction

The scientific experiments and simulations at the Large Hadron Collider (LHC) at CERN,
Geneva, produce data on a petabyte scale. In the early state of planning the computational
analysis infrastructure, it became clear that it is not be feasible to implement a local storage
and analysis cluster which is able to fully handle the sheer quantity of the produced data.
Instead, it is distributed to a globally deployed hierarchical storage and analysis network
called the Worldwide LHC Computing Grid (WLCG) [64]. This network is formed by
computational capacities of physical institutions all over the world. The data itself consists
of millions of tracked particle beam crossings, called events that need to be analyzed to
extract statistical qualities. Due to political and technical constraints, several restrictions
exist on access to the data and it is filtered before being distributed. Depending on these
constraints, individual scientists might not have access to the raw data or may suffer from
several months delay. To address these problems, other approaches need to be investigated
regarding their applicability for LHC data analysis.

Currently the facilities involved in the WLCG apply different methods and frameworks
to parallelize the computational tasks. Since each event can be investigated separately the
analyses jobs can be highly parallelized while the output can be merged at the end. Often
simple batch systems are used to split and distribute computational tasks to nodes in clus-
ters build from commodity hardware for parallelization. This approach can be cumbersome
since it often includes the manual development of scripts that semi-automatically distribute
the workload.
Another approach was developed with the Parallel ROOT Facility (PROOF) framework [40]
at CERN itself. PROOF is based on ROOT [23], a framework especially designed for high
energy physics data analysis. PROOF parallelizes jobs at event level by automatically split-
ting up the input data, balancing the load on the different compute nodes and merging
the results at the end. It relies on a distributed storage system called Structured Cluster
Architecture for Low Latency Access (SCALLA) [21] that provides a hierarchical solution
for storing and accessing huge amounts of data.

Apart from the scientific community, the growing size of collected user and application
data fostered the search for efficient analysis frameworks in the industry. In 2004, Google
published a white-paper [33] on a new parallel computing paradigm, which they developed
for the analysis in their data centers. This new paradigm is called MapReduce and was

1

1. Introduction

quickly adapted by other big companies including Facebook, Yahoo! and IBM. MapReduce
heavily relies on the Google File System (GFS) [43], which aims to provide reliable and
distributed storage and access to data.
Since Google’s implementation of MapReduce and the underlying file system is proprietary,
the Apache Software Foundation developed an open source implementation of MapReduce,
called Hadoop [11]. Hadoop comes with its own distributed file system called Hadoop File
System (HDFS) which tries to mimic the properties of GFS.

Similar to the idea of using a computing grid [38] for the analysis of LHC data, the cloud
computing [54] paradigm is utilized by industrial companies. Driven by the need to serve
peak loads on their computing infrastructure (e.g. caused by Christmas sales on online
marked places) companies can hire extra computing resources over the Internet to extend
their own capabilities.
Since it is arguable that grid computing and cloud computing are based on similar ideas, the
adaptation of using cloud computing in scientific analysis is conservative. Its applicability
for the scientific community therefore needs to be investigated further.

The purpose of this thesis is twofold: On the one hand, we investigate the applicability
of the MapReduce paradigm to the LHC data analysis. We discuss how Hadoop can be
used for efficient and reliable parallelization and identify HDFS as a solution for storing the
huge amounts of data during the analysis.
On the other hand, we utilize cloud computing resources of the Amazon Web Services
(AWS) [4] deploying computing clusters to test the developed solutions. This allows us
to investigate how commercial cloud computing services can be exploited by the scientific
community.
The access to the original data produced at the LHC is restricted to members of the collab-
orations conducting experiments at the LHC. Therefore, the data to be analyzed is based
on Monte Carlo events generated by an event simulator called PYTHIA-8 [60] and made
available by colleagues from the Max Planck Institute for Nuclear Physics (MPIK) in Hei-
delberg, who are members of the LHCb [26] collaboration. They also provided an example
analysis implementation that serves as the case study for this thesis. The data itself is
stored in ROOT files in a compact binary format developed at MPIK which is also used for
exploratory access to real data or centrally produced Monte Carlo data. Since Hadoop is
initially designed to process large text files, adapting it to the ROOT binary format is one
of the main challenges addressed in this thesis.

The initial idea of applying the MapReduce paradigm to LHC data analysis was tested
and described in a student research project [44], which served as a trial study for the prob-
lem addressed in this thesis.

2

1.1. Goals and contributions

1.1. Goals and contributions

The goals and contributions of this thesis can be summarized as follows:

• application of the MapReduce paradigm to an example HEP analysis representing a
typical LHC data analysis task,

• development and evaluation of an efficient Hadoop input format for data stored in the
binary ROOT format,

• evaluation of the scalability of the Hadoop-based solution,

• comparison with a PROOF-based solution,

• remarks on the applicability of cloud computing to scientific data analysis.

1.2. Outline

After this introduction, we introduce the basic principles and techniques utilized in this
thesis in Chapter 2. We cover LHC data analysis in general terms, introduce PROOF
and the underlying file access system SCALLA and describe MapReduce and the Hadoop
implementation. Additionally, we introduce the basic principles of cloud computing and
provide an overview of the Amazon Web Services. Chapter 3 describes how the concept of
MapReduce can be used to parallelize event-based LHC analysis and how data stored in
the binary ROOT format can be processed efficiently by Hadoop. In Chapter 4, we discuss
the implementation of the prototype analysis in Hadoop and PROOF. In Chapter 5, we
describe how we utilized AWS to deploy compute clusters to evaluate the provided solutions.
Subsequently, Chapter 6 discusses the outcome of the evaluation in terms of performance
and scalability. An overview of different MapReduce implementation and the impact of the
MapReduce paradigm on the scientific community in general and especially on LHC data
analysis is provided in Chapter 7. Chapter 8 summarizes the outcome of this thesis and
gives ideas for possible future research directions.

3

2. Foundations

This chapter introduces the concepts and tools necessary for this thesis. In Section 2.1, we
discuss data analysis in High Energy Physics (HEP) and its challenges in general terms.
Section 2.2 introduces ROOT and the Parallel ROOT Facility (PROOF), commonly used
tools for HEP data analysis. Subsequently, we discuss the programming paradigm MapRe-
duce in Section 2.3 and its widely used open-source implementation Hadoop in Section 2.4,
which provides an alternative to PROOF systems.
Cloud computing models can extend the general model in HEP data analysis and the evalu-
ation done in this thesis heavily relies on cloud resources. Therefore, Section 2.5 introduces
the basics of cloud computing. Subsequently, Section 2.6 describes the services of one partic-
ular cloud service provider, namely the Amazon Web Services (AWS) offered by Amazon.
Parts of this chapter are adapted from our project report [44].

2.1. High Energy Physics data analysis

The four big experiments ALICE [2], ATLAS [1], CMS [28] and LHCb [3] at the Large
Hadron Collider (LHC) located at CERN, Geneva produce particle collision data at a rate
of around 15 PB per year. In addition to its computing and storage complexity, access
to the data must be provided to around 5000 scientists in around 500 research institutes
and universities all around the globe [64]. In the early state of planning it became clear
that deploying a local cluster at CERN would not be a feasible solution. Therefore the
Worldwide LHC Computing Grid (WLCG) project was initiated. The LHC, the structure
of the recorded data and how the data is handled by the WLCG is described in the next
subsections.

2.1.1. The Large Hadron Collider

The LHC located at Conseil Européen pour la Recherche Nucléaire (CERN) is a circu-
lar particle collider that collides proton beams with a center of mass energy of around
7TeV [24, p.3-6]1. The proton beams are accelerated to travel nearly at the speed of
light and two beams are traveling around the collider in opposite directions, crossing each

1Note that the LHC is also used to collide lead ions at 2.76TeV, but since we are interested in the general
data flow, we only analyze the proton-proton collisions for simplicity.

5

2. Foundations

other at four defined crossing points. Since the total circumference of the accelerator is
around 27 km, each beam travels around the whole accelerator 11245 times per second.
Each beam consists of 2808 bunches, where each bunch contains around 1.15 × 1011 pro-
tons [24, p.3-6]. The bunches are spaced with around 25 ns [18, p.86]. Due to technical
constraints the average crossing rate reduces to “number of bunches” × “revolution fre-
quency” = 2808 × 11245 = 31.6 MHz. When two bunches cross there are around 19.02 [24,
p.3-6] proton-proton collisions leading to maximum number of 600 × 106 collisions per sec-
ond. A bunch crossing is called event .
The products of these events are detected using a whole chain of different detectors specific
for each experiment. Only a very small fraction of the observed events have interesting
properties, so the collected data is passed through filters immediately.

2.1.2. Data recorded at the LHC

The raw data size collected each second varies between the experiments: ATLAS produces
around 320 MB/s, CMS around 225 MB/s, LHCb around 50 MB/s and ALICE around 50
MB/s. The data size accumulates to around 15 PB of raw data over the year [64]. Before
the data is available for analysis at physical institutions it goes through two reduction
steps [40]: First the event data is reconstructed from the raw detector data into Event
Summary Data (ESD) and then all information that is not related to the analysis is removed.
The resulting data is called Analysis Object Data (AOD). The total size of AOD is about
30-200 TB per year, while the total size of ESD data accumulates to about 10 TB per
year. Additionally Monte-Carlo simulations are conducted. Depending on the experiment
the production rate of simulated data, which is treated the same way as described above, is
20% to 100% of the original raw data size. For some analysis studies and distribution the
data is further reduced to a format, called Derived Physics Data (DPD).

2.1.3. The Worldwide LHC Computing Grid

As described in its initial technical design report [64] the WLCG implements a globally
distributed computing and storage infrastructure divided into four tiers. The responsibilities
for the different Tier-x centers vary slightly between experiments, but in general they can
be summarized as follows. The original raw data produced at the LHC is stored on tape and
initially processed at the Tier-0 center at CERN itself. Later on it is distributed to Tier-1
centers around the globe that are responsible for its permanent storage and for providing the
computational capacity for processes that require access to huge amounts of original data.
Currently there are eleven Tier-1 centers worldwide. The Tier-1 centers redistribute the data
to Tier-2 centers that consists of one or more collaborating computation facilities. Tier-2
centers are meant to provide capabilities for end-user analysis and Monte-Carlo simulations.
All other institutes and computing facilities that need access to the LHC data and take part

6

2.2. ROOT/PROOF and SCALLA

in its analysis are called Tier-3 centers.
While the exact software stack deployed on the different computing sites may vary, the
Baseline Services Working Group defined a set of agreed services and applications that
must be provided [19]. It includes but is not limited to storage and computing services,
catalog services, workload management and authentication and authorization services.
In this thesis we focus on problems that arise at Tier-2/Tier-3, where physicists are interested
in analyzing a subset of the experimental data according to their field of study.

2.2. ROOT/PROOF and SCALLA

ROOT [23] is a software framework developed at CERN that provides tools to handle
and analyze large amounts of data. The data is defined in a specialized set of objects.
ROOT provides functionality for histograms, curve fitting, minimization, graphics and vi-
sualization classes. The root architecture consists of around 1200 classes organized in 60
libraries and 19 categories (modules). The parallel version of ROOT is called Parallel ROOT
Facility (PROOF). It aims to provide an alternative to the commonly used batch systems
for data analysis used at Tier-2/Tier-3 centers. To access and process huge amounts of
data, PROOF uses the Structured Cluster Architecture for Low Latency Access (SCALLA)
as an underlying file access system. In the following we introduce PROOF’s scheduling
architecture and its file format. Subsequently, we discuss the basic concepts of SCALLA
and the framework to parallelize event-based analysis with PROOF, called TSelector.

2.2.1. Architecture

PROOF is designed to address end-user analysis scenarios at Tier-2 or Tier-3. In these sce-
narios single tasks process up to 100 TB of event data on computing facilities with around
100 nodes [40]. In the motivation for PROOF [40], Gerardo et al. distinguish between three
different task categories: fully-interactive tasks with short responsive times and high level of
interactivity, batch tasks that have “long execution times and require very little interactiv-
ity” [40] and interactive-batch that are a mixture of both. According to the authors, PROOF
was implemented to address the third category. While in the traditional batch approach
the job partitioning is done before the execution and as a result the total execution time is
determined by the slowest sub-job, PROOF tries to minimize these “long-tails” and provide
real-time feedback [40].

As shown in Figure 2.1, PROOF implements a master/slave architecture, whereby the
master-level can have multiple tiers, allowing the approach to scale on large distributed
systems. A client initiates a session by contacting the master. The master is responsible for
starting the workers, distribute the job to the workers and collect their output at the end.
A multi-tier master architecture can help to distribute the workload when the results from

7

2. Foundations

P
o
S
(
A
C
A
T
0
8
)
0
0
7

Data Analysis wth PROOF Gerardo Ganis

an efficient remote file server system, providing Virtual Mass Storage capabilities, which has been
recently adopted as data access protocol for LHC [15]. As we will see below, in PROOF clusters
XROOTD is used for remote files access.

3. PROOF

The main goal of the PROOF system, is to run the ROOT analysis in parallel in a number
of worker processes. Each worker process runs on its own CPU core or machine. PROOF aims
at being a transparent extension of the ROOT single user session, so that the syntax differences
to run on PROOF and locally are minimal. Due to minimization of the serial overhead PROOF
achieves very good scalability and runs efficiently with many 100’s of workers. PROOF optimizes
the work distribution for data locality, meaning that a worker gets first assigned local data, thereby
drastically reducing data transfer (over)loads in the cluster. Finally PROOF uses dynamic load-
balancing to reduce CPU cycles.

PROOF uses the XROOTD [14] infrastructure to start its master and workers. This PROOF
specific part is handled by a special XROOTD plugin, XrdProofd.

The PROOF system has already been presented at past editions of this workshop [3, 4]; below
we only recall the main aspects of it.

3.1 Basic architecture

The PROOF system implements a multi-tier architecture sketched in figure 3.

Figure 3: PROOF multi-tier architecture

The client runs standard ROOT and starts a PROOF session by contacting the master, the
entry point to the computing facility. The role of the master is: i) to start a set of workers; ii)
to parse the client requests and distribute the work to the workers; iii) to merge the result of the
workers and return it to the client. The master tier can be multi-layered. This allows to distribute

6

Figure 2.1.: PROOF’s multi-tier architecture [40].

many workers are merged in a final stage of the analysis and allows to split a cluster into
multiple geographical domains, thus optimizing the access to the underlying Mass Storage
System (MSS) [40].

Figure 2.2 shows the central part for job distribution and load balancing in PROOF, which
is the packet generator or packetizer: “It decides where each piece of work -called packet-
should be processed” [41]. Thereby it tries to schedule subtasks to nodes, where the data
is stored to reduce network load. Instead of pushing the subtasks to the workers, PROOF
uses a pull architecture to distribute the work: When a worker is finished with processing a
part of the job, it asks the packetizer for the next subtask. Figure 2.2 depicts the general
workflow of the job parallelization: After an initialization phase, where the job description
is send to the worker nodes (Process(‘‘ana.C’’)), the workers are requesting packets by
contacting the master (GetNextPacket()). The master answers with a packet, indicating
the location of the data (the first number indicates the index of the event data in the input
file), and the size of the packet. Thereby the packet size can be varied. After the processing
is finished, the workers are sending their results to the master (SendObject(histo)), which
merges the results and returns them to the client.

PROOF is an official part of the ALICE computing model [32] and is deployed in the CERN
Analysis Facility (CAF) at CERN [39]. To provide event-level parallelism for analysis jobs
it offers the TSelector framework, which is described in the next subsection.

8

2.2. ROOT/PROOF and SCALLA
P
o
S
(
A
C
A
T
)
0
2
2

Scheduling and Load Balancing in PROOF Jan Iwaszkiewicz

order to provide the best possible service to a large number of users performing different types of
analysis.

The resource management in PROOF is split in two parts: resource scheduling, taking care of
assigning the right share of resources to each job; load-balancing, optimizing the work distribution
within jobs.

In the next section we review load-balancing and its engine (the packetizer), focusing on the
latest improvements. In section 3 we present the main ideas and the current status of resource
scheduling in the system. Finally, the paper is summarized in section 4.

2. Load-balancing using a Pull Architecture: the packetizer

The packetizer is responsible for load balancing a job between the workers assigned to it. It
decides where each piece of work - called packet - should be processed.

An instance of the packetizer is created for each job separately on the master node. In case of a
multi-master configuration, there is one packetizer created for each of the sub-masters. Therefore,
while considering the packetizer, we can focus on the case of a single master without loosing
generality.

The performance of the workers can vary significantly as well as the transfer rates to access
different files. In order to dynamically balance the work distribution, the packetizer uses a pull
architecture (see fig. 2): when workers are ready for further processing they ask the packetizer for
next packets.

Figure 2: Pull architecture. The workers contact the packetizer, which is located on the master node. The
packetizer distributes the work by assigning packets to be processed

3

Figure 2.2.: The pull architecture of the PROOF packetizer [41].

9

2. Foundations

2.2.2. The TSelector framework

The selector framework offers a convenient way to analyze event data stored in TTrees

(see next subsection) using PROOF. In the framework the analysis is implemented as a
TSelector and split up into the following methods:

• Begin(), SlaveBegin(): Begin() is called on the PROOF session client and Slave-

Begin() on each worker node. All the initialization needed for the Process() method
is done here.

• Init(): The Init() method is called each time a new TTree is attached to the input
data.

• Notify(): This method is called when the first entry of a new file in the input data
is read.

• Process(): Process() is called for each event in the input data. The actual analysis
of the event must be implemented here. This is called on the worker nodes.

• SlaveTerminate(), Terminate(): These functions define the counterpart to Slave-

Begin() and Begin() and are called at the end of the analysis. SlaveTerminate()

is called of each slave and Terminate() is called on the session client. It is typically
used to write the collected output data to a file.

An event-based analysis that is parallelized with PROOF must implement a TSelector.
We refer to this framework in the description of implementation in Chapter 4.

2.2.3. ROOT File Format and TTrees

To store large amounts of data that need to be accessible in an efficient way, ROOT im-
plements its own data format. Figure 2.3 shows the basic structure of a ROOT file. The
data in ROOT files is always stored in a machine independent format (ASCII, IEEE floating
point, big endian byte ordering) [65].
Up to the first 64 bytes are reserved for the file header. It is followed by data records of vari-
able length. Among others the header contains information about the position of the first
data record (fBEGIN), the position of the first data record marked as deleted (fSeekFree)
and its length (fNBytesFree), and the postition of the first free word at the end of file
(fEND) for efficient data access.
Each data record contains its own record header, called TKey followed by the data itself.
Since ROOT is an object-orientated framework its data consists of objects that are seri-
alized when written to files. The object data in a data record can be compressed using a
compression algorithm based on gzip.
ROOT provides the classes TTree and TNtuple for storing large numbers of the same object

10

2.2. ROOT/PROOF and SCALLA

Figure 2.3.: Physical layout of the ROOT file format [25].

type, which are “optimized to reduce disk space and enhance access speed” [65]. TTree and
TNtuple implement trees of objects, whereby the former can store any class of objects while
the later itself is a TTree that is limited to only store floating point numbers. When filling
a TTree with objects of the same kind, these objects are first written to a buffer instead
of writing them to the file directly. When the buffer is full, it is compressed before being
written. Since all objects are of the same type, the object header can also be compressed
leading to a much higher compression factor when compared to compressing each object
individually. In addition to optimized storage space TTrees also enhance the access speed.
Data members of the object class that can be treated separately during the analysis can
be stored in separate tree branches. Each of these branches is assigned to its own output
buffer, which is filled with the same member variable of different objects, compressed and
written to the file. A buffer holding same type member variables is called basket. This design
allows to efficiently access the same member variable for all objects on disk, because only
the output buffers that hold these members variables need to be read and decompressed.

2.2.4. Structured Cluster Architecture for Low Latency Access

The Structured Cluster Architecture for Low Latency Access (SCALLA) [48] is a distributed
file access system that is broadly used in the high-energy physics community to build large
distributed data clusters with commodity hardware. In SCALLA each node runs a low
latency access server called xrootd (“eXtended rootd”, since it originated from ROOT’s file

11

2. Foundations

access mechanism) and a corresponding cluster management service, called cmsd. SCALLA
implements a redirector service that liberates the user from knowing the exact location of
a file. A SCALLA cluster is organized in a 64-ary tree, which means that each node has at
most 64 children. The root node acts as a manager and the inner nodes act as supervisors
for its child nodes. This architecture enables efficient data lookup. When a client needs to
access a file in the cluster, it contacts the manager node of the tree. This node forwards
the query to its children asking if they have the file, which either hold a copy of the file or
forward the request to their child nodes. This procedure is followed until the leaf nodes in
the cluster tree are reached. If a node holds a copy of the file it responds to the query. If
there a multiple copies of a file reported by child nodes the supervisor merges the responses
into one single response stating that it holds the file. When the cluster manager receives
the response with the location of the file, it redirects the client request to the corresponding
node.
The SCALLA file access system is used by the LHC experiments ALICE, ATLAS and
CMS [48]. The xrootd not only allows the redirection to files in a common namespace,
but instead implements a plug-in based multi-layer architecture for file access to generic
systems [34]. PROOF itself is realized as a protocol implementation inside this architecture.

2.3. MapReduce and the Google File System

MapReduce is a framework for implementing data intensive applications that was first in-
troduced by Jeffrey Dean and Sanjay Ghemawat at Google in 2004 [33] and attracted a lot
of attention since then. In a divide-and-conquer manner the programmer writes code in
terms of a map and reduce function. Both functions take a key/value pair as input. The
map function takes an input key/value pair generated from the input data and emits one
or more key/value pairs, which are then sorted and passed to the reduce function.

map(St r ing key , S t r ing value) : // key : document name
// value : document contents

f o r each word w in value :
EmitIntermediate (w, ”1 ”) ;

reduce (S t r ing key , I t e r a t o r va lue s) : // key : a word
// va lues : a l i s t o f counts

i n t r e s u l t = 0 ;
f o r each v in va lue s :

r e s u l t += ParseInt (v) ;
Emit (AsStr ing (r e s u l t)) ;

Listing 2.1: Word Count example [33].

The original example provided by Dean and Ghemawat for the application of the MapReduce
paradigm is counting the appearance of words in a large text file. The pseudo-code is given
in Listing 2.1.

12

2.4. Hadoop and the Hadoop Distributed File System

The map function takes the document name as the key and file contents as a value. For each
word in the context it emits a key/value pair, whereby the key is the word itself and the
value is the current count of the word, which is one. These pairs are now sorted and passed
to the reduce function. For each key (word) the reduce function is called once and the count
of the words is summed up. In the end reduce emits a final key/value pair, whereby the key
is still the word and the value holds the count of the word’s appearance in the document.

2.3.1. Architecture

Typically the input data is split up and several map and reduce tasks are executed in par-
allel. Figure 2.4 shows the typical execution procedure in the MapReduce framework. A
master node is assigning map and reduce tasks to worker nodes. The input data is divided
into splits and each split is passed to a worker node executing a map task. These tasks
write intermediate key/value pairs to the local disk of the worker node. A reduce worker
is informed of the data location and reads the data remotely. Thereby it merges sorts the
intermediate key/value pairs according to their keys. For each individual key and the set of
corresponding values, the reduce function is called and the final output is produced.

2.3.2. The Google File System

Network bandwidth is a limiting resource in the execution described above. Dean and
Ghemawat describe how the Google File System (GFS) [43] is used to preserve bandwidth
usage. The GFS implements a distributed way of storing large data files on a cluster.
The file is hereby split up into blocks (typically 64 MB in size) and each block is stored
several times (typically three times) on different nodes in the cluster. Google’s MapReduce
implementation uses the locality information of these file blocks by assigning map task
operating on one of the blocks to a node, which holds the block already or is nearby to a
node that holds the block (e.g. in the same rack in the cluster). This way, huge amounts of
bandwidth usage can be preserved.
Google’s implementation of the MapReduce framework is proprietary and not available
for the public. The next section introduces Hadoop, which is an open-source framework
implementing the MapReduce programming model.

2.4. Hadoop and the Hadoop Distributed File System

Hadoop [11] is an open-source Java framework developed by the Apache Software Founda-
tion, that implements the MapReduce programming model. It has been deployed on huge
clusters and is used by several well-known companies, including Facebook, Amazon and
AOL [15]. It comes with the Hadoop File System (HDFS), which mimics the properties of

13

2. Foundations

User
Program

Master

(1) fork

worker

(1) fork

worker

(1) fork

(2)
assign
map

(2)
assign
reduce

split 0

split 1

split 2

split 3

split 4

output
file 0

 (6) write

worker
(3) read

worker

(4) local write

Map
phase

Intermediate files
(on local disks)

worker output
file 1

Input
files

(5) remote read

Reduce
phase

Output
files

Figure 1: Execution overview

Inverted Index: The map function parses each docu-
ment, and emits a sequence of 〈word,document ID〉
pairs. The reduce function accepts all pairs for a given
word, sorts the corresponding document IDs and emits a
〈word, list(document ID)〉 pair. The set of all output
pairs forms a simple inverted index. It is easy to augment
this computation to keep track of word positions.

Distributed Sort: The map function extracts the key
from each record, and emits a 〈key,record〉 pair. The
reduce function emits all pairs unchanged. This compu-
tation depends on the partitioning facilities described in
Section 4.1 and the ordering properties described in Sec-
tion 4.2.

3 Implementation

Many different implementations of the MapReduce in-
terface are possible. The right choice depends on the
environment. For example, one implementation may be
suitable for a small shared-memory machine, another for
a large NUMA multi-processor, and yet another for an
even larger collection of networked machines.
This section describes an implementation targeted
to the computing environment in wide use at Google:

large clusters of commodity PCs connected together with
switched Ethernet [4]. In our environment:

(1)Machines are typically dual-processor x86 processors
running Linux, with 2-4 GB of memory per machine.

(2) Commodity networking hardware is used – typically
either 100 megabits/second or 1 gigabit/second at the
machine level, but averaging considerably less in over-
all bisection bandwidth.

(3) A cluster consists of hundreds or thousands of ma-
chines, and therefore machine failures are common.

(4) Storage is provided by inexpensive IDE disks at-
tached directly to individual machines. A distributed file
system [8] developed in-house is used to manage the data
stored on these disks. The file system uses replication to
provide availability and reliability on top of unreliable
hardware.

(5) Users submit jobs to a scheduling system. Each job
consists of a set of tasks, and is mapped by the scheduler
to a set of available machines within a cluster.

3.1 Execution Overview

The Map invocations are distributed across multiple
machines by automatically partitioning the input data

To appear in OSDI 2004 3

Figure 2.4.: MapReduce job execution overview [33].

GFS described above. After describing Hadoop’s Architecture and HDFS in this section we
introduce Hadoop Pipes and Hadoop Streaming, two possibilities to parallelize applications
with Hadoop which are not written in Java.

2.4.1. Architecture

The architecture of a cluster running Hadoop orientates on Google’s approach shown in
Figure 2.4. It is a master/slave architecture, where one or two master nodes are assigning
tasks to several worker/slave nodes.
The master nodes are serving as NameNodes2 and JobTrackers, while the worker nodes are
serving as DataNodes and TaskTrackers. These daemons are described below.

• NameNode: The NameNode is keeping track of the stored data. It does not store
data itself, but manages the add/copy/delete and move operations that are executed
on the data distributed over the DataNodes. It is a single point of failure in the
current Hadoop implementation, because a failure of the NameNode causes the whole
file system to become unavailable. Hadoop provides an optional daemon, which is

2In the scope of this thesis, we interchangeably use the name of the daemon either for the daemon process
itself and for the node running the daemon process.

14

2.4. Hadoop and the Hadoop Distributed File System

called SecondaryNameNode. Nevertheless it does not provide full redundancy, because
it only creates snapshots of the namespace. There are some plans to implement a
Backup Node and an additional Checkpoint Node in future versions of Hadoop, but
they have not been realized in the current stable version of Hadoop (Hadoop-1.0.4).

• DataNode: The data stored in the Hadoop cluster is stored on the DataNodes. Data
stored in HDFS is internally split up into blocks and then distributed and replicated
around the DataNodes.

• JobTracker: The JobTracker is responsible for assigning map and reduce tasks to
nodes running TaskTrackers. It therefore asks the NameNode where the data resides
and tries to assign the corresponding tasks to TaskTrackers, which are nearby. The
JobTracker monitors the work of all TaskTrackers and updates its status when a job
is completed or failed.

• TaskTracker: To each node that is configured as a TaskTracker the JobTracker can
assign certain tasks. The number of tasks a TaskTracker can accept is limited by the
number of slots it offers. Each task is assigned to a certain slot. The TaskTracker

spawns a separate Java Virtual Machine (JVM) for each task to make sure that it
does not get affected if a task crashes. While assigning the tasks to certain nodes
the JobTracker takes care that tasks that work on certain data sets get preferably
executed on the DataNode where the data persists. If the corresponding TaskTracker

does not offer a free slot, it chooses another TaskTracker running on a machine in
the same rack.

2.4.2. The Hadoop File System

The Hadoop File System (HDFS) orientates on the description of GFS given in [43]. HDFS
is a distributed file system, designed to store large amounts of data on clusters build of
commodity hardware. As in GFS the data is split up into blocks and replicated to several
nodes on the cluster. While HDFS is mostly POSIX compatible it relaxes a few of its
requirements to enable streaming access to data. Its design goals and implementation are
described in the HDFS Architecture Guide [22] and can be summarized as follows:

• Hardware Failure: In large clusters with thousands of nodes, the chances are pretty
high that several cluster nodes suffer from hardware failure. HDFS aims to detect
and recover from these failures as fast as possible. The DataNodes described above
are sending regular heartbeat-messages to the NameNode, informing it that they are
still available and which data chunks they hold. If the NameNode does not receive any
message from a certain DataNode for a certain period of time, it initializes a replication
of the data that was stored on the node to other DataNodes.

15

2. Foundations

• Streaming Data Access: HDFS is designed to enable high throughput access to
data stored in the cluster, rather than enabling low latency access. Its usage scenario
is batch processing of jobs working on huge amounts of data without the need for
interactivity.

• Large Data Sets: The typical size of files stored in HDFS is a few gigabytes up to
some terabytes. While the files are split up into blocks and replicated over several
DataNodes, they still appear to the user as single files.

• Simple Coherency Model: HDFS is designed for data, which is written once and
read many times. This leads to a simplified data coherency model.

• “Moving computation is cheaper than moving data”: As we have seen in the
description of GFS (Section 2.3.2), we can speed up computation by moving it to a
worker node where or close to where the data is stored. Therefore HDFS provides an
interface, which can be used by applications to obtain these locality information.

• Portability across Heterogeneous Hardware and Software Platforms: HDFS
is written in Java and aims to be deployable on all major platforms.

The size of the file blocks in HDFS is set to 64 MB by default. The number of replications
of each file block can be controlled by the replication factor. A replication factor of two
means that the HDFS cluster always keeps two copies of each file block.

2.4.3. Hadoop Streaming

Hadoop Streaming is an API that enables the user to work with map and reduce functions
that are not written in Java. Both functions can be any application that read input from the
standard input stream (stdin) and write their results to standard output stream (stdout).
The standard input format hereby is text-based and read line-by-line, whereby each line
represents a key/value pair separated by a tab. Hadoop hereby makes sure that the lines
passed to the reduce function are sorted by keys. Programs that are written in this manner
can be sequentially tested with the help of UNIX Pipes, which of course do not parallelize
the computation:

cat input | map | reduce

Splitting up the input and parallelizing map and reduce calls in the cluster, whereby using
the locality information of the input data is done with the help of a special input format for
Hadoop.

16

2.5. Cloud Computing

2.4.4. Hadoop Pipes

A second way to implement a MapReduce program on Hadoop, not written in Java, is
Hadoop Pipes. Programs written with Hadoop Pipes link against a thin Hadoop C++
library, which enables the written functions to be spawned as processes and communicate
over sockets. The C++ interface is SWIG [62] compatible and can be generated for other
source languages as well. Unlike Streaming, Hadoop Pipes does not use the standard input
and output channels. The key/value pairs are passed to the mapper and reducers as C++
Standard Template Library (STL) strings so any data that should be used as keys or values
need to be converted beforehand. To use Hadoop Pipes the code needs to inherit from
certain base classes and reimplement some of their functionality.

2.5. Cloud Computing

In the last years, a paradigm shift took place in the IT industry. It affects the way in which
IT infrastructure is utilized on a commercial level as well as in private households. This
new paradigm is called cloud computing.
Cloud computing services range from simple data backup services in the Internet to the
possibility of deploying whole compute clusters or data centers in a remote environment.
Individuals use cloud computing to store music, pictures and diaries in the Internet, making
it accessible from everywhere and freeing them from keeping the data in sync on different
devices. Companies can utilize cloud computing to serve peak-loads on their IT infrastruc-
ture by renting the needed resources on-demand from a cloud computing provider.
Some cloud computing services might also offer a viable model for solving computational
challenges in the scientific community.
For our evaluations we are utilizing cloud computing services. This section summarizes
its characteristics, virtualization as its core technique and different deployment and service
models.

2.5.1. Characteristics

Cloud computing as defined by Armbrust et al. [16]“refers to both the applications delivered
as services over the Internet and the hardware and systems software in the data centers that
provide those services”. Hereby those services fulfill the following characteristics [54]:

• On-demand self-service: Consumers are able to utilize cloud services in an auto-
mated manner without human interaction.

• Broad Network access: Service capabilities are available over the network for het-
erogeneous client platforms.

17

2. Foundations

• Resource pooling: Different resources (e.g. storage, processing, network bandwidth)
are pooled with the help of virtualization. The exact location and physical nature of
those resources might be unknown to the consumer.

• Rapid elasticity: Consumers can easily utilize and release resources according to
their demand.

• Measured service: The cloud service providers use metrics to automatically control
the usage of resources. The use of resources and the accumulating costs are transparent
to the consumers.

Cloud computing services are often implemented by using virtualization, which is described
in the next subsection.

2.5.2. Virtualization

One of the core enabling technologies in cloud computing is virtualization. It describes
the “abstraction of IT resources that masks the physical nature and boundaries of those
resources from resource users” [42]. All kinds of technical resources can be virtualized,
e.g. memory, storage, network or even full machines. It can have several benefits to use
virtualized resources, including [30]:

• Server Consolidation: Combine multiple servers on one physical machine for saving
hardware costs and management and administration workload.

• Sandboxing: Virtual machines can provide fully isolated environments for running
untrusted applications.

• Virtual hardware: Hardware, which is not present, can be simulated.

• Debugging and Testing: Virtualization can help with debugging complex software
like operating systems by providing virtual machines with full software control. Arbi-
trary systems can be deployed for testing purposes.

Cloud computing heavily relies on virtualization such that as a user acquiring a service
over the Internet may be completely unaware of the underlying physical infrastructure.
Often cloud computing systems are distinguished by the level of abstraction of the physical
infrastructure to the user. This leads us to the different deployment and service models in
cloud systems.

18

2.5. Cloud Computing

Figure 2.5.: Cloud computing deployment and service models [61].

2.5.3. Deployment and service models

Different deployment and service models exist for cloud systems. They are commonly classi-
fied as shown in Figure 2.5. The level of abstraction in the different service models increases
from bottom to top. Infrastructure as a Service (IaaS) provides the lowest level of abstrac-
tion. Here the user can acquire (virtualized) resources such as processing power, memory
or storage directly. Users are typically able to deploy their own software stack on top of
the resources and are responsible for keeping the software up-to-date. One example for an
IaaS infrastructure are the Amazon Web Services (AWS) [4] described in the next section.
Platform as a Service (PaaS) describes a service level, which offers the users a platform to
develop and deploy their own applications. They are liberated from managing the infras-
tructure themselves. The Google App Engine [45] and Mirosoft’s Windows Azure [55] are
well-known examples of PaaS.
At the highest level of abstraction Software as a Service (SaaS), offers full grown appli-
cations as services over the Internet, typically accessible through a standard Web browser.
Similar as in PaaS, the users have no control over the infrastructure itself. One example
for SaaS is Google Drive [46], where a group of users can collaborate to edit and share text
documents online.
All these different service models can be arbitrarily deployed on top of the depicted cloud
deployment models. The cloud deployment models are differentiated depending on who
owns and uses them [54, 61]. Private Clouds are used exclusively by a single company in
contrast to Public Clouds, which can be utilized by the public (usually for a fee). Com-
munity Clouds are clouds that are shared among several organizations often build around
special requirements. Hybrid Clouds form a mixture of the introduced cloud deployment
models.

19

2. Foundations

2.6. The Amazon Web Services

With Amazon Web Services (AWS) [4], Amazon provides a scalable, on demand, IaaS
environment, which can be used to provide large amounts of computing power, storage and
data management infrastructure on a short timescale. It thereby consists of several different
services, which can be used separately or in combination to provide the desired functionality.
We briefly introduce the services used in the context of this thesis: Availability zones, Elastic
Block Store (EBS), the Elastic Compute Cloud (EC2), the Virtual Private Cloud (VPC)
and Elastic MapReduce (EMR). In addition, we comment on usage fees.

2.6.1. Availability Zones

Each service of AWS is bound to an Availability Zone. Availability Zones are designed
to be independent of the failure of one another. Multiple Availability Zones form a region.
Currently there are nine available regions: US East (Northern Virginia), US West (Oregon),
US West (Northern California), EU (Ireland), Asia Pacific (Singapore), Asia Pacific (Tokyo),
AWS GovCloud (US) and South America (Sao Paulo). Zones and regions also limit the
accessibility of certain service instances to one another.

2.6.2. Simple Storage Services and Elastic Block Store

The Amazon Web Services (AWS) contain two services that are used for persistent data
storage in the Amazon cloud: the Simple Storage Service (S3) [8] and the Elastic Block
Store (EBS) [5].
Simple Storage Service (S3) is the general storage mechanism for AWS. It provides acces-
sibility over the web and is theoretically unlimited in size from the users’ viewpoint. All
objects stored in S3 are contained in buckets. Each bucket has a unique name and can be
made accessible over HTTP. Objects in buckets can be grouped into subfolders. Amazon
provides access control to buckets in two ways: Access Control Lists (ACLs) and bucket
policies. ACLs are permission lists for each bucket while policies provide a more generalized
way of managing permissions that can be applied to users, user groups or buckets.
Elastic Block Store (EBS) provides block storage and can in particular be used to supply
persistent storage for the Amazon Elastic Cloud (see next section). The EBS volumes can
be formatted with a desired file system and are suitable for applications that need to use
persistent storage e.g. databases. Each volume is created in a particular availability zone
and can only be attached to virtual machines within the same zone. They can be anything
from one GB to one TB in size. EBS provides the ability to back-up snapshots of the cur-
rent volume state to S3. Snapshots get stored incrementally that means that for consecutive
snapshots only the changed blocks are backed-up and not the whole volume again. The total
Input/Output operations per second (IOPS) a standard EBS volume can deliver is around

20

2.6. The Amazon Web Services

100. For higher Input/Output demands, e.g. for database services, special EBS volumes
with up to 2000 provisioned IOPS can be used.

2.6.3. Elastic Compute Cloud

Amazon’s Elastic Compute Cloud (EC2) [6] is a Web service that provides scalable IaaS
computing resources on demand. The basic building blocks of EC2 are the Amazon Ma-
chine Images (AMIs) that provide templates for the boot file system of virtual machines
that can be hosted in EC2. Users can launch several instances of a single AMI as different
instance types, which represent different hardware configurations. The CPU power of the
instances is measured in Amazon EC2 Compute Units (ECUs). According to Amazon, one
ECU provides the capacity of a 1.0-1.2 GHz 2007 Intel Opteron or Xeon processor. Amazon
and several third party developers already provide different AMIs. During the time this
document was created, there were around 10000 different AMIs to choose from. In case
the available AMIs do not fulfill the users requirements, it is possible to create own AMIs,
which can be made available to public or just used for private purposes. It is also possible to
import local virtual machine images created by a Citrix Xen, Microsoft Hyper-V or VMware
vSphere virtualization platform into EC2 and launch them as instances.
To provide access control to the launched instances, Amazon introduces the concept of se-
curity groups. A security group is a collection of rules that define what kind of traffic should
be accepted or discarded by an instance. Instances can be assigned to numerous groups.
Changes to the rules can be made at any time and are propagated to all instances automat-
ically.
EC2 uses both the Simple Storage Service (S3) and the Elastic Block Store (EBS) as back-
ground storage. When designing a custom AMI or choosing from the available AMIs one
need to decide on the kind of storage that should be used by the launched instances. If an
AMI only uses ephemeral storage, also sometimes referred as instance storage the data stored
on the instance is only available until the instance is terminated. For persistent storage (i.e.
even when an instance is terminated), EBS-backed AMIs can be used. The instances of
these AMIs are backed up by an EBS volume, which is connected to the instance on start
up. Amazon also provides services for database storage, address mappings and monitoring
of instances, which are not further described in this document.

2.6.4. Virtual Private Clouds

While Amazon offers instances on demand with EC2, Amazon’s Virtual Private Cloud
(VPC) [9] simplifies the deployment of a whole network infrastructures. EC2 instances
are launched inside an isolated section of the cloud, sub-networks can be created and rout-
ing tables can be automatically deployed in a Virtual Private Cloud (VPC). Additionally,
VPCs offer gateways that implement the ability to communicate with the Internet. Instances

21

2. Foundations

launched in a VPC can be launched as dedicated, causing them to be executed physically
isolated from instances that are launched by other AWS users. With Elastic IPs Amazon
offers users to reserve public IP addresses for their instances and automatically assign them
to an instance in their VPC that should be reachable from outside.

2.6.5. Elastic MapReduce

Amazon Elastic MapReduce (EMR) [7] offers users that have written their code for the
Hadoop Framework to run their programs in a MapReduce environment on top of EC2.
EMR therefore automatically launches AMIs that have a preinstalled Hadoop framework
and takes care of the user’s job submission. Amazon uses the MapR distribution [17] of
the Hadoop framework. Jobs can be specified by the user over a web interface, a command
line tool or the Elastic Map Reduce API. The user specifies either a jar file for running a
Java job on Hadoop or a mapper and reducer written in another programming language to
run as Hadoop Streaming Job. EMR does not offer the utilization of Hadoop Pipes over
its interface so far. The jar files, scripts or binaries that should be executed, need to be
uploaded to S3 beforehand. For configuration purposes EMR offers the possibility to the
user to define Bootstrap Actions, which are scripts that get executed on each Hadoop node
before the job is finally started. These scripts can be written in any language that is already
installed on the AMI instances, such as Ruby, Perl or bash.
Elastic MapReduce (EMR) typically utilizes a combination of the following file systems:
HDFS, Amazon S3 Native File System (S3N), local file systems and the legacy Amazon
S3 Block File System. S3 Native File System (S3N) is a file system, which is implemented
to read and write files on S3 and the local file system refers to the file system of the AMI
instance itself. The user can choose on which kind of AMI instance types his job should be
executed depending on the type of file system that is used to store the data.

2.6.6. Usage fees

The usage fees incurring when using AWS are differing by regions. For the work of this
thesis, the region EU (Ireland) was used and the pricing was calculated as follows:

• S3 and EBS: For data stored in S3 or EBS Amazon charges a fee of 0.095$ per GB
and month. Transferring data to the cloud was free. Transferring data out of the
cloud was free for the first GB per month, the next 10 TBs of data cost 0.120$ per
GB.

• EC2 and EMR: The costs for the instances started in EC2 depend on the instance
type that is started and are calculated per hour. Instances belong to one of the three
service categories: on demand instances are acquired when they are needed and paid
on an hourly basis. Reserved instances are reserved beforehand (typically for a time

22

2.6. The Amazon Web Services

period of one year) for a fixed reservation fee and can then be utilized for a reduced
hourly fee. The fee depends on the usage type and prices are distinguished between
light utilization, medium utilization and heavy utilization. Spot instances form the last
category and are automatically deployed for a fixed low fee when there are a lot of free
capacities in the EC2 cloud and automatically stopped when the capacity decreases
beyond a certain level. This service model can be used to acquire cheap extra resources
during times when the EC2 cloud is less utilized e.g. to speed up computation, which
does not rely on permanent provisioned resources. For example a small on demand
Linux instance (1.7 GB memory, 1 EC2 Compute Unit, 160 GB instance storage,
32 Bit or 64 Bit) was priced $0.065 per hour in the EU West (Ireland) region. The
same instance type could also be reserved for one year for $60-$170 depending on the
usage scenario and then utilized for an hourly rate between $0.022 and $0.042. To
utilize small spot instances the hourly rate was between $0.016 and $0.040. Note that
especially the prices for the spot instances are calculated on the total demand in the
cloud and are subject to large fluctuations.
EMR is built on EC2 internally and the costs for EC2 instances automatically started
by EMR are calculated per instance.

The actual pricing is subject to fluctuations and can be found on the Web sites for S3 [8],
EC2 [6] and EMR [7].

23

3. Analysis

As we described in the previous chapter, data analysis of LHC data is a very challenging
task. Distributed systems and large compute clusters need to be exploited to satisfy the
computational requirements. While the physics community uses a grid system and spe-
cialized frameworks for the analysis, there are fewer experiences with applying the de-facto
industrial standards MapReduce and cloud computing to LHC data. Since the example
HEP analysis, which is subject to parallelization, is based on ROOT, we also consider the
PROOF framework for parallelization. In Section 3.1, we analyze the main similarities and
differences between Hadoop and PROOF. Subsequently, we describe the example HEP
analysis in more detail in Section 3.2. The application of the MapReduce paradigm to the
example HEP analysis is given in Section 3.3. Section 3.2.1 and Section 3.4 analyze the
logical and physical structure of the input data respectively. In Section 3.5 we discuss, how
the input data can be efficiently distributed inside the Hadoop framework and Section 3.6
discusses the validity of the developed method for other kinds of input data.

3.1. Comparison between Hadoop and PROOF

While PROOF is a specialized framework for LHC data analysis, Hadoop implements a
general solution for distributed computing. Nevertheless, there are similarities: Hadoop
and PROOF both implement a master/worker architecture, where the master is scheduling
subtasks on worker nodes. They are both based on the assumption that a job can be divided
into highly independent subtasks, which do not need to communicate with each other during
execution.
The user’s code is divided into specific methods that are called in a well defined order on
the worker nodes: map and reduce in Hadoop, Begin, Process and Terminate in PROOF.
In Hadoop, the InputFormat defines how the input data is split into InputSplits (see
Section 3.3 for more detail) for the subtasks on the worker nodes while in PROOF the
TPacketizer is assigning data packets to the workers.
Both frameworks follow the “Moving computation is cheaper than moving data” paradigm
(see Section 2.4.2), where subtasks are tried to be scheduled on worker nodes that actually
store the data locally.
Nevertheless the frameworks differ by important characteristics. The PROOF packetizer
scheduling mechanism is based on the assumption, that files are stored as a whole at the
same location. SCALLA hereby does not provide an automatic file replication mechanism

25

3. Analysis

and hence no automatic recovery in case of data corruption or loss. Storing the data only on
one node in the storage system can also cause bottlenecks, when multiple cluster nodes need
to access the same part of the data at the same time. Hadoop heavily relies on HDFS and
hence the data is replicated automatically in the cluster. This provides not only automatic
recovery in case of data corruption or loss, but also gives more flexibility when scheduling
the subtasks close to where the corresponding data resides.
While Hadoop does the splitting into subtasks before the computation is started, the
PROOF packetizer can adapt the packet size during the computation using the feedback of
individual worker nodes. Thereby, it can react to slow workers by reducing the size of the
packets that are assigned to these nodes. Hadoop uses another mechanism to overcome the
problem of waiting for slow worker nodes at the end of an analysis: When there are further
InputSplits are available for processing, already assigned InputSplits are also assigned
to workers that otherwise become idle. The results of the process that finishes first are
collected and the other processes that are processing the same InputSplits are terminated.
Hadoop’s map and reduce tasks are executed on different worker nodes allowing to start
the reduce phase while there are still map tasks computed. The job execution in PROOF is
less flexible: After the job setup is steered by the master, the Process() method is called
for each packet on one worker node. The results are collected by the client, who submitted
the job, after the processing on the worker nodes is done.
PROOF is especially designed to process data organized in TTrees, which makes adaption
of data analysis that is already processing a TTree straightforward. However for adapt-
ing the MapReduce paradigm for ROOT-based data analysis is more challenging. Possible
key/value pairs need to be identified and the structure of the input data must be further
investigated.

3.2. The example HEP analysis

To investigate the applicability of MapReduce and the cloud computing paradigm to LHC
data analysis, we inspect an example HEP analysis that is representative for many of the
analyses tasks conducted at Tier-2/Tier-3 facilities. The example analysis is provided by
researchers from the Max Planck Institut für Kernphysik (MPIK) in Heidelberg, who are
members of the LHCb collaboration [26]. They also provided a toy Monte Carlo event
generation program that uses a standalone version of the PYTHIA-8 [60] event generator.
This program generates simulated particle collision data similar to the data collected at
CERN. Additionally, it simulates how the products of the events would be detected by
the LHCb detector. The output data of this simulation contains the traces of the involved
particles inside the detector for each event. These traces are called tracks and contain
additional information, e.g. the charge and momentum of the traced particles.
The provided example HEP analysis processes the event data and counts the appearance

26

3.2. The example HEP analysis

g_mass
Entries 440
Mean 494.6
RMS 19.36

mass [MeV]
450 460 470 480 490 500 510 520 530 540

0

2

4

6

8

10

12

14

16

18

g_mass
Entries 440
Mean 494.6
RMS 19.36

Ks invariant mass in MC

Figure 3.1.: Output of the example HEP analysis running on 20000 events.

of a specific particle, namely the K-Short particle. These particles can be identified by
the decay into two particles called pions. One positively charged pion and one negatively
charged pion, which do not decay any further inside the (simulated) detector. The K-Short
particles are identified by their mass, which can be extracted from the pion tracks. Therefore
each pair of tracks, where one track belongs to a positively charged particle and the other
one belongs to a negatively charged particle, are considered. For each of these pairs the
point, where the particles that are associated to the tracks have the closest distance (point
of closest approach), is calculated. If the particles come close enough, the point of closest
approach is considered to be the point, where a K-Short particle decayed into the two pions.
The outcome of the analysis is a histogram that depicts the reconstructed particle masses
in a certain range. Figure 3.1 shows the typical output histogram of the analysis. It depicts
the result of analyzing 20000 events.

3.2.1. Input data

The input data for the example HEP analysis, which is generated by the generation pro-
gram, is stored in a ROOT-based file format called Simple Data Format (SDF), which was
developed by our colleagues from Heidelberg. In the SDF file format, data is stored in a
specialized set of data classes, implemented in C++. It is designed to store the most im-
portant information of reconstructed tracks as well as the associated Monte Carlo data. As

27

3. Analysis

Figure 3.2.: Data class hierarchy of example study.

shown in Figure 3.2, the data class hierarchy consists of four classes:

• myEventType: This class stores the event data that was recorded with the help of the
(simulated) detector. It also holds a collection of the reconstructed particle tracks.

• myTrack: The class myTrack implements the reconstructed particle tracks.

• myMCEventType: The class myMCEventType stores the original event data that was
generated with the Monte Carlo event generator. It also stores a collection of generated
particle tracks.

• myMCTrack: The original particle tracks, as generated by the Monte Carlo generator,
are stored in the class myMCTrack.

Instances of these classes are stored in a TTree (c.f. Section 2.2.3), named m_outTree. The
m_outTree has two branches, the event branch, which stores class instances of the type
myEventType and the MCevent branch, which stores instances of myMCEventType.

3.2.2. Implementation

The analysis is implemented by a C++ program called SDFreader that is linked to the
ROOT framework to exploit its functionality. The analysis implemented in the SDFreader
reads data stored in events. We give an overview of its main building blocks in the following.
Listing 3.1 shows the main loop for the event analysis. Since we are interested in a particle
that decays into a positively and a negatively charged particle, we need to investigate all

28

3.3. Application of MapReduce to the example analysis

1 for (ev = 0 ; ev < maxEntries ; ev++){
2 . . .
3 t ree−>GetEntry (ev) ;
4 for (int i = 0 ; i < event−>getNTracks () ; i++){
5 tmp = event−>getTrack (i) ;
6 i f (tmp−>getCharge () > 0) {
7 pTracks . push back (∗tmp) ;
8 }
9 else {

10 nTracks . push back (∗tmp) ;
11 }
12 }
13 loopOverTracks (event , pTracks , nTracks , hasMC) ;
14 }

Listing 3.1: Event loop in the original example HEP analysis code.

pairs of positively and negatively charged tracks. The outer loop (lines 1–14) runs over
all events in the input data. In line 3 the complete event data is read from the input file.
The inner for-loop (lines 4–12) runs over all tracks in the event and divides them into two
lists: pTracks, the tracks belonging to positively charged particles and nTracks, the tracks
belonging to negatively charged particles. In line 13, the method loopOverTracks(...) is
called, which is shown in Listing 3.2. This method implements the looping over all pairs
of tracks, where the first track belongs to a positively charged particle and the second
track belongs to a negatively charged particle. The outer loop (lines 4–23) runs over the
tracks of particles with positive charge and the inner loop (lines 6–22) runs over all tracks
from negatively charged particles. The squared particle mass is calculated in the lines 9–13
with help of the information given in the tracks. Since a K-Short particle has a mass of
approximately 498 MeV/c2, 1, particles with a calculated mass below 400 MeV/c2 or higher
than 600 MeV/c2 are not considered any further (lines 16–18). The mass is filled into the
histogram in line 20. Note that additional selection mechanisms are implemented which
are not shown in the listings. For example, only track pairs are considered that are close
enough to be originated from the same point, since they must belong to pions that are the
products of the same decaying K-Short particle.

3.3. Application of MapReduce to the example analysis

Since the events are analyzed independently, we can accelerate the analysis by processing
events in parallel. Each event is investigated whether it contains particles with certain
characteristics (in the example study: a certain mass) and at the end the output is merged.
Since this is a two-step procedure, it can be formulated in a MapReduce manner: Events are

11eV/c2 ≈ 1.783 × 10−36kg

29

3. Analysis

1 void loopOverTracks (myEventType ∗ event , l i s t <myTrack> &pTracks , l i s t <myTrack> &
nTracks , Boo l t hasMC) {

2 . . .
3 // loop on p o s i t i v e t r a c k s :
4 for (itPTrack = pTracks . begin () ; itPTrack != pTracks . end () ; itPTrack++){
5 // loop on nega t i v e t r a c k s :
6 for (itNTrack = nTracks . begin () ; itNTrack != nTracks . end () ; itNTrack++){
7 . . .
8 // c a l c u l a t e mass square :
9 mass2 = (m pi∗m pi + pp2) + (m pi∗m pi + pn2)

10 + 2.0∗ s q r t (m pi∗m pi + pp2) ∗ s q r t (m pi∗m pi + pn2)
11 − (itPTrack−>px + itNTrack−>px) ∗(itPTrack−>px + itNTrack−>px)
12 − (itPTrack−>py + itNTrack−>py) ∗(itPTrack−>py + itNTrack−>py)
13 − (itPTrack−>pz + itNTrack−>pz) ∗(itPTrack−>pz + itNTrack−>pz) ;
14
15 // mass cut
16 i f (mass2 < 400∗400 | | mass2 > 600∗600) {
17 continue ;
18 }
19 . . .
20 g mass . F i l l (s q r t (mass2)) ; // f i l l mass histogram
21 . . .
22 }
23 }
24 }

Listing 3.2: Per-track pair analysis in the original example HEP analysis code.

passed to map functions, which do the event-level analyses and produce new key/value pairs
(in the example case study representing the mass), which are passed to reduce functions
that do the statistical analyses (in the example case study producing histograms).
Since we are going to process multiple input files and the events are numbered inside the
file scope, we can provide this information in the key/value pairs passed to the mapper.
Therefore we define the input key/value pairs as

key := < f i l e path o f the event to be processed>
value := <event number in f i l e >

The intermediate key/value pairs need to be defined such that they represent the charac-
teristics of interest. In the example case study we are looking for particles with a certain
mass. Therefore the intermediate key value/pairs are chosen as

key := <mass o f the p a r t i c l e >
value := <number o f the observed p a r t i c l e s with mass>

In the reduce phase of the job, the intermediate key/value pairs are collected and a his-
togram is created with the help of ROOT.
The main challenge is distributing the input data and producing the initial key/value pairs
efficiently. As described in Section 2.3, MapReduce was initially developed for data process-
ing in Google’s compute clusters. Therefore, its initial application was text-based input such

30

3.3. Application of MapReduce to the example analysis

as logs or index-files. As a result, input data stored in a ROOT-based file format cannot be
processed by Hadoop out of the box due to its complex binary structure.
To be able to process ROOT files with Hadoop, we need to define how the input data should
be read by the framework. The Hadoop API, in general, offers three base classes that define
how input data is handled:

• InputSplit: One InputSplit defines the input that is passed to a single mapper. It
typically consists of several key/value pairs that serve as input for a map function call.

• RecordReader: This class defines how an InputSplit that is passed to a mapper
should be read. It especially defines getters, which return single key/value pairs that
are read in map function calls.

• InputFormat: This class provides the base for all input formats defined for Hadoop.
The most important methods are getSplits(...) which returns an array of Input-
Splits, and the method getRecordReader(...) which returns a RecordReader

which is able to read a corresponding InputSplit.

For example, for text based input, the getSplits(...) method could split a text file into
several blocks. One InputSplit would represent a number of lines from the input data and
the RecordReader would define how these lines are converted into key/value pairs.
Splitting up ROOT-based files however is more complex, since it is not clear where the
data belonging to one event is stored in the file. For input data consisting of several files,
one could be tempted to represent each file by a single InputSplit, but this leads to two
problems.
First, we have no control over the granularity of the subtasks assigned to each mapper. If
we work with big input files, the subtasks assigned to the mappers could take a long time
to complete. This could result in a situation, where the analysis completion is delayed by a
single slow worker node in the cluster. Additionally, if the number of input files is smaller
than the number of worker nodes in the cluster, some of the nodes do not get any subtasks
assigned, which keeps them idle during the analysis.
The second problem is also connected to the file size. The JobTracker tries to schedule
subtasks to worker nodes, where the corresponding input data is stored locally. This means
that InputSplits should be stored completely on single nodes. If the data summarized in
one InputSplit is spread across multiple blocks in HDFS, it becomes very likely it is also
spread across multiple DataNodes. Assuming now that the input file size is larger than the
block size in HDFS and each file is regarded as one InputSplit they cannot be handled
efficiently.
As a result, we need to analyze the physical structure of the input data to be able to define
an input format that splits the data efficiently.

31

3. Analysis

0
1e+07
2e+07
3e+07
4e+07
5e+07

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

b
y
te

p
os

it
io

n

event number

(a)

0
1e+07
2e+07
3e+07
4e+07
5e+07

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

b
y
te

p
o
si

ti
on

event number

(b)

MIN MAX AVERAGE MEDIAN

MIN MAX AVERAGE MEDIAN

Figure 3.3.: Data distribution in an example SDF file storing 20000 events.

3.4. The physical structure of the input data

As described in Section 2.2.3, ROOT uses a complex binary format to store data on disk.
TTrees are utilized and the member variables of classes are split into different branches.
Variables inside the same branch are written to fixed-size buffers first, which are compressed
and written to disk when they are full. Since member variables can be of complex compound
types themselves, subbranches with associated output buffers can be created. The depth,
to which subbranches are created, is controlled by the splitlevel, which is set when
branches are created. By default, ROOT uses the maximum splitlevel of 99, when
a branch is created. In the SDF data format instance of the classes myEventType and
myMCEventType are stored in two separate branches. By setting the splitlevel in the
data generation process we can control the depth to which subbranches are created for their
member variables. We define the byte position as the relative offset of a byte from the file
beginning. The analyzed file consists of 20000 events. This implies that it stores 20000

32

3.5. Definition of HDFS block selection workflow

instances of myEventType as well as 20000 instances of myMCEventType. The example HEP
analysis processes the data of the reconstructed events stored in instances of myEventType.
Therefore, we refer to the data of a single myEventType instance as an event in the further
proceeding.
For the analysis of the physical data structure, all bytes in the input file belonging to a single
event (all data from its member variables) are considered. Figure 3.3 shows a comparison
of the event data structure inside a SDF file, once created with the default splitlevel=99
(plot (a)) and once with a splitlevel=0 (plot (b)). The total file size is around 50 MB.
The minimum observed byte position (MIN), the maximum observed byte position (MAX),
the average byte position (AVERAGE), and the median byte position (MEDIAN) of the
per-event data is calculated. When the splitlevel is set to 99, a subbranch is created
for each member variable. Plot (a) of Figure 3.3 shows that this results in the distribution
of the event data throughout the whole file. However, when we consider the average and
median values, we observe that most of the per-event data is stored within some proximity.
When we reduce the splitlevel to 0, the per-event data is stored sequentially at a certain
byte position inside the file. Since not only the reconstructed event data is stored, but also
the Monte Carlo truth (stored as instances of myMCEventType), the data for the events is
not distributed throughout the whole file in plot (a).
We can observe that even when the data belonging to one event is not stored continuously
inside a file, the event associated data is clustered around certain byte positions. This allows
us to assign certain byte positions to each event.

3.5. Definition of HDFS block selection workflow

When we know the byte positions of the event associated data, we can use this information
to find the blocks in HDFS. Knowing the blocks in HDFS, we are able to split the data
efficiently with a customized InputFormat in Hadoop. Figure 3.4 shows the general per
input file work flow for mapping the event data. Events are numbered inside the file scope
starting with 0. In the flow chart currEvent is the index of the event that is investigated
and totEvents is the total number of events stored in the input file. For each event in the
input data, we use the information in the ROOT file record headers to find the byte positions
of the baskets where the event member variables are stored (step 1). Subsequently, we use
this information to extract the minimal (MIN), maximal (MAX), average (AVERAGE) and
median (MEDIAN) per event byte position (step 2). The outcome is similar to the one we
have shown in the Figure 3.3 of the last section. In step 3 we utilize this information to map
the event under consideration to a certain file block in HDFS. Here, different strategies are
possible. For example we can map the event to the block, that holds the byte at the median
byte position or we try to combine the calculated per event metrics to optimize the mapping

33

3. Analysis

start

currEvent = 0

currEvent

<
totEvents

1. find member
variable byte
positions of

event currEvent

2. calculate MIN,
MAX, AVERAGE,

MEDIAN of
byte positions

3. assign event
currEvent to
corresponding
HDFS block

4. generate
InputSplit

for each HDFS
block with

assigned events

stopcurrEvent++

yes

no

Figure 3.4.: Workflow of the HDFS block selection.

further. Having mapped all events to certain blocks in HDFS, we generate one InputSplit

for each block containing the indexes of the associated events (step 4).

3.6. Remarks on general applicability

The analysis of the physical file structure in Section 3.4 revealed that, even if the per-event
data is split into several branches, it is stored around certain byte positions inside the file.
This led to the definition of the general HDFS block selection workflow in Section 3.5.
Here we use the calculated byte positions to assign events to certain blocks in HDFS. This
approach is not limited to the SDF data format, but can also be used for all kinds of binary

34

3.6. Remarks on general applicability

input data, provided that the bytes belonging to the logical data records are clustered inside
the file. However, if the per-record data is evenly distributed over several blocks in HDFS,
it becomes impossible to split the data such that it can be efficiently processed by Hadoop.
The probability for such a scenario becomes higher, if the size of the individual data records
increases. This problem can also appear with ROOT-based data formats, since the stored
class structures can get arbitrarily complex. For the given SDF data format however, the
individual data records are small (about a few KB) and there is a good chance that most
of its data is stored on a single HDFS block. Thus the input data can be split efficiently
with a customized input format in Hadoop. The next chapter describes how our approach
is implemented.

35

4. Implementation

In this chapter we describe the implementations of the analysis in the Hadoop framework
as well as in the TSelector framework in PROOF. For reading ROOT files from HDFS,
an already existing ROOT plugin is used. We start by introducing this plugin in Section
4.1. The description of the implementation of the map and reduce function in the Hadoop
framework is given in Section 4.2. Subsequently, we describe our customized input format
in Section 4.3. In Section 4.4, the analysis implementation within the PROOF framework
is discussed. Since we need to generate big amounts of input data for our evaluations, we
parallelized the Monte Carlo data generation within the Hadoop framework. Section 4.5
introduces the implementation of this parallelization.

4.1. The HDFS plugin for ROOT

The base class for all file operations in ROOT is TFile. Derived classes that handle the file
operations on different underlying file systems exist. These classes are registered with the
help of a plugin manager and loaded when they are needed. Rudimentary HDFS support for
ROOT is implemented within this framework. The TFile class provides is the base class for
all file operations in ROOT. It provides the method Open(const char* name, ...) that
implements the opening or creation of files. The scheme of the determined URL passed by
name is used internally to determine the subclass to which the open operation is redirected.
If, for example, the name starts with “root:” a TNetFile object is created which handles
data operations on the SCALLA file systems. If the name starts with “http:”, the TWebFile

class is responsible for handling the request. The subclasses managing the file operations
are managed by corresponding subclasses of TSystem, e.g. TNetSystem, which represent
the underlying file system itself. The rudimentary HDFS support is implemented by the
classes THDFSFile and THDFSSystem. Data can be read from files stored in HDFS, but it
currently does not provide any write support. Unfortunately THDFSFile and THDFSSystem

are developed against a deprecated version of the HDFS C-API. Small adjustments had to
be made as part of this thesis to tweak the classes to work with the new API and be able to
read data directly from HDFS with ROOT and PROOF. The adjustments are documented
in Appendix B.

37

4. Implementation

4.2. Analysis implementation in Hadoop

We discuss our design decisions in the next section. Subsequently, we describe the imple-
mentations of the mapper and reducer for Hadoop in more detail. Thereby, we focus on the
parts that are different from the implementation of the example HEP data analysis code.

4.2.1. Design decisions

Since we want to minimize the changes that need to be made to the original analysis code and
need to link to the ROOT libraries, the analysis in the Hadoop framework is implemented
in C++. As described in Section 2.4, there are two possibilities to implement map and
reduce functions in other languages than Java: Hadoop Pipes and Hadoop Streaming. Some
time was spend on developing a solution based on Hadoop Pipes in the early stage of our
investigations, but it turned out to be slow and the approach was discarded. Additionally,
Hadoop Pipes lacks of proper documentation and does not have a broad user community.
Therefore we decided to use Hadoop Streaming.
The mapper and reducer in Hadoop Streaming are implemented as independent executables.
The code modularity and the programming language can, therefore, be chosen freely. It must
only be assured that both programs read their input from the standard input stream line by
line, whereby each line corresponds to a key/value pair. The key/value pairs are defined as
described in Section 3.3. In our implementation, both mapper and reducer are implemented
as single C++ classes: the StreamingMapper and the StreamingReducer. The compiled
programs are linked against the ROOT libraries.

4.2.2. The StreamingMapper

The looping through the events in the original HEP analysis code is transformed to reading
the standard input line by line, where each corresponds to one key/value pair. The map
function uses ROOT to read the event at the given index. The mapper loops through all
particle tracks in one event and calculates the particle mass. If the mass is in the desired
range, the mapper writes the value to standard output, from which it is read by the reducer.
Listing 4.1 shows the shortened implementation of StreamingMapper main function. Data
is read from standard input line by line in the while-loop in line 5. The filename and the
event index are extracted from the input line in the lines 7 to 11. To not repeat the creation
of a file object for each line, the last filename is stored in oldname and compared to the
newly read filename (line 13). If the filename has changed, a new TFile object is created
in line 15. In the lines 17 to 19, the address of the TTree is obtained from the file and the
address of the event to be read is set to the correct branch address. The event is read from
file in line 23. The for-loop starting in line 25 matches the for-loop of the original HEP
analysis code provided in Listing 3.1.

38

4.2. Analysis implementation in Hadoop

1 int main (int argc , char ∗∗ argv) {
2 . . .
3 myEventType ∗ event = NULL;
4 . . .
5 while (std : : c in . g e t l i n e (i nput l i n e , 256)) {
6 . . .
7 int tab = l i n e . f i nd (’ \ t ’ , 0) ;
8 i f (tab != −1){
9 f i l ename = l i n e . subs t r (0 , tab) ;

10 ev = HadoopUtils : : t o In t (l i n e . subs t r (tab , l i n e . s i z e ())) ;
11 }
12 . . .
13 i f (oldname != f i l ename) {
14 . . .
15 h f i l e = TFile : : Open(TString (f i l ename)) ;
16 . . .
17 t r e e = (TTree∗) h f i l e −>Get (”m outTree ”) ;
18 branch = tree−>GetBranch (”event ”) ;
19 branch−>SetAddress(&event) ;
20 . . .
21 oldname = f i l ename ;
22 }
23 tree−>GetEntry (ev) ;
24
25 for (int i = 0 ; i < event−>getNTracks () ; i++){
26 . . .
27 }
28 loopOverTracks (event , pTracks , nTracks , hasMC) ;
29 }
30 }

Listing 4.1: Implementation of the StreamingMapper.

The method loopOverTracks(...) is altered such that, instead of writing the mass to a
histogram, it is written to standard output from where it can be read by the reducer.

4.2.3. The StreamingReducer

The reducer is used to collect the data from the different map jobs and produce the histogram
of the mass distribution. It reads the intermediate key/value pairs, which represent a certain
mass and its count from standard input. For the creation of the histogram, the ROOT
libraries are used. Since the HDFS plugin for ROOT is only able to read data, but not to
write files directly to HDFS, the file containing the histogram is written to the local disk first
and subsequently transferred to HDFS with the Hadoop Command Line Interface (CLI).

1 int main (int argc , char∗ argv []) {
2 . . .
3 TH1D outputHist = TH1D(”g mass ” , ”Ks i nva r i an t mass ” , 100 ,
4 497 .61 − 50 , 497 .61 + 50) ;
5 . . .
6 outputF i l e = TFile : : Open(”/tmp/mapreduce out . root ” , ”RECREATE”) ;
7
8 while (std : : c in . g e t l i n e (f i l e s p l i t , 256)) {

39

4. Implementation

9 std : : s t r i n g l i n e = std : : s t r i n g (f i l e s p l i t) ;
10 int tab = l i n e . f i nd (’ \ t ’ , 0) ;
11 i f (tab != −1){
12 mass = HadoopUtils : : toF loat (l i n e . subs t r (0 , tab)) ;
13 . . .
14 outputHist . F i l l (mass) ;
15 }
16 }
17 . . .
18 system (”hadoop d f s −put /tmp/mapreduce out . root data−out/mapreduce out . root ”) ;
19 . . .
20 }

Listing 4.2: Implementation of the StreamingReducer.

Listing 4.2 shows the important parts of the StreamingReducer. The histogram is created
in line 3. In line 6, the output file in the local file system is opened. The while-loop in the
lines 8 to 16 reads the mass values from standard input, one per line and adds them to the
output histogram. In line 18, the Hadoop CLI is used to transfer the created file to HDFS.

4.3. The input format implementation

In this section, the implementation of the customized input format is described. The main
challenge that needs to be addressed is connected to the fact that input formats for Hadoop
are implemented in Java but the libraries we need to utilize are programmed in C++. The
next subsection describes the resulting design decisions. The customized input format is
called the RootFileInputFormat and is introduced subsequently. We also describe the
implementation of an input format, called StreamingInputFormat, which was done in the
scope of our preceding feasibility study [44], since we use it in a comparison in the later
evaluation.

4.3.1. Design decisions

While Hadoop Streaming can be used to implement map and reduce functions in C++,
it does not provide a way to define a customized InputFormat in a language other than
Java. This leads to the following problem: Utilizing a library written in C++ to obtain
information about the input files during the splitting of the data in the InputFormat is not
possible without further ado. For the steps 1. and 2., depicted in Figure 3.4, we need very
specific information about the input file structure which can be only obtained with the help
of specialized code libraries.
For reading ROOT files with Java, the SCaVis framework [29] exists. It has been developed
to provide a fully featured Java framework for scientific computations. Unfortunately it is
not able to read ROOT based files directly from HDFS. This problem could be solved by
mounting HDFS with the help of FUSE [14]. Since this leads to a performance degradation

40

4.3. The input format implementation

of 20–30% and we are trying to be as independent as possible from other code libraries this
approach was discarded.
Instead we are following another approach for the implementation: step 1. and 2. of Figure
3.4 are removed from the responsibility of the InputFormat and implemented in as a tool
we call RootFileMapper. This tool is responsible for the mapping process and creates files
that we call event maps. One event map is a simple text file, which contains the minimal,
maximal, average and median byte position of the events. Thereby each line corresponds
to the data of one event and the line number corresponds to the index of the event in the
ROOT file. These files are than read by the InputFormat implementation, which does the
final mapping of events to blocks in HDFS and creates the splits for the data distribution
to the mappers.

4.3.2. The RootFileMapper

The C++ RootFileMapper reads input file paths from the standard input line by line and
creates the event maps described above. It reads the input file information from HDFS
using the THDFSFile and stores the event maps in the same folder in HDFS utilizing the
HDFS C-API.
Listing 4.3 shows how the functionality of the ROOT libraries is exploited to extract the
byte positions in the mapHDFSFile(...) function of the RootFileMapper.

1 void FileMapper : : mapHDFSFile (const char∗ inputFileName , char∗ host , int port) {
2 . . .
3 // loop over event s
4 for (int i = 0 ; i < inputTree−>GetEntr ies () ; i++){
5 std : : vector<Long64 t> posVec ;
6 TIter next(&branchList) ;
7 TBranch∗ currBranch ;
8 . . .
9 // loop over branches

10 while ((currBranch = (TBranch∗) next ())) {
11 Long64 t basket = TMath : : BinarySearch (
12 (Long64 t) (currBranch−>GetWriteBasket () + 1) ,
13 currBranch−>GetBasketEntry () , (Long64 t) i) ;
14 TBasket∗ currBasket = currBranch−>GetBasket (basket) ;
15 i f (currBasket == 0)
16 continue ;
17 Long64 t seekkey = currBranch−>GetBasket (basket)−>GetSeekKey () ;
18 Long64 t s i z e = currBranch−>GetBasket (basket)−>GetNbytes () ;
19 . . .
20 Long64 t end = seekkey + s i z e ;
21
22 pos = (seekkey + end) /2 ;
23 posVec . push back (pos) ;
24 }
25 . . .
26 }
27 }

Listing 4.3: Utilizing ROOT for the event mapping.

41

4. Implementation

The method takes the file name, the IP address of the NameNode instance and the port on
which the HDFS file system can be reached as input arguments to connect to the file system
and open the file. Instead of reading the whole file to get the byte positions, the header
information stored in the record headers in the ROOT files is used to directly obtain the
desired information. For each event, we loop over the branches that store the event data.
The byte positions are stored in the vector posVec defined in line 5. For each branch, we
obtain the basket in which the entry is stored in line 11 to 13. In line 17 and 18 the byte
position of the basket in the file (seekkey) and the size of the basket are obtained. The
last byte of the basket is calculated in line 20. The position of the basket is defined as its
middlemost byte position in line 23 and the position is stored in the vector in line 24. The
positions stored in the vector are later on used to calculate the minimal, maximal, average
and median byte positions.

4.3.3. The RootFileInputFormat

The class architecture of the Java input format implementation is depicted in 4.1. The class
InputFormat defines how the input is divided into InputSplits and returns them by a call
to its getSplits() method. The StreamingInputSplit class implements an InputSplit

that stores a range of event indexes and the corresponding file. The StreamRecordReader

implements the corresponding RecordReader that is used by the mappers to extract the
information from the defined splits. The class FileInputFormat is Hadoop’s base class for
file based input formats. Each InputSplit defines the input that is processed by a single
map job. It provides the information on which nodes of the cluster the data can be found
(method getLocations()). Each mapper uses a RecordReader class which knows how the
InputSplit needs to be read. The RecordReader offers the method next(), which is called
by the Hadoop framework to get the next key/value pair. A RecordReader can also im-
plement the getProgress() method, which reports the progress through the InputSplit,
which is processed by the RecordReader. The method isSplittable() offered by the
FileInputFormat returns whether an input file can be split or needs to be processed as a
whole.
The RootFileInputFormat is derived from the FileInputFormat. Internally it uses an
EventMapSplitter and an EventMapImporter. The EventMapImporter is used to import
the event maps generated by the RootFileMapper. One event map is represented by a data
class called EventMap. The method getSplits(...) of the RootFileInputFormat dele-
gates the splitting to an implementation of the EventMapSplitter, which has a generate-

InputSplits(...) method that takes the imported event map, the file for which the
InputSplits should be generated and the locations of the blocks in HDFS as input argu-
ments. It returns a list of generated InputSplits that define how the input data should be
divided among the different map jobs.
The BasicEventMapSplitter implements a simple heuristic to finally map the

42

4.3. The input format implementation

Figure 4.1.: Class diagram for RootFileInputFormat.

43

4. Implementation

1 public List<InputSp l i t> g ene r a t e Inpu tSp l i t s (F i l e S t a tu s f i l e , EventMap eMap ,
2 BlockLocat ion [] b lockLocat ions) throws IOException{
3 . . .
4 for (int eventNr = 0 ; eventNr < eMap . g e tS i z e () ; eventNr++){
5 // j u s t in case there i s a b l o ck which conta ins no data .
6 while (eMap . getAvgforEv (eventNr) > l im i t) {
7 i f (s tar tEvent < endEvent − 1) {
8 endEvent = eventNr − 1 ;
9 s p l i t s . add (new StreamingInputSp l i t (rootCompatiblePath ,

10 startEvent , endEvent ,
11 currentBlockLocat ion . getHosts ())) ;
12 startEvent = eventNr ;
13 }
14 currentBlockIndex++;
15 currentBlockLocat ion = blockLocat ions [currentBlockIndex] ;
16 l im i t = currentBlockLocat ion . g e tO f f s e t () +
17 currentBlockLocat ion . getLength () ;
18 }
19 }
20 s p l i t s . add (new StreamingInputSp l i t (rootCompatiblePath ,
21 startEvent , eMap . g e tS i z e () − 1 , currentBlockLocat ion . getHosts ())) ;
22
23 return s p l i t s ;
24 }

Listing 4.4: Basic heuristic for mapping events to blocks in HDFS.

events to blocks inside HDFS. Listing 4.4 shows the important parts of the
generateInputSplits(...) method. The loop starting in line 4 is looping over all events
that are listed in the event map. We are assigning the events to the blocks where their
average byte position is stored. Since the array with the block locations stores the blocks
in ascending order of their position in the file, we can start from the beginning of the
array. The limit is set to the last byte of the first block that contains data at the begin-
ning and startEvent is set to 0. We increase the event index eventNr until we find the
first event, which average byte position is not on the current HDFS block (line 6). Since
we know that the events have increasing average byte positions, we can now create the
StreamingInputSplit for the current HDFS block (line 9–11). After that the startEvent

is set to the current event number (line 12) and we take the next block in HDFS into account
(line 14–15). In line 16 the next limit is set to the last byte of the new HDFS block.
The increasing of the current block index is done in a while-loop (line 6–18), since it might
be that there are blocks that contain no event data at all. For this case, we also need the
if-condition in line 7 to avoid adding each StreamingInputSplit more than once.

44

4.4. Analysis implementation in PROOF

Figure 4.2.: Class diagram for StreamingInputFormat.

4.3.4. The StreamingInputFormat

The StreamingInputFormat implements our first approach to split the ROOT data
and was developed during our preceding feasibility study [44]. Figure 4.2 shows its
class hierarchy. It uses the same StreamingInputSplit and StreamRecordReader as
the RootFileInputFormat. The problems that arise when the input files are bigger
than the blocks in HDFS are not addressed. The getSplits(...) method of the
StreamingInputFormat returns StreamingInputSplits with a fixed size of 25000 events.

4.4. Analysis implementation in PROOF

Given a file, which stores data in a TTree, we can utilize ROOT to automatically generate
a skeleton for a TSelector that is able to process the data. Listing 4.5 shows the steps that
need to be executed on the ROOT command line to generate a TSelector for a given input
file.

1 root [0] TFile ∗ f = TFile : : Open (” t r e e f i l e . root ”)
2 root [1] TTree ∗ t = (TTree ∗) f−>Get (”T”)
3 root [2] t−>;MakeSelector (”MySelector ”)
4 root [3] . ! l s MySelector ∗
5 MySelector .C MySelector . h

Listing 4.5: Generating a TSelector [25].

45

4. Implementation

Hereby “treefile.root” is the name of the file containing the input data. “T” is the name
of the TTree and the created TSelector is called “MySelector”.
The analysis code is divided into the methods described in Section 2.2.2 and the imple-
mentation is described in more detail in the next subsections. The analysis is submitted to
the PROOF cluster with a wrapper C++ program that is defining the input data and the
TSelector which should be utilized for the processing.

4.4.1. MySelector::SlaveBegin()

The SlaveBegin() method is used to create a histogram which is later filled with the
calculated particle mass in a specific range. The difference to the original analysis code is
that each worker creates its own histogram object. These objects are transferred to the
client that submitted the job, which then creates the final output. The skeleton of the
SlaveBegin() method is given in Listing 4.6. The histogram is created in line 4 and added
to the output in line 5.

1 void MySelector : : S laveBegin (TTree ∗ t r e e)
2 {
3 . . .
4 gmass = new TH1D(”g mass ” , ”Ks i nva r i an t mass ” , 100 , 497 .61 − 50 , 497 .61 + 50) ;
5 fOutput−>Add(gmass) ;
6 }

Listing 4.6: Implementation of MySelector::SlaveBegin().

4.4.2. MySelector::Process()

The Process(Long64_t entry) method is used to implement the per-event analysis. It is
called for each event in the TTree in the input data, whereby entry is the event index in
the file. The per-event analysis is implemented as in the original analysis. Listing 4.7 shows
the skeleton of the Process() implementation. The TTree, which stores the input data,
is automatically read by the TSelector framework and is accessible through the fChain

variable. In line 4, the complete event is read from the input data. The for-loop, which
starts in line 6, implements the event based analysis as described in Listing 3.1.

1 Bool t MySelektor : : Process (Long64 t entry)
2 {
3 . . .
4 fChain−>GetTree ()−>GetEntry (entry) ;
5 . . .
6 for (int i = 0 ; i < event−>getNTracks () ; i++){
7 . . .
8 }
9 loopOverTracks (event , pTracks , nTracks , hasMC) ;

10 . . .
11 }

Listing 4.7: Implementation of MySelector::Process().

46

4.5. Parallelization of event data generation

4.4.3. MySelector::Terminate()

The Terminate() method implements the generation of the final histogram file. It is called
on the client and the final histogram is written to the directory from which the job was
submitted to the PROOF master. The implementation is shown in Listing 4.8. The final
histogram is obtained from fOutput in line 2. Note that the histograms, created by the
workers, are automatically merged by the framework. Final formatting of the histogram is
done in the lines 8 and 9 and the output file is created in line 12. In line 14 the histogram
is written to the output file.

1 void MySelector : : Terminate () {
2 gmass = dynamic cast<TH1D∗>(fOutput−>FindObject (”g mass ”)) ;
3 . . .
4 i f (gmass == 0) {
5 Error (”Terminate ” , ”gmass = %p” , gmass) ;
6 return ;
7 }
8 gmass−>SetMinimum (0 . 0) ;
9 gmass−>GetXaxis ()−>Se tT i t l e (”mass [MeV] ”) ;

10
11 TString f i leName = ” t e s t . root ” ;
12 TFile ∗ outputF i l e = TFile : : Open(fi leName , ”RECREATE”) ;
13
14 gmass−>Write () ;
15 }

Listing 4.8: Implementation of MySelector::Terminate()

4.5. Parallelization of event data generation

The Monte Carlo data generation is a time-consuming task. Generating 3 × 105events on
m1.medium-instance in the Amazon EC2 cloud takes around halve an hour to complete.
Since we aim to scale the input data up to 108 events, using just one instance to generate
the data could easily take a few days. Additionally, storing the whole generated data in
the local storage of one instance could easily result in data loss. Therefore the generation
and storage of the generated data was mapped to Hadoop and HDFS. As described in
section 2.4.3 programs that read data from standard input line-by-line could be used in a
MapReduce manner with the help of Hadoop Streaming. The fact that the bash script, used
to generate the data, reads the number of events from standard input makes it a candidate
to be used as a map function. The total number of events to be generated is split up into
chunks of equal size. For each chunk a text file is created that just contains the number
of events in this chunk. When defining these files as input in Hadoop, they are treated as
individual InputSplits and thus assigned to individual map functions by default. Hadoop
can be used without specifying a reduce function. The bash script for generating events
was modified, such that it copies the ROOT files that are generated in the second step to

47

4. Implementation

a specified folder in HDFS. In addition it forks a second bash script as a subprocess which
reports the status of the generation to standard error, which can be read by the Hadoop
framework to provide progress feedback during the generation process.
Since we are going to produce a lot of input files in parallel, which should be stored in
a common namespace in HDFS, we need to make sure that they receive globally unique
names. Therefore we name the files by combining the cluster-unique IP address of the host
generating the data with the current timestamp. Since we are making sure that only one
map job is running on a node at a time during data generation, this combination is enough
to provide global unique names in the common namespace.

48

5. Deployment

To evaluate the solution developed in the previous chapters and to exploit the applicability
of cloud computing to LHC data analysis, we deployed Hadoop and PROOF clusters in
Amazon’s EC2 cloud. To decide on a suitable (virtual) hardware configuration, we evaluated
the different instances types offered by the EC2 cloud. Before deploying a cluster in the
cloud, a customized AMI was build and scripts to ease cluster management were developed.
A short remark, why we did not use Amazon’s EMR is given in Section 5.1. Section 5.2
describes the benchmarks that were conducted on the different instance types and discusses
the AMI configuration. Subsequently, Section 5.3 introduces the Ganglia monitoring system,
which is used to monitor the Hadoop and PROOF clusters and Section 5.4 discusses the
cluster layout in more detail. In Section 5.5, the deployment and management of the clusters
is described and in Section 5.6, we summarize the limitations and costs that occur when
using Amazon’s EC2.

5.1. Remarks on Elastic MapReduce

Initially, the Amazon’s EMR was considered to deploy a Hadoop cluster in the cloud. After
several trials it turned out that its API does not provide all the functionality that is needed
for the project: the Hadoop versions used in EMR are not state of the art and installing all
the required software by Bootstrap Actions (compare section 2.6.5) is not very handy. Addi-
tional to installations of the Hadoop framework, non-trivial installation of ROOT/PROOF
and SCALLA are needed. Therefore the clusters were deployed on top of EC2 manually as
described in the following.

5.2. Cluster node configuration

A customized AMI was build with the software required for the evaluation. Additionally
the performance of different Amazon instance types was evaluated to decide on the suitable
(virtual) hardware configuration for the cluster nodes. We were especially interested in de-
termining the performance difference between instance storage and EBS storage, since we
are going to analyze huge amounts of data.
Instance storage is technically realized by the hard disks that reside inside the host com-
puters where the virtual instance is launched. Thus several instances launched on the same

49

5. Deployment

host computer might use isolated parts of the same hard disk. Instance storage volumes
cannot be detached from one instance and reattached to another since they are bound to
the host that is launching the instance. Data stored on instance storage is lost, when the
corresponding instance is terminated.
EBS storage volumes can be used to store data persistently. Snapshots and incremental
backups are provided. Technically, they are network drives, which make it possible to de-
tach EBS volumes from one instance and reattach it to another. EBS-storage volumes can
also be launched with a guaranteed number of IOPS. The downside of utilizing EBS are
extra fees.
We evaluated the usability of instance storage and EBS-storage by performing some read-
/write tests on the corresponding volumes on different instance types. Additionally the
original HEP analysis described in Section 3.2 was launched on different instance types to
get a feeling for the overall instance performance specific to the targeted problem. The con-
figurations of the benchmarked instance types are given in Table 5.1. Each instance comes
with a certain amount of instance storage that can be utilized. To evaluate the performance
of EBS storage an extra EBS volume was connected to the instance. Note that the highly
specialized compute instances in the EC2 cloud were not considered, since we are aiming
to build a distributed cluster build from a few hundred nodes instead of launching only a
few nodes with high computational capacity. The prices given in the column are the actual
prices for running the corresponding instance type in the EU West (Ireland) region for one
hour on demand.

5.2.1. Conducted benchmark tests

The conducted benchmarks tests are described in more detail in the following.

Write test with dd

For the write test we used the standard Linux tool dd to write approximately 1GB of data
to the targeted volume. The tool is called from the command line as given below.

dd i f =/dev/ zero o f=b i g f i l e bs=512k count=2000 conv=fdatasync

Thereby if specifies the device where the data is read from, of is the name of the output
file, bs is the block size for the individual blocks written to the volume and count is the
number of blocks that are written to the device. The option conv=fdatasync is used to
force dd to physically write all data to disk before finishing.

Read test with dd

We used dd again to perform a read test on the targeted volume. Thereby the written file
is read again to measure the read speed. Before the test is conducted, it is made sure that
the file did not reside in the memory anymore, by writing another file that is big enough to

50

5.2. Cluster node configuration

Type Memory CPU Inst. Storage Platform Price/hour

Standard Instances

m1.small 1.7 GiB 1 ECU 160 GB 32-bit/64-bit $0.065

m1.medium 3.75 GiB 2 ECUs 410 GB 32-bit/64-bit $0.130

m1.large 7.5 GiB 4 ECUs 850 GB 64-bit $0.260

m1.xlarge 15 GiB 8 ECUs 1690 GB 64-bit $0.520

High-CPU Instances

c1.medium 1.7 GiB 5 ECUs 350 GB 32-bin/64-bit $0.165

c1.xlarge 7 GiB 20 ECUs 1690 GB 64-bit $0.660

High-Memory Instances

m2.xlarge 17.1 GiB 6.5 ECUs 420 GB 64-bit $0.460

m2.2xlarge 34.2 GiB 13 ECUs 850 GB 64-bit $0.920

m2.4xlarge 68.5 GiB 26 ECUs 1690 GB 64-bit $1.840

High I/O instances

hi1.4xlarge 60.5 GiB 35 ECUs 2x1024 GB (SSD) 64-bit $3.410

Table 5.1.: Configuration of the benchmarked instance types.

occupy all memory of the instance. For the read test the tool is called from the command
line as given below.

dd i f=b i g f i l e o f=/dev/ n u l l bs=512k

The parameters are the same as described above.

Read test with hdparm

In the third test we used the standard tool hdparm to measure the read speed. The command
line call is given below.

hdparm −t /dev/ xcdf

The option -t is set to perform timed readings. The second option /dev/xcdf is the device
from which the data is read. The result is an indication how fast uncached data can be read
from the device.

Performance of the example HEP analyses on 20000 events
For the last test we executed the original example HEP analysis code given as a program
called SDFreader that was reading data from the targeted volume. The program reads
data from a file in the same directory containing 20000 events by default and conducts the
analyses described in section 3.2. We used the Linux tool time to measure the execution
time. The program call is given below.

51

5. Deployment

time −o r e s u l t −f ‘ ‘%e ’ ’ . / SDFreader

The option -o sets the output file. The output format is specified with -f. Here ‘‘%e’’

determines the time it takes for the program to finish. The program SDFreader is executed
in the local directory, which was either on an EBS volume or on instance storage.

5.2.2. Benchmark results

Figure 5.1 shows the outcome of the performance benchmarking. The benchmarking was
done both on EBS volumes and instances storage and repeated five times for each test.
The average value as well as the minimum and maximum measured values are plotted
for each instance type. We observe huge performance fluctuations in the read/write speed
benchmarks and it is hard to deduce general trends. The instance storage performance varies
because of other instances launched on the same host and the EBS storage performance
varies because of other traffic in the network. Instance storage delivers better performance
in most of the cases but in general its performance is even less predictable when compared
to EBS. The measurements with hdparm (plot (c)) show much less fluctuations. The peak
for the hi1.4xlarge instance happens because of its internal SSD (see Table 5.1), which offers
much higher read performance. We have no explanation, why this is not reflected by the dd

test (plot (a)).
Plot (d) shows the time measurements for analyzing 20000 events with the original example
HEP analysis program. When comparing the average measured values, there is only little
difference between the underlying storage systems. Performing the analysis on instance
storage tend to be a little faster than on EBS storage. The highest performance difference
is between the m1.small instance and the m1.medium instance, while the differences to the
other instance types are not that distinctive.
Summarizing our results, we observe that the performance of the underlying storage system
is subject to some fluctuations and is affected by other processes running in the EC2 cloud.
The impact on the analyses execution however is limited.

5.2.3. Final node configuration

The analysis conducted above suggests to use the m1.medium instance for the basic cluster
nodes, since it offers fairly good performance for a moderate price. We have seen that
instance storage tend to offer better performance in comparison to EBS storage but that
this has limited impact on the overall performance of the analysis. When choosing the
underlying storage, we also need to consider that we are going to generate data that is
stored on the cluster during the whole analysis. If we are forced to restart the cluster, all
data stored in instance storage is lost. To provide more flexibility and reliability EBS seem
to be the better storage solution for our problem. The final virtual hardware configuration
for the basic cluster nodes is given below.

52

5.2. Cluster node configuration

40
60
80

100
120
140
160
180
200

m
1.sm

all
m

1.m
ed

iu
m

m
1.large

m
1.x

large
c1.m

ed
iu

m
c1.x

large
m

2.x
large

m
2.2x

large
m

2.4x
large

h
i1.4x

large

re
ad

sp
ee

d
[M

B
/s

]

read speed measured with dd

(a)

10
20
30
40
50
60
70
80
90

100
110

m
1.sm

all
m

1.m
ed

iu
m

m
1.large

m
1.x

large
c1.m

ed
iu

m
c1.x

large
m

2.x
large

m
2.2x

large
m

2.4x
large

h
i1.4x

large

w
ri

te
sp

ee
d

[M
B

/S
]

write speed measured with dd

(b)

0

50

100

150

200

250

300

350

m
1.sm

all
m

1.m
ed

iu
m

m
1.large

m
1.x

large
c1.m

ed
iu

m
c1.x

large
m

2.x
large

m
2.2x

large
m

2.4x
large

h
i1.4x

large

re
ad

sp
ee

d
[M

B
/s

]

read speed measured with hdparm

(c)

0
5

10
15
20
25
30
35
40

m
1.sm

all
m

1.m
ed

iu
m

m
1.large

m
1.x

large
c1.m

ed
iu

m
c1.x

large
m

2.x
large

m
2.2x

large
m

2.4x
large

h
i1.4x

large

to
ta

l
ex

ec
u

ti
on

ti
m

e
[s

] example study execution

(d)

EBS
instance storage

Figure 5.1.: Benchmarking results on different instance types in EC2.

53

5. Deployment

Instance type: m1.medium
CPU: 2 ECUs
Architecture: 64-Bit
Boot volume: EBS
Memory: 3,75 GB RAM
Intance-storage: 410 GB
EBS-storage: 100 GB

This hardware configuration is used for all cluster nodes except for the monitoring master
(c.f. Section 5.3 for more details). With increasing cluster size, the number of scheduled
IOPS that are directed to the database of the monitoring server becomes too large to be
handled by a standard EBS volume. Standard EBS volumes can handle around 100 IOPS.
For larger cluster sizes EBS volumes with 1000 IOPS and 2000 IOPS were used respectively.

5.2.4. Software

Hadoop, HDFS, ROOT, SCALLA, PYTHIA and all their dependencies are installed on the
customized AMI. The versions of the deployed software are listed below.

Ubuntu: 12.04 with Linux kernel 3.2.0-27-virtual
SCALLA: 3.2.0
Hadoop: 1.0.4
ROOT/PROOF: 5.34/05
PYTHIA: 8.1
Ganglia: 3.5.2

In our first trials, we used PROOF 5.34/01 but it turned out that it suffered from a bug that
caused the worker processes to deadlock under certain conditions. The bug was reported
to the PROOF developers and seems to be fixed with version 5.34/05 that was then used
instead.

5.3. Cluster monitoring

To monitor the status of the deployed cluster and to be able to record metrics like network
throughput and CPU utilization, the Ganglia monitoring system [52] is used. It provides
a highly scalable solution to monitor distributed systems in the order of a few thousands
nodes. Ganglia consists of three daemons: the monitoring daemon gmond, the meta daemon
gmetad for collecting the data and gweb, a daemon for summarizing cluster information on
a web page.
Each node in the cluster collects metrics e.g. CPU load or free memory of its own by

54

5.4. Cluster layout

running the gmond daemon. The monitored nodes are organized into groups. In the normal
Ganglia mode each of these groups share a common UDP multicast address. The metrics
are stored locally and reported to the other nodes in the group using the multicast address
every specified second. With this approach, each node in the group knows the status of all
other nodes in the group at any time. This provides redundancy on the one hand and on
the other hand, it allows Ganglia to be highly scalable, since the monitored hosts can be
split up in multiple groups, which share one multicast address per group.
To collect and store the metrics at a single point, a node is running the gmetad. This daemon
polls the metric data from an arbitrary node of each group and stores it in round-robin-
databases. These databases store only a fixed number of values representing a certain time
period. When the number of stored values exceeds the specified amount, the old database
values are overwritten by new values following the round-robin scheduling principle. This
design is well suited for monitoring since often only a given time period is of interest.
The gweb daemon reads the data from the round-robin databases and represents it on a
PHP-based Web site.
In our cluster deployments Ganglia is configured in a slightly different manner. Since we
want to minimize the use of resources on the worker nodes for other tasks except the analysis,
storing the monitoring information on all nodes did not seem suitable. Except we use a
Ganglia configuration, where each node is sending the metrics directly to the node running
the gmetad using a Transmission Control Protocol (TCP) socket. This approach is less
scalable since it puts a high I/O load on the gmetad node, but it reduces the load on the
rest of the worker nodes.

5.4. Cluster layout

All nodes are running in Amazon’s EC2. Since we are running evaluations with different
cluster sizes and no fixed usage pattern, on demand instances seemed to be the most suitable
solutions. To simplify the management of the configurations a VPC is created and Elastic
IP addresses are assigned to master nodes additionally. Each master is launched within an
associated security group (compare Section 2.6.3) to establish basic security mechanisms
and firewall configurations. The next two subsections describe the framework specific con-
figurations for the clusters.

5.4.1. Hadoop cluster layout

The Hadoop cluster layout is shown in Figure 5.2. The master daemons JobTracker and
NameNode are running on separate instances to distribute the load and ease fault recovery.
Since the namespace is small in our evaluations, the effort of restoring the file system state by
hand does is comparably small to maintaining an instance running a SecondaryNameNode, so

55

5. Deployment

Virtual

Private Cloud

Tasktra

cker

Slave 1

TaskTracker

DataNode

ganglia-

monitor

Master

JobTracker

Master

NameNode

Master

gmetad

Tasktra

cker

Tasktra

cker

Slave 2

TaskTracker

DataNode

ganglia-

monitor

Slave N

TaskTracker

DataNode

ganglia-

monitor

Elastic IP Elastic IP

Elastic IP

Figure 5.2.: Hadoop cluster layout.

no SecondaryNameNode is deployed. Elastic IP addresses are assigned to the instances run-
ning the JobTracker and the NameNode respectively. Both the JobTracker and NameNode

daemons are hosting Web sites that represent their current status. The JobTracker web-
site collects scheduling information about the submitted jobs, while the NameNode website
represents the current status of the HDFS file system.
The slave instances are running both a JobTracker and a DataNode. The 100 GB of EBS-
storage available per instance is used as a boot volume as well it is integrated in HDFS. So
if the number of slave nodes is m the total capacity of HDFS sums up to 100 GB ×m. The
actual capacity available for storing data of the deployed file system however is smaller, since
each instance is using around 7 GB for the operating system and installed applications.
The replication factor in HDFS was set to 3 throughout all experiments with a block size
of 64 MB.

5.4.2. PROOF cluster layout

Figure 5.3 shows the layout for the PROOF cluster. All nodes are running the cmsd and
xrootd daemons. One node is taking the role of a PROOF master and is responsible for
scheduling the workload on the worker nodes. It also acts as a redirector for the SCALLA
distributed file system. As described in section 2.2.4 the cluster is organized in a 64-ary tree
structure. When launching more than 64 worker nodes an additional supervisor is needed
for each 64 extra nodes. In Figure 5.3 Worker 2 is acting as a supervisor. Similar to the
HDFS configuration described above the 100 GB of EBS-storage is integrated into the file
system.

56

5.5. Cluster management

Virtual

Private Cloud

Tasktra

cker

Worker 1

xrootd

cmsd

ganglia-

monitor

Master

xrootd

cmsd

Master

gmetad

Tasktra

cker

Tasktra

cker

Elastic IP Elastic IP

Worker 2

xrootd

cmsd

ganglia-

monitor

Worker 64

xrootd

cmsd

ganglia-

monitor

Tasktra

cker

Worker 65

xrootd

cmsd

ganglia-

monitor

Tasktra

cker

Tasktra

cker

Worker 66

xrootd

cmsd

ganglia-

monitor

Worker 128

xrootd

cmsd

ganglia-

monitor

Figure 5.3.: PROOF cluster layout.

5.5. Cluster management

To ease the cluster management a suite of bash scripts was developed. They are based on
scripts that come with the Hadoop framework that utilize the EC2 CLI to deploy Hadoop
clusters in the EC2 cloud. Their functionality was extended to provide automatic config-
uration of the PROOF/SCALLA cluster deployment. More details on the steps taken to
deploy the clusters are given in the Appendix C. Additionally the master daemons for the
Hadoop clusters are deployed on different instances and the Ganglia monitoring system is
configured automatically. The Hadoop daemons can be started and stopped with the help
of wrapper scripts that come with the framework. For starting managing the xrootd and
cmsd daemons of the SCALLA file system, System V scripts were developed and deployed
on the cluster nodes.

5.5.1. Authentication

There are three different authentication mechanism used by the different AWS services:
access keys, X.509 certificates and Amazon EC2 key pairs. For the services we utilize, no
X.509 certificates are required, so we are only going to briefly mention the other two.
Access keys are based on symmetric key cryptography and are mainly used to make API
calls to EC2. An access key consists of an access key id, that is publicly known and a secret
access key that is only known by Amazon and the user. When making a service request the
secret access key is used to create a digital signature. This signature and the access key ID

57

5. Deployment

are send alongside the request to Amazon. Amazon now used the access key id to lookup
the secret access key, which is then used to verify the signature.
Amazon EC2 key pairs are used to protect SSH access to EC2 instances. They are based
on asymmetric key cryptography and consist of a key pair name, a private key and a public
key. The key pair name is used to assign the key pair to instances on launch time. The
public key part of the specified key pair is thereby automatically copied to the instance.
The private key is then used to securely log into the instance.

5.6. Limitations and costs of utilizing the AWS services

Certain service limitations are exposed to AWS customers by default. While this thesis is
written, customers are limited to run only 20 EC2 instances at the same time and use 20
TB of EBS storage. For the total cluster sizes we are aiming to deploy in EC2, we needed
to apply for increased limits. Finally we got permissions to start 1005 EC2 instances using
a total of 60 TB of EBS storage in the region EU West (Ireland) of EC2.
Sometimes we were not able to successfully request a larger number of on demand instances
at the same time, because of capacity limitations in the EC2 cloud. In this case the API
request was answered by the message given in Figure 5.4. Since we are deploying our clus-
ters in a VPC, we are bound to the Availability Zone that was specified when the VPC was
created. Hence choosing another Availability Zone as suggested in the message was not an
option. By repeating the request with a smaller number of instances from time to time, we
were able to increase our cluster size up to the desired number of nodes incrementally. The
largest number of instances we use in parallel is 483. Note that even when we got permission
to use 1005 instances, even requesting halve the number of instances on demand already led
to problems.

Server . I n s u f f i c i e n t I n s t an c eCapa c i t y : We cu r r en t l y do not have s u f f i c i e n t
m1.medium capac i ty in the Ava i l a b i l i t y Zone you reques ted (eu−west−1a) .
Our system w i l l be working on p r ov i s i on i ng add i t i ona l capac i ty . You can
cu r r en t l y get m1.medium capac i ty by not s p e c i f y i n g an Ava i l a b i l i t y Zone
in your r eque s t or choos ing eu−west−1b , eu−west−1c .

Figure 5.4.: Capacity limitations in the EC2 cloud.

For this thesis we are using a Amazon research grant to cover the EC2 fees. Since we
are financially bound by this grant, also our compute time in the cloud is limited. To not
exceed the research grant, rough costs estimates are conducted, before the clusters for the
evaluations are deployed. Table 5.4 shows a cost estimation for conducting the scalability
evaluations of the Hadoop-based solution described in Section 6.4 of the next chapter. The
number of nodes (#Nodes) is the number of worker nodes plus the number of master nodes.

58

5.6. Limitations and costs of utilizing the AWS services

#Nodes GB/Node #Hours Instance costs Storage costs Total costs

124 100 35 $564.20 $64.17 $628.37

244 100 30 $951.60 $108.23 $1059.83

484 100 20 $1258.40 $143.12 $1401.52

Sum $3089.72
Table 5.4.: Cost estimation for scalability evaluation of the Hadoop-based solution.

Each node corresponds to a m1.medium instance ($0.13/hour). Only the Ganglia master is
deployed on an m1.large instance which is double the price ($0.26/hour) and hence counts
as two nodes. The number of hours (#Hours) is a rough estimate of how long the given
cluster size is needed. The main costs that occur are the costs of running the instances per
hour (Instance costs) and the costs for the EBS storage (Storage costs). Amazon advertises
the EBS storage price as $0.11 per GB and month for the EU Ireland region. Experiences
show that the charges are calculated on an hourly usage base, such that we can estimate
the storage price also per usage hour. Note that additional charges apply for using Elastic
IPs, provisioned IOPS and EBS-optimized volumes in the Ganglia master and per million
I/O requests. Nevertheless, the table provides a rough estimate of the costs that apply,
when launching clusters of the given size for the given time period in the EC2 cloud. The
estimated costs correspond to the costs for generating and analyzing 1 TB of event data
with Hadoop on three different clusters with 120 worker nodes, 240 worker nodes and 480
worker nodes respectively. The table shows that running a 480 worker node cluster for 20
hours already costs around $1400. Since we are bound by the research grant, generating
and analyzing more input data is not possible in the scope of this thesis. Doubling the
input data effectively doubles the analysis time and therefore the costs for the experiments.
Additionally the problems, when launching a large number of on-demand instances which
are described above, keeps us from scaling the cluster sizes further.

59

6. Evaluation

To evaluate the concepts developed in this thesis, we deployed Hadoop and PROOF clusters
in Amazon’s EC2 cloud. In Section 6.1, we introduce the metrics that are used to measure
the performance of the implemented systems. Section 6.2 compares the performance of the
RootFileInputFormat and the StreamingInputFormat. The performance of the Hadoop-
based solution is compared with the performance of the PROOF-based solution in Section
6.3. Subsequently, in Section 6.4, we investigate the scalability of the parallelized example
HEP analysis on large Hadoop clusters.

6.1. Metrics

For analyzing the performance of the implementations in Hadoop and PROOF, we use a
couple of metrics. These are described in the following.

6.1.1. Total execution time

The total execution time Ttot is the total time in seconds [s] it takes to analyze the events

given in the input data. In Hadoop, we measure THadoop
tot that is the elapsed time from

submitting a job until all output data is written. Generation time of the event map files is
not included. The event map files are created only once after generating the input data and
are kept in the same directories in HDFS as the corresponding data files. Therefore we do

not add the time it takes to generate the event map files to THadoop
tot . Similarly, we define

TPROOF
tot which is the time in seconds it takes from submitting a job to the PROOF cluster

until all output data is collected and written.

6.1.2. Events per second

P is the average number of events that were analyzed per second, i.e.

P =
Ntot

Ttot

, where Ntot is the total number of events in the input data. P is measured in [1/s].

61

6. Evaluation

6.1.3. Average network throughput

We measure the average network throughput throughout the whole cluster during the analy-
sis. This is measured in bytes per second [Bytes/s] and includes all traffic that is transferred
over the network. The average network throughput is a good indicator on how much data
was read from remote locations.

6.1.4. Average CPU utilization

We use the CPU utilization of the cluster nodes as an indicator for the scheduling behavior
of Hadoop and PROOF. If the subtasks are scheduled properly, the CPU utilization should
be high on all worker nodes throughout the whole analysis.

6.1.5. Remarks on scalability

We are interested in the behavior of the distributed systems using Hadoop and PROOF
when we scale up their computational resources by adding more worker nodes. Scalability
is an often cited property of distributed systems, but it lacks of a formal definition [49],
which is necessary to measure it quantitatively. Therefore we stick to an intuitive notion of
scalability:
We say a solution is scalable, if the average number of analyzed events per second P increases
linearly with the number of worker nodes.
However, this definition is a bit loose, because the speedup is clearly limited in general: In
theory, when using Hadoop, the number of worker nodes working in parallel is limited by
the number of InputSplits generated for the given input data. Increasing the number of
worker nodes any further does not result in any speedup. When working with PROOF, the
number of worker nodes processing data in parallel is limited by the number of packets

generated by the packetizer. Increasing the number of worker nodes beyond the number
of generated packets does not lead to any further speedup. Since an event is the smallest
possible unit to be processed independently, the number of InputSplits and packets is
limited by total number of events in the input data.
In addition to the constraints exposed by the splitting of the input data, other factors limit
the speedup. Amdahl already stated in 1967 [10] that the speedup that can be expected
by parallelism is limited by parts of a program that cannot be parallelized. Furthermore
parallelism adds management overhead to the execution. For example, setting up the job
in the cluster and merging results does not benefit from adding more worker nodes, since it
requires additional set up of network connections between the nodes and data transfer over
the network.

62

6.2. Evaluation of the RootFileInputFormat

1000
2000
3000
4000
5000
6000
7000
8000

1e+
06

2e+
06

3e+
06

4e+
06

5e+
06

6e+
06

7e+
06

8e+
06

to
ta

l
ex

ec
u

ti
on

ti
m

e
[s

]

number of events

(a)

500
550
600
650
700
750
800
850
900
950

1000

1e+
06

2e+
06

3e+
06

4e+
06

5e+
06

6e+
06

7e+
06

8e+
06

ev
en

ts
p

er
se

co
n
d

[1
/s

]
number of events

(b)

RootFileInputFormat StreamingFileFormat

Figure 6.1.: Comparison of the total execution time and analyzed events per second of the StreamingInput-

Format and RootFileInputFormat on a 15 node cluster with varying input size.

6.2. Evaluation of the RootFileInputFormat

We measured the performance of RootFileInputFormat by performing several test runs
with varying input size and compare the results to evaluations done with the Streaming-

InputFormat. For each of the test runs, the input data was stored in a single file. This
input file contained 7.5× 105 events (1.8 GB), 1.875× 106 events (4.4 GB), 3.75× 106 events
(8.8 GB) and 7.5 × 106 events (18 GB) respectively. For the evaluation, we fix the cluster
size to 15 worker nodes. The data size was chosen, such that the StreamingInputFormat

generates 30, 75, 150 and 300 InputSplits respectively leading to an average number of
maps assigned to each worker node of 2, 5, 10 and 20. We repeat the evaluations two times
for each input size to be able to detect negative impact of other processes running in the
cloud. Note that, since we are financially bound by our research grant, we have to limit the
number of iterations for our evaluations.

Figure 6.1 shows the total execution time (plot 6.1.a) and the analyzed events per second
(plot 6.1.b) for both input formats. Both formats show a similar performance. Investigating
the total execution time in plot 6.1.a, it appears that it scales linear with growing input
size. Nevertheless, by investigating the number of analyzed events per second (plot 6.1.b),
we deduce that the performance increases with growing input size, indicating that Hadoop
needs a certain number of maps per worker node to schedule a job efficiently.

63

6. Evaluation

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

0 1800 3600 5400 7200av
g.

n
et

.
th

ro
u

gh
p

u
t

[M
B

/s
]

execution time [s]

(a)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5
5.5

0 1800 3600 5400 7200av
g.

n
et

.
th

ro
u

gh
p

u
t

[M
B

/
s]

execution time [s]

(b)

RootFileInputFormat StreamingInputFormat

Figure 6.2.: Average network throughput while analyzing 7.5 × 106 events with the StreamingInputFormat

and RootFileInputFormat on a 15 node cluster.

Figure 6.2 shows the network throughput while analyzing the input file with 7.5× 106 events.
Plot 6.2.a shows the throughput that is caused by Hadoop using the RootFileInputFormat,
while plot 6.2.b depicts the throughput of Hadoop utilizing the StreamingInputFormat The
results are satisfying for the RootFileInputFormat: Hadoop causes much less network traf-
fic when using the RootFileInputFormat indicating that our approach successfully helps
to schedule the map jobs efficiently. When comparing the network utilization of different
Hadoop jobs using the RootFileInputFormat, we are able to identify a pattern: During the
initial job setup, the evaluation of the event map files causes some network traffic. This is
due to the fact that these files are stored in HDFS and the JobTracker is reading them re-
motely to calculate and assign the InputSplits. The network utilization could be reduced
in this setup phase by storing the event map files locally on the JobTracker. However, for
the general work-flow, it is more convenient to keep them in the same directory and file
system as the files from which they are created.
We observe a second increase in the network utilization at the end of the analysis when
the results are combined by the reducer (c.f. plot 6.2.a) after 6800 seconds), because the
intermediate key/value pairs are read remotely. During the analysis most of the data is read
locally when using the RootFileInputFormat. Nevertheless, the more efficient scheduling is
not reflected in the total execution time of the evaluation. As describe in Section 5.2.2, the
total execution time of the analysis seem to be relatively independent of the performance of
the underlying storage system. The evaluations of this section reveal that it does not have a
measurable performance difference when reading the data remotely. Regarding our example

64

6.3. Comparison of the Hadoop and PROOF cluster performance

HEP analysis, we conclude that its total performance is rather affected by the computing
capabilities than by the I/O performance.
As a result, we determined that with the RootFileInputFormat, we can dramatically reduce
the network utilization and it performs well in the given scenario.

6.3. Comparison of the Hadoop and PROOF cluster performance

In this section, we compare the performance of the Hadoop-based data analysis with the
analysis in the PROOF framework. The PROOF analysis was conducted using two dif-
ferent storage solutions: the first time reading input data from SCALLA and the second
time reading data from HDFS. We generated a total of 75 × 106 events on 15 nodes. The
data generation took about 8 hours to complete. We created the event map files on a single
instance which took about one hour to finish. The resulting data is stored in 250 ROOT
files, each containing 3 × 105 events. Each file was around 750 MB in size, accumulating to
a total input size of around 190 GB. Because of the block size of 64 MB, each file was split
up into 12 blocks internally in HDFS. Since each block is treated as an InputSplit, the
total number of map jobs summed up to 3000.
We started with a cluster size of 15 worker nodes and scaled up to 30, 60 and 120 nodes.
The analysis of the generated events was done on both Hadoop and PROOF and repeated
two times for each cluster size to gain trust in the solution and make sure that the effect
of oscillations due to other processes running in the cloud is limited. After each scale up
of the cluster size, the data stored in HDFS and SCALLA was rebalanced such that each
data-node roughly stored the same amount of data. The maximum number of map and
reduce operations running on a node in parallel was set to two and each node was running
a maximum number of two PROOF workers in parallel.

Figure 6.3 shows the total execution time (plot 6.3.a) and the analyzed events per seconds
(plot 6.3.b) of the three different cluster configurations. The total execution time and the
corresponding number of analyzed events per second indicate that Hadoop introduces some
overhead to the calculations. Comparing its performance to the PROOF-based solutions,
we identify a deceleration by 14%-27%. When using PROOF, the performance differences
between the two underlying file systems are negligible.
We observe that the number of analyzed events per second approximately doubles, when
we double the cluster size. Therefore we argue that all three solutions scale well on the
investigated cluster sizes.

Figure 6.4 shows the average network throughput (left plots) and the average CPU uti-
lization (right plots) on the 60 worker node cluster in its different configurations during the
analysis. Since the results are similar for all cluster sizes, we limit the presented results to

65

6. Evaluation

0
5000

10000
15000
20000
25000
30000
35000
40000

0 20 40 60 80 100 120

to
ta

l
ex

ec
u

ti
o
n

ti
m

e
[s

]

number of worker nodes

(a)

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

0 20 40 60 80 100 120

ev
en

ts
p

er
se

co
n

d
[1

/s
]

number of worker nodes

(b)

Hadoop
PROOF + SCALLA

PROOF + HDFS

Hadoop
PROOF + SCALLA

PROOF + HDFS

Figure 6.3.: Comparison of the total execution time and analyzed events per second in Hadoop and PROOF
with varying cluster size.

the evaluations on the 60 worker node configurations. The plots 6.4.a and 6.4.b show the
results for the Hadoop in combination with HDFS. The results for PROOF and SCALLA
are depicted in the plots 6.4.c and 6.4.d, and the analysis outcome of PROOF and HDFS
is shown in the plots 6.4.e and 6.4.f. The average CPU utilization in the plots 6.4.b, 6.4.d
and 6.4.f indicate that all three solutions evenly distribute the workload in the cluster so
that all worker nodes are busy most of the time. Note the average CPU utilization does not
reach 100%, since also the master nodes that are less busy during the analysis are part of
the calculations.
The Hadoop-based solution and PROOF reading data from SCALLA show comparably
small network utilization (plots 6.4.a and 6.4.c), since the computation is preferably sched-
uled on nodes where the data is actually stored. When PROOF reads data from HDFS,
it is not aware of the data locality and all data is treated as remote data. This results
in scheduling the subtasks on arbitrary nodes in the cluster which is reflected by a higher
network throughput (plot 6.4.e). Nevertheless, this is not reflected by the total execution
time, since the full network capacity is not exploited and the delays caused by remote reads
are negligible in comparison to computations time.
Hadoop and PROOF show different network utilization patterns. As stated in the basic
input format evaluation in Section 6.2, the RootFileInputFormat causes comparably high
network utilization in the beginning of the analysis when the event map files are read and
in the end of the analysis when analysis results are transferred. PROOF, when reading
data from SCALLA, is able to keep the network utilization low, but causes minor network

66

6.3. Comparison of the Hadoop and PROOF cluster performance

0
2
4
6
8

10
12
14
16
18

0 1800 3600 5400 7200 9000

av
g.

n
et

.
th

ro
u

gh
p

u
t

[M
B

/s
]

execution time [s]

Hadoop + HDFS

(a)

0
10
20
30
40
50
60
70
80
90

100

0 1800 3600 5400 7200 9000av
g.

C
P

U
u
ti

li
za

ti
o
n

[%
]

execution time [s]

(b)

0
5

10
15
20
25
30
35
40

0 1800 3600 5400 7200 9000

av
g.

n
et

.
th

ro
u

gh
p

u
t

[M
B

/
s]

execution time [s]

PROOF + SCALLA

(c)

0
10
20
30
40
50
60
70
80
90

100

0 1800 3600 5400 7200 9000av
g.

C
P

U
u
ti

li
za

ti
on

[%
]

execution time [s]

(d)

0
20
40
60
80

100
120
140
160
180
200

0 1800 3600 5400 7200 9000

av
g
.

n
et

.
th

ro
u

gh
p

u
t

[M
B

/s
]

execution time [s]

PROOF + HDFS

(e)

0
10
20
30
40
50
60
70
80
90

100

0 1800 3600 5400 7200 9000av
g.

C
P

U
u
ti

li
za

ti
on

[%
]

execution time [s]

(f)

Figure 6.4.: Average network throughput and average CPU utilization on a 60 node cluster using Hadoop and
HDFS, PROOF and SCALLA, and PROOF and HDFS respectively.

67

6. Evaluation

traffic in a later state of the analysis (c.f. plot 6.4.c after 5400 seconds) since the default
PROOF packetizer schedules the subtasks not only based on locality information, but also
on the performance of single worker nodes. That could result in scheduling a subtask to a
node that needs to read the data remotely. A similar explanation holds for the peaks in the
network utilization of PROOF reading data from HDFS (c.f. plot 6.4.e at 0 seconds and
3600 seconds). The packetizer schedules subtasks to nodes where the data is not stored.
However, due to the performance feedback of the nodes themselves, this effect decreases
over time. Since subtasks are performing better on nodes, where the data resides, these
nodes are preferred, for scheduling new subtasks that read data from the same file.
The evaluations in this section revealed that Hadoop adds some overhead to the computa-
tion. When using Streaming, it spawns a JVM for each mapper and reducer, which then
executes the binary that was specified as a map or reduce function. This approach increases
robustness, since a failing subtasks can not affect the TaskTracker daemons, which is run-
ning in another JVM, but it also introduces some overhead. In addition to the analysis
code implemented in C++, also the Java code implementing the RecordReader and the
corresponding InputSplit is executed, which causes additional computational load.
Surprisingly, PROOF performed well when reading data from HDFS. This indicates that
this combination is a valuable subject for further development.

6.4. Scalability of Hadoop-based solution

We showed that the Hadoop-based solution behaves well on clusters with up to 120 worker
nodes. Subsequently, we evaluate its behavior for bigger input data on larger clusters. In
HEP analysis, the Hadoop solution should scale well for input data in the order of a few TB
that is analyzed on a cluster of a few hundred nodes. In the next experiment we generated
1500 files with 3 × 105 events per file. The generation was conducted on a 120 worker node
cluster in parallel and took about 7 hours to complete. Since we learned that the event map
file generation takes a considerable amount of time for larger input data (c.f. Section 6.3),
we parallelized the generation of the event map files with Hadoop Streaming, whereby the
input for the map jobs are the files for which the event maps are created. With this ap-
proach, creating the event map files for all 1500 input files took 750 seconds to complete on
a cluster with 120 worker nodes. The total event number accumulates to 450 × 106 events
with a total size of around 1 TB of input data. Due to a replication factor of 3, the total
HDFS storage needed to store the input data was around 3 TB. Since each input file is
around 750 MB in size, it is divided into 12 blocks in HDFS internally and the total number
of InputSplits accumulates to 18000. The cluster size was doubled twice starting with 120
worker nodes to 240 and 480 worker nodes. After each scale up, the data was rebalanced in
the cluster so that each DataNode roughly contained the same amount of data.

68

6.4. Scalability of Hadoop-based solution

5000

10000

15000

20000

25000

30000

35000

120 240 360 480to
ta

l
ex

ec
u

ti
on

ti
m

e
[s

]

number of worker nodes

Analysis on clusters with varying size

(a)

10000
15000
20000
25000
30000
35000
40000
45000
50000
55000

120 240 360 480ev
en

ts
p

er
se

co
n
d

[1
/s

]
number of worker nodes

(b)

0
5

10
15
20
25
30
35

0 3600 7200 10800 14400

av
g.

n
et

.
th

ro
u

gh
p

u
t

[M
B

/
s]

execution time [s]

Analysis on a 240 worker node cluster

(c)

0
10
20
30
40
50
60
70
80
90

100

0 3600 7200 10800 14400av
g.

C
P

U
u
ti

li
za

ti
on

[%
]

execution time [s]

(d)

0
5

10
15
20
25
30
35

0 1800 3600 5400 7200

av
g
.

n
et

.
th

ro
u

gh
p

u
t

[M
B

/s
]

execution time [s]

Analysis on a 480 worker node cluster

(e)

0
10
20
30
40
50
60
70
80
90

100

0 1800 3600 5400 7200av
g.

C
P

U
u
ti

li
za

ti
on

[%
]

execution time [s]

(f)

Figure 6.5.: Analysis of 1 TB of input data with Hadoop.

69

6. Evaluation

The results are shown in Figure 6.5. We observe that the total execution time (plot 6.5.a)
is halved when scaling the cluster size from 120 to 240 nodes. This implies that the number
of analyzed events per second (plot 6.5.b) effectively doubles when having a fixed size of
input data.
When scaling the cluster size further from 240 nodes to 480 nodes we are only able to achieve
a performance gain of 70%. The plots 6.5.c and 6.5.d show the average cluster throughput
and the CPU utilization during the analysis in the 240 node cluster. The corresponding
metrics for the evaluation on the 480 node cluster are depicted in the plots 6.5.e and 6.5.f
respectively. Since the average network throughput is low in both cluster configurations,
the limited performance gain cannot be explained by network latency or saturation. The
average CPU utilization (plots 6.5.d and 6.5.f) indicate that the workload was scheduled
properly.
The low CPU utilization (plots 6.5.d and 6.5.f) and the moderate network throughput
(plots 6.5.c and 6.5.d) in the first 900 seconds are caused by the JobTracker, which is using
the RootFileInputFormat to analyze the input data and calculate the InputSplits. The
last 300 seconds in the 240 node configuration and 600 seconds in the 480 node configuration
are used to collect the data and produce the final output histogram in the reduce phase.
These observations confirm the assumptions from Section 6.1.5: First the setup phase does
not benefit from parallelization. Secondly, some parts of the job, e.g. the data collection
phase in the end might even suffer from increasing the number of nodes due to the commu-
nication overhead that is introduced. The generation of the InputSplits in Hadoop is done
on the JobTracker and cannot be parallelized within the framework. Because sequential
parts of the job, such as the InputSplit generation, do not experience any speedup, they
relatively gain weight in the total execution time when scaling the cluster size. This could
be an explanation of the reduced performance gain, when we scale the cluster size from 240
to 480 nodes. Nevertheless, the performance gain of 70% is still satisfying. Due to several
constraints, we were not able to scale the cluster size any further. One reason was the
service constraints of the Amazon EC2 cloud described in Section 5.6.

70

7. Related Work

The approach to use MapReduce for scientific computations is not new and several studies
exist on its applicability to different problems. Apart from Hadoop several other public-
available implementations of the MapReduce paradigm exist, which often aim to optimize
or extend it for certain application areas.
Additionally Hadoop and also HDFS, as a stable distributed file system, have attracted some
attention of the HEP community. Section 7.1 gives an overview of applying MapReduce to
scientific computing. In Section 7.2, different implementations of the MapReduce paradigm
are described and Section 7.3 discusses Hadoop and HDFS related studies in the HEP
community.

7.1. Application of MapReduce to scientific computing

Several studies explore how MapReduce can be used to solve problems in scientific comput-
ing. We just name a few. Chu et al. apply the paradigm to machine learning algorithms
on multicore systems [31]. Among others, the algorithms they investigate include Locally
Weighted Linear Regression, k-means clustering and a small implementation of a neural
network. In their evaluations they almost achieve linear speedups on multicore systems in
comparison to sequential implementations and conclude that MapReduce is a promising
approach for exploiting multicore systems in machine learning.
Another more detailed investigation of applying MapReduce to k-means clustering is given
by Zhao et al. [67]. They adapt the clustering algorithm to MapReduce with the help of
the Hadoop framework and show that it scales well on large data sets.
McKenna et al. introduce a MapReduce based framework for genome analysis in bioinfor-
matics [53] and claim that its adaption eases the development of robust and scalable DNA
sequencing tools.
Hama [12] is another Apache project that is build on top of Hadoop to provide efficient
calculations of matrix, graph and network algorithms. While it uses other paradigms for
graph and network algorithms, MapReduce is utilized for matrix calculations [59].

71

7. Related Work

7.2. Different MapReduce implementations

In this thesis we focused on Hadoop, one particular public-available MapReduce imple-
mentation. Several other implementations exist that often aim to optimize or extend the
MapReduce paradigm for certain application areas. As the MapReduce implementation by
Google and Hadoop they are often coupled to special distributed file systems.

Ekanayake et al. identify certain extensions for the classic MapReduce paradigm to adapt
it to more classes of applications [35]. Their main critique is that MapReduce does not
offer efficient support for iterative algorithms. Therefore they introduce Twister, a Java
framework, optimized to run MapReduce operations iteratively.
Microsoft also follows the idea of iterative MapReduce: Project Daytona [56] is a runtime
environment for iterative MapReduce jobs in the Microsoft Azure Cloud [55]. Programs for
Daytona are written in C#.

Disco [57] is a MapReduce implementation developed by the Nokia Research Center. In
contrast to Hadoop it is not implemented in Java, but uses a combination of Python
and Erlang. Because of this language combination the code is relatively small and fairly
easy to understand. In the Disco framework Map and Reduce functions are normally
implemented in Python, but can also be written in arbitrary languages using the Disco
Worker Protocol. Disco comes with its own distributed file-system, called Disco Distributed
Filesystem (DDFS).

Gu and Grossman present the design and implementation of Sector and Sphere [47]: Sector
is a distributed file system while Sphere implements a framework for executing User Defined
Functions (UDFs) within one data center or across distributed data centers. While Sphere
is not exactly a MapReduce implementation it can mimic its programming style. The user
can simply define two UDFs: one map and one reduce function. These UDFs can be used
on top of Sector to be executed in a MapReduce manner. While Sphere and Sector sup-
ports the MapReduce programming paradigm it is more general approach. Additionally it
does not strictly assume that bandwidth is a scarce resource, but that different computing
sides are connected by high speed networks (10 Gbps or higher). Sector and Sphere can be
utilized by using a C++ API.

The MapReduce implementations described above focus on applying the paradigm to sin-
gle clusters. In contrast Wang et al. introduce G-Hadoop [66], an implementation that
provides executing MapReduce tasks across distributed clusters. G-Hadoop operates on
G-Farm [63], a file system that interconnects distributed data centers. While Hadoop is
designed to schedule map tasks to nodes where the corresponding InputSplit is stored,
G-Hadoop schedules tasks across data-centers. The G-Hadoop API thereby remains com-

72

7.3. Hadoop/HDFS in the HEP community

patible with the Hadoop API such that existing Hadoop applications do not need to be
modified. A framework of this kind could be used to scale the implementation done in this
work across multiple clusters.

7.3. Hadoop/HDFS in the HEP community

In their evaluation of the applicability of MapReduce to scientific computing [36], Ekanayake
et al. also describe an adoption of Hadoop for HEP data analysis. However in their ap-
proach they do not address the problem of splitting the data residing in HDFS efficiently.
Instead data files are processed as a whole. This leads to the problems described in Section
3.3 when the individual file size becomes larger than the block size in HDFS. They evaluate
their solutions on small clusters (up to 12 compute nodes) and claim that for larger cluster
sizes the speedup diminishes. This contradicts our results, since we are able to achieve sat-
isfying speedups even when we scale the cluster up to 480 compute nodes (c.f. Section 6.1.5).

Similar to the approach described above, Riahi et al. describe how Hadoop and HDFS can be
utilized for computing within the WLCG in a small/medium Grid site (Tier-2/Tier-3) [58].
Again the problem of splitting ROOT files into several InputSplits is not solved, but whole
files are assigned to single mappers. Similar to Ekanayake at al. they limit their evaluation
to very small cluster sizes (three compute nodes with a total of 72 cores).

HDFS is not bounded to Hadoop and can be used as a reliable distributed file system with-
out exploiting the MapReduce paradigm. Bockelman identifies HDFS as a possible storage
solution in the context of the CMS experiment [20]. He concludes that HDFS is a viable
solution for grid storage elements inside the WLCG, especially with regards to scalability,
reliability and manageability. He is also the author of the HDFS plugin for ROOT.

73

8. Conclusions and Outlook

In this thesis we investigated the applicability of MapReduce and the cloud computing
paradigm to LHC data analysis. We have developed an input format that splits ROOT
based input data in a way that it can be efficiently processed within the Hadoop framework.
By successfully deploying large compute clusters in the EC2 cloud, we demonstrated how
cloud computing can be utilized for LHC data analysis. We scaled the utilized clusters up
to sizes that are realistic in high performance computing centers. Thereby, we achieved a
good performance gain for the analysis. In general, our evaluations show that Hadoop and
HDFS provide a viable solution for parallelizing ROOT based data analysis.

Nevertheless, there are some downsides of utilizing Hadoop for LHC data analysis. The
comparisons with PROOF show that Hadoop introduces a computational overhead of 14%
to 27% in our evaluations. This percentage does not include the time it takes to calcu-
late the mapping information for the ROOT files. Hadoop is especially designed for data
analysis that is Input/Output intensive and where the network might become the limiting
bottleneck. During the evaluation it became clear that the example study from LHC is CPU
intensive. Therefore, it had only minor benefits from the data locality information given
by HDFS. The mapping of the events to HDFS blocks worked well in our example. In the
example HEP analysis, the underlying data classes have a simple structure. With increased
complexity, e.g. when other complex data classes are referenced by member variables, as-
signing events to HDFS blocks becomes more complex.

Utilizing IaaS as with EC2 comes with the flexibility of renting resources on demand. It
eases cluster management, since tasks like address and firewall configuration can be done
centrally. The concept of a single machine image that is deployed several times simplifies
software installation and maintenance. Backups can be achieved easily by using snapshots.
Nevertheless, deploying a cluster requires proper knowledge of the underlying technical prin-
ciples. Even when the physical infrastructure is hidden to the customer, the configuration
of the IaaS services is similar to setting up real physical networks or clusters.

We showed how ROOT-based data analysis can be mapped to MapReduce. The approach
to map data records to byte positions can also be a suitable solution for all kinds of binary
input data that should be analyzed within MapReduce frameworks. Additionally we gave
insights on how the EC2 cloud can be utilized to deploy clusters for computations.

75

8. Conclusions and Outlook

8.1. Future research directions

While we have investigated how LHC associated data analysis can be executed in the cloud
on a large scale, it is not clear how these EC2- based solutions perform in comparison to
local cluster deployments. Several studies exist that address the general performance of
the EC2 cloud for high performance computing [37, 50, 51]. All of them indicate that we
must expect a performance drop when utilizing the cloud. The main drawback in the cloud
computing environments seem to be an increased communication latency between the nodes
[51], which renders it unsuitable for highly coupled scientific computing applications. Since
the LHC event analysis is highly decoupled, it is less affected by increased communication
latency. To understand the cloud-related performance issues better, benchmarks should be
conducted that offer comparability with local cluster deployments.
In general performance comparisons are not trivial, since they need a generalized framework
that defines the comparable objects clearly. For benchmarking the EC2-based solutions de-
veloped in this thesis, the existing benchmarking frameworks for Hadoop and PROOF can
be utilized. Using these frameworks has the advantage of achieving comparability with
already existing benchmarking results. Hadoop offers the TeraSort package [13] that is
commonly used to benchmark storage and MapReduce performance. It measures the time
it takes to sort 1 TB of generated data. For PROOF cluster benchmarking the TProofBench
framework [27] can be utilized. It offers both CPU and IO-intensive benchmarks. The CPU
intensive benchmark generates random numbers that are filled into several histograms, while
the IO-intensive benchmark is based on reading data from TTrees. Utilizing these frame-
works gives more insights into the general performance that could be expected when utilizing
the EC2-cloud for LHC data analysis.

As we have seen in Section 6.3, PROOF in conjunction with HDFS delivers a good general
performance. Nevertheless, since the locality information in HDFS is not utilized in the
existing PROOF packetizers all data files are treated as remote data and the subtasks are
not assigned to the nodes where the data resides. This violates the “Moving computation
to data” paradigm described earlier in this thesis. Therefore, developing a packetizer for
PROOF that fully utilizes the HDFS data locality information could be an interesting and
promising approach to increase the performance further.

With the growing size of distributed systems, it becomes more likely that one or more
of its components fail, e.g. because of hardware failure. Thus fault-tolerance becomes an
important property. Hadoop is designed to provide fault-tolerance out of the box. If a
worker node is failing, the assigned task is automatically rescheduled on another worker
node. HDFS replicates the stored data automatically to other DataNodes in the cluster. If
a DataNode becomes unavailable, e.g. because of hardware failure, the data that was stored
on this particular DataNode is automatically replicated from the remaining copies in the

76

8.1. Future research directions

cluster to other DataNodes.
While PROOF can reschedule failed subtasks to other worker nodes, SCALLA does not
provide automatic replication of stored data. This results in data loss if one of the worker
nodes that are storing data becomes unavailable, which can cause the submitted job to fail.
During our evaluations we were not confronted with failing worker nodes. Some initial tests
were performed with Hadoop by disconnecting one of the worker nodes by hand. The tasks
that were running on this particular worker node were rescheduled automatically as ex-
pected and the data was replicated. It would be interesting to evaluate the fault-tolerance
further, especially with the combination of PROOF and HDFS.

During the evaluation in this thesis, it became clear that the performance of the pro-
vided example HEP analysis is rather dependent on CPU power than on I/O performance.
Hadoop was able to perform well, but the PROOF-based solution achieved better perfor-
mance. Hadoop is designed to reduce the network load and is optimized for data-intensive
applications. Therefore it would be interesting to see if Hadoop shows comparably better
performance if the considered application relies on high data throughput. Reevaluating the
ProofFileInputFormat with such an application would give more insights on the possible
advantages that come by utilizing Hadoop for HEP data analysis.
As seen in Section 6.3, Hadoop is 14% to 27% slower than PROOF in our evaluations, which
is caused by the overhead introduced by spawning JVMs and the execution of additional
Java code for reading the input data. Additionally, the fact that Hadoop only offers a Java
API for defining input formats, complicates the processing of binary input data that can
only be read by libraries written in other programming languages. For our example HEP
data analysis, being able to link to the ROOT framework, is necessary. As future work it
should be implemented in a MapReduce framework that fully provides C++ support, e.g. in
Sphere (see Section 7.2), to evaluate the possible performance drawbacks of the Java-based
Hadoop solution further.

PROOF is designed for compute clusters consisting of a few hundred nodes and might
lose its advantages over Hadoop, when scaling further. In the proceeding of this thesis, we
investigated PROOF clusters up to a size of 120 worker nodes. The scaling evaluations that
are provided in Section 6.4 for the Hadoop-based solution are omitted for PROOF in this
thesis due to initial software problems and time constraints and can be conducted as part
of future research.

Even with the abstraction offered by cloud services, deploying compute clusters in the
cloud is still a challenging task. Utilizing IaaS for deploying and administrating a cluster
is quite like deploying and administrating a physical cluster. The complexity is reduced in
some kind but new challenges appear which are connected to mastering the specific tools
of the chosen IaaS provider. Non-computer-scientists, which want to deploy infrastructures

77

8. Conclusions and Outlook

to run simulations in the cloud, are confronted with overcoming a high technical barrier,
before IaaS might provide a helpful tool for their research. Higher levels of abstraction are
needed to reduce technical difficulties and address especially the needs of scientists that
want to deploy the infrastructure for their research. Services like Amazons EMR might be
too inflexible to satisfy the needs of scientists. Therefore the requirements of simulation
applications need to be further investigated. Developing concepts for categorizing these
applications and automatically mapping their requirements to cloud infrastructures might
open a whole new field of research.

78

A. Abbreviations and Acronyms

ACL Access Control List

AMI Amazon Machine Image

AOD Analysis Object Data

API Application Programming Interface

AWS Amazon Web Services

CAF CERN Analysis Facility

CERN Conseil Européen pour la Recherche Nucléaire

CLI Command Line Interface

DDFS Disco Distributed Filesystem

DPD Derived Physics Data

EBS Elastic Block Store

EC2 Elastic Compute Cloud

ECU EC2 Compute Unit

EMR Elastic MapReduce

ESD Event Summary Data

GFS Google File System

HDFS Hadoop File System

HEP High Energy Physics

IaaS Infrastructure as a Service

IOPS Input/Output operations per second

79

Abbreviations and Acronyms

JVM Java Virtual Machine

LHC Large Hadron Collider

MPIK Max Planck Institut für Kernphysik

MSS Mass Storage System

PaaS Platform as a Service

POSIX Portable Operating System Interface

PROOF Parallel ROOT Facility

S3N S3 Native File System

S3 Simple Storage Service

SaaS Software as a Service

SCALLA Structured Cluster Architecture for Low Latency Access

SCaVis Scientific Computation and Visualization Environment

SDF Simple Data Format

SSD Solid State Drive

SSH Secure Shell

STL Standard Template Library

TCP Transmission Control Protocol

UDF User Defined Function

UDP User Datagram Protocol

URL Uniform Resource Locator

VPC Virtual Private Cloud

WLCG Worldwide LHC Computing Grid

80

B. Changes to the ROOT HDFS plugin

This appendix lists the changes that were made to the ROOT HDFS-plugin (5.34/05) to
work with Hadoop 1.0.4. ROOTSYS is the root directory of the ROOT installation. The
changes made to $ROOTSYS/io/hdfs/inc/THDFSFile.h are documented in Listing B.1.

1 $ d i f f THDFSFile . h−o r i g i n a l THDFSFile . h
2 81a82
3 > void ∗ GetDirPtr () const { r e turn fDirp ; } ;

Listing B.1: Changes in THDFSFile.h

Only the GetDirPtr(), which is inherited from the TSystem class, needs to be implemented
such that calls directed to the HDFS file system are handled properly by an instance of
THDFSystem.
The changes that were made to $ROOTSYS/io/hdfs/src/THDFSFile.cxx are described in
listing B.2. Since the method call, listed in line 5 and 10 is deprecated, it is replaced by the
lines 7 to 12 and 16 to 23 respectively. Instead of the HDFS file system, set in the configura-
tion files, the local file system is used, when the function hdfsConnectAsUser(...) is called
with “default”. To provide the correct information for the plugin, the two environmental
variables HDFS_SERVER and HDFS_PORT are used.

1 $ d i f f THDFSFile . cxx−o r i g i n a l THDFSFile . cxx
2 73d72
3 <
4 97c96 ,101
5 < fFS = hdfsConnectAsUser (” d e f au l t ” , 0 , user , groups , 1) ;
6 −−−
7 > const char ∗ s e r v e r = getenv (”HDFS SERVER”) ;
8 > i n t port = a t o i (getenv (”HDFS PORT”)) ;
9 > i f (s e r v e r && port)

10 > fFS = hdfsConnectAsUser (se rver , port , user) ;
11 > e l s e
12 > fFS = hdfsConnectAsUser (” d e f au l t ” , 0 , user) ;
13 301d304
14 <
15 310 c313 ,318
16 < fFH = hdfsConnectAsUser (” d e f au l t ” , 0 , user , groups , 1) ;
17 −−−
18 > const char ∗ s e r v e r = getenv (”HDFS SERVER”) ;
19 > i n t port = a t o i (getenv (”HDFS PORT”)) ;
20 > i f (s e r v e r && port)
21 > fFH = hdfsConnectAsUser (se rver , port , user) ;
22 > e l s e
23 > fFH = hdfsConnectAsUser (” d e f au l t ” , 0 , user) ;

81

B. Changes to the ROOT HDFS plugin

24 376 a385
25 >
26 398 c407
27 < de l e t e fUr lp ;
28 −−−
29 > // d e l e t e fUr lp ;
30 423 c432
31 < i f (fDi rCtr == fDi rEnt r i e s −1) {
32 −−−
33 > i f (fDi rCtr == fD i rEn t r i e s) {
34 430 c439 ,440
35 < TUrl tempUrl ;
36 −−−
37 >
38 > /∗TUrl tempUrl ;
39 434 c444
40 < r e s u l t = fUr lp [fDirCtr] . GetUrl () ;
41 −−−
42 > r e s u l t = fUr lp [fDirCtr] . GetUrl () ;∗/
43 437 c447
44 < r e turn r e s u l t ;
45 −−−
46 > r e turn (s t r r c h r (r e su l t , ’ / ’) + 1) ;
47 459a470 ,474
48 > i f (f i l e I n f o −>mKind == kObjectKindFi le)
49 > buf . fMode |= kS IFREG ;
50 > e l s e i f (f i l e I n f o −>mKind == kObjectKindDirectory)
51 > buf . fMode |= kS IFDIR ;
52 >

Listing B.2: Changes in THDFSFile.cxx

The delete fUrlp in line 27 causes a segmentation fault and was hence commented out.
The subtraction of 1 in line 31 causes the plugin to not list all entries in a HDFS directory.
The changes described in lines 38 to 46 are made because the wrong path is returned by
the GetDirEntry(...) method implementation of the THDFSSystem class. The changes
described in line 48 to 51 are made to set the meta information for files in HDFS correctly.

82

C. Steps to deploy clusters in EC2

Several bash scripts that are build around the commands above have been implemented
to ease the cluster deployment. They are used to start the required instances, deploy the
configuration files and start the daemon processes on the corresponding instances. Figure
C.1 shows the steps taken to deploy a Hadoop cluster in EC2. The Steps 1. to 4. correspond

start

1. launch Gan-
glia master instance

2. launch NameNode instance

3. launch JobTracker instance

4. format NameNode

start NameNode daemon
start JobTracker daemon

5. launch worker instances

6. start DataNode daemons
start TaskTracker daemons

7. add worker IPs to Hadoop
configuration file on Na-
meNode and TaskTracker

8. update host file on NameNode

with hostnames of workers

9. distribute updated
hostfile to worker nodes

stop

Figure C.1.: Steps to deploy a Hadoop cluster in EC2.

to deploying the master nodes. The nodes running the Ganglia gmetad, Hadoop NameNode

83

C. Steps to deploy clusters in EC2

and Hadoop JobTracker are started and configured. The Steps 5. to 9. are used to
add worker nodes to the cluster. Their daemons are started and their host names and IP
addresses are propagated to the other nodes in the cluster. When increasing the cluster
size, these steps can be repeated iteratively until the desired cluster size is reached.

84

List of Figures

2.1. PROOF’s multi-tier architecture [40]. 8
2.2. The pull architecture of the PROOF packetizer [41]. 9
2.3. Physical layout of the ROOT file format [25]. 11
2.4. MapReduce job execution overview [33]. 14
2.5. Cloud computing deployment and service models [61]. 19

3.1. Output of the example HEP analysis running on 20000 events. 27
3.2. Data class hierarchy of example study. 28
3.3. Data distribution in an example SDF file storing 20000 events. 32
3.4. Workflow of the HDFS block selection. 34

4.1. Class diagram for RootFileInputFormat. 43
4.2. Class diagram for StreamingInputFormat. 45

5.1. Benchmarking results on different instance types in EC2. 53
5.2. Hadoop cluster layout. 56
5.3. PROOF cluster layout. 57
5.4. Capacity limitations in the EC2 cloud. 58

6.1. Comparison of the total execution time and analyzed events per second of
the StreamingInputFormat and RootFileInputFormat on a 15 node cluster
with varying input size. 63

6.2. Average network throughput while analyzing 7.5 × 106 events with the
StreamingInputFormat and RootFileInputFormat on a 15 node cluster. . . 64

6.3. Comparison of the total execution time and analyzed events per second in
Hadoop and PROOF with varying cluster size. 66

6.4. Average network throughput and average CPU utilization on a 60 node clus-
ter using Hadoop and HDFS, PROOF and SCALLA, and PROOF and HDFS
respectively. 67

6.5. Analysis of 1 TB of input data with Hadoop. 69

85

Listings

2.1. Word Count example [33]. 12

3.1. Event loop in the original example HEP analysis code. 29
3.2. Per-track pair analysis in the original example HEP analysis code. 30

4.1. Implementation of the StreamingMapper. 39
4.2. Implementation of the StreamingReducer. 39
4.3. Utilizing ROOT for the event mapping. 41
4.4. Basic heuristic for mapping events to blocks in HDFS. 44
4.5. Generating a TSelector [25]. 45
4.6. Implementation of MySelector::SlaveBegin(). 46
4.7. Implementation of MySelector::Process(). 46
4.8. Implementation of MySelector::Terminate() 47

List of Tables

5.1. Configuration of the benchmarked instance types. 51
5.4. Cost estimation for scalability evaluation of the Hadoop-based solution. . . . 59

86

Bibliography

[1] G. Aad, E. Abat, J. Abdallah, et al. The ATLAS Experiment at the CERN Large
Hadron Collider. Journal of Instrumentation, 3:S08003, 2008.

[2] K. Aamodt, A. A. Quintana, R. Achenbach, et al. The ALICE experiment at the
CERN LHC. Journal of Instrumentation, 0803:S08002, 2008.

[3] A. A. Alves Jr, L. Andrade Filho, A. Barbosa, et al. The LHCb Detector at the
LHC. Journal of Instrumentation, 3:S08005, 2008.

[4] Amazon. Amazon Web Services. [Online; http://aws.amazon.com/ fetched on
05/21/2013].

[5] Amazon. Elastic Block Store. [Online; http://aws.amazon.com/ebs/ fetched on
05/21/2013].

[6] Amazon. Elastic Compute Cloud. [Online; http://aws.amazon.com/ec2/ fetched on
05/21/2013].

[7] Amazon. Elastic MapReduce. [Online; http://aws.amazon.com/elasticmapreduce/
fetched on 05/21/2013].

[8] Amazon. Simple Storage Service. [Online; http://aws.amazon.com/s3/ fetched on
05/21/2013].

[9] Amazon. Virtual Private Cloud. [Online; http://aws.amazon.com/vpc/ fetched on
05/21/2013].

[10] G. M. Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint com-
puter conference, pages 483–485. ACM, 1967.

[11] Apache Software Foundation. Apache Hadoop. [Online; http://hadoop.apache.
org/ fetched on 05/21/2013].

[12] Apache Software Foundation. Apache Hama Project. [Online; http://hama.apache.
org/ fetched on 05/21/2013].

87

http://aws.amazon.com/
http://aws.amazon.com/ebs/
http://aws.amazon.com/ec2/
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
http://aws.amazon.com/vpc/
http://hadoop.apache.org/
http://hadoop.apache.org/
http://hama.apache.org/
http://hama.apache.org/

Bibliography

[13] Apache Software Foundation. Hadoop TeraSort. [Online; https://hadoop.
apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/

package-summary.html fetched on 05/21/2013].

[14] Apache Software Foundation. Hadoop Wiki: MountableHDFS. [Online; http://
wiki.apache.org/hadoop/MountableHDFS fetched on 05/21/2013].

[15] Apache Software Foundation. Hadoop Wiki: PoweredBy. [Online; http://wiki.
apache.org/hadoop/PoweredBy fetched on 05/21/2013].

[16] M. Armbrust, A. Fox, R. Griffith, et al. A view of cloud computing. Communications
of the ACM, 53(4):50–58, 2010.

[17] MapR Technologies. [Online; http://www.mapr.com/ fetched on 05/21/2013].

[18] M. Benedikt, P. Collier, V. Mertens, et al. LHC Design Report, volume v.3 : the
LHC Injector Chain. CERN, Geneva, 2004.

[19] I. Bird, L. Bechtev, M. Branco, et al. LCG- Baseline Services Group Report
. [Available online; http://lcg-archive.web.cern.ch/lcg-archive/peb/bs/
BSReport-v1.0.pdf fetched on 05/21/2013].

[20] B. Bockelman. Using Hadoop as a grid storage element. In Journal of physics: Con-
ference series, volume 180, page 012047. IOP Publishing, 2009.

[21] C. Boeheim, A. Hanushevsky, D. Leith, et al. Scalla: Scalable Cluster Architecture
for Low Latency Access Using xrootd and olbd Servers. Technical report.

[22] D. Borthakur. Hadoop Architecture Guide. [Available online; http://hadoop.
apache.org/docs/r1.0.4/hdfs_design.pdf fetched on 05/21/2013].

[23] R. Brun and F. Rademakers. ROOT - An Object Oriented Data Analysis Frame-
work. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 389(1):81–86, 1997. See also
http://root.cern.ch.

[24] O. S. Brüning, P. Collier, P. Lebrun, et al. LHC Design Report, volume v.1: the LHC
Main Ring. CERN, Geneva, 2004.

[25] CERN. ROOT: A Data Analysis Framework. [Online; http://root.cern.ch/
drupal/ fetched on 05/21/2013].

[26] CERN. The LHCb collaboration. [Online; http://lhcb.web.cern.ch/lhcb/ fetched
on 05/21/2013].

88

https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/package-summary.html
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/examples/terasort/package-summary.html
http://wiki.apache.org/hadoop/MountableHDFS
http://wiki.apache.org/hadoop/MountableHDFS
http://wiki.apache.org/hadoop/PoweredBy
http://wiki.apache.org/hadoop/PoweredBy
http://www.mapr.com/
http://lcg-archive.web.cern.ch/lcg-archive/peb/bs/BSReport-v1.0.pdf
http://lcg-archive.web.cern.ch/lcg-archive/peb/bs/BSReport-v1.0.pdf
http://hadoop.apache.org/docs/r1.0.4/hdfs_design.pdf
http://hadoop.apache.org/docs/r1.0.4/hdfs_design.pdf
http://root.cern.ch
http://root.cern.ch/drupal/
http://root.cern.ch/drupal/
http://lhcb.web.cern.ch/lhcb/

Bibliography

[27] CERN. TProofBench. [Online; http://root.cern.ch/drupal/content/
proof-benchmark-framework-tproofbench fetched on 05/21/2013].

[28] S. Chatrchyan, G. Hmayakyan, V. Khachatryan, et al. The CMS experiment at the
CERN LHC. Journal of Instrumentation, 0803:S08004, 2008.

[29] S. Chekanov. SCaVis: Scientific Computiation and Visualization Environment. [On-
line; jwork.org/scavis fetched on 05/21/2013].

[30] S. N. T.-c. Chiueh and S. Brook. A survey on virtualization technologies. RPE Re-
port, pages 1–42, 2005.

[31] C. Chu, S. K. Kim, Y.-A. Lin, et al. Map-reduce for machine learning on multicore.
Advances in neural information processing systems, 19:281, 2007.

[32] P. Cortese, F. Carminati, C. W. Fabjan, et al. ALICE computing: Technical Design
Report. Technical Design Report ALICE. CERN, Geneva, 2005. Submitted on 15 Jun
2005.

[33] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.
In Proceedings of the 6th conference on Symposium on Operating Systems Design &
Implementation - Volume 6, page 10, Berkeley, CA, USA, 2004. USENIX Associa-
tion.

[34] A. Dorigo, P. Elmer, F. Furano, and A. Hanushevsky. XROOTD- A highly scalable
architecture for data access. WSEAS Transactions on Computers, 1(4.3), 2005.

[35] J. Ekanayake, H. Li, B. Zhang, et al. Twister: a runtime for iterative MapReduce.
In Proceedings of the 19th ACM International Symposium on High Performance Dis-
tributed Computing, HPDC ’10, pages 810–818, New York, NY, USA, 2010. ACM.

[36] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for Data Intensive Scientific
Analyses. In Proceedings of the 2008 Fourth IEEE International Conference on
eScience, pages 277–284, Washington, DC, USA, 2008. IEEE Computer Society.

[37] C. Evangelinos and C. Hill. Cloud Computing for parallel Scientific HPC Applica-
tions: Feasibility of running Coupled Atmosphere-Ocean Climate Models on Ama-
zon’s EC2. ratio, 2(2.40):2–34, 2008.

[38] I. Foster. What is the grid?-a three point checklist. GRIDtoday, 1(6), 2002.

[39] J. F. G-Oetringhaus. The CERN analysis facility—a PROOF cluster for day-one
physics analysis. volume 119, page 072017. IOP Publishing, 2008.

89

http://root.cern.ch/drupal/content/proof-benchmark-framework-tproofbench
http://root.cern.ch/drupal/content/proof-benchmark-framework-tproofbench
jwork.org/scavis

Bibliography

[40] G. Ganis, J. Iwaszkiewicz, and F. Rademakers. Data Analysis with PROOF. Number
PoS(ACAT08)007 in Proceedings of XII International Workshop on Advanced Com-
puting and Analysis Techniques in Physics Research.

[41] G. Ganis, J. Iwaszkiewicz, and F. Rademakers. Scheduling and Load Balancing in the
Parallel ROOT Facility. Number PoS(ACAT)022 in Proceedings of XI International
Workshop on Advanced Computing and Analysis Techniques in Physics Research.

[42] Gartner. IT Glossary. [Online; http://www.gartner.com/it-glossary/
virtualization/ fetched on 05/21/2013].

[43] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. volume 37, pages
29–43, New York, NY, USA, October 2003. ACM.

[44] F. Glaser and H. Neukirchen. Analysing High-Energy Physics Data Using the
MapReduce Paradigm in a Cloud Computing Environment. Technical Report VHI-
01-2012, Engineering Research Institute, University of Iceland, Reykjavik, Iceland,
2012.

[45] Google. Google App Engine. [Online; https://appengine.google.com/ fetched on
05/21/2013].

[46] Google. Google Drive. [Online; https://drive.google.com/ fetched on
05/21/2013].

[47] Y. Gu and R. L. Grossman. Sector and Sphere: The Design and Implementation of
a High Performance Data Cloud. volume 367, pages 2429–2445. The Royal Society,
2009.

[48] A. Hanushevsky and D. L. Wang. Scalla: Structured Cluster Architecture for Low
Latency Access. In Parallel and Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 1168–1175. IEEE,
2012.

[49] M. D. Hill. What is scalability? ACM SIGARCH Computer Architecture News,
18(4):18–21, 1990.

[50] A. Iosup, S. Ostermann, M. N. Yigitbasi, et al. Performance analysis of cloud com-
puting services for many-tasks scientific computing. Parallel and Distributed Systems,
IEEE Transactions on, 22(6):931–945, 2011.

[51] K. R. Jackson, L. Ramakrishnan, K. Muriki, et al. Performance analysis of high per-
formance computing applications on the amazon web services cloud. In Cloud Com-
puting Technology and Science (CloudCom), 2010 IEEE Second International Confer-
ence on, pages 159–168. IEEE, 2010.

90

http://www.gartner.com/it-glossary/virtualization/
http://www.gartner.com/it-glossary/virtualization/
https://appengine.google.com/
https://drive.google.com/

Bibliography

[52] M. Massie et al. The Ganglia Monitoring System. [Online;http://ganglia.
sourceforge.net/ fetched on 05/21/2013].

[53] A. McKenna, M. Hanna, E. Banks, et al. The Genome Analysis Toolkit: a MapRe-
duce framework for analyzing next-generation DNA sequencing data. Genome re-
search, 20(9):1297–1303, 2010.

[54] P. Mell and T. Grance. The NIST definition of Cloud Computing. NIST special
publication, 800:145, Sept. 2011.

[55] Microsoft. Windows Azure. [Online; http://www.windowsazure.com/en-us/ fetched
on 05/21/2013].

[56] Microsoft Research. Project Daytona. [Online; http://research.microsoft.com/
en-us/projects/daytona fetched on 05/21/2013].

[57] Nokia Research Center. Disco Project. [Online;http://discoproject.org fetched
on 05/21/2013].

[58] H. Riahi, G. Donvito, L. Fanò, et al. Using Hadoop File System and MapReduce in a
small/medium Grid site. volume 396, page 042050, 2012.

[59] S. Seo, E. J. Yoon, J. Kim, et al. Hama: An efficient matrix computation with the
mapreduce framework. In Cloud Computing Technology and Science (CloudCom),
2010 IEEE Second International Conference on, pages 721–726. IEEE, 2010.

[60] T. Sjöstrand, S. Mrenna, and P. Skands. A brief introduction to PYTHIA 8.1. Com-
puter Physics Communications, 178(11):852–867, 2008.

[61] I. Sriram and A. Khajeh-Hosseini. Research Agenda in Cloud Technologies. CoRR,
abs/1001.3259, 2010.

[62] Simplified Wrapper and Interface Generator. [Online; http://www.swig.org/
fetched on 05/21/2013].

[63] O. Tatebe, K. Hiraga, and N. Soda. Gfarm grid file system. New Generation Com-
puting, 28(3):257–275, 2010.

[64] The LCG TDR Editorial Board. LHC Computing Grid Technical Design Report.
Technical Report 1.04, June 2005.

[65] The ROOT team. ROOT User Guide 5.26. [Available online http://root.cern.ch/

download/doc/ROOTUsersGuide.pdf fetched on 05/21/2013].

91

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/
http://www.windowsazure.com/en-us/
http://research.microsoft.com/en-us/projects/daytona
http://research.microsoft.com/en-us/projects/daytona
http://discoproject.org
http://www.swig.org/
http://root.cern.ch/download/doc/ROOTUsersGuide.pdf
http://root.cern.ch/download/doc/ROOTUsersGuide.pdf

Bibliography

[66] L. Wang, J. Tao, H. Marten, et al. MapReduce across Distributed Clusters for Data-
intensive Applications. In Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), 2012 IEEE 26th International, pages 2004–2011, May.

[67] W. Zhao, H. Ma, and Q. He. Parallel k-means clustering based on mapreduce. In
Cloud Computing, pages 674–679. Springer, 2009.

92

	1 Introduction
	1.1 Goals and contributions
	1.2 Outline

	2 Foundations
	2.1 High Energy Physics data analysis
	2.1.1 The Large Hadron Collider
	2.1.2 Data recorded at the LHC
	2.1.3 The Worldwide LHC Computing Grid

	2.2 ROOT/PROOF and SCALLA
	2.2.1 Architecture
	2.2.2 The TSelector framework
	2.2.3 ROOT File Format and TTrees
	2.2.4 Structured Cluster Architecture for Low Latency Access

	2.3 MapReduce and the Google File System
	2.3.1 Architecture
	2.3.2 The Google File System

	2.4 Hadoop and the Hadoop Distributed File System
	2.4.1 Architecture
	2.4.2 The Hadoop File System
	2.4.3 Hadoop Streaming
	2.4.4 Hadoop Pipes

	2.5 Cloud Computing
	2.5.1 Characteristics
	2.5.2 Virtualization
	2.5.3 Deployment and service models

	2.6 The Amazon Web Services
	2.6.1 Availability Zones
	2.6.2 Simple Storage Services and Elastic Block Store
	2.6.3 Elastic Compute Cloud
	2.6.4 Virtual Private Clouds
	2.6.5 Elastic MapReduce
	2.6.6 Usage fees

	3 Analysis
	3.1 Comparison between Hadoop and PROOF
	3.2 The example HEP analysis
	3.2.1 Input data
	3.2.2 Implementation

	3.3 Application of MapReduce to the example analysis
	3.4 The physical structure of the input data
	3.5 Definition of HDFS block selection workflow
	3.6 Remarks on general applicability

	4 Implementation
	4.1 The HDFS plugin for ROOT
	4.2 Analysis implementation in Hadoop
	4.2.1 Design decisions
	4.2.2 The StreamingMapper
	4.2.3 The StreamingReducer

	4.3 The input format implementation
	4.3.1 Design decisions
	4.3.2 The RootFileMapper
	4.3.3 The RootFileInputFormat
	4.3.4 The StreamingInputFormat

	4.4 Analysis implementation in PROOF
	4.4.1 MySelector::SlaveBegin()
	4.4.2 MySelector::Process()
	4.4.3 MySelector::Terminate()

	4.5 Parallelization of event data generation

	5 Deployment
	5.1 Remarks on Elastic MapReduce
	5.2 Cluster node configuration
	5.2.1 Conducted benchmark tests
	5.2.2 Benchmark results
	5.2.3 Final node configuration
	5.2.4 Software

	5.3 Cluster monitoring
	5.4 Cluster layout
	5.4.1 Hadoop cluster layout
	5.4.2 PROOF cluster layout

	5.5 Cluster management
	5.5.1 Authentication

	5.6 Limitations and costs of utilizing the AWS services

	6 Evaluation
	6.1 Metrics
	6.1.1 Total execution time
	6.1.2 Events per second
	6.1.3 Average network throughput
	6.1.4 Average CPU utilization
	6.1.5 Remarks on scalability

	6.2 Evaluation of the RootFileInputFormat
	6.3 Comparison of the Hadoop and PROOF cluster performance
	6.4 Scalability of Hadoop-based solution

	7 Related Work
	7.1 Application of MapReduce to scientific computing
	7.2 Different MapReduce implementations
	7.3 Hadoop/HDFS in the HEP community

	8 Conclusions and Outlook
	8.1 Future research directions

	A Abbreviations and Acronyms
	B Changes to the ROOT HDFS plugin
	C Steps to deploy clusters in EC2
	List of Figures
	Listings
	List of Tables
	Bibliography

