
Georg-August-Universität
Göttingen
Zentrum für Informatik

ISSN 1612-6793
Nummer ZFI-MSC-2010-01

Masterarbeit
im Studiengang "Angewandte Informatik"

An Evaluation of Model Transformation
Languages for UML Quality Engineering

Lucas Andreas Schubert

am Institut für

Informatik

Bachelor- und Masterarbeiten
des Zentrums für Informatik

an der Georg-August-Universität Göttingen

March 1, 2010

Georg-August-Universität Göttingen
Zentrum für Informatik

Goldschmidtstraße 7
37077 Göttingen
Germany

Tel. +49 (5 51) 39-17 42010

Fax +49 (5 51) 39-1 44 15

Email office@informatik.uni-goettingen.de

WWW www.informatik.uni-goettingen.de

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Göttingen, den March 1, 2010

Master’s Thesis

An Evaluation of Model Transformation
Languages for UML Quality Engineering

Lucas Andreas Schubert

March 1, 2010

Supervised by Prof. Dr. Grabowski
Software Engineering for Distributed Systems Group

Institute for Informatics
Georg-August-Universität Göttingen

Acknowledgments

First of all, I would like to thank my family and fiancée for all their love and support. A
special thank to my tutor Benjamin Zeiss, which always answered my questions and e-
mails, even on weekends or late night. I would also like to thank Prof. Dr. Jens Grabowski
for giving me the opportunity of writing this thesis. Further thanks go to Dr. Markus
Grumann, that make it possible for me to work during my studies, by giving me more
flexibility in my working scheduling, without this support, it would be very difficult to
continue studies. Finally I would like to thank all my friends here and in Brazil, colleagues,
and everyone who helped me directly or indirectly in my studies.

Abstract

Detecting modeling errors in the first stages of a software development process can spare
time and money. Software quality engineering is a field of computer science for evaluating
the quality of software and providing mechanisms to ensure software quality. This thesis
evaluates the transformation languages ATLAS Transformation Language (ATL), Epsilon
Transformation Language (ETL), Query/View/Transformation (QVT), and Xtend by ana-
lyzing their characteristics in relation to the International Organization for Standardization
(ISO) 9126 standard, a language characteristics taxonomy proposed by Czarnecki and
Helsen, and their applicability for calculating metrics and detecting bad smells in Unified
Modeling Language (UML) models. A case study has been used to evaluate the transfor-
mation languages in the task of executing a Model to Model (M2M) transformation for cal-
culating metrics and detecting bad smells. All four transformation languages are suitable
for UML quality engineering, however there are differences, such as performance issues or
tooling characteristics that should be taken into consideration.

Keywords: Unified Modeling Language, Model to Model Transformations, Metrics, Bad
Smells, ATL, ETL, QVT, Xtend

Contents

1. Introduction 1
1.1. Related Work . 2
1.2. Contributions . 3
1.3. Thesis Structure . 4

2. Foundations 5
2.1. Model Driven Engineering (MDE) . 5
2.2. Model to Model Transformation (M2M) . 6
2.3. Unified Modeling Language (UML) . 8
2.4. Software Metrics . 10
2.5. Bad Smells . 11
2.6. Refactoring . 11
2.7. International Organization for Standardization (ISO) 9126 Standard 12
2.8. A Classification for Evaluating Model Transformation Languages 14
2.9. Languages and Technologies . 17

3. Case Study 30
3.1. Bad Smell Detection and Metrics Calculation Metamodel 31
3.2. The Example Model . 33
3.3. Bad Smell Detection . 37
3.4. Model Metrics . 38

4. Case Study Implementation 40
4.1. Overview . 40
4.2. ATLAS Transformation Language (ATL) . 41
4.3. Epsilon Transformation Language (ETL) . 46
4.4. Operational QVT Language . 49
4.5. Xtend . 54

5. Language Evaluations 59
5.1. Analyzed Subjects of the Transformation Language 59
5.2. Evaluation Schema . 60
5.3. ATLAS Transformation Language (ATL) . 62

i

Contents

5.4. Epsilon Transformation Language (ETL) . 74
5.5. Operational QVT . 85
5.6. Xtend . 96

6. Conclusion 106
6.1. Outlook . 108

List of Tables 108

List of Figures 109

List of Listings 110

A. Acronyms 113

Bibliography 117

ii

1. Introduction

The software industry has become one of the largest industries on the planet, and many of
today’s most successful businesses are software production companies or offer services in
the software field [142]. Software are used for a large variety of tasks, from the firmware
running in digital clocks to software used to predict natural disasters. Such software can
be developed using software development methodologies. Many of these methodologies
provide mechanisms for enhancing the software quality.

One of these methodologies is Model Driven Engineering (MDE), where models are used
to describe and define static structures and dynamic behaviors of an application, and play
a key role in the development process of an application. These models are usually based on
standard specifications, such as the Object Management Group (OMG) Unified Modeling
Language (UML) [130, 131] specification. UML is a general-purpose visual modeling lan-
guage that is used to specify, visualize, and document the artifact of software systems [139].
Software specified by models provide many features, such as a representation of the appli-
cation that can be understood by software developers familiar with the UML specification,
generating the source code of an application using automated tools based on model trans-
formations, detecting bad smells and anti-patterns [83] in the model before implementing
the application, calculating metrics in the model for predicting development time or exe-
cuting refactoring [99] in the model before starting to code. Model transformation plays
a key role in many tools used in MDE, such as model refactoring tools, metric calculation
tools executed over models, and bad smell detection tools.

This work evaluates four different transformation languages based on the characteris-
tics specified in the ISO 9126 standard [106], on the language characteristic evaluation
proposed by Czarnecki and Helsen [89], and their capability for handling UML quality
engineering tasks such as calculating metrics and detecting bad smells.

The four transformation languages evaluated in this thesis are the ATLAS Trans-
formation Language (ATL) [7], the Epsilon Transformation Language (ETL) [31], the
Query/View/Transformation (QVT) Operational Mapping Language (OML) [128], and
Xtend [47]. These languages are used in tasks such as transforming a model into another
model, this process is known as M2M transformation. The ATL transformation language,
available in the Eclipse Modeling Tools distribution [29], is a hybrid transformation lan-
guage that supports imperative and declarative implementations. The ETL transforma-
tion language is also a hybrid transformation language, such as ATL, and is part of the
Extensible Platform of Integrated Languages for mOdel maNagement (Epsilon) project

1

1. Introduction

that is hosted as an Eclipse project. Epsilon provides a set of different languages that are
task specific, in which ETL is used for M2M transformations. The imperative language
QVT OML is one of the transformation languages from the OMG QVT specification. Since
it is a specification, there are many different implementations available. The imperative
transformation language Xtend is the Model to Model (M2M) transformation language
used in openArchitectureWare (oAW). Since oAW version 5, Xtend it is hosted as part of
the Xpand project in the Eclipse platform.

These four transformation languages are evaluated in a case study with M2M transfor-
mations related to UML quality engineering. The case study consists of calculating five
metrics, detecting three bad smells in the source model, and generating a target model
containing all metrics calculated for each element analyzed, and the bad smells detected.
This case study is implemented in each transformation language evaluated to analyze in a
more practical way its characteristics, features, and drawbacks.

The International Organization for Standardization (ISO) 9126 standard defines six qual-
ity characteristics that are used to evaluate software products. The transformation lan-
guages implementations, and their tools are evaluated based on this ISO characteristics.
Another evaluation approach that was included in this thesis is the continuity evaluation
for analyzing the future perspective of the transformation language.

The characteristics related to the transformation languages themselves are evaluated
based on the Czarnecki and Helsen [89] classification. This methodology classifies model
transformation approaches based on their characteristics. By using this article for evaluat-
ing the languages, it is possible to find important characteristics that are relevant in M2M
transformation processes related to quality engineering.

The evaluation conclusion is based on three different sources of information. A practical
experience using the transformation languages in implementing the case study, by analyz-
ing the transformation languages ISO 9126 characteristics, and in evaluating the languages
characteristics using the classification defined in [89]. Combining this information, it was
possible to make a clearer evaluation of the transformation languages related to UML qual-
ity engineering in the tasks of detecting bad smells, and metric calculations.

1.1. Related Work

This thesis evaluates transformation languages in M2M transformations, focusing on UML
quality engineering. Several other studies are related to the evaluation of transformation
languages or related to quality engineering.

The study from Czarnecki and Helsen [89] defines a classification for evaluating trans-
formation approaches. Several transformation approaches have been analyzed, and a cate-
gorization based on this approaches was proposed. Using this categorization it is possible
to evaluate important features related to model transformation approaches.

2

1. Introduction

The work from Jouault and Kurlev [110] analyzes the interoperability between ATL,
and other M2M transformation languages such as QVT, Tefkat [61], VIsual Automated
model TRAnsformations (VIATRA2) [69], Graph Rewrite And Transformation (GReAT)
[38], Attributed Graph Grammar System (AGG) [64]. This work first analyzes the transfor-
mation languages individually based on the classification of [89] and other classifications
referenced in the study. Then the actual interoperability between ATL and each of the
transformation languages are evaluated individually. In [109], the same authors also eval-
uate ATL individually based on [88].

A master thesis from Huber [105] evaluates four different transformation languages us-
ing a criteria catalog based on [88]. The four evaluated languages are ATL, SmartQVT [57],
Kermeta [40], and ModelMorf [44]. First an overview of the classification used is given,
and then the languages are analyzed. Then based on this classification, each transforma-
tion language is evaluated in detail.

A discussion about the existing work in the field of quality assessment and improvement
of UML models is described by Jalbani et. al. in [107].

The article from Tsantalis and Chatzigeorgiou [146] proposes a detailed methodology for
identifying Move Method refactoring opportunities. A methodology for executing the refac-
toring is described, such as the preconditions for executing the refactoring. This method-
ology is also implemented as an Eclipse plugin. At the end the proposed methodology is
evaluated.

1.2. Contributions

The contributions of this thesis are the following:

• The case study executes a M2M transformation in which it calculates five software
metrics in the source model, and based on this metrics, three bad smell types are
detected. The target model containing the metrics and bad smells entries conform
to a metamodel specified in this thesis. This metamodel has been developed so that
metric calculation results are stored in such a way that it is possible to calculate the
bad smells without having to analyze the source model. This metamodel has also
been developed to be used as second source model containing the bad smells that
must be refactored in refactoring processes.

• The same case study is implemented in the four different evaluated transformation
languages.

• The transformation languages have been evaluated based on an evaluation schema,
and an analysis of the transformation language characteristics based on [89]. The

3

1. Introduction

evaluation schema contains topics that are relevant to specific ISO 9126 characteris-
tics. It is divided into two groups, one with topics related to the implementation, and
the other with topics related to the research. The ISO 9126 characteristics, and the
transformation language classification are evaluated individually taking in consider-
ation the use of the language for UML quality engineering.

• A new classification named continuity has been included in this thesis to evaluate the
transformation language future perspective. This classification is also evaluated in
the evaluation schema.

1.3. Thesis Structure

This thesis is structurated as following. In chapter 2 the foundations and important back-
ground information relevant for this master thesis are briefly described. This chapter gives
an overview of the MDE methodology, the Model to Model Transformation (M2M) ap-
proach, Unified Modeling Language (UML) specification, Metrics, Bad Smells, Refactor-
ing, the ISO 9126 standard, the model transformation classification approach, and the main
technologies and transformation languages related to this work.

Chapter 3 describes the case study, and it is subdivided in one section that describes the
Bad Smell Detection and Metrics Calculation Metamodel (BSDMC_MM) metamodel used
in the M2M transformation as the target metamodel. Another section that describes the
source model example used in the case study. One section contains a description of the
metrics calculations implemented in this case study, and another section describes the bad
smells detection implementations.

The case study implementation is described in chapter 4. First an overview about the
implementation, such as common information to all implementations is given. The sec-
tions ATLAS Transformation Language (ATL), Epsilon Transformation Language (ETL),
Operational Query/View/Transformation (QVT), and Xtend describes the case study im-
plementation from each transformation language evaluated.

In chapter 5 the transformation languages are evaluated based on the ISO 9126 stan-
dard, and also analyzed based language characteristics classification proposed on [89]. In
chapter 6 a summary of the conclusions and an outlook of the work is presented.

4

2. Foundations

This chapter provides the foundations and the theoretical basis of this thesis. An overview
of MDE, and its development cycle is described in section 2.1. Section 2.2 gives an in-
troduction of M2M transformations and briefly describes different M2M transformation
approaches. Section 2.3 introduces UML, giving an overview of its diagram structure and
architecture. An introduction of software metrics is presented in section 2.4, giving an
overview about metrics, and listing a few object oriented software metric approaches. In
section 2.5 is the definition of bad smells briefly described and section 2.6 briefly presents
the refactoring process. The ISO 9126 used in the evaluation schema in the discussion
chapter is described in section 2.7. The model transformation classification proposed by
Czarnecki and Helsen [89] is presented in section 2.8. The technologies and transforma-
tion languages used in the case study are introduced in section 2.9.

2.1. Model Driven Engineering (MDE)

The idea promoted by MDE is to use models at different levels of abstraction for devel-
oping systems [97]. This models can be used for documenting the software, source code
generation based on models, detecting quality issues from modeled applications using on
automated tools, and enhancing the software portability and interoperability. There are
also other terms such as Model Driven-Software Development (MDSD), Model Driven
Development (MDD), and Model Driven Architecture (MDA) [125], but they do not al-
ways imply the same methods. Compared to MDSD, MDA tends to be more restrictive,
focusing on UML-based modeling languages [142]. The main objectives of MDA, as de-
scribed in [104], are portability, system integration and interoperability, efficient software
development, domain orientated, and capability of displaying specific knowledge in the
model.

Figure 2.1 describes how software source code is generated from a model using MDA.
The Platform Independent Model (PIM), is a model that does not contain platform specific
or library specific information modeled. The information necessary to transform the PIM
into a Platform Specific Model (PSM) are contained in the Platform Description Model
(PDM). The Transformation Description Model (TDM) also contains information that is
relevant to the process of generating a PSM. The PSM is a platform specific model, where
information of a specific programming language and libraries are contained. Based on the

5

2. Foundations

PSM model is the source code generated. This source code generated is usually composed
by classes, methods and packages. Additional information about MDE can be found in
[104, 134, 142].

 





Figure 2.1.: Code Generation Process in MDA

2.2. Model to Model Transformation (M2M)

In M2M, one model is transformed into another model. We can use model transforma-
tions, for example, to convert one UML model into a model based on a different meta-
model. To perform this transformation, diverse technologies such as ATL, Eclipse Model-
ing Framework (EMF) Model Query [30], Epsilon, Xtend and QVT may be used. In general,
a transformation has as input a source model, the source metamodel, the target model in
the case that they are different, and the target model instance in the case that the model
is not recreated, but only modified. Each transformation language has its own way of
processing model elements. ATL, for example, uses rules to map and execute transforma-
tions, such as matched rules that are called automatically by the transformation process.
The QVT OML transformation language has one input function. Inside this function is
declared mappings between the target and source models, and these are called based on
the implementations order. As a transformation result, a new or modified target model
instance is generated.

There are many different transformation approaches for performing M2M transforma-

6

2. Foundations

tions. The M2M transformation approaches can be classified as described below according
to [89].

• Direct manipulation: This approach provides an internal model representation and
also an Application Programming Interface (API) to manipulate it, such as Java Meta-
data Interface (JMI). A programming language such as Java [22] is used to program
it. In this approach the user must program the transformation rules, tracing, rules
scheduling and the other facilities related to the transformation. It is also usually
implemented as an object oriented framework.

• Structure-driven: This approach is divided in two phases, in the first phase the hi-
erarchical structures of the target model are created, and in the second phase the
attributes and references in the target model are set. The users have to write the
transformation rules, while the framework is responsible for the rules scheduling.
One example of this approach is the framework provided by OptimalJ [18].

• Operational: This category groups the M2M transformation approaches that are simi-
lar to the direct manipulation approach, but offer a more dedicated support for model
transformation. One example of extending the support for model transformations
according to [89] is by extending the metamodeling formalism, with facilities for ex-
pressing computations. Examples of transformation approaches in these categories
are QVT Operational [128], XMF-Mosaic executable Meta Object Facility (MOF) [71],
and Kermeta [40].

• Template-based: In this approach, according to [89], model templates are models
with embedded metacode that compute the variable parts of the resulting template
instances. These templates are usually expressed in the concrete syntax of the target
language. This metacode may be referenced as annotations on model elements. A
concrete example of this approach is described in [87].

• Relational: Declarative approaches based on mathematical relations are grouped in
this category. They can be seen as a form of constraint solving. Examples of relational
approaches are QVT Relations [128], Model Transformation Framework (MTF) [2],
Tefkat [61], and Atlas Model Weaver (AMW) [11].

• Graph-transformation-based: This transformation approaches are based on theoret-
ical work on graph transformations. They operate on typed, attributed, labeled
graphs, and its rules have a Left Hand Side (LHS) and a Right Hand Side (RHS)
graph patters. Examples of this approach are A Tool for Multi-formalism Meta-
Modelling (AtoM3) [15], From UML to Java And Back Again (Fujaba) [33], and
MOdel transformation LAnguage (MOLA) [112].

7

2. Foundations

• Hybrid: This category consists of a combination of the approaches described above.
Examples are ATL, Yet Another Transformation Language (YATL) [133], and QVT.

• Others: According to [89], the following two approaches are mentioned for complete-
ness, and are Stylesheet Language Transformation (XSLT) [72] and the application of
metaprogramming to model transformation.

2.3. Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a family of graphical notations, backed by single
metamodel, that help in describing and designing software systems, particularly software
systems built using the Object Oriented (OO) style [98]. The main goal in specifying UML
is the creation of a general purpose modeling language that all users can understand. The
OMG adopted the UML as a standard in November 1997. It was born from the unifica-
tion of many OO graphical languages such as Object Modeling Technique (OMT), Booch
method, and Objectory between the late 1980s and the early 1990s.

UML has descriptive rules, so that there is not an official way of modeling a software
structure or behavior in UML. These rules of how a specific part of the software should
be modeled could be defined by the group of software engineers working on that specific
project. There are recommended notations that have been accepted by convention, but
the use of them are not obligatory. It is also important to remark, that because of the
UML complexity, models specified based on the recommendations can be open to multiple
implementations.

The software engineer and developers are free to model one specific part of the applica-
tion, using the diagrams that they think will better describe what they want to document.
But in cases of a M2M transformation or a source code is generated based on one model,
the entire model must be consistent to a specification sufficient to generate the source code
or to execute M2M transformation.

UML is divided in structural and behavior diagrams. The structural diagrams are used
to model the software structure, such as components, the relation between components,
classes, methods, etc. The behavior diagrams are used to model the software behavior,
such as a specific sequence of methods calls or the modeling of a state machine. Figure 2.2
shows the UML available diagrams.

8

2. Foundations





















































Figure 2.2.: UML Diagrams

Class Diagrams are recommended in cases that classes, features, and relationships should
be modeled. Component Diagrams are recommended in cases that the modeling purpose
is to model the structure and the connections of components. The Composite Structure Di-
agrams are recommended in modeling the runtime decomposition of a class cases. In the
case that the modeling purpose is to model the deployment of artifacts to nodes, the De-
ployment Diagram is recommended. The Object Diagrams are unofficially adopted in UML
1, and it is recommended to use in cases that instances configurations should be modeled
in one specific time in the application’s runtime. The Package Diagram has also been unof-
ficially adopted in the UML 1 specification, and is recommended when the purpose of the
modeling is to model the dependency between packages.

Activity Diagrams are recommended in cases that the modeling purpose is to model pro-
cedural and parallel behavior. The Use Case Diagram is recommended to model how the
users interact with the modeled system. The recommended diagram to model how events
change an object over its life is the State Machine Diagram. A Sequence Diagram is recom-

9

2. Foundations

mended in cases that the modeling purpose is to model the interaction between objects
with emphasis on sequence. Communication Diagrams are recommended for modeling the
interaction between objects, but emphasis on links. The Interaction Overview Diagram, is
a mix between the Sequence Diagram and the Activity Diagram. Timing Diagrams is recom-
mended in cases that the modeling purpose is to model the interaction between objects but
with emphasis in timing, in real time applications for example.

The UML architecture is composed by four layers, and shown in Figure 2.3. The M3 is
the first layer, and all other layers are based on it. It is called MOF, and it is considered a
language that is used to model other models or metamodels, and can also be used to model
itself. The MOF is also an OMG specification, and can be found in [126]. On top of the M3
layer is the M2 layer, where the Unified Modeling Language version 2 (UML2) metamodel
is located. This metamodel is an instance of MOF. On top of the M2 layer is the M1 layer
that is an User Model that is an instance of the UML2 metamodel. One example of an User
Model, is the example model used in the case study on chapter 3. The M0 layer where the
model is instanced based on the M1 layer.























Figure 2.3.: UML Metamodeling

2.4. Software Metrics

Software metrics deals with the measurement of software and the applications develop-
ment processes. These metrics can be subdivided in groups such as size, complexity, qual-
ity, and object oriented metrics. Software metrics can be used to predict and track software
projects, identify bad smells in the software source code, or calculate and detect reliability
aspects of software. The use of software metrics can enhance the quality of software, as
also be used in supporting decisions related to its development process.

An example is the Logical Lines of Code (LLOC) metric used to represent the actual
amount of source code lines, not considering empty or commented lines. This metric can
be used to measure the size of the application, or to give an overview how is the source
code distributed between the files. Such information is valuable in supporting the decision

10

2. Foundations

making of for example predicting the time needed to refactor one entire file.
Metrics can also be calculated in models, not only in the source code. Calculating metrics,

in the first stages of the model development of one application, can save time and money.
It is possible to detect and remove bad smells in the modeling phase, avoiding that these
bad smells propagate to the source code. There are also specific metrics for object oriented
models and implementations. Examples of object oriented metrics are Weighted Methods
per Class, Response for a Class, Lack of Cohesion of Methods, Coupling Between Object Classes,
Depth of Inheritance Tree, and Number of Children. Detailed information about these metrics
is available in [138].

The startup of metrics measuring in object oriented design, according to [77] occurred in
1991 by two pioneers, Shyam R. Chidamber and Chris F. Kemeler [84]. In 1994 they pub-
lished a work [85] about the Metrics for Object-Oriented Software Engineering (MOOSE)
metric, also known as C.K. metrics. Other approaches came after, such as the Metrics
for Object-Oriented Design (MOOD) [95], Quality Model for Object-Oriented Design
(QMOOD) [80], Formal Library for Aiding Metrics Extraction (FLAME) [82], and others.
Additional references to object oriented metrics can be found in [77, 81, 140].

2.5. Bad Smells

Bad smells can be found in the source code or in models. In source codes, bad smells
are dubious implementations in the source code that may generate an error, or it does
not conforms to a specific metrics calculated value that indicates good implementation
practices. Bad smells can be found not only on procedural languages but also in object
oriented languages. Examples of bad smells in the source code are a method with too many
lines of code, a method that has too many parameters, a class with too many parameters,
and etc.

In MDA, the source code is one of the last parts in the software development process.
Bad smells can also be found in models, such as UML, or Ecore models. If bad smells are
detected and removed in this phase of the development process, they do not propagate to
the source code. A reference about bad smells can be found in [99].

2.6. Refactoring

According to [99], refactoring is a change made to the internal structure of software to make
it easier to understand and cheaper to modify without changing the observable behavior.
The refactoring process can be executed in the source code level or in the model level. In
the software development process, it is common to adapt and modify the software during
its life cycle. This modifications may be necessary to correct a bug, to include new func-

11

2. Foundations

tionalities, to adapt one part of the software structure and/or behavior to a specific Design
Pattern [100], or to remove bad smells. In all this cases refactoring processes can be used.

Fowler proposes a catalog of refactoring in [99], in which each refactoring has a name,
summary, a motivation that describes why a refactoring should be done and in what circum-
stances it should not be done, the mechanics that describes step-by-step how to perform
the refactoring, and an example about how the specific refactoring works. Other references
related to refactoring are [91, 122, 145, 146]

2.7. International Organization for Standardization (ISO) 9126
Standard

ISO 9126 [106] quality model standard is an international standard used for evaluating
the software quality. This ISO norm is divided in quality models for external and internal
quality, and quality-in-use. This thesis evaluates the transformation languages based on
the external and internal quality model. Figure 2.4 shows the quality model for external
and internal quality.

Figure 2.4.: ISO 9126 quality model for external and internal quality.

The main categories functionality, reliability, usability, efficiency, maintainability, and porta-
bility defined in this standard are described below.

12

2. Foundations

2.7.1. Functionality

This category describes if the technology is suitable by providing all needed functions to
perform one specific task, accurate to generate the wanted results, interoperable between
systems, secure in protecting the data information, and provides functionality compliance
that defines that a technology compliance to other standards, conventions, regulations, and
also similar prescriptions relating to the functionality.

2.7.2. Reliability

The capability of the software product to maintain a specified level of efficiency when used
under specified conditions [106]. Important subcategories are the maturity, which consists
on the capability of avoiding failure based on faults in the software. Fault tolerance, which
consists of keeping a specified level of efficiency after a fault occurred. Recoverability, that
consists of re-establishing the same level of efficiency after one fault occurred. And relia-
bility compliance that defines that technology compliance to other standards, conventions,
regulations, and also similar prescriptions relating to the reliability.

2.7.3. Usability

The usability category is related to the level of difficulty to understand the technology,
the level of difficulty to learn how the technology works, the level of operability in the
case of how the user can control the technology, the technology attractiveness represent-
ing features that makes it compelling for the user, and also usability compliance to other
standards, conventions, regulations, and also regulations and style guides related to the
usability.

2.7.4. Efficiency

The efficiency is related to time behavior, such as the time needed to execute one specific
process. It is also related to the resource utilization, and also that the resources that are
used are appropriate to the task executed.

2.7.5. Maintainability

The maintainability is an important characteristic, and represents topics such as the tech-
nology analyzability for identifying causes of failure or to identify one specific implemen-
tation part. The changeability that refers to the capability of changing the implementation,
stability in the case that an implementation change does not generate unexpected effects,
testability referring to the capability of testing and validating the implementation, and that
the capability to adhere to standards, and conventions relating to maintainability.

13

2. Foundations

2.7.6. Portability

Portability is the capacity that one technology can be transferred from one environment to
another, and is subdivided in the adaptability, that refers to the capacity of adapting the
software to other environment without having to perform large changes. Installability is
the capacity of the software of being installed in one specific environment. The capacity
of the software to co-exist with other independent technology in a common environment
is known as co-existence. The capability of replacing the technology with another one that
has the same purpose is known as replaceability, and at last the portability compliance,
that refers that the technology adhere to standards, and conventions relating to portability.

2.8. A Classification for Evaluating Model Transformation Lan-
guages

There are many approaches to perform M2M transformations in models. Each transfor-
mation approach has advantages and disadvantages depending on its characteristics. In
[89], those approaches are collected and divided in categories that make it possible to cat-
egorize most model transformation approaches. It divides the model transformations in
two major categories, the Model to Text (M2T) and M2M transformations. The M2T trans-
formations are subdivided in the Visitor-based, and Template-based approaches, while the
M2M transformations are subdivided in Direct manipulation, Structure-driven, Operational,
Template-Based, Relational, Graph-transformation-based, Hybrid, and other approaches. Fig-
ure 2.5, and the following subsections shows and describes the top level feature diagram
from the classifications.

Figure 2.5.: Top Level feature classification

2.8.1. Specification

In some approaches there are dedicated specification mechanism, such as the use of pre
and post conditions that can be expressed in the form of Object Constraint Language (OCL)

14

2. Foundations

expressions or functions that must be validated between target and source model. These
specifications describe relations, therefore, in general they are not executable. According
to [89], the QVT-Partners submission distinguished between relations as potentially non
executable specifications of their executable implementation. This classification is optional.

2.8.2. Transformation Rules

In this classification, transformation rules are considered as a broad term for describing
the smallest unit of transformations, so that not only rules are considered as transforma-
tion rules, but also functions and procedures that somehow executes one transformation.
This transformation rules are subdivided in domains, that is the part of the rule responsi-
ble for accessing one of the models that are used in the rule transformation. A domain is
again subdivided in domain language, static mode, dynamic mode restriction, body, and typing.
In this subdivision is defined for example in how many domain languages the rule oper-
ates, how are the domains declared, if they are implicitly or explicitly declared, such as if
a specific domain is defined as in, out, or inout, or if the rule body supports variables for ex-
ample. Other classifications from the transformation rules are also the syntactic separation,
multidirectionality, application controls, intermediate structures, parameterization, Reflection, and
Aspects.

2.8.3. Rule Application Control

The rule application control is divided in two aspects, the location determination that is re-
lated to strategy for locating the matches of the rules that are going to be executed in the
source model. This strategy can be deterministic, nondeterministic, or interactive. One exam-
ple of a deterministic strategy is a depth-first search in the source model, an example of a
nondeterministic strategy is when a rule is applied to a random element in the source model.
The nondeterministic strategies are again subdivided in concurrent, and one-point. One inter-
active strategy approach is when the transformation process allows the user to interact with
the transformation to determine the location where the rule is going to be applied.

The rule scheduling is related to the order that individual rules are applied, and they are
subdivided in four main areas that are : form, rule selection, rule interaction, and phasing.
The form refers to the way scheduling can be expressed implicitly or explicitly. The rule
selection defines how the rule is selected and it can be composed by explicit condition, nonde-
terministic, conflict resolution, and interactive. The rule interaction refers to rules mechanisms
for interactions, and it can be recursion, looping, or fixpoint interaction. Phasing refer to the
possibility of dividing a transformation process in many phases, so that the rules that are
going to be executed in each phase can be defined. The rule interaction, and phasing are
optional characteristics.

15

2. Foundations

2.8.4. Rule Organization

The rule organization is related to how the rules are organized and structured, and they
were divided in three areas, the modularity mechanism that defines how de rules can be
organized, such as spreading the rules in modules. The reuse mechanism refer to the use of
rules in conjunction, or a way to reuse rules, examples of rules reuse are rule inheritance,
inheritance between modules, and rules extensions. The organizational structure refer to
how the rules are organized, rules can be attached to elements in the source model, or in the
target model for example. The characteristics modularity mechanisms, and reuse mechanisms
are optional.

2.8.5. Source-Target Relationship

Source-Target relationship refers to how the transformation handles the models. A trans-
formation may create a new target model, edit a target model by performing an update,
or an in-place transformation. In the case of an update, it is subdivided in destructive and
extension only. There are approaches that allow the creation of new target models, and also
edit them, and there are approaches that only allow a generation of a new target or editing
an existing target.

2.8.6. Incrementality

The incrementality is related to the ability to update target models based on a change in
the source model. This topic is subdivided in three groups, target incrementality, source
incrementality, and preservation of user edits in the target. This classification is also considered
optional. The target incrementality refers to the ability of changing a target model, based on
changes performed in the source model. This feature is also referred as change propagation
in the QVT final adopted specification [89]. The source incrementality refers to minimizing
the source that must be reexamined in a transformation when a source models is modified.
And preservation of user edits in the target refers to the ability of rerun a transformation over
a target model, keeping the modifications made by the user in the target model.

2.8.7. Directionality

The directionality is related to the transformation direction, one transformation can be uni-
directional in the case that the target model is created or modified based on a source model.
It can also be multidirectional, in cases where the transformations are performed in two di-
rections, such as in models synchronization. This kind of transformation can be achieved
by defining multidirectional rules, or by defining several unidirectional rules, one in each
direction.

16

2. Foundations

2.8.8. Tracing

Tracing can be understood as the runtime footprint of the transformation process. These
traces are useful for analyzing the connections between the target and the source model
in the transformation, observing what target element was created based on what source
element, it can also be useful for performing impact analysis, determining the target of a
transformation as model synchronization, model based debugger, and also in debugging
the model transformation process.

2.9. Languages and Technologies

This section describes an overview of the technologies and transformation languages that
are relevant in this thesis.

2.9.1. ATLAS Transformation Language (ATL)

ATLAS Transformation Language (ATL) is the ATLAS INRIA & LINA research group an-
swer to the OMG MOF / QVT Request For Proposal (RFP) [78]. It is considered a hybrid
transformation language, since it contains a mixture of imperative and declarative con-
structs. It is encouraged to use the declarative style of specifying transformations. But in
some cases it is necessary to use the imperative features of the language. ATL performs
a one way transformation, i.e., it is only possible to read the input model, and write the
output model.

The ATL Development tools are composed by the ATL transformation engine and the
ATL Integrated Development Environment (IDE), i.e., is composed by an editor, compiler,
and debugger. The output model can be generated in the XML Metadata Interchange (XMI)
[127] or Kernel Meta Meta Model (KM3) [79] format. The standard library available is com-
posed by the primitive types, collection types and its operations and they are based on the
OCL 2.0 [132] standard library. There is also a Virtual Machine (VM) called Regular VM,
and another named EMF VM. Additional information about the library and its implemen-
tations for both Virtual Machines is available in [8].

The engine is responsible for compiling the ATL code into a specialized byte code, that
is executed by the ATL VM. The ATL editor supports syntax highlighting, error reporting,
and also an outline view. The ATL compiler is automatically called for each ATL file in
each ATL project during the Eclipse build process [108].

The source code is divided in header, helpers and rules sections. The module name,
models, and metamodel variables are defined in the header section. The keywords that are
used in this section are the module keyword that defines the module name. The create
keyword that introduces the target model declaration, and the from keyword introduces
the source model declaration (Listing 2.1).

17

2. Foundations

1 module Proceedings2Articles;
2 create OUT : Articles from IN : Proceedings;

Listing 2.1: ATL header example

It is possible to import other libraries to be used in the transformation. The uses keyword
followed by the name of the library is used to include it in the transformation.

Helpers are subroutines that are used to avoid code redundancy [76]. They are used
to define global variables and functions that can be specified as a helper with or without
context. The helper functions are OCL expressions that also provides recursion. The key-
word helper defines a new helper context. The context is set as metamodel!element. The
helper syntax is shown in Listing 2.2.
1 helper [context]? def : attribute_name : return_type = exp;

Listing 2.2: ATL header syntax

The self variable inside the helper represents the context element. After the keyword
def the helper name is defined. One helper example is shown in Listing 2.3.
1 helper context Proceedings!Paper def : getAuthors : String =
2 self−>collect(e | e.author)−>asSet()−>iterate(vAuthorName; vAuthorsStr : String = ’ ’ |
3 vAuthorsStr +
4 if vAuthorsStr = ’ ’
5 then vAuthorName
6 else ’ , ’ + vAuthorName
7 endif);

Listing 2.3: ATL header example

The rules are the central part of the transformation, rules describes how output elements
are generated based on the input elements. Both depend on each corresponding model.
One module may contain more then one rule. But the rule’s name must be unique inside
the module. The listing below describes the rule syntax structure.
1 rule rule_name {
2 from
3 in_var : in_type [(
4 condition
5)]?
6 [using { var_1 : var_type_1 = init_exp_1;
7 ...
8 var_n : var_type_n = init_exp_n;
9 }]?

10 to
11 out_var_1 : out_type_1 (
12 bindings_1
13),
14 out_var_2 : distinct out_type_2 foreach (e in collection) (
15 bindings_2
16),
17 ...
18 out_var_n : out_type_n (

18

2. Foundations

19 bindings_n
20)
21 [do {
22 statement
23]?}

Listing 2.4: ATL rule syntax

After the keyword rule the rule name is defined. Each rule has the mandatory blocks
from and to, and the optional blocks using and do. The from block refers to the element
from the source model that must match to the type element in_type, and as an optional
block, also satisfy the condition statement. The using is also an optional block used to
initialize variables. The to block corresponds to the target pattern. It contains a number of
target elements that are going to be instantiated. The do block is optional and it enables the
use of a sequence of ATL imperative statements, that are executed after the target elements
have been instantiated and initialized. The listing below shows one rule example.
1 rule Paper2Articles {
2 from
3 b : Proceedings!Paper (
4 b.getPages() > 15
5)
6 to
7 out : Articles!Article(
8 title <− b.title,
9 authors <− b.getAuthors()

10)
11 }

Listing 2.5: ATL rule example

In the example above (Listing 2.5), the to block will only be executed if source element is
from the Paper type that has more than 15 pages. In this example, for each Paper element
from the source model that satisfies the filter, one element from the type Article will be
created in the target model.

2.9.2. Epsilon

Epsilon is a platform for building consistent and interoperable task-specific languages for
model management tasks such as model transformation, code generation, model com-
parison, merging, refactoring and validation [118]. It is a component that belongs to
the Generative Modeling Technologies (GMT) research incubator. The development tools
available in [31] for Epsilon are EuGENia, Exeed, ModeLink, Workflow, and Concordance.
The Epsilon project is not available in the standard Eclipse Modeling Tools, so it must be
installed separately.

Epsilon is not considered as a transformation language, but it is a set of interoperable
task-specific languages for model management. This set of interoperable task-specific lan-

19

2. Foundations

guages consists of seven languages, and each language is used for one specific model man-
agement task, such as model transformation, code generation, model comparison, merg-
ing, refactoring and validation. The Epsilon languages:

• Epsilon Object Language (EOL): The EOL language provides a set of common model
management facilities that are used by one of the task specific languages. It can be
considered as kind of a template language for the other ones, since all other lan-
guages are built on top of EOL. It is also possible to execute it as a standalone model
management language for automating tasks that does not belong to one of the spe-
cialized language domain.

• Epsilon Validation Language (EVL): EVL is the language used for model valida-
tion in Epsilon. Features such as a detailed user feedback, constraint dependency
management, semi-automatic transactional inconsistency resolution, and access to
multiple models of diverse metamodels are available in EVL. There are similarities
between EVL and OCL, but EVL is not based on the OCL specification.

• Epsilon Transformation Language (ETL): The language used for model transfor-
mation in Epsilon is ETL. It is a M2M transformation language that supports the
transformation of many input into many output models, it is rule based, its possible
to modify the input and output model, provides declarative rules with imperative
block, and other features.

• Epsilon Comparison Language (ECL): ECL is a language used to compare models.
It is a hybrid, rule-based language that can be used to compare homogeneous and
heterogeneous models. It can also be used to establish correspondences between
models, can export comparison results to Epsilon Merging Language (EML) or to a
custom model/format and other features.

• Epsilon Merging Language (EML): Such as ECL, EML is a hybrid, rule based lan-
guage for merging homogeneous and heterogeneous models, can export the merge
trace to a custom model/format, provides declarative rules in imperative blocks, and
other features.

• Epsilon Wizard Language (EWL): EWL is a language tailored to interactive in-place
model transformations on user-selected model elements (unlike ETL which operates
in a batch mode)[118]. Features such as executing wizards within EMF and Graphical
Modeling Framework (GMF) editors, define guards in wizards, undo and redo effects
of wizards on the model are available.

• Epsilon Generation Language (EGL): It is a M2T template based language for gener-
ating textual artifacts such as code, and documentation for example. Features such

20

2. Foundations

as decouple content from destination, template calls with parameters from other
templates, calling of sub-templates, mixture of generated and hand-written code are
available.

The EOL uses the keyword operation to define functions in the source code. These
operations can be specified as with or without context. The use of context improves the
understandability. It also provides the simple and executable types of annotations. It is also
possible to define pre and post conditions in user defined operations.

The example below (Listing 2.6), shows an operation that contains pre and post condi-
tions.
1 $pre aValue > 0
2 $post _result > self
3 operation Integer addValue(aValue : Integer) : Integer {
4 return self + aValue;
5 }

Listing 2.6: EOL pre and post condition in operations example

The code in lines 1 and 2 defines the pre and post conditions to execute the operation in
line 3. The core library implements the functions that are similar to OCL for working with
collection and maps, types, strings, and model element types. Detailed information about
the core library is available in [118]. The operations of the type Any was inspired by the OCL
implementation of OclAny. Operations such as isTypeOf(), isKindOf(), asSequence(),
asSet() and many others are very similar to the OCL. Not only the operations used in
types, but also the use of collections, and its operations are very similar to the OCL speci-
fication. The use of If, While, and For statements are also provided in the EOL language.
Other feature that EOL also provides is the use of transactions. EOL implementations can
also be called directly by the workflow.

On top of EOL is ETL, it inherits all features provided by EOL. Such as described above,
ETL is a rule based language, and is the central part of the transformation. Each ETL file
may contain more than one rule defined.

The Listing 2.7 shows the ETL rule abstract syntax. A rule can be abstract, lazy, and
primary, the name of the rule is defined after the keyword rule, and must be unique. The
transform keyword defines the source element type and the to keyword defines the target
element type. A rule can also have more than one target element defined. The extends
keyword is optional, and specifies a list of rules that it extends. The guard keyword is also
optional and can define a condition to execute the rule’s body block.
1 (@abstract)?
2 (@lazy)?
3 (@primary)?
4 rule rule_name
5 transform in_var:in_type
6 to out_var_1:out_type_1,
7 ...,

21

2. Foundations

8 out_var_n:out_type_n
9 [extends rule_name_1,

10 ...
11 rule_name_n]?{
12 [guard (:expression | {statements})]?
13 statements
14 }

Listing 2.7: ETL rule syntax

Listing 2.8 shows one example of a rule implementation used in the case study.
1 rule CalculateMetricsInClasses
2 transform vs: Source!Class
3 to vMetricNOC : QueryResult!MetricResult,
4 vMetricCBO : QueryResult!MetricResult
5 {
6 fResult.resultsList.add(CalculateMetricNOC(vMetricNOC,vs));
7 fResult.resultsList.add(CalculateMetricCBO(vMetricCBO,vs));
8 fResult.resultsCount := fResult.resultsCount + 2;
9 }

Listing 2.8: ETL rule example

In this example, for each Class element in the source model, are two MetricResult
elements from the target model created (Lines 3 and 4). These elements are inserted
in the resultsList, which is a set of elements that contains all calculated metrics
and bad smells detected in the target model. Each function, CalculateMetricNOC and
CalculateMetricCBO, create a return element that contains the information related to the
calculated metric.

It is possible in an ETL transformation, to define pre and post blocks for the entire trans-
formation, so that before all rules are called, the pre block is executed, and after all rules
has been called, the post block is executed. More information about the Epsilon project
can be found in [118], and [115].

2.9.3. Query/View/Transformation (QVT)

Query/View/Transformation (QVT) is the new standard for the implementation of model
transformations based on the MOF and OCL standards [104]. The QVT specification de-
fines imperative and declarative transformation languages. The declarative languages are
known as relation and core, while the imperative language is known as operational mappings.

22

2. Foundations

Figure 2.6.: QVT metamodels relationships

The core language is a declarative language, which is defined at a lower level of abstrac-
tion, and is a minimal extension to Essential Meta Object Facility (EMOF) and OCL. In
this language, the users are not responsible for the creation and deletion of objects, and
the traces are not automatically generated. In the core language, the users must define the
transformation rules and trace information as a MOF metamodel. According to [128], it
can only support pattern matching over a flat set of variables by evaluating the conditions
over those variables against a set of models.

The relations language is a declarative and user-friendly transformation language mainly
built around the concept of object-patterns. It supports a complex object pattern matching.
The relationships between the source and target models are defined by the user. The user is
not responsible for the creation and destruction of objects. It also has trace functionalities.
An example extracted from [142] is shown in Listing 2.9.
1 transformation alma2db(alma: AlmaMM, db: DbMM)
2 top relation EntityToTable {
3 prefix, name : String;
4 checkonly domain alma entity:Entity {
5 name = eName
6 };
7 enforce domain db table:Table {
8 name = eName
9 };

10 where {
11 prefix = ’’;
12 RecordToColumns(entity,table,prefix);
13 }
14 }

Listing 2.9: QVT relations source code example

In the example above, the name followed by the keyword transformation defines the
transformation name, all models used in the transformation are passed as parameters. The
transformation direction is defined in the QVT relations transformation call. There are two
types of relations, the top-level relations and non-top-relations. The execution of the trans-
formation requires that all top-level relations hold. Non-top-level relations are required to
hold only in cases where they are invoked directly or transitively from the where clause

23

2. Foundations

from a different relation. After the keyword relation is defined the relations name, in the
example above, EntityToTable. In this transformation for each element from type Entity
contained in the model alma, provided they at least define a property name, which has to
be bound to the variable eName. The similar occurs with the model db. The checkonly
and enforce keywords constrains how the transformation will occur in a given direction.
In a transformation direction from alma to db, the EntityToTable element will match all
Entity elements from the source model and will check if a corresponding element exists
in the db target model that has the same name as in the source model. If no element was
found in the target model, the QVT engine generates one new entry of a table element in
db model.

The imperative variant is provided by Operational Mapping Language (OML). It is in-
tended to provide an imperative alternative, which can be invoked from the Relations and
Core Languages in a “Blackbox” manner [103]. It can be used in two ways, or as a transfor-
mation executed exclusively using OML, that is also known as operational transformation, or
the hybrid variant, that is the use of OML combined with the declarative languages. Other
characteristic is that it is possible to use OCL statements in the OML language. The Black
Box shown in Figure 2.6 is a mechanism of incorporating other implementations using dif-
ferent programming languages in the process.

An OML module is basically divided in header and implementation parts. In the header
section are included the declaration from the models used in the transformation. The key-
word modeltype is used to declare each model. It is followed by a name that is going to be
used as reference to the model in the file, the keyword uses and the actual model location.
An example is shown below. (Listing 2.10)
1 modeltype Target uses
2 ’http://www.eclipse.org/emf/2002/Ecore’;
3 modeltype Source uses
4 ’http://www.eclipse.org/uml2/2.1.0/UML’;

Listing 2.10: OML header example

The second section is the implementation section that is defined by the keyword
transformation. In the example below (Listing 2.11), two variables are passed as param-
eters. The keywords in and out defines the transformations direction. It is also possible to
use the keyword inout in the case that the output model should not be cleared and rewrit-
ten. The main function is the transformations entry point. The “->” string represents the
mapping, the Class2EClass() function is executed every time one Class instance in the
source model is found.
1 transformation uml2rdb(in uml:Source, out ecore:Target){
2
3 −− The main entry point of the transformation
4 main(){
5 −− Standard model element access and mapping invocation
6 uml.objects()[Class]−> map Class2EClass();

24

2. Foundations

7
8 }
9 }

Listing 2.11: OML example

The mapping operations provide a fundamental behavior in the transformation, the List-
ing 2.12 below shows a general syntax of a mapping operation.
1 mapping [direction]? context::mapping_name
2 ([direction_n parameter_name_1 : parameter_type_1,
3 ...
4 direction_n parameter_name_n : parameter_type_n]?) : return_type_1, ..., return_type_n
5 [when { statements }]?
6 [where { statements }]?
7 {
8 [init { statements }]?
9 (population { statements }) | statements

10 [end { statements }]?
11 }

Listing 2.12: OML mapping general syntax

The mapping keyword represents the mapping operation, followed by an optional key-
word to specify its direction. The context represents the mapping context, followed by
the mapping name. Each mapping can contain none or many parameters. After the dou-
ble points the return types are defined. A mapping can return more than one element, the
keyword result is used to reference the return object, tuple, or multiple results. Before
the body containing the init, population, and end is executed, the two optional blocks
when and where are executed. The when clause acts either as guard, or as pre-condition,
while the where clause acts as post-condition. The body block contains the init block,
that is optional and it is executed before the other two blocks. It can be used to initialize
variables. In the population block is a section to write the main code. It is not necessary
to set the population block, only in some special cases it must be set. The end block is
executed at last, and should contain all implementation that should be done at the end of
the transformation.

The Listing 2.13 shows a mapping used in the case study implementation. The
CalculateMetricMP mapping has one input parameter. The mapping body is only exe-
cuted if the where clause is satisfied. In the Init block the return element is initialized. In
the population block from lines 15 to 17 is called another mapping and the value property
from the initialized result object is set.
1 mapping Source::Operation::CalculateMetricMP(
2 in aBehaviorDiagramsList : OrderedSet(Behavior)) : BSDMC_MM::MetricResult
3 when {self.name <> ’’}{
4 init {
5 result := object BSDMC_MM::MetricResult{
6 id := 3;
7 text := ’Calculate Method Polymorphism (MP)’;

25

2. Foundations

8 targetObject := self.name;
9 targetObjectType := self.metaClassName();

10 parentObject := self.owner.oclAsType(Class).getQualifiedName();
11 parentObjectType := self.owner.oclAsType(Class).metaClassName();
12 type := MetricsTypes::mtMethodPolymorphism;
13 };
14 }
15 self.CollectOperationsHasBehaviorDiagram()−>xcollect(e|
16 result.metricResultItem += result.map CreateMetricItem(e));
17 value := result.metricResultItem−>size();
18 }

Listing 2.13: OML mapping example

It is also important to remark that OML also support the use of query and helper. Ac-
cording the QVT specification, a query is a special kind of helper operation. But unlike a
query, a helper may have side effects on the parameters passed into it.

A nice analogy to the functions of each language is described in [128], in which the three
languages are compared to the Java Virtual Machine (JVM), so that the Core Language is
such as the Java byte code. The Relation Language plays the role of the Java language and
the standard transformation from Relations to Core is such as the specification of a Java
compiler, which produces the code.

The Standard library in the QVT OML specification is built on top of the OCL Standard
Library, and adds pre-defined types to the M1 layer and are specific from QVT.

2.9.4. Xpand/Xtend

Xpand is a project hosted in the Eclipse platform, and it was previously part of the
oAW version 4 framework. The new oAW version 5 was subdivided in Eclipse projects,
and it is hosted in the Eclipse website, while its older version is available in [47]. The
openArchitectureWare (oAW) version 5 available in Eclipse was subdivided in the Xtext
project, that is a framework for the development of Domain Specific Language (DSL), and
programming languages. The Xpand, Xtend, and Check languages those are available as
the Xpand project in Eclipse, which is a framework for MDSD, and the Modeling Work-
flow Engine (MWE) project, that is a framework for integrating and orchestrating model
processing frameworks.

The Xpand project is used for M2T and M2M transformations in MDSD. The transfor-
mation language used for M2T is Xpand, an example of a M2T transformation is the source
code generation based on a model. The Xtend language is a language that is used for M2M
transformations, such as performing a refactoring in a model, while the Check language is
used for analyzing constraints.

All this languages are built on top of the Expressions Language, so that three languages
inherit characteristics from the base language. All three languages can operate on the same
models, and metamodels. Features available in the expressions language are:

26

2. Foundations

• It is possible to define local variables using the let expression;

• Supports multiple dispatching, this means that in cases of overloaded operations, the
decision of what operations is going to be called is based on the dynamic type of all
parameters;

• Statically typed language;

• Lists and Sets are processed in a similar way to OCL expressions;

• The arithmetic expressions, Boolean expressions, and property access is similar to
Java;

• It is possible to call Java operations;

• Simple types String, Boolean, Integer, and Real are similar to Java

The three languages use the same syntax, and all languages can operate on the same
models, metamodels, and meta-metamodels. Therefore it makes the implementation using
these three languages faster.

Only the Xtend language is used in this thesis for performing a M2M transformation.
This language is commonly used with Xpand templates to provide reusable operations
and simple expressions by extending the underlying metamodels [103]. A Xtend source
code example is shown below. (Listing 2.14)
1 import myModel;
2 import Model;
3
4 Report root(GeneralReport aGeneralReport):
5
6 createReport(aGeneralReport);
7
8 create Report this createReport(GeneralReport aGeneralReport):
9 this.setName(aGeneralReport.Name)−>

10 this.setDate(aGeneralReport.Date);

Listing 2.14: Xtend example

In the example, the lines 1 and 2 import the two models used in the transformation. The
aGeneralReport instance is passed as parameter in the transformation. This variable is
an instance from the source model. The createReport() method, creates a new Report
instance, based on the target model. The two attributes that are set in the new instance are
the Name and Date attributes.

oAW also uses a workflow file, that is basically a Extensible Markup Language (XML)
file, which is executed top down. The workflow guides the entire transformation, the meta-
models and models, the M2M transformations calls using Xtend , the M2T transformations
calls using Xpand, and the constraint checking calls using the Check language are defined

27

2. Foundations

and configured in this file. The example below (Listing 2.15) shows the workflow used in
Xtend implementation of the case study.
1 <workflow>
2 <property name="sourceModel" value="sourcemodel/MasterProject.uml" />
3 <property name="resultModel" value="result/result.xmi" />
4 <property name="resultDir" value="result" />
5 <property name="BSDMC_MM" value="metamodel/BSDMC_MM.ecore"/>
6 <bean class="org.eclipse.emf.mwe.utils.StandaloneSetup" >
7 <platformUri value=".."/>
8 <registerEcoreFile value="metamodel/BSDMC_MM.ecore" />
9 </bean>

10 <bean class="org.eclipse.xtend.typesystem.uml2.Setup"
11 standardUML2Setup="true"/>
12 <component class="org.eclipse.xtend.typesystem.emf.XmiReader">
13 <modelFile value="${sourceModel}"/>
14 <outputSlot value="modelSlot"/>
15 </component>
16 <component class="org.eclipse.xtend.XtendComponent">
17 <metaModel class="org.eclipse.xtend.typesystem.uml2.UML2MetaModel"/>
18 <invoke value="template::UML2BSDMC_MM::root(modelSlot)"/>
19 <outputSlot value="outSlot"/>
20 </component>
21 <component id="resultModelWriter" class="org.eclipse.emf.mwe.utils.Writer">
22 <modelSlot value="outSlot"/>
23 <uri value="${resultModel}"/>
24 </component>
25 </workflow>

Listing 2.15: Workflow of the Xtend case study implementation

2.9.5. Object Constraint Language (OCL)

The declarative language OCL is used to define constraints and rules to models. It can
be used to enhance the specification of models by setting constraints and conditions to
specific elements. A big advantage of using OCL in MDE, is the possibility of validating
and analyzing a model before generating its code. The OCL specification is defined by the
OMG, the same group that defines specifications such as UML and QVT.

An example using OCL is by constraining the field age from an element from the type
Person to a range from 0 to 120 years. It can also be used in custom templates to provide
runtime behavior, initialize features in models, define model audits, and metrics, and serve
as basis for transformation languages [103].

The OCL expressions can be included in the model or in the source code from one trans-
formation language that supports OCL such as ATL, QVT, and EMF Model Query. In
OCL, the context keyword introduces the context from one expression, so that using the
keyword self, refers to the context of the expression. The keywords inv, pre, and post
denotes the stereotypes invariant, precondition, and postcondition. It is also possible to
specify the keyword body to specify a query. It may also be used to indicate an initial state

28

2. Foundations

or a derived value from one attribute. The keywords used are init and derive. A detailed
documentation about OCL can be found in [132]. A few examples of OCL expressions are
shown below.
1 context Body
2 inv : name = ’EMB 190’

Listing 2.16: OCL example

In this first example, Listing 2.16, the context of the name attribute in a context Body must
be ‘‘EMB 190’’. Another example of an OCL expression is shown in Listing 2.17.
1 context Source::Package::GetBehaviorDiagrams() : OrderedSet(Behavior)
2 body: allOwnedElements()−>select(e|
3 e.oclIsTypeOf(Activity) = true or
4 e.oclIsTypeOf(Interaction) = true)−>oclAsType(Behavior)−>asOrderedSet();

Listing 2.17: Another OCL example

The example above does not define a constraint, but it is a query that returns all
Activity, and Interaction elements contained in the allOwnedElements set. This op-
eration belongs to the context element that in this implementation is an element from the
type Package. It returns an ordered set containing all filtered elements found.

29

3. Case Study

The objective of implementing this case study is to evaluate four transformation languages
for UML quality engineering. This case study executes a M2M transformation, in which a
set of software metrics are calculated in the source model, and based on this metrics a set
of bad smells is searched for. The target model contains a list with all calculated metrics
and bad smells detected in the source model. The figure below describes the case study
process. (Figure 3.1)

Figure 3.1.: Case study complete process

The transformation execution uses the source model, that is described in section 3.2, and
the Bad Smell Detection and Metrics Calculation Metamodel (BSDMC_MM), described in
section 3.1. When the transformation is executed, bad smells and the metric calculation
results are saved in the Result model, which conforms to the BSDMC_MM metamodel.

This case study was implemented in four different transformation languages to analyze
the languages features and characteristics. The implementations of the four different lan-
guages are described in detail in chapter 4.

The bad smells detected in the case study are Method in Wrong Class, Field in Wrong Class,
and Method Not in Use, which are described in section 3.3. The metrics calculated are Num-
ber of Children, Coupling Between Object Classes , Method Polymorphism, Method Related in
Class, and Field Related in Class, which are described in section 3.4.

30

3. Case Study

3.1. Bad Smell Detection and Metrics Calculation Metamodel

The BSDMC_MM models the result structure that contains all necessary information from
detecting, calculating and performing refactoring processes. Figure 3.2 shows the BS-
DMC_MM specification.

Class DiagramBSDMC_MMpackage []

+relatedObject : String
+relatedParentObjectType : String
+relatedParentObject : String
+relatedObjectType : String

MetricResultItem

mtCouplingBetweenObjects

mtMethodRelatedInClass

mtMethodPolymorphism

mtFieldRelatedInClass

mtNumberOfChildren

<<enumeration>>

MetricsTypes

bstFieldNotSelfEncapsulated

bstFieldNotEncapsulated

bstMethodInWrongClass
bstFieldInWrongClass

bstFieldWithoutGetter
bstFieldWithoutSetter

bstMethodNotInUse

<<enumeration>>

BadSmellTypes

+type : BadSmellTypes

IgnoreBadSmellResult

+id : Integer
+text : String
+targetObject : String
+targetObjectType : String
+parentObject : String
+parentObjectType : String

AbstractResult

+value : double
+type : MetricsTypes

MetricResult

+type : RefactoringTypes

RefactoringResult

+type : BadSmellTypes
+refactor : Boolean

BadSmellResult

rtSelfEncapsulateField
rtEncapsulateField

rtRemoveMethod
rtMoveMethod

rtMakePrivate
rtMoveField

<<enumeration>>

RefactoringTypes

+resultsCount : Integer

Results

Items

+metricResultItem

1..*

1

Items
+resultsList

0..*

1

Figure 3.2.: BSDMC_MM Class Diagram

In the class diagram above, it is possible to observe that the metamodel structure con-
tains a class named Results. This class contains one field that counts all result items found.
It has a 0..* cardinality to specialized objects from AbstractResult.
The abstract class AbstractResult contain all common fields for its specialized classes.

31

3. Case Study

The field id is used to store a unique identifier for the result instance type. For example
all metrics entries that calculate the metric Number of Children contains the id = 2. The
text field is used to describe the entry purpose, or what the current entry means, as for
example “Calculate Number of Children (NOC)”. The other four fields, targetObject,
targetObjectType, parentObject, and parentObjectType are used to identify the re-
lated element in the evaluated model. The specialized classes from AbstractResult are
MetricResult, BadSmellResult, IgnoreBadSmellResult, and RefactoringResult.

The MetricResult specialization is used to store the information related to a metric cal-
culation of a specific element. This class contains two fields, the value field used to store
the metric value, and a type field that is an enumerated type from type MetricTypes that
defines what metric is described by this instance. This specialization has a 1..* cardi-
nality to the MetricResultItem class. This cardinality stores the information of what ele-
ments are related to the current element being analyzed by the metric. It contains the fields
relatedObject, relatedObjectType, relatedParentObject, relatedParentObjectType,
and they are used to identify the related element in the evaluated model.

The BadSmellResult class is instantiated if a bad smell has been detected, based on the
MetricResult elements. It contains two fields, a type field, that is from enumerated type
BadSmellTypes, and defines what bad smell this instance is describing. The refactor field,
is a Boolean field, which as default is set as false. This field can be used in a refactoring
phase to define what bad smells should be removed in the refactoring process.

Another specialized class is the IgnoreBadSmellResult, that is used to store what bad
smells detection should be ignored for specific elements in the evaluated model. For ex-
ample, do not create a bad smell entry Method in Wrong Class if the method that is been
analyzed is static. These objects are instantiated in the metric calculation phase. It contains
one enumerated type field named type. This field is from the BadSmellTypes, and it is
used to define what bad smell should be ignored for one specific source model element.
One advantage of using this class, is that in the bad smell detection phase, the source model
is not used, but only the Results model. That, in cases of very large source models, can save
time.

The RefactoringResult class is used to store the information about what refactoring has
been performed in the model, based on the BadSmellResult elements that have the field
refactor set to true.

Another metamodel for representing measurement information related to software, is
the OMG Software Metrics Meta-Model (SMM) [129], and it is currently in its Beta 1 ver-
sion. SMM should provide an extendible metamodel, that can be used for exchanging
information related to software measurements, concerning existing software assets such as
designs, implementation, or operations. Compared to the BSDMC_MM metamodel used
in the case study, the SMM specification is specially defined for software metrics, it can
for example define scopes for metric calculations, metrics can be categorized in groups,
where BSDMC_MM cannot. It provides much better support for metrics calculation than

32

3. Case Study

BSDMC_MM, but it is also more complex. The BSDMC_MM metamodel was specified not
only for metric calculations such as SMM, but also for bad smells detection and refactor-
ing. In the BSDMC_MM specification there are elements specially defined for storing bad
smells entries, and also refactoring process results. It has a much simpler specification than
the SMM specification.

3.2. The Example Model

The example model used in the case study, models an airplane and its related objects. This
model is used as the source model in the M2M transformation. The model contains one
class diagram used to specify the structure of the airplane model described in section 3.2.1.
Three Activity Diagrams are used to specify the behavior of specific methods in the model,
and these are described in section 3.2.3. The Sequence Diagram is used to specify the behav-
ior of the objects in its initialization. The Sequence Diagram is described in section 3.2.2.

3.2.1. The Class Diagram

The class diagram shown below (Figure 3.3), specifies the aircraft model structure. It
consists of an abstract class AbstractAircraft, and three different specialized classes
FixedWingAircraft, ZeppelinAircraft, and RotorcraftAircraft. The X990 class
models one airplane named “X990”, and it is instantiated by the Client class. The
AbstractAircraft class has one composition named Engines that defines that one air-
craft may have an arbitrary amount of engines. It also has one FuelTank class, specified
by the FuelTank composition, so that every aircraft must have a fuel tank.

33

3. Case Study

Class Diagrampackage Data []

-fmaxLiters : Integer

+calculateAutonomy() : Integer
<<setter>>+setMaxLiters(maxLiters : Integer){getter/setter for attribute = fmaxLiters}
+create()
<<getter>>+GetMaxLiters() : Integer{query,getter/setter for attribute = fmaxLiters}

FuelTank

-fName : String
-fModel : String
-fIsOn : Boolean

+initializeVariables()
+turnOn() : Boolean
+turnOff() : Boolean
+setThrougtle(aPercentage : Integer)
<<setter>>+setIsOn(isOn : Boolean){getter/setter for attribute = fIsOn}
<<getter>>+isIsOn() : Boolean{query,getter/setter for attribute = fIsOn}
<<setter>>#setModel(model : String){getter/setter for attribute = fModel}
<<getter>>+getModel() : String{query,getter/setter for attribute = fModel}
<<setter>>#setName(name : String){getter/setter for attribute = fName}
<<getter>>+getName() : String{query,getter/setter for attribute = fName}
+create()

AbstractEngine

-fName : String
-fModel : String
+fQtLitersTank : Integer
-fAutonomy : Integer

+initializeVariables()
<<setter>>#setModel(model : String){getter/setter for attribute = fModel}
<<getter>>+getModel() : String{query,getter/setter for attribute = fModel}
<<setter>>#setName(name : String){getter/setter for attribute = fName}
<<getter>>+getName() : String{query,getter/setter for attribute = fName}
#addEngine(aEngine : AbstractEngine)
+getEngine(aIndex : Integer) : AbstractEngine
+subtractFromTank(aAmountOfLiters : Integer)
+create()

AbstractAircraft

+initializeVariables()

EngineWS67+initializeVariables()

FixedWingAircraft

+initializeVariables()

X990

+initializeVariables()

ZeppelinAircraft

+initializeVariables()

RotocraftAircraft

Client

<<use>>

<<use>>

<<use>>

Engines

0..*0..*

FuelTank
1

1

Figure 3.3.: Example model class diagram

3.2.2. The Sequence Diagram

This diagram describes the objects initialization. The class Client creates one instance of
X990, and initialize its variables. The X990 instance creates and initializes two instances of
EngineWS67 engines. After initializing the two engines, the X990 instance initializes one
instance of FuelTank. Figure 3.4 shows this initialization process.

34

3. Case Study

ObjectInitialization ObjectInitializationinteraction []

vEngine2 : EngineWS67vEngine1 : EngineWS67 FFuelTank : FuelTankClient : Client FX990 : X990

create()1:

initializeVariables()2:

create()3:

initializeVariables()4:

create()5:

initializeVariables()6:

create()7:

setMaxLiters(maxLiters="")8:

Figure 3.4.: Source model Sequence Diagram for initializing all objects

3.2.3. The Activity Diagrams

There are three different Activity Diagrams. Each Activity Diagram is connected to a method
in the Class Diagram, so that they model the connected method execution behavior.

The Activity Diagram shown in Figure 3.5 models the InitializeVariables method
from the X990 class. The InputPin in the CallOperationAction setModel, setName,
addEngine, initializeVariables, and setMaxLiters contains the parameter value from
the method that is defined in the Operation field.
The CreateObjectAction elements, defines that an object from the type defined in the
Classifier is going to be created, and the Name field is the variable name that will contain
the object created in the function. According to [148], the CreateObjectAction is extended
with stereotype createObject from the metaclass CreateObjectAction. These elements
are identified in the diagrams by the createObject stereotypes.

35

3. Case Study

X990:InitializeVariables X990:InitializeVariablesactivity []

vEngine1

(EngineWS67::initializeVariables)

vEngine2

(EngineWS67::initializeVariables)

Execute Method

(AbstractAircraft::addEngine)

vEngine

Execute Method

(AbstractAircraft::addEngine)

vEngine

Execute Method

(AbstractAircraft::setName)

X990

Execute Method

(AbstractAircraft::setModel)

X990.1001

Execute Method

(FuelTank::setMaxLiters)

200

<<createObject>>

fFuelTank

<<createObject>>

vEngine2

<<createObject>>

vEngine1

Figure 3.5.: Activity Diagram from method X990::initializeVariables

In the Figure 3.6 the Activity Diagram from the CalculateAutonomy method in the
FuelTank class is shown. This diagram contains one CreateObjectAction that creates
one instance of an Integer object for the fmaxLiters property. The OpaqueAction Result
= calculates the return value from this method. The calculation formula is modeled in the
ValuePin. In this object the formula is defined that is modeled in a OpaqueExpression ob-
ject. It was used the ValuePin name field to map the property fQtLitersTank to its owner
class. In this case, the field fQtLitersTank belongs to the AbstractAircraft class.

CalculateAutonomy CalculateAutonomy() : Integer activity []

Result =

fQtLitersTank * 6

<<createObject>>

fmaxLiters

Figure 3.6.: Activity Diagram from method FuelTank::CalculateAutonomy

36

3. Case Study

Another method that also contains one Activity Diagram is the initializeVariables
method from the EngineWS67 class. It is shown in the figure below (Figure 3.7). Only
CallOperationAction actions are used in this diagram. In the initialization, the engine is
turned off, throttle variable is set to zero, and the engine’s name and model are set.

EngineWS67:InitializeVariables EngineWS67:InitializeVariablesactivity []

Execute Method

(AbstractEngine::setThrougtle)

0

Execute Method

(AbstractEngine::setModel)

WS67.1003

Execute Method

(AbstractEngine::setName)

WS67

Execute Method

(AbstractEngine::turnOff)

Figure 3.7.: Activity Diagram from method EngineWS67::initializeVariables

3.3. Bad Smell Detection

Three different bad smells types are detected in this implementation. The bad smells are
calculated based only on the metrics calculated in the case study, and are described in
section 3.4. The source model is not used in the bad smell detection phase. The bad smells
that are detected in this implementation are Method in Wrong Class, Field in Wrong Class,
and Method Not in Use. The Method in Wrong Class bad smell is detected in cases where
the analyzed method is called more often in other classes than in the current class. The
bad smell is ignored in cases where the method analyzed has a different behavior diagram
related to it in its owner specialized classes (Method Polymorphism metric larger than 0), the
method is a getter or setter from a property, or the method is static. The Field in Wrong
Class bad smell is detected in cases that the analyzed field is called more often in other
classes than in the current class. Method Not in Use bad smell is detected in cases that the
method is not being used in any behavior diagram in the entire model. This bad smell is
ignored in cases that the method is an abstract method.

37

3. Case Study

3.4. Model Metrics

The metric calculation is executed before the bad smells are detected. It is executed first
because the bad smell detection process is based only on the metric calculation results.

The two metrics Number of Children and Coupling Between Object Classes , that belong
to the C.K. metrics are described in section 3.4.1 and section 3.4.2. The metric Method
Polymorphism used for counting the method polymorphism is described in section 3.4.3.
The metrics Method Related in Class and Field Related in Class used for calculating the number
of times the method and the field are used, are described in section 3.4.4 and section 3.4.5.

3.4.1. Number of Children

The Number of Children metric belongs to the group of metrics known as C.K. metrics, and
can be found in [85]. This metric is used to calculate how many specialized classes, the
analyzed class has. Considering only the immediate subclasses of the analyzed class. Ac-
cording to [85], the greater the number of children, the greater is the reuse. But the likeli-
hood of an improper abstraction of the parent class is also greater. The number of children
also gives an idea of the influence of this class in the design.

In our case study, this metric is calculated by collecting all relationships from the type
Generalization from the class that is being analyzed.
Taking the source model as example, the class AbstractAircraft, has as Number of
Children metric value three, since the classes FixedWingAircraft, ZeppelonAircraft, and
RotorcraftAircraft are the direct specializations from the AbstractAircraft class. The
second level specialized class X990 is not counted in this metric.

3.4.2. Coupling Between Object Classes

This metric also belongs to the C.K. metrics. According to [85], Coupling Between Object
Classes relates to the notion that an object is coupled to another object if one of them acts
on the other, i.e., methods of one use methods or instance variables of another. In our case
study all relationships from one class to another are considered. So that we calculate the
Coupling Between Object Classes based on the amount of relationships from one class to
another, including generalizations.
One example is the coupling of the class FixedWingAircraft, that contains relationships
to the classes X990 and AbstractAircraft, so that the metric value is two.

3.4.3. Method Polymorphism

The Method Polymorphism metric is defined as the amount of rewriting of a specific method
by its specialized classes. It is used in our case study as criteria to check if one specific

38

3. Case Study

method is allowed to be moved to another class, in the case of bad smell detection. It is cal-
culated by collecting all specialized classes, the entire tree down, and counting the number
of times this method has a change in its behavior, by searching for behavior diagrams
connected to the method analyzed in each of the methods owner specialized classes.
The method polymorphism is characterized in our case study by a behavior diagrams
attached to the method in a specialized class. One example is the initializeVariables
method from the abstractAircraft class. The X990 class, that is a specialized class from
abstractAircraft, has a behavior diagram related to its initializeVariables method
(Figure 3.5), so that the Method Polymorphism metric value is one.

3.4.4. Method Related in Class

Method Related in Class is a metric that is used to calculate the number of times the analyzed
method is used by a different class, by navigating through the two types of behavior dia-
grams used in this case study, the Activity and Sequence diagrams.
The classes set that is going to be collected depends on the method analyzed visibility. If the
method is private, only the owner class is analyzed. If the method is protected, then all spe-
cialized classes of its owner class are analyzed. If the method is public, then all classes that
contain a relationship to the owner’s method are collected, including the related classes of
the owner specialized classes.
Using this set of classes, all Activity Diagrams used by methods in this classes set are nav-
igating through to find if a behavior diagram is using the analyzed method. All model’s
Sequence Diagrams are also navigating through. The metric result is the number of times
the method is being called in the two behavior diagrams types used in this case study. One
example is the Method Related in Class metric from the method setModel from the class
AbstractEngine. This method is a protected method from the AbstractEngine class. So
that only the owner class itself and the specialized classes are analyzed. Observing the
AbstractEngine does not call the method in any of its behavior diagrams, but the special-
ized class EngineWS67 does once.

3.4.5. Field Related in Class

The Field Related in Class metric is used to calculate the number of times the analyzed field
(Property) is called in each class related to its owner class. All Activity Diagrams used
by the methods from the related classes are navigated through to the use of the analyzed
field. One example is the Field Related in Class metric calculation from the fmaxLiters
field. This field belongs to the FuelTank class, and it is only being used in the diagram
CalculateAutonomy from its owner class.

39

4. Case Study Implementation

This chapter describes the case study implementation for each analyzed language. Sec-
tion 4.1 gives an overview of the implementation structure and some implementation is-
sues that are not language specific. In section 4.2 and section 4.3 the implementation of the
two rule based transformation languages ATL and ETL are described. Section 4.4 describes
the implementation for the imperative transformation language Operational QVT, while
in section 4.5 is the implementation for the second imperative transformation language
Xtend described.

4.1. Overview

All four implementations are similar in their function names, file names, including the
implementation distribution through the files, and file locations. So that it is easier to
understand one implementation once one of the other implementations is known. It is also
possible and easier to create parallels between all four implementations. Language specific
features were also implemented for each transformation language to better understand and
evaluate its features.

The transformation files are described below:

• UML2BSDMC_MM: In this file the entry point for the transformation, and also the main
methods and rules used in the transformation process are implemented.

• metricCalc: The implementation related to the creation of both elements, the
BSDMC_MM::MetricResult, and the BSDMC_MM::MetricResultItem instances
are implemented in this file.

• ignoreBadSmells: This file contains the implementation related to the creation of
BSDMC_MM::IgnoreBadSmellResult instances.

• badSmellDetect: The implementation related to the creation of the element
BSDMC_MM::BadSmellResult instances are implemented in this file.

• functionsLib: This file contains diverse functions that are used in the transforma-
tion.

40

4. Case Study Implementation

Another important factor is the imperative implementation of the transformation lan-
guages Operational QVT and Xtend, compared to the hybrid approaches of ATL, and
ETL. In the Operational QVT and Xtend implementation is the rule scheduling speci-
fied in the implementation, while in ATL and ETL transformation control flow defines
what matched rules are called next. The three functions CalculateMetricsInClasses,
CalculateMetricsInOperations, and CalculateMetricsInProperties were imple-
mented in the hybrid approaches using matched rules, while the same functions in the
imperative languages were called by our implementation. Another difference that exists
between the other implementations and ATL is that it was necessary to implement two
different transformation processes. It was tried to keep the two different implementations
approaches as similar as possible.

The transformation result files are all saved in the XMI file format, and are located in
the result/ directory in each project. The following section describes how the metric Field
Related in Class has been implemented for each of the transformation languages evaluated.
The implementation relevant for the calculation of this metric is described in the sections
below. The metric implementation has a medium complexity compared to the other four
metrics implemented. All the bad smell detection implementations, all other metrics im-
plementations, the creation of the ignore metrics rules implementation, build files, and
languages special features implemented are all being omitted in this chapter.

4.2. ATLAS Transformation Language (ATL)

The ATL implementation is divided in two transformation processes. The first is respon-
sible for the metric calculation and the instantiation of the ignore bad smell elements in
the Results model, while the second transformation process is responsible for the bad smell
detection. Between the four implementations, this is the only one that is divided in two
transformation processes. The reason for dividing it into two different processes is that
the matched transformation rules are called automatically by the transformation process,
therefore it was not possible to force the execution of the bad smell detection after the
metric calculation. One possible solution would be using the imperative block do from
a matched rule that is executed when the element source!Module is found in the source
model, and then implement all transformation in the do block. In this case lazy rules would
be called in the imperative block, and the end result would be an imperative implementa-
tion similar to the Operational QVT, and Xtend implementations.

The Listing 4.1 shows the header from the file UML2BSDMC_MM_p1.atl, used in the first
transformation process. The compiler atl2006 used in this case study is defined in line 1.
One reason for using this compiler is that for the language test reasons we implemented
a rule inheritance, and it is only supported by this new compiler. In lines 2 and 3 the
metamodels used in the transformation are set, followed by the module name declared

41

4. Case Study Implementation

in line 4. In line 5 the transformation direction, target and source model declaration are
defined. In line 7 the library functionsLib.atl used in the transformation is declared.
Two superimposed modules metricsCalc.asm, and ignoreBadSmells.asm were included
to this transformation, and these are the compiled files from the metricsCalc.atl and
ignoreBadSmells.atl. Superimposed was used in this implementation to organize the rules
better. In lines 9 and 10 the global variables that are used in the transformation are declared.
The fResult helper is a reference to the target model, and the fListBehaviorDiagrams
helper is a list containing Activity, and Sequence diagrams found in this case study. The
entrypoint rule in line 12 is executed automatically by the transformation process before
any other rule, so that this rule is used to initialize the fResult variable. The second trans-
formation process is implemented in the UML2BSDMC_MM_p2.atl file, the difference is that
the source model is not used in this transformation, since the bad smells are calculated
based only on the results model.
1 −− @atlcompiler atl2006
2 −− @path QueryResult=/CaseStudy_ATL/metamodel/BSDMC_MM.ecore
3 −− @nsURI Source=http://www.eclipse.org/uml2/2.1.0/UML
4 module UML2BSDMC_MM_p1;
5 create OUT : QueryResult from IN : Source;
6
7 uses functionsLib;
8
9 helper def : fResult : QueryResult!Results = OclUndefined;

10 helper def : fListBehaviorDiagrams : OrderedSet(Source!Behavior) = OclUndefined;
11
12 entrypoint rule InitRule() {
13 to vqr: QueryResult!Results
14 do {
15 thisModule.fResult <− vqr;
16 }
17 }

Listing 4.1: ATL transformation initialization

The Listing 4.2 shows the implementation of the rule CalculateMetricsInProperties,
that such as the rules CalculateMetricsInClasses and CalculateMetricsInOperations,
is a matched rule that is called by the transformation process after the entrypoint rule
was executed. In line 2 the guard condition to execute the rule is defined. This rule is
only executed in this case study when the element analyzed is from type Property, and
it does not have an aggregation and its name is different than an empty string, or it has
a composite aggregation with an upper and lower bound equal to one. The property can
have an aggregation, and its owner element must be from the type Class. So it is possible
to filter diverse situations where the property should not be analyzed in our case study.
The using block in line 8 is used to initialize three lists. One containing all classes related
to the property owner (Line 9), one containing all specialized classes from the property
owner class (Line 11), and the last list in line 12, implements the union of the two lists. In
the imperative block do between the lines 15 and 26 are called the lazy rules for the Field

42

4. Case Study Implementation

Related in Class metric calculation. In line 16, a feedback from the transformation in the
console is given, so that the user can see the transformations order. In line 17, the lazy rule
CalculateMetricFRiC is called that has as parameters the field that is being analyzed (
variable vs), analyzed property owner class, and a list containing all behavior diagrams in
the source model. In this line, the number of times the property is used in one diagram
that belongs to its owner class is calculated. The result is included in target model in the
list thisModule.fResult.resultsList. The same metric is calculated in line 21 for each of
the classes related to the property’s owner class. The result for each class is also included
in the target models resultsList list.
1 rule CalculateMetricsInProperties {
2 from vs : Source!Property(vs.oclIsTypeOf(Source!Property) and
3 ((vs.aggregation = #none and vs.name <> ’’) or
4 ((vs.aggregation = #composite) and
5 (vs.lower = 1 and vs.upper = 1))) and
6 (vs.association = OclUndefined) and
7 (vs.owner.oclIsTypeOf(Source!Class)))
8 using {
9 vListRelatedClasses : OrderedSet(Source!Class) =

10 vs.owner.CollectRelatedClasses(vs.owner);
11 vListChildClasses : Set(Source!Class) = vs.owner.CollectAllChildClasses();
12 vListUnion : OrderedSet(Source!Class) =
13 vListRelatedClasses−>union(vListChildClasses);
14 }
15 do {
16 vs.debug(’Calculating metrics related to the property : ’);
17 thisModule.fResult.resultsList <−
18 thisModule.CalculateMetricFRiC(vs,
19 vs.owner,
20 thisModule.fListBehaviorDiagrams);
21 thisModule.fResult.resultsList <− vListUnion−>collect(e|
22 thisModule.CalculateMetricFRiC(vs,
23 e,
24 thisModule.fListBehaviorDiagrams));
25
26 }
27 }

Listing 4.2: ATL CalculateMetricInProperties rule

In Listing 4.3 the lazy rule that creates and initializes an instance of
QueryResult!MetricResult is shown. This lazy rule is implemented in the
metricsCalc.atl unit and is included in the transformation as a superimposed module. It
is a lazy rule because it is called by the rule CalculateMetricsInProperties described
above. In line 4 a new instance of a QueryResult!MetricResult is created. In the follow-
ing lines, some of the properties from a new instanced element are set. In the do block, the
lazy rule CreateMetricItem that creates an instance of a QueryResult!MetricResultItem
element is defined. This element is initialized with the information related to the class
passed as parameter. The information stored in this element is used to identify the related
element to the metric calculation in the source model. This instance is included in the

43

4. Case Study Implementation

vNewMetricResult.metricResultItem list. The actual metric calculation is performed in
the helper CountRefBDFound in line 14. The result is the number of times the Property
analyzed is referenced in the behavior diagrams that belongs to the class passed as
parameter. The number of items in the thisModule.fResult.resultsList was increased
by one in line 16. In line 17 the result element from the rule is referenced.
1 rule CalculateMetricFRiC(aProperty: Source!Property,
2 aRelatedClass : Source!Class,
3 aBehaviorDiagramsList : OrderedSet(Source!Behavior)) {
4 to vNewMetricResult:QueryResult!MetricResult(id <− 5,
5 targetObject <− aProperty.name,
6 targetObjectType <− Source!Property.name,
7 parentObject <− aProperty.owner.getQualifiedName(),
8 parentObjectType <− Source!Class.name,
9 text <− ’Calculate Property Related in Class (PRiC)’,

10 type <− #mtFieldRelatedInClass)
11 do {
12 vNewMetricResult.metricResultItem <−
13 thisModule.CreateMetricItem(aRelatedClass);
14 vNewMetricResult.value <− aProperty.CountRefBDFound(aRelatedClass,
15 aBehaviorDiagramsList);
16 thisModule.fResult.resultsCount <− thisModule.fResult.resultsCount + 1;
17 vNewMetricResult;
18 }
19 }

Listing 4.3: ATL CalculateMetricFRiC rule

The fields are referenced in two different possible ways in our case study, it may be
referenced in the body of an OpaqueExpression that belongs to one OpaqueAction, or
it is referenced in the name field from a CreateObjectAction. This two element types,
OpaqueExpression, and CreateObjectAction can only be found in Activity Diagrams.
The helper in Listing 4.4 calls two other helpers, one for counting the number of
times the property was found in OpaqueExpression, and other in CreateObjectAction
elements. It is possible to observe that it was not necessary to pass the field as pa-
rameter, since the helper context is the field itself (Line 1). As parameter in both
helper calls in lines 4 and 8 a filtered list containing only the behavior diagrams re-
lated to the aRelatedClass is passed as parameter in the CountRefDBFound helper
in line 1. In both helper calls a filtered list is passed, containing the helper re-
sult is the sum of the result values of GetPropertyReferencesInOpaqueActions and
GetPropertyReferencesInCreateObjectAction.
1 helper context Source!Property def :
2 CountRefBDFound(aRelatedClass : Source!Class ,
3 aBehaviorDiagramsList : OrderedSet(Source!Behavior)): Real =
4 self.GetPropertyReferencesInOpaqueActions(
5 aBehaviorDiagramsList−>select(e|
6 e.oclIsTypeOf(Source!Activity))−>select(f|
7 f.owner = aRelatedClass)) +
8 self.GetPropertyReferencesInCreateObjectAction(

44

4. Case Study Implementation

9 aBehaviorDiagramsList−>select(e|
10 e.oclIsTypeOf(Source!Activity) and
11 e.owner = aRelatedClass));

Listing 4.4: ATL CountRefDBFound helper

The helper in Listing 4.5 counts the number of times the context element is used in
the Activity Diagrams passed as parameter. The query starts on the diagrams list passed
as parameter. In line 4 it is possible to observe that all nodes related to the diagrams are
collected and then flattened. The flatten() function should always be called after col-
lecting elements, so that the collected elements are flattened to be used in other selects.
After collecting all nodes the OpaqueAction elements are filtered. All input elements from
the OpaqueAction set (Line 5) are collected, flattened and then filtered again to create a
new set, containing only elements in the input field from the ValuePin type, and that the
property’s names are equal to the Property analyzed owner name. This means that the
ValuePin elements that are used in the behavior diagrams passed as parameter, in which
the ValuePin name field is equal to the analyzed Property owner class name are collected.
The elements in the ValuePins value property are collected and flattened.

This result set is filtered once again in which all OpaqueExpression elements that contain
the Property analyzed name in the name field in its first body element. The resulting value
is the remaining set count. It is possible to observe in line 6, that the size() value is an
integer value, and must first be converted to string and then to real. ATL does not accept
attributing an integer value to a real value. This Query was used to identify the use of the
fQtLitersTank Property in the Activity Diagram Calculate Autonomy shown in Figure 3.6.
1 helper context Source!Property def :
2 GetPropertyReferencesInOpaqueActions(
3 aBehaviorDiagramsList : OrderedSet(Source!Behavior)) : Real =
4 aBehaviorDiagramsList−>collect(f|f.node)−>flatten()−>select(g|
5 g.oclIsTypeOf(Source!OpaqueAction))−>collect(h|h.input)−>
6 flatten()−>select(i|i.oclIsTypeOf(Source!ValuePin))−> select(j|
7 j.name = self.owner.name)−>collect(l|l.value)−>flatten()−>select(m|
8 m.oclIsTypeOf(Source!OpaqueExpression))−>select(n|n.body−>first()−>
9 indexOf(self.name) <> −1)−>size()−>toString()−>toReal();

Listing 4.5: ATL GetPropertyReferencesInOpaqueActions helper

The helper shown in Listing 4.6 counts the number of times the context field
is used in the Activity Diagrams passed as parameters. Such as in helper
GetPropertyReferencesInOpaqueActions, the query is based on the diagrams passed
as parameters. In this case all elements listed in each node attribute from each be-
havior diagram is collected. This set is flattened and then all elements of the type
CreateObjectAction are selected in line 5. A new select is now used to filter all
CreateObjectAction that have the same name as the element that is being analyzed name,
and the classifier corresponds to the analyzed fields owner. This Query was used to iden-
tify the use of the fmaxLiters Property in the Activity Diagram Calculate Autonomy shown
in Figure 3.6.

45

4. Case Study Implementation

1 helper context Source!Property def :
2 GetPropertyReferencesInCreateObjectAction(
3 aBehaviorDiagramsList : OrderedSet(Source!Behavior)) : Real =
4 aBehaviorDiagramsList−>collect(f|f.node)−>flatten()−>select(g|
5 g.oclIsTypeOf(Source!CreateObjectAction))−>select(h|
6 h.name = self.name and h.classifier = self.owner)−>size()−>toString()−>toReal();

Listing 4.6: ATL GetPropertyReferencesInCreateObjectAction helper

4.3. Epsilon Transformation Language (ETL)

The ETL transformation process is composed only of one transformation. Similar to ATL,
ETL has a block that is executed before all other matched rules are called, but in ETL it is
used the block pre, and not a matched rule. Differently from ATL, is the block post that
is executed after all matched rules have been called. For that reason it was not necessary
to implement a second transformation process as in ATL. The bad smell detection is im-
plemented in the post block in the ETL implementation. The main transformation file is
the UML2BSDMC_MM.etl, and its header and relevant implementation for the Field Related in
Class metric calculation is shown in Listing 4.7. The transformation is started by an Apache
Ant [3] file, similar to Xtend workflows. From line 1 to 4 all libraries that are used in the
transformation are declared. Between lines 6 and 10 the pre block where all global vari-
ables used are defined, is implemented. This block is automatically executed before all
other matched rules are called. Line 7 is used to give a feedback from the transformation
in the console, informing that the transformation processes has started. In lines 8 and 9
the global variables used in this transformation are declared. The first matched rule that is
called is the CreateDocumentRoot declared in line 12. This rule initializes the two global
variables. It was possible to observe by testing that the transformation process executes
this rule before the others, probably because the Model element is closer to the model root
element in the source model.
1 import ’functionsLib.etl’;
2 import ’ignoreBadSmells.etl’;
3 import ’badSmellDetect.etl’;
4 import ’metricCalc.etl’;
5
6 pre {
7 ’Transformation started...’.println();
8 var fResult : QueryResult!Results = null;
9 var fListBehaviorDiagrams : OrderedSet(Source!Behavior) = null;

10 }
11
12 rule CreateDocumentRoot
13 transform vs : Source!Model
14 to vModel : QueryResult!Results{
15 fResult := vModel;
16 fListBehaviorDiagrams := vs.GetBehaviorDiagrams();
17 }

Listing 4.7: ETL transformation initialization

46

4. Case Study Implementation

Listing 4.8 shows the implementation of the matched rule
CalculateMetricsInProperties. Such as the rules CalculateMetricsInClasses,
and CalculateMetricsInOperations, they are called automatically by the transfor-
mation process. It is possible to observe similarities between ETL and ATL. The
transform block in line 2 defines the matching condition for this rule to be executed.
The to block works very similar to the ATL implementation, in this case one in-
stance of a QueryResult!MetricResult element is created and assigned to the variable
vNewMetricResult. The difference to ATL here is that the filtering condition to execute
the rule is defined in a guard block. The same guard condition as in ATL also applies.
In line 10 again one output line in the console is generated, informing the user which
property is being analyzed. The implementation from lines 11 to 16 are similar to the
implementation in ATL for creating the lists containing the related classes. In line 18 the
Operation CalculateMetricFRiC is called for calculating the Field Related in Class metric
from the property analyzed, related to the class passed as parameter in the Operation,
that in this case is the analyzed Property owner class. The list containing all behavior
diagrams is also passed as parameter. The Operation result is added to the target model
fResult.resultsList. For each related class in the vListUnion list, one new instance of
QueryResult!MetricResult is created, and the metric Field Related in Class related to the
lists current class is calculated.
1 rule CalculateMetricsInProperties
2 transform vs : Source!Property
3 to vNewMetricResult : QueryResult!MetricResult {
4 guard : ((vs.aggregation = Source!AggregationKind#none and
5 vs.name <> ’’) or
6 ((vs.aggregation = Source!AggregationKind#composite) and
7 (vs.lower = 1 and vs.upper = 1)) and
8 (vs.association.isUndefined()) and
9 (vs.owner.isTypeOf(Source!Class)))

10 null.println(’Calculating metrics related to the property : ’ + vs.name);
11 var vListRelatedClasses : OrderedSet(Source!Class) =
12 vs.owner.CollectRelatedClasses(vs.owner);
13 var vListChildClasses : Set(Source!Class) =
14 vs.owner.CollectAllChildClasses();
15 var vListUnion : OrderedSet(Source!Class);
16 vListUnion := vListRelatedClasses−>includingAll(vListChildClasses);
17 fResult.resultsList.add(
18 CalculateMetricFRiC(vNewMetricResult,
19 vs,
20 vs.owner,
21 fListBehaviorDiagrams));
22 fResult.resultsList.addAll(vListUnion−>collect(e|
23 CalculateMetricFRiC(new QueryResult!MetricResult,
24 vs,
25 e,
26 fListBehaviorDiagrams)));
27 }

Listing 4.8: ETL CalculateMetricInProperties rule

47

4. Case Study Implementation

Different from the ATL implementation, ETL uses Operation that can be used as a func-
tion, accepting a sequence of instructions. In Listing 4.9 it is possible to observe that an
instance of QueryResult!MetricResult is passed as parameter in line 1, as also the prop-
erty that is being analyzed in line 2. The other two parameters are the related class that is
the class in which the Operation will search for references to the Property analyzed, and a
list containing the source model behavior diagrams. A different way of implementing this
operation would be using as context the Property itself, and referring to the analyzed
Property as self, and not as aProperty. In line 14 such as in line 12 in Listing 4.3, one in-
stance of QueryResult!MetricResultItem is created. The metric value is calculated by an
Operation named CountRefBDFound. The target model variable that counts the number of
items in resultsList is increased by one in line 17. In line 18 the element that is returned
in this Operation is declared.
1 operation CalculateMetricFRiC(aMetricResult : QueryResult!MetricResult,
2 aProperty : Source!Property,
3 aRelatedClass : Source!Class,
4 aBehaviorDiagramsList : OrderedSet(Source!Behavior)) :
5 QueryResult!MetricResult{
6 aMetricResult.id := 5;
7 aMetricResult.targetObject := aProperty.name;
8 aMetricResult.targetObjectType := Source!Property.name;
9 aMetricResult.parentObject := aProperty.owner.getQualifiedName();

10 aMetricResult.parentObjectType := Source!Class.name;
11 aMetricResult.text := ’Calculate Property Related in Class (PRiC)’;
12 aMetricResult.type :=
13 BSDMC_MM!MetricsTypes#mtFieldRelatedInClass.instance;
14 aMetricResult.metricResultItem.add(CreateMetricItem(aRelatedClass));
15 aMetricResult.value := aProperty.CountRefBDFound(aRelatedClass,
16 aBehaviorDiagramsList);
17 fResult.resultsCount := fResult.resultsCount + 1;
18 return aMetricResult;
19 }

Listing 4.9: ETL CalculateMetricFRiC operation

The operation in Listing 4.10, implements the same routine as the helper
CountRefBDFound in ATL Listing 4.4. The only difference is in the syntax, but the behavior
is exactly the same.
1 operation Source!Property CountRefBDFound(aRelatedClass : Source!Class,
2 aBehaviorDiagramsList : OrderedSet(Source!Behavior)): Real {
3 return self.GetPropertyReferencesInOpaqueActions(
4 aBehaviorDiagramsList−>select(e|
5 e.isTypeOf(Source!Activity))−>select(f|
6 f.owner = aRelatedClass)) +
7 self.GetPropertyReferencesInCreateObjectAction(
8 aBehaviorDiagramsList−>select(e|
9 e.isTypeOf(Source!Activity) and

10 e.owner = aRelatedClass)).asReal();
11 }

Listing 4.10: ETL CountRefDBFound operation

48

4. Case Study Implementation

The two Listings 4.11 and 4.12 are very similar to the ATL implementation in Listings
4.5 and 4.6. It is again only a syntax issue, since the queries are implemented exactly the
same way. The only relevant difference is in line 8 from Listing 4.5. To find a substring in a
string in ETL, the function isSubstringOf() is used, while in ATL the function indexOf()
is used. It was not possible to find a similar function in ATL. Another difference is to
typecast one variable or set, in ETL the isTypeOf function is used, different from all other
implementations analyzed.
1 operation Source!Property GetPropertyReferencesInOpaqueActions(
2 aBehaviorDiagramsList : OrderedSet(Source!Behavior)) : Real {
3 return aBehaviorDiagramsList−>collect(f|f.node)−>flatten()−>select(g|
4 g.isTypeOf(Source!OpaqueAction))−>collect(h|h.input)−>
5 flatten()−>select(i|i.isTypeOf(Source!ValuePin))−> select(j|
6 j.name = self.owner.name)−>collect(l|l.value)−>flatten()−>select(m|
7 m.isTypeOf(Source!OpaqueExpression))−>select(n|
8 self.name.isSubstringOf(n.body−>first().toString()))−>size()
9 −>toString()−>asReal();

10 }

Listing 4.11: ETL GetPropertyReferencesInOpaqueActions operation

1 operation Source!Property GetPropertyReferencesInCreateObjectAction(
2 aBehaviorDiagramsList : OrderedSet(Source!Behavior)) : Real {
3 return aBehaviorDiagramsList−>collect(f|f.node)−>flatten()−>select(g|
4 g.isTypeOf(Source!CreateObjectAction))−>select(h|
5 h.name = self.name and h.classifier = self.owner)−>size()−>toString()−>asReal();
6 }

Listing 4.12: ETL GetPropertyReferencesInCreateObjectAction operation

4.4. Operational QVT Language

The complete implementation in QVT was done using the imperative language OML, more
specifically the Eclipse Operational QVT, available in the Eclipse M2M project. All refer-
ences in this thesis to Operational QVT refer to the Eclipse implementation of Operational
QVT [28]. This implementation is different from the two implementations above described
by the fact that ATL and ETL languages are hybrid languages, supporting imperative and
declarative blocks. Only the OML language was used in this implementation, therefore it
is an imperative implementation, also known as operational transformation. A possible way
of archiving an implementation that is similar to ATL and ETL would be a QVT hybrid
implementation, using also the declarative languages from QVT relation language and/or
core language. This master thesis only analyzes the imperative language of QVT.

There is also only one transformation process, and it is implemented in the
UML2BSDMC_MM.qvto file, that is partially shown in Listing 4.13. All libraries used are de-
clared between lines 1 and 4. In lines 6 and 7, the used metamodels are declared. The refer-
ence to the two models is defined in the Eclipse IDE. In line 9 the transformation direction,

49

4. Case Study Implementation

the models used, and the metamodels are declared. The transformation entry point is the
main function in line 11. In line 12 is specified that for each Model element found in the
rootObjects list from the IN Source model, the mapping CreateDocumentRoot is called.
The CreateDocumentRoot mapping declared in line 15 has as context the Model element,
that means that referring to self in the mapping is the same as the model mapped in line
12. This function result is an instance of BSDMC_MM::Results, that is the entire target model.

The implementation in line 17 writes a string, the context element self, and the log
level in the console are passed as parameter in the log function, so that the user has a
feedback from the transformation in the console. In line 18 all the sub elements from
the model are filtered by the type Class, so that the result class is a set containing all
Class elements found in the Model element. The xcollect function calls the mapping
CalculateMetricsInClasses for each class contained in the set. As parameters the result
variable, that is a reference from the target model, and the class that is going to be analyzed
are passed. One interesting characteristic is the typecast. For example, the e variable must
be typecast so that the transformation processes knows what type of elements it is. In this
line we used e.oclAsType(Class). Another way of typecasting was implemented in line
20. In this case the typecast was done in the result set from the allSubobjectsOfType
function with [Class]. If the e variable is observed in line 21, it is possible to observe
that a typecast was not needed in this case. It is in our point of view a strange behavior,
since by filtering the set with the function allSubobjectsOfType, it is obvious that the
result set is a set of the element type passed as parameter. Between lines 20 and 25 is im-
plemented the routine that filters all Operation element types from the model, and calls
the CalculateMetricsInOperations function for each element from the type Operation
found. The implementation that calls the mapping CalculateMetricsInProperties is im-
plemented between lines 27 and 35.

It is possible to observe between lines 29 and 32 the filtering condition for calculating
the metric Field Related in Class. It is exactly the same logic as it was implemented in the
guard condition in ETL, or in the from condition in ATL. Another possible way of im-
plementing this in our case study, is to write this logic in a when block in the mapping
CalculateMetricFRiCs in Listing 4.15. Each element from type Property found in each
class that satisfies the select between lines 28 and 32 is passed as parameter to the mapping
CalculateMetricsInProperties. As parameters the result variable, that contains the
reference to the BSDMC_MM::Results element from the target model, the Property that is
analyzed, and the list containing Activity and Sequence diagrams used in this case study
are passed. In line 38 is set the property resultsCount from the target model, containing
the amount of items found in the list containing all metrics calculated, bad smells detected,
and ignore bad smell entries. The function from line 39 is exactly the same as in line 17,
the difference is the when keyword after the log function is used to define a condition, in
what circumstances should the log text be printed out. It is also possible to use assert such
as it is shown in lines 41 and 42. The Operational QVT from Eclipse does not provide a

50

4. Case Study Implementation

debugger. A workaround to it, is to use the log instructions with conditions, and asserts.
1 import metricsCalc;
2 import badSmellDetect;
3 import ignoreBadSmells;
4 import functionsLib;
5
6 modeltype BSDMC_MM uses ’http://BSDMC_MM.ecore’;
7 modeltype Source uses ’http://www.eclipse.org/uml2/2.1.0/UML’;
8
9 transformation UML2BSDMC_MM(in IN:Source, out BSDMC_MM);

10
11 main() {
12 IN.rootObjects()[Model] −> map CreateDocumentRoot();
13 }
14
15 mapping Source::Model::CreateDocumentRoot(): BSDMC_MM::Results {
16
17 log(’Transformation started...’,self,1);
18 self.allSubobjectsOfType(Class)−>xcollect(e|
19 map CalculateMetricsInClasses(result, e.oclAsType(Class)));
20 self.allSubobjectsOfType(Class)[Class]−>xcollect(e|
21 e.getAllOperations()[Operation]−>select(f|
22 f.owner = e)−>xcollect(g|
23 map CalculateMetricsInOperations(result,
24 g,
25 self.GetBehaviorDiagrams())));
26
27 self.allSubobjectsOfType(Class)[Class]−>xcollect(e|
28 e.getAllAttributes()[Property]−>select(f|
29 ((f.aggregation = uml::AggregationKind::none and f.name <> ’’) or
30 ((f.aggregation = uml::AggregationKind::composite) and
31 (f.lower = 1 and f.upper = 1))) and
32 (f.owner = e) and (f.association = null))−>xcollect(g|
33 map CalculateMetricsInProperties(result,
34 g,
35 self.GetBehaviorDiagrams())));
36 // THE BAD SMELL DETECTION IMPLEMENTATION WAS REMOVED IN THE MASTER THESIS
37 // TO SAVE PLACE.
38 resultsCount := result.resultsList−>size();
39 log(’Transformation finished succesfully...’) when resultsCount = 292;
40 assert error (resultsCount = 292) with
41 log(’Error in the transformation execution!’,self,3);
42 }

Listing 4.13: Operational QVT transformation initialization

The mapping described in Listing 4.14 is used to call the mappings that calculate the metric
Field Related in Class by calling the mapping CalculateMetricFRiCs in line 5, and for call-
ing the mapping responsible for creating a BSDMC_MM::IgnoreBadSmellsResults instance
if necessary. In line 1 it is possible to observe the use of inout from the parameter aResults
that is from type BSDMC_MM::Results. In this case, the parameter aResults passed as pa-
rameter can be read and written as a parameter passed by reference. In line 5 the property
that is analyzed maps the mapping CalculateMetricFRiCs, this property is the context of

51

4. Case Study Implementation

the mapping described in Listing 4.15.
1 mapping CalculateMetricsInProperties(inout aResults : Results,
2 in aProperty :Property,
3 in aBehaviorDiagramsList : OrderedSet(Behavior)){
4 log(’Calculating metrics related to the property : ’ + aProperty.name);
5 aProperty.map CalculateMetricFRiCs(aResults,aBehaviorDiagramsList);
6 aProperty.map IgnoreBadSmellInProperty(aResults);
7 }

Listing 4.14: Operational QVT CalculateMetricInProperties mapping

The source code in Listing 4.15, shows the implementation of two mappings. It is possible
to observe in the first mapping the use of the init block, that is used to initialize two lists,
one containing all specialized classes from the Property analyzed owner class, and the
other containing all classes related to the Property owned class. In line 11 the call of the
mapping CalculateMetricFRiC is implemented. It is responsible for creating one instance
of a BSDMC_MM::MetricResult. The result element is added to the aResults.resultList
list. As parameters the property owner class, and the behavior diagrams list are passed.
In line 14 are the two initialized lists in the init block concatenated, and for each class
found in the concatenated list, the mapping CalculateMetricFRiC is called once. Each new
BSDMC_MM::MetricResult is also included to the aResults.resultList list. In line 19 the
CalculateMetricFRiC mapping is declared. Between lines 22 and 32 the return element
properties are set. In line 29 the query that calculates the number of times the field is used
in the behavior diagrams from the class passed as parameter is called. The implementation
is similar to the ATL, and ETL implementation, and it is described in Listing 4.16. In line
32 one instance of BSDMC_MM::MetricResultItem containing the information of the related
class is created.
1 mapping Source::Property::CalculateMetricFRiCs(
2 inout aResults : Results,
3 in aBehaviorDiagramsList : OrderedSet(Behavior)) {
4 init{
5 var vListChildClasses : Set(uml::Class) :=
6 self.owner.oclAsType(Class).CollectAllChildClasses();
7 var vListRelatedClasses : Set(uml::Class) :=
8 self.owner.oclAsType(Class).CollectRelatedClasses(
9 self.owner.oclAsType(Class));

10 }
11 aResults.resultsList += self.map CalculateMetricFRiC(
12 self.owner.oclAsType(Class),
13 aBehaviorDiagramsList);
14 vListChildClasses−>union(vListRelatedClasses)−>xcollect(e|
15 aResults.resultsList += self.map CalculateMetricFRiC(e.oclAsType(Class),
16 aBehaviorDiagramsList));
17 }
18
19 mapping Source::Property::CalculateMetricFRiC(
20 in aRelatedClass : Class,
21 in aBehaviorDiagramsList : OrderedSet(Behavior)) : BSDMC_MM::MetricResult{
22 id := 5;

52

4. Case Study Implementation

23 text := ’Calculate Field Related in Class (FRiC)’;
24 targetObject := self.name;
25 targetObjectType := self.metaClassName();
26 parentObject := self.owner.oclAsType(Class).getQualifiedName();
27 parentObjectType := self.owner.oclAsType(Class).metaClassName();
28 type := MetricsTypes::mtFieldRelatedInClass;
29 value := CountRefBDFound(self,
30 aRelatedClass,
31 aBehaviorDiagramsList);
32 result.metricResultItem += result.map CreateMetricItem(aRelatedClass);
33 }

Listing 4.15: Operational QVT CalculateMetricFRiCs and CalculateMetricFRiC
mappings

The query in Listing 4.16, implements the same routine as the helper CountRefBDFound
in ATL Listing 4.4, and the ETL Operation in Listing 4.10. In the QVT implementation,
differently from the other two, the implemented query does not have a context, so that the
field was passed as parameter (aProperty). Other obvious difference is the syntax between
the three implementations.
1 query CountRefBDFound(in aProperty : Property,
2 in aRelatedClass : Class ,
3 in aBehaviorDiagramsList : OrderedSet(Behavior)): Real {
4 return aProperty.GetPropertyReferencesInOpaqueActions(
5 aBehaviorDiagramsList[Behavior]−>select(e|e.owner = aRelatedClass)) +
6 aProperty.GetPropertyReferencesInCreateObjectAction(
7 aBehaviorDiagramsList[Behavior]−>select(e|e.owner = aRelatedClass));
8 }

Listing 4.16: Operational QVT CountRefDBFound query

Listings 4.17 and 4.18 implement exactly the same logic as the routines from the two al-
ready described languages. Taking as example the Listings below, it is possible to observe
how compact the query is in relation to the other three implementations analyzed. Ana-
lyzing the filtering of Activity Diagrams in line 3, it is possible to observe that the selection
of all Activity Diagrams in the list is done by the [Activity] construct, in which Activity is the
element type being filtered in the aBehaviorDiagramsList list. In all other implementations
it is necessary to build a complete select to filter the Activity elements from the list. Three
further differences found in relation to the other implementations, is how the Body element
from the OpaqueExpression is accessed (Line 6). In all other implementations, the element
accessed is the Body element, but in QVT the element _body must be accessed. Finding the
substring in the name field is also different than in all other implementations, as is shown
in line 6. The typecasting function oclIsTypeOf is equal to ATL, but not to the other two
languages.
1 query Source::Property::GetPropertyReferencesInOpaqueActions(
2 in aBehaviorDiagramsList : OrderedSet(Behavior)) : Real {
3 return aBehaviorDiagramsList[Activity].node[uml::OpaqueAction].
4 input[uml::ValuePin]−>select(e|e.name = self.owner.oclAsType(Class).name).

53

4. Case Study Implementation

5 value[uml::OpaqueExpression]−>select(f|
6 f._body−>first().find(self.name) > 0)−>size();
7 }

Listing 4.17: Operational QVT GetPropertyReferencesInOpaqueActions query

1 query Source::Property::GetPropertyReferencesInCreateObjectAction(
2 in aBehaviorDiagramsList : OrderedSet(Behavior)) : Real {
3 return aBehaviorDiagramsList[Activity].node[uml::CreateObjectAction]−>select(e|
4 e.name = self.name and e.classifier = self.owner)−>size();
5 }

Listing 4.18: Operational QVT GetPropertyReferencesInCreateObjectAction query

4.5. Xtend

The transformation process is called by a oAW workflow file. In the workflow file all mod-
els and metamodels used, the transformation entry point file UML2BSDMC_MM.ext, and the
entry point function root are declared. Xtend is an imperative language, so it does not
provide the declarative features that ATL and ETL do. There are similarities in the imple-
mentation between QVT and Xtend, since both are imperative languages. The Listing 4.19
is a partial version of the UML2BSDMC_MM.ext file listed. In lines 1 and 2 the two metamodels
used in the transformation process are referenced. From lines 3 to 6 the extension files are
imported. In line 8 the entry point function root defined in the workflow is declared, this
function returns one instance of BSDMC_MM::Results type, that is the entire target model
result. The function createDocumentRoot that is called in line 9 is the main function in
this implementation. In this function the calls for calculating all metrics and bad smells
detections are implemented. The create keyword in line 11 defines that one instance of
a BSDMC_MM::Results element is created and returned at the end of the function execu-
tion. As parameter the variable aData that contains the source model’s element from type
Model is also passed. In line 12 the function GetBehaviorDiagrams that collects all behav-
ior diagrams from types Activity and Interaction is called. The returned set is stored in the
variable vBehaviorDiagramsList. Such as in the other three implementations, it is also
possible to print text in the console using println. Such as in the QVT implementation,
from lines 14 to 22 the functions for calculating the metrics related to classes and to op-
erations are called. In line 18 the and clause, expressed as && in Xtend is declared. The
CalculateMetricsInOperations function, is only called if the first expression of the and
clause is satisfied. The implementation from lines 23 to 33 are also very similar to the QVT
implementation. The properties filtering from lines 25 to 29 have exactly the same logic
as in all other implementations. The BSDMC_MM::Results.resultsList size is set in the
BSDMC_MM::Results.ResultsCount field in line 37.

54

4. Case Study Implementation

1 import uml;
2 import BSDMC_MM;
3 extension template::metricsCalc;
4 extension template::functionsLib;
5 extension template::badSmellDetec;
6 extension template::ignoreBadSmell;
7
8 Results root(Model aData):
9 createDocumentRoot(aData);

10
11 create Results this createDocumentRoot(Model aData):
12 let vBehaviorDiagramsList = GetBehaviorDiagrams(aData):
13 println(’Transformation started...’)−>
14 aData.packagedElement.typeSelect(Class).select(c|
15 CalculateMetricsInClasses(c,this))−>
16 aData.packagedElement.typeSelect(Class).select(c|
17 c.getAllOperations().typeSelect(Operation).select(e|
18 (e.owner == c) &&
19 CalculateMetricsInOperations(c,
20 e,
21 this,
22 vBehaviorDiagramsList) == true))−>
23 aData.packagedElement.typeSelect(Class).select(c|
24 c.getAllAttributes().typeSelect(Property).select(e|
25 ((e.aggregation == uml::AggregationKind::none) &&
26 (e.name != ’’)||
27 ((e.aggregation == uml::AggregationKind::composite) &&
28 (e.lower == 1 && e.upper == 1))) &&
29 (e.owner == c) && (e.association == null) &&
30 CalculateMetricsInProperties(c,
31 e,
32 this,
33 vBehaviorDiagramsList) == true))−>
34 // THE BAD SMELL DETECTION IMPLEMENTATION WAS REMOVED IN THE MASTER THESIS
35 // TO SAVE PLACE.
36 println(’Transformation finished succesfully...’)−>
37 this.setResultsCount(this.resultsList.size);

Listing 4.19: Xtend transformation initialization

In Listing 4.20, the implementation of the CalculateMetricsInProperties function
is shown. As parameter the properties owner class, the property itself, the target
model, and the list containing all behavior diagrams are passed. Line 6 shows the
called function CalculateMetricFRiC that calculates the metric Field Related in Class
and creates instances of a BSDMC_MM::MetricResult containing the metric result cal-
culation. In line 8 the function that checks, and if necessary, creates an instance of
BSDMC_MM::IgnoreBadSmellsResults is called.
1 CalculateMetricsInProperties(Class aClass,
2 Property aProperty,
3 Results aResults,
4 List aBehaviorDiagramsList):
5 println(’Calculating metrics related to the property : ’ + aProperty.name)−>
6 CalculateMetricFRiCs(aProperty,aClass,aResults,aBehaviorDiagramsList)−>

55

4. Case Study Implementation

7 println(’Detecting Ignore Bad Smell conditions for property : ’ + aProperty.name)−>
8 IgnoreBadSmellsInProperty(aClass,aProperty,aResults,aBehaviorDiagramsList);

Listing 4.20: Xtend CalculateMetricInProperties function

Listing 4.21 shows the implementation of the function CalculateMetricFRiCs and
CalculateMetricFRiC. In line 5 one List element that is passed as parameter in the
function CollectRelatedClasses is created. In line 6 a variable is created that contains
a list containing all specialized classes from the properties owner class passed as pa-
rameter. In line 9 is created a variable that contains all related classes to the properties
owner classed passed as parameter. We detected that when a function is called more then
once with the same parameters values, the function is not executed again. For this rea-
son, one extra parameter was included in the functions CollectAllChildClasses, and
CollectRelatedClasses to guarantee that each function is never called with the same
parameters twice. Another difference is in the function CollectRelatedClasses, where
two extra parameters are passed. The result set is exactly the same as in the other im-
plementations, but the function was implemented differently. In line 13 the function
CalculateMetricFRiC that calculates the Field Related in Class metric from the property
that is being analyzed is called. This function is implemented between lines 36 and 50
and it returns an instance of BSDMC_MM::MetricResult containing the metric calculation
results. These instance is added to the list BSDMC_MM::Results.resultsList from the tar-
get model. In this function it is again possible to observe that it has one extra parameter to
guarantee the functions execution.

From line 18 to 23 a select clause is implemented, in which for each specialized class
found, the function CalculateMetricFRiC is called once. Each created instance is included
in the BSDMC_MM::Results.resultsList list. The same occurs in the implementation from
line 24 to line 31. But in this case, only the related classes are included, and not the spe-
cialized classes. The implementation between those lines could be simplified by using the
union function, such as it was done in the other implementations. Between lines 32 and 34
all lists are cleared.
1 Void CalculateMetricFRiCs(Property aProperty,
2 Class aClass,
3 Results aResults,
4 List aBehaviorDiagramsList):
5 let vTmpList = newList():
6 let vClassesChildrenList = CollectAllChildClasses(aClass,
7 aProperty,
8 aResults.resultsList.size):
9 let vClassesRelatedList = CollectRelatedClasses(aClass,

10 vTmpList,
11 aResults.resultsList.size,
12 vClassesChildrenList):
13 aResults.resultsList.add(CalculateMetricFRiC(aProperty,
14 aClass,
15 aClass,
16 aBehaviorDiagramsList,

56

4. Case Study Implementation

17 aResults.resultsList.size))−>
18 vClassesChildrenList.typeSelect(Class).select(c|
19 aResults.resultsList.add(CalculateMetricFRiC(aProperty,
20 aClass,
21 c,
22 aBehaviorDiagramsList,
23 aResults.resultsList.size)))−>
24 vClassesRelatedList.typeSelect(Class).select(e|
25 vClassesChildrenList.contains(e) != true &&
26 aResults.resultsList.add(
27 CalculateMetricFRiC(aProperty,
28 aClass,
29 e,
30 aBehaviorDiagramsList,
31 aResults.resultsList.size))== true)−>
32 vClassesRelatedList.removeAll(vClassesRelatedList)−>
33 vClassesChildrenList.removeAll(vClassesChildrenList)−>
34 vTmpList.removeAll(vTmpList);
35
36 create MetricResult CalculateMetricFRiC(Property aProperty,
37 Class aClass,
38 Class aRelatedClass,
39 List aBehaviorDiagramsList,
40 Integer aSize):
41
42 setId(5)−>
43 setText(’Calculate Field Related in Class (FRiC)’)−>
44 setTargetObject(aProperty.qualifiedName)−>
45 setTargetObjectType(Property.name)−>
46 setParentObject(aClass.qualifiedName)−>
47 setParentObjectType(aProperty.owner.metaType.toString())−>
48 setType(MetricsTypes::mtFieldRelatedInClass)−>
49 this.metricResultItem.add(CreateMetricItem(aRelatedClass,aSize))−>
50 setValue(CountRefBDFound(aProperty,aRelatedClass,aBehaviorDiagramsList));

Listing 4.21: Xtend CalculateMetricFRiCs and CalculateMetricFRiC functions

The function in Listing 4.22, implements the same routine as the helper
CountRefBDFound in ATL Listing 4.4, the ETL Operation in Listing 4.10, and the query
CountRefBDFound in QVT Listing 4.16 . In Xtend, differently from the ATL and ETL imple-
mentation, the function does not have a context, so that the field was passed as parameter
(aProperty). Another obvious difference between the four implementations is the syntax.
1 Real CountRefBDFound(Property aProperty,
2 Class aRelatedClass,
3 List aBehaviorDiagramsList):
4 GetPropertyReferencesInOpaqueActions(
5 aProperty,
6 aBehaviorDiagramsList.typeSelect(Behavior).select(e|
7 e.owner == aRelatedClass),
8 aRelatedClass.qualifiedName) +
9 GetPropertyReferencesInCreateObjectAction(

10 aProperty,
11 aBehaviorDiagramsList.typeSelect(Behavior).select(e|
12 e.owner == aRelatedClass),
13 aRelatedClass.qualifiedName);

Listing 4.22: Xtend CountRefDBFound function

57

4. Case Study Implementation

Listings 4.23 and 4.24 are very similar to the ATL, and ETL implementations. It is again
only a syntax issue, since the queries are implemented exactly in the same way. One rel-
evant difference can be seen in line 8 from Listing 4.5. To find a substring in a string in
Xtend, the function contains must be used, differently from all languages analyzed be-
fore. Another difference is the use of the function typeSelect to typecast also unique in
this implementation.
1 private Real GetPropertyReferencesInOpaqueActions(Property aProperty,
2 List aBehaviorsDiagramsList,
3 String aQualifiedName):
4 aBehaviorsDiagramsList.typeSelect(Activity).node.typeSelect(OpaqueAction).
5 input.typeSelect(ValuePin).select(e|e.name == aProperty.class.name).
6 value.typeSelect(OpaqueExpression).select(e|
7 e.body.first().contains(aProperty.name) == true).size;

Listing 4.23: Xtend GetPropertyReferencesInOpaqueActions function

1 private Real GetPropertyReferencesInCreateObjectAction(Property aProperty,
2 List aBehaviorsDiagramsList,
3 String aQualifiedName):
4 aBehaviorsDiagramsList.typeSelect(Activity).node.
5 typeSelect(CreateObjectAction).select(e|e.name == aProperty.name &&
6 && e.classifier == aProperty.owner).size;

Listing 4.24: Xtend GetPropertyReferencesInCreateObjectAction function

58

5. Language Evaluations

The four languages evaluations are divided in two analyses. One is based on the ISO
9126 (section 2.7) for evaluating the characteristics and quality of the tooling provided by
the technologies, and by evaluating how these tools can contribute in enhancing the im-
plementations quality. The evaluation approach of the languages continuity has been in-
cluded in this thesis to evaluate characteristics related to the technology lifecycle. Predict-
ing a technology lifecycle is fundamental in choosing it to be used in a project. This eval-
uation is based on the community use of the technology, technologies management, com-
panies that supports the technology and its influence in the Information Technology (IT)
market, how it is managed, its bug tracking system evaluation, and learning material and
simple projects for helping new developers.

The second analysis is based on a study (section 2.8) for evaluating model transformation
approaches [89] is used for evaluating the characteristics of the transformation language
itself, and how this characteristics contributes to a better quality of the implementations.

Combining this two analyses it is possible to evaluate the transformation languages in a
much broader way, since not only the languages characteristics themselves are analyzed,
but also other factors important for the use of a technology such as, portability issues,
learning material available, and project coordination analysis.

This chapter is structured in section 5.1, where the subjects of the analyzed technology
are described, section 5.2, where the evaluation schema used is briefly described. In sec-
tion 5.3 is the transformation language ATL evaluation described, section 5.4 describes the
evaluation of the ETL transformation language, in section 5.5 is the evaluation of the Op-
erational QVT transformation language described, and section 5.6 describes the evaluation
of the Xtend transformation language.

5.1. Analyzed Subjects of the Transformation Language

The evaluation of the transformation languages is applied on the transformation language
tooling, the tooling implementation, its language features, and the transformation projects. In this
evaluation, the tooling is considered the set of tools provided by the technology that sup-
ports the development and execution of M2M transformations using the evaluated trans-
formation language. One example of such a tool is a debugger, a tooling feature that en-
hances the maintainability of the transformation project by providing the user the feature of

59

5. Language Evaluations

better analyzing a bug by setting breakpoints, or analyzing the source code variables dur-
ing the transformation execution. Another example is the use of the live error detection
in the editor tool. This tooling feature provides a feedback for the user, displaying what
part of the source code was erroneous implemented, and so enhancing the usability of the
transformation language.

The tooling implementation is the source code of the technology tooling. The tooling imple-
mentations, and its coordination are important in the evaluation of its continuity, and ISO
9126 characteristics such as maintainability of the tooling provided. By analyzing the bug
tracking system from the tooling implementation, it is possible to evaluate characteristics re-
lated to the maintainability of its tooling, such as evaluating the increase of bugs during the
years, or by evaluating the amount of open bugs.

The language features are all features provided by the transformation language specifica-
tion. Examples of such, as inheritance of rules, a feature that enhances the transformation
projects maintainability, by reducing the amount of code of the implementation, or the pos-
sibility of executing exogenous M2M transformations, a feature that enhances the transfor-
mation projects functionalities by providing it with the feature of executing transformations
between two different types of metamodels, such as UML and Ecore.

The transformation projects are projects containing implementations using the evaluated
transformation language, such as a M2M transformation project for generating an UML
model based on an Ecore model using ATL. A large amount of transformation projects en-
hances the usability of the language features by providing examples how to execute M2M
transformations using a specific technology. Transformation projects can also impact in the
continuity of the evaluated technology. A large set of transformation projects that provides
many different examples showing and explaining the technology features can contribute
to the decision making of the developer that wants to adopt a technology for M2M trans-
formations.

5.2. Evaluation Schema

The characteristics usability, efficiency, maintainability, functionality, and portability from the
ISO 9126 quality model, as also the continuity classification introduced in this thesis are
used in the evaluation schema.

Table 5.1 shows the evaluation schema used in the evaluation of the analyzed transfor-
mation languages based on section 2.7, considering the subjects described on section 5.1. It
is divided in two phases, the implementation phase, that are topics related to the implemen-
tation of the case study for each language, and the research phase, based on data collected
from books, articles, and internet research.

60

5. Language Evaluations

Table 5.1.: Evaluation Schema

Topic description Phase
Time needed to execute the compiled Implementation
implementation.
Configuring and compiling a template project without Implementation
errors.
Number of the case study implementation lines Implementation
(LLOC metric)
Time needed for the implementation of the case Implementation
study.
Tools support. Research
Amount of public transformation projects available. Research
Metric calculation and bad smell detection Research
public projects found.
Different technologies that may be used Research
in conjunction.
Number of manufactures that officially support the Research
use of this technology.
Group responsible for the technology maintenance Research
and coordination.
Release frequency in the last two years. Research
Last official release containing new features. Research
Bug tracking system analysis Research
Amount of books not older then 2 years Research
found in 20 minutes research.
Amount of articles not older then 2 years Research
found in 20 minutes research.
Amount of tutorials found Research
not older then 2 years in 20 minutes in research.
Learning material and information about the Research
technology provided by the official website.
Table with the quantity of topics and replies in the Research
official forum from the last five years.
Quantity of topics and replies in the official forum Research
from the last five years.

The time needed to execute the implemented code is measured to analyze the technol-
ogy’s efficiency. It is measured the time needed to execute the implementation from the case

61

5. Language Evaluations

study. The implementation’s source code time is the average time of executing the imple-
mentation ten times1. It is important to observe that the source model is small compared
to models used in the industry, and therefore cannot be considered an empirical evidence.

The topics from the evaluation schema in Table 5.1, are referenced in the schema eval-
uation from each language in bold letters. In the evaluation of the language characteris-
tics, the keywords defined in the study from Czarnecki and Helsen are written in italic.
Considering the conclusion from each language, the slanted text formatting represents the
ISO 9126 main characteristics, including the introduced continuity classification. The bold
texts refer to the technology subjects, introduced in section 5.1. The highlighting of these
keywords should enhance the evaluation understanding.

5.3. ATLAS Transformation Language (ATL)

In the sections below is evaluated the ATL transformation language.

5.3.1. Schema Evaluation

The time needed to execute the compiled implementation in ATL depends on the virtual
machine that is being used in the compilation. It is possible to use two different Virtual
Machines. The Regular VM that is the first version of the ATL VM, in which model handlers
are used to abstract the implementation from the model management framework. This
model handlers are an abstraction layer that are dedicated to model access, and they are
implemented in two different classes, the ASMModel and ASMModelElement.

According to [12], the VM is still in use because it is strongly linked to several parts (now
only the ATL debugger). This source also implies that the Regular VM also has several
performance issues, especially because of the model handle architecture. The other VM
is the EMF-specific VM, that according to [12], is a redefinition of the Regular VM, which
resolves a lot of performance issues by avoiding EObjects wrapping. Its API also allows
to consider EMF resources directly as models.

It was possible to observe this performance issues in the case study implementation. The
Regular VM took 1,43 seconds2 to execute the UML2BSDMC_MM_p1.atl file, and 3,537 seconds
to execute the UML2BSDMC_MM_p2.atl The total time needed to execute the complete case
study was 4,974 seconds. The EMF-specific VM took only 0,325 seconds to execute the
UML2BSDMC_MM_p1.atl file, and 0,459 seconds to execute the UML2BSDMC_MM_p2.atl file,
with an overall of 0,784 seconds to execute the entire case study. It is possible to observe

1Computer configuration used is a Macbook Pro, 2.66 GHz Intel Core 2 Duo, 4 GB 1067 MHz DDR3 RAM,
Mac OS X Snow Leopard 10.6.2 operational system, and Eclipse IDE, build 20090920-117.

2This value has been calculated by taking the average time of 10 consecutive executions.

62

5. Language Evaluations

that the EMF-specific VM was more than 6 times faster than the Regular VM for our case
study.

Configuring and compiling a template project without errors was a straightforward
process. The Eclipse Modeling Tools IDE standard installation provides all necessary pack-
ages, plugins and tools necessary to execute and write ATL code. Having a project with
all metamodels and models referenced, output file defined and one rule to test the output
file took approximately 30 Minutes. A Graphic User Interface (GUI) was also available for
setting up the metamodels, models, libraries, superimposed modules, and the VM used in
the execution.

The number of the case study implementation lines, not considering the source code
documentation is 618 lines. The queries implemented in ATL are not as compact as in other
languages, they are described in the section 5.3.3. It was necessary approximately 70 hours
to implement the entire case study. The ATL tool support is integrated to the Eclipse IDE,
providing the user with code completion, syntax highlighting, some level of error detection
in the source code, an automated build tool using Apache Ant, debugging functionalities,
outline view, GUI for configuring the run and debug project function in Eclipse.

The amount of public transformation projects available for ATL is 103 transformation
scenarios, a few examples are Ant to Maven transformation, UML to Java transformation,
and MOF to UML transformations, all found on the official ATL website.

The metric calculation and bad smell detection public project found was one. This
transformation project named UML2 to Measure can be found in [9]. The available metric
calculations in this transformation project are QMOOD, MOOSE, FLAME, and MOOD.

Different technologies that may be used in conjunction with ATL are OCL, Apache
Ant, ATLAS MegaModel Management (AM3), AMW, Java, and also the technologies sup-
ported by the EMF.

The OCL language is described in chapter 3.5.1. According to [78], ATL is designed and
implemented with respect to the OCL standard. There are also a few derivations from the
standard, and they are also described in [78]. The Apache Ant is a Java-based build tool.
By using Apache Ant, it is possible to create workflows with ATL, making the execution
of ATL large projects much easier to manage. The AM3 is a GMT subproject witch is being
developed by the AtlanMod group, that is same group that coordinates the ATL project.
The AM3 has a group of Apache Ant tasks that can be used in ATL transformations. It is
also possible to use AMW, that was also developed by the AtlanMod group, and can be
used for model traceability. It is also possible to run ATL transformations using Java code.
A Java application template project can be found in [14]. The EMF is a framework that
integrates a larger set of technologies that can be used in conjunction. The EMF is available
in the Eclipse Modeling Tools, more information about it can be found in [144].

The ATL number of manufactures that officially support the use of this technology can
be found in [10]. Nine different partners are listed, including companies such as Airbus [1],
and Thales [63].

63

5. Language Evaluations

The group responsible for the technology maintenance and coordination is INRIA,
more specifically the AtlanMod group, that is located in Nantes, France. The AtlanMod
group is also known for the AtlanMod Model Management Architecture (AmmA) toolkit,
and also participates in other projects in the MDE field such as Carroll [17], ModelPlex [45],
TopCased [66], OpenEmbeDD [52], OpenDevFactory [68], FLFS [54], IdM++ [60]. There are
eight active members according to [43].

In Table 5.2, it is possible to observe the release frequency in the last two years.

Table 5.2.: ATL releases in the last two years

Version Date
3.0.1 22.09.2009
3.0.0 22.06.2009
2.0.2 19.12.2008
2.0.1 17.09.2008
2.0.0 10.06.2008

The last official release containing new features at the time of writing is version 3.0.1.
The Bug tracking system analysis in Eclipse Bugzilla in the last five years3, filtering the
project M2M and components ATL-Contribution, ATL-Doc, ATL-emfvm, ATL-Engine, ATL-
UI, and ATL-Website are shown in Figure 5.1 and Figure 5.2. No bug entries were found
from the period of 2005 to 2006 in the Eclipse Bugzilla system.

32009 until 08.12.2009.

64

5. Language Evaluations

 0

 10

 20

 30

 40

 50

 60

 70

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Blocker
Critical
Major
Normal
Minimal
Trivial
Enhancement

Figure 5.1.: Eclipse Bugzilla ATL projects entries grouped by severity.

 0

 10

 20

 30

 40

 50

 60

 70

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Fixed
Invalid
Wontfix
Duplicate
Worksforme
Moved
NotEclipse
NONE

Figure 5.2.: Eclipse Bugzilla ATL projects entries grouped by resolution.

65

5. Language Evaluations

In the search for the amount of books not older then 2 years found in 20 minutes re-
search, it was possible to find [101]. But this book is not ATL specific. The amount of
articles not older then 2 years found in 20 minutes research found is 18. It can be found
in [86, 92, 111, 120, 136]. [111] contains a large set of articles. The amount of tutorials not
older then 2 years old in 20 minutes research found is 3 and can be found in [5]. The
learning material and information about the technology provided in the official website
found is composed by several examples, from basic to complex ones, a detailed docu-
mentation for users and developers, the virtual machine specifications, installation guide,
starter’s guide, wiki, newsgroup, forum, Frequently Asked Questions (FAQ), links to pub-
lications, posters, and flyers. Figure 5.3 shows the quantity of topics and replies in the
official form from the last five years4.

 0

 500

 1000

 1500

 2000

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
m

e
s
s
a
g
e
s

Year

Unanswered
Topics
Replies

Figure 5.3.: ATL forum usage.

The period of 2005 to 2006 is based on the data collected in [13]. The period of 2006 to
2009 has been collected in [25], but in this case, since this forum is used for ATL and QVT,
the messages have been filtered by the string ATL in the subject and in the message content.
It is possible to observe that the activity peak was in the year of 2007, and since then have
been declining in the last years. The quantity of topics and replies in the official forum
from the last five years is 5710.

42009 until 02.12.2009.

66

5. Language Evaluations

5.3.2. Language Characteristics

The ATL transformation language is evaluated based on [89] is described below.

Specification

ATL provides a feature of calling explicitly the entry point rule before calling all other
matched rules, this entry point rule can be used for initializing variables, executing one
imperative block, and also for analyzing pre conditions from the model transformation.

Transformation Rules

ATL transformation rules provides a syntactic separation between the target and source mod-
els, that are achieved by using the to and from keywords. It also provides the application
controls feature by creating conditions inside the from block for defining the rules condition
for its execution. The ATL rules does not support multidirectionality, therefore transforma-
tion is always performed in one direction. According to [109], intermediate structures are
supported via attribute helpers and OCL tuples. We do not consider in our evaluation
OCL tuples as intermediate structure, since they are part of the target or source model. But
using a second target model for tracing the M2M transformation, and saving it at the end
is a way of using it as an intermediate feature is in ATL. Rules parameterization are only sup-
ported in called rules, and not in matched rules. According to [89], reflection is supported in
ATL by allowing reflective access to transformation rules during the execution of the trans-
formation. The domain languages supported by ATL are Ecore and MOF. The M2M trans-
formations can be endogenous, or exogenous. Since ATL transformation is unidirectional, the
only static modes supported are in, and out. It does not support dynamic mode restriction.
The body supports variables, patterns, and its executable logic is based on a hybrid language
paradigm, that supports imperative and declarative implementations, the value specification
is imperative assignment, and the element creation is implicit. ATL is considered syntactically
typed.

Rule Application Control

The rule location determination is deterministic in the case of called rules, and non-deterministic
in the case of matched rules according to [109] .

The rule scheduling form is a mix of implicit supported by matched rules, and explicit rules
supported through the invocation of called rules, and also through control flow structs.
The rule selection considering the matched rules are based on the rules guard conditions.
According to [109], conflicts among standard matched rules are not allowed when they
lead to ambiguity in resolving the default traceability links. Concerning the rule interaction,
ATL provides rule recursion. Phasing can be used by calling explicitly from inside matched

67

5. Language Evaluations

rules a specific order of lazy rules, such as calling a specific sequence of lazy rules from an
entry point rule. In this way it is possible to use phasing with lazy rules.

Rule Organization

Concerning the rules organization in ATL, its modularity mechanism consists in organizing
the rules in libraries and modules, its reuse mechanism is based in rule inheritance, and also
module superimposition. Its organizational structure is source-oriented.

Source-Target Relationship

The Source-Target relationship is that a new target model is created in the transformation.
According to [89], in-place transformation can be simulated in ATL through an automatic
copy mechanism.

Incrementality

ATL does not support any type of incrementality. In a transformation process, the entire
source model is read, and the target model is written, so that changes performed by the
user in the target model are cleared in a new transformation execution.

Directionality

The ATL transformation directionality is unidirectional, from the source to the target model.

Tracing

The tracing support is provided by ATL.

5.3.3. Further Comments

The implementation took more time than compared to other technologies. The possibility
of using matched, lazy, and called rules, gives the developer a lot of flexibility in the im-
plementation, such as an entrypoint rule that can be used for initializing variables. In our
point of view, ATL should also provide the possibility of executing one specific code at the
end of the transformation, such as it is done in Epsilon. Our case study first calculates all
metrics, and based on those metrics, the bad smells are calculated. It was not possible to
call the bad smell detection in the UML2BSDMC_MM_p1.atl implementation, since it does not
provides a post block, such as in Epsilon. It was necessary create a second transformation
UML2BSDMC_MM_p2.atl to detect the bad smells.

68

5. Language Evaluations

There was also an issue in the automated build tool Apache Ant. It was not possible to
execute the Apache Ant file in the case that superimposed files were defined in the Apache
Ant file. Another interesting issue is in the comparison of integer and real values. In
the example below (Listing 5.1), on line 9 it is possible to observe that the field value from
the object aRelatedMetricResults is being compared. In the case that the value field is
the from primitive type real, it must be compared such as in the example using 0.0. But
in cases that the value is from the integer type, then it must be compared with 0 and
not 0.0. If those values are not compared as described before, no error is generated in the
execution, but the comparison is not resolved correctly.
1 helper context QueryResult!Results def :
2 IsFiWC(aRelatedMetricResults : QueryResult!MetricResult,
3 aPropertyName : String,
4 aParentName : String) : Boolean =
5 (aRelatedMetricResults.MetricResultItem−>first().relatedObject <>
6 aPropertyName and
7 aRelatedMetricResults.MetricResultItem−>first().relatedParentObject <>
8 aParentName and
9 aRelatedMetricResults.value <> 0.0);

Listing 5.1: ATL comparison issue

Another observation in the ATL implementation, is that queries written in ATL are much
longer than written in, for example, QVT. Observing the Listing 5.2 and 5.3, it is possible
to observe in the Listing 5.3 on line 1, that all behavior diagrams from the type Activity
are filtered and collected by using the instruction [Activity]. To get exactly the same set
in the ATL implementation, it is necessary to write an entire select to get the same result.
In this case it would be ->select(e|e.oclIsTypeOf(Source!Activity)). In the example
it is also possible to observe that ATL must convert the size() value, that is an integer
value, to a real value, while QVT accepts integer values for real fields.
1 aBehaviorDiagramsList−>select(e|
2 e.oclIsTypeOf(Source!Activity))−>collect(f|f.node)−>flatten()−>
3 select(g|g.oclIsTypeOf(Source!CallOperationAction))−>select(h|
4 h.operation = self)−>size()−>toString()−>toReal()

Listing 5.2: ATL query example

1 aBehaviorDiagramsList[Activity].node[uml::CallOperationAction]−>
2 select(e|e.operation = self)−>size();

Listing 5.3: QVT query example

The current language implementation also allows the user of calling lazy rules with less
parameters than it is declared, may causing some unexpected results in the transformation
execution.

The syntax autocompletion also had a few issues in showing all available operations and
fields from elements in some specific cases.

69

5. Language Evaluations

The debugger functionality is only available in the Regular VM , and not in the EMF-
specific VM, the Variables view in the Debugger view also had some issues in displaying the
correct variable values. In our implementation, it only showed the objects number and did
not display all other properties.

The rules inheritance feature is available in the ATL2006 compiler. The ATL2006 does not
support multiple inheritances, and there are a few limitations and constraints that should
be taken in consideration before using inheritance, they are described in [6] and are:

• sub rules input pattern has to match a subset of its super rule.

• input pattern variables names have to be the same in super and sub rules.

• output pattern variables names in the sub and its super rule must be equal.

Another characteristics of the rules inheritance behavior, is that only the from block from
superclasses are executed, all other blocks are ignored, differently from the QVT imple-
mentation, where all blocks are executed.

To write one enumerated type in ATL it is necessary to write the character # before writ-
ing the enumerated type value, such as for example #public. Another transformation
languages such as Xtend for instance, uses the following uml::VisibilityKind::public
notation, which enhances the understandability of the source code.

5.3.4. Conclusions

The conclusions described below are based on the evaluation schema, transformation lan-
guage classification, and on the case study implementation. Each characteristic is evalu-
ated individually.

Efficiency

Concerning the technology efficiency of the tooling provided by the technology, the time
needed for executing the case study implementation is the fastest one between the eval-
uated technologies. Executing the case study implementation using the EMF-specific VM,
it is more than twice as fast as the second fastest transformation language that was QVT.
The high performances of the technology in executing source codes is very important in
tasks such as detecting bad smells, calculating metrics, performing refactoring, and execute
complex transformations in large models.

Portability

All the tooling provided by ATL is available in the Eclipse Modeling Tools IDE standard
installation, so that it was not necessary to install any plugin, or library to configure the

70

5. Language Evaluations

ATL tooling. Considering the transformation projects, creating a new project, and exe-
cuting it without errors was a fast compared to other transformation languages. A few
examples of transformation projects available in the official site where installed for testing,
without finding any kind of portability problems. No problems related to the portability of
its tooling and its transformation projects have been found.

Usability

Considering the usability of its tooling and language features, it was the transformation
language that had the highest implementation time, almost two times more compared to
the language with the fastest implementation time. Concerning the usability of its tool-
ing, it was not possible to use the code autocompletion from the metamodels used in the
transformation, to better understand how the structure is defined. The autocompletion
of metamodels in the editor enhances the usability of the transformation projects source
code. Concerning the technology language features, more time was also necessary to un-
derstand how the rules are executed, and how to implement the case study keeping some
level of similarity to other transformation languages. The tracing feature provided by its
tooling, that tracks and saves in a file the process of a M2M transformation, enhances the
understandability of a M2M transformation project execution. The amount of publicly
available third party transformation projects is very good, not only quantitatively, but also
qualitatively. It is the only technology among the ones evaluated, that provides a transfor-
mation project for calculating metrics, providing a good source of information in tasks
related to UML quality engineering in metric calculations. It provides examples of trans-
formations of a good amount of different domains, which is a good material for learning
and understanding its tooling, language features and the transformation projects itself.

Technologies which are not ATL specific, that can also be used for other tasks, such as
Apache Ant, integration to EMF, and Java, make the understanding and learning of its
tooling, and transformation projects faster, since the developer do not have to learn tech-
nology specific tools, and plugins. Another factor that also contributes to a better under-
standing and learning of the language features is the support of OCL standard, that is also
used in other technologies.

The books, articles, and tutorials found in the 20 minutes research are considered good.
They provide a good source of information for learning and understanding its tooling,
language features, and tools implementations. It was possible to find two books, but none
of them are specialized in ATL. A good amount of articles was also found in the research.
The Learning material found in the official ATL project is good organized and up-to-date.
The ATL forum (Figure 5.3) is a good source of learning material and contact to the ATL
community. It is possible to observe that it has a high amount of messages compared to
the other transformation languages forums, but proportionally, it has a higher amount of
unanswered topics compared to the other evaluated languages.

71

5. Language Evaluations

Maintainability

Concerning the maintainability of the transformation projects, the ATL tooling provides a
tracing feature for analyzing M2M transformation processes, a debugger that is especially
useful in analyzing long OCL-like expressions in large models. Issues related to the de-
bugger tool were found and it is described in section 5.3.3. A refactoring tool is useful
in the maintainability of transformation projects, but it is not available for the ATL editor.
Considering the implementation of the case study, the ATL transformation language has
the highest amount of source code lines, therefore not contributing to a good maintainabil-
ity of the transformation projects, since a high amount of source code lines can imply a
higher maintainability. Table 5.2 shows the releases in the last two years. The older release
does not only contain bug fixing, but also enhancements. This is a good indicative that
the ATL tooling implementation is been maintained. In the ATL version 3.0.0 the APIs was
refactored, as also a few modifications in the routine for executing in-place transforma-
tions were done. The release interval between versions 2.0.2 and 3.0.0 is two times longer
than the usual interval release. A relatively constant release frequency is a good indica-
tive of a coordinated maintainability of its tooling implementation. In version 3.0.0 ATL
now supports its own set of Apache Ant tasks, and other features available [4], so that this
implementations could contribute to the longer development time between those releases.

The maintainability of the ATL tooling, tooling implementation, and language features
can be evaluated by analyzing its bug tracking system entries. The bug entries found in
the bug tracking system contains information related the quality of the maintainability of its
tooling implementation, as also enhancements request from the community related to its
tooling and its language features. It is possible to identify in Figure 5.1 that the amount
of entries is increasing. A few factors could contribute to the increase of bug entries, the
community using the technology is growing, so that that its tooling is being used more
often, therefore the possibility of finding bugs is higher. Another factor that could con-
tribute to the increase of bugs are quality issues in its maintainability. Yet another factor
that could contribute to an increase of bugs in this year is the release of the major version
3.0.0. Another observation is the bug severity distribution in 2007 compared to the other
years. The grand majority of bugs in 2007 are normal bugs, while in the other years the
distinction between bugs severity is made, so that it could indicate a change of policies in
the bug severity classification by the coordinating group. A good policy of the bug classifi-
cation contributes to a better maintainability of its tooling implementation, by defining the
most important bugs by severity. Figure 5.2 shows the amount of bugs found, filtered by
status. It is possible to observe that the amount of open bugs has increased in 2009, but the
amount of fixed bugs are very similar to the previous year, so that it could indicate that an
insufficient number of developers is working in the ATL project, which is not a good in-
dicative of maintainability. The ATL language features support the use of rules inheritance,
superimposed module, and rules organization in modules, features that also contributes to

72

5. Language Evaluations

the maintainability of ATL transformation projects.

Functionality

Considering the technologies that can be used in conjunction, ATL tooling supports the
integration with Apache Ant for automating tasks, AM3 provides Apache Ant tasks for
ATL, and AMW can be used for tracing. This integration enhances the functionality of the
technology and its tooling. Java implementations can be called from ATL transformation
executions, or standalone Java applications that execute transformations using ATL, en-
hances the transformation projects functionalities.

It was possible to find one transformation project for calculating metrics in models. This
and other projects enhance the functionality of transformation projects, since many of the
functions and libraries already implemented in transformation projects can be reused.
This project for calculating metrics in models, has a set of libraries for calculating metrics
from the QMOOD, MOOSE, FLAME, and MOOD groups of metrics. This project makes
a M2M transformation, analyzing the source model, and generating a target model con-
taining the calculated metrics results. This approach is similar to the approach adopted in
the case study, but it is limited to calculating metrics. The libraries provided in this project
can be used in our case study to expand its functionalities in calculating metrics. A good
amount of other transformation projects are available in the official website, so that parts
of its implementations can be used in other projects.

Concerning the functionality provided by the ATL tooling, it provides a GUI for config-
uring the transformation execution, the editor supports almost all features provided by the
editors from the other examined languages, but its code autocompletion, and live error de-
tection is not so advanced, such as editors found in other transformation languages. These
functionalities provided by the tooling can enhance the maintainability of transformation
projects.

Considering the functionalities provided by the language features, the phasing charac-
teristic used in UML quality engineering can be used in bad smell detection process, in
which the first phase is used to calculate the source model metrics, and the second phase
is used to calculate the bad smells based on those metrics. It was the only language in
our case study where it was necessary to execute two transformation processes in a row,
one for calculating the metrics, and the other for detecting the bad smells. It also simu-
lates in-place transformations that can be used in refactoring processes. It also supports
exogenous transformations, that is the transformation of a source model that conforms to a
specific metamodel to a target model that conforms to a different metamodel. Intermediate
structures are also supported by using more then one output model.

73

5. Language Evaluations

Continuity

The large quantity of publicly available third party transformation projects in ATL pro-
vides a good source of information for developers that are evaluating M2M transforma-
tion approaches before choosing one, so that a considerable amount of this transformation
projects contributes to the adoption of this technology in other projects. In our evaluation
ATL provided a very good set of transformation projects, not only quantitatively but also
qualitatively.

The number of manufactures that support the technology is an important factor in the
decision making of adopting one technology. By analyzing the companies that support
this technology, it is possible to observe that many of these manufactures, or their head-
quarters are located in France. There is a good set of companies that provide training and
consulting, two important factors that contribute in the adoption of a technology. Two
large companies that support the ATL projects are Thales, and Airbus. The ATL project is
coordinated by the AtlanMod group, that is composed by eight active members. This group
is also active in other MDA projects listed in [55]. Based on this information it is possible
to observe that this is an active group, with experience in other MDA projects.

The release frequency compared to other transformation languages is considered good,
and the last version also contains new features, a good indicative of the technology conti-
nuity. Analyzing its documentation, it is possible to observe that enhancements are also
being implemented, that shows that the technology is continuing to evolve, another good
indicative of continuity.

It is possible to observe a growth of bug entries in the bug tracking system Bugzilla,
which could indicate a growth of the community using ATL. Figure 5.3 shows the forum
activity in the last five years, compared to the other transformation languages, is currently
one of the most active in posts and replies. It is possible to observe that the number of
messages is decreasing in the last two years, this could indicate that the technology is not
being used so much as before, or that the material found by the community about ATL is
self explanatory. It is also relevant remark that the INRIA research group, is also referenced
as one of the companies that supports the QVT specification.

5.4. Epsilon Transformation Language (ETL)

ETL is one of seven different languages available in the Epsilon Eclipse project. A few of
the topics evaluated are not specifically based on ETL, but on the Epsilon project. These
topics are those related to project coordination, bug tracking system analysis, forum usage,
tool support, and the material available in the official site. All other topics are evaluated
exclusively taking in consideration only ETL language.

74

5. Language Evaluations

5.4.1. Schema Evaluation

The time needed to execute the compiled implementation in Epsilon was 4 seconds5 For
configuring and compiling a template project without errors it was necessary to install
the Epsilon plugin in Eclipse, since it is not available in the default Eclipse Modeling Tools
installation. It took approximately 120 Minutes to prepare a project with all metamodels,
models, and libraries referenced, output file defined and one rule to test the output file.
The number of the case study implementation lines is 574, also considering the workflow
file, and excluding the source code comments. It was necessary approximately 35 hours to
implement the entire case study.

The tool support provided by Epsilon is composed by five different tools described in
section 2.9.2, the EuGENia tool is used to automatically generate .gmfgraph, gmftool, and
gmlmap models needed for implementing a GMF editor from a single annotated Ecore
metamodel. Exeed is a build-in EMF reflective tree-based editor. It can be used to cus-
tomize the appearance of nodes in the reflective tree editor without having to generate a
dedicated editor, it can specify icons and labels of each node using EOL, and this icons
and labels can reflect the status of an element. The ModelLink is an editor that allow the
user to display three different EMF tree based editors side-by-side. The Workflow is basi-
cally a set of Apache Ant tasks. Concondance is a tool used to monitor a group of projects
from a workspace maintaining the EMF cross-references. The Epsilon editor provides code
autocompletion, syntax highlighting, outline view, and traceability view. Unfortunately it
does not have a debugger, and it does not provide live error detection in the editor. An
interesting feature is the Live version available in [42], which allows the execution of EOL
implementations from a web browser.

The amount of public transformation projects available found in its official website is
6, considering only the examples that uses ETL. There was no metric calculation and bad
smell detection public transformation projects found.

The different technologies that may be used in conjunction with Epsilon ETL, are all
Epsilon available languages, Apache Ant, Java, by running Epsilon transformations in a
Java standalone implementation, use models and metamodels specified in EMF. Epsilon
also provide experimental projects available in [59], between those projects is one driver
projects for accessing Meta Data Repository (MDR) based models in Netbeans [70], and
another one for accessing Z specification language [141] based models used in [20] from
Epsilon.

Considering the number of manufactures that officially support the use of this technol-
ogy, according to the leading developer, parts of Epsilon is used by people in companies
including IBM (Zurich) [37], Siemens [56], BAE Systems [16], WesternGeco [34], and Tele-
fónica [62] in a informal way, so that the companies do not officially support the Epsilon

5This value has been calculated by taking the average time of 10 consecutive executions.

75

5. Language Evaluations

project. It is also used in several European Union (EU) projects such as Ample [36], Iness
[19], and Modelplex.

The group responsible for the technology maintenance and coordination, is coordi-
nated by the leading developer Dimitris Kolovos [114]. According to the leading devel-
oper, two persons are officially committing changes in the Epsilon source code, but there
are several other people also working in the project, and two new committers are expected
to be added in a new future. The enhancements are defined based on the ideas and request
from the community in the form of bugs or forum messages. An internal group discussion
is made to define the enhancements that are going to be implemented.

In Table 5.3 it is possible to observe the release frequency in the last two years, consid-
ering only the stable versions. These version dates were found in the official Epsilon web-
page. The Epsilon project was a standalone project until 17.06.2008. By integrating it in to
the Eclipse modeling project, it was necessary to adapt the projects version to the Eclipse
version structure. In Eclipse, every incubated project must start with version 0, therefore
it is an incubated project, and it received the new version 0.8.0, such as it is shown in Ta-
ble 5.3. The last official release containing new features is newest version at the time of
writing.

Table 5.3.: Epsilon releases in the last two years

Version Date Version Date
0.8.8 28.10.2009 0.8.1 12.09.2008
0.8.7 03.07.2009 0.8.0 17.06.2008
0.8.6 12.06.2009 1.3.6 17.06.2008
0.8.5 27.04.2009 1.3.5 21.05.2008
0.8.4 11.02.2009 1.3.4 20.05.2008
0.8.3 08.12.2008 1.3.3 18.03.2008

0.8.2.1 03.11.2008 1.3.2 14.03.2008
0.8.2 28.10.2008 1.3.0 29.01.2008

0.8.1.1 16.09.2008 1.2.0 13.12.2007

The Bug tracking system analysis in Eclipse Bugzilla in the last five years6, filtering the
project GMT and Epsilon component, and it is shown in Figures 5.4 and 5.5. No bug entries
were found from the period from 2005 to 2006 in the Eclipse Bugzilla system.

62009 until 08.12.2009.

76

5. Language Evaluations

 0

 20

 40

 60

 80

 100

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Blocker
Critical
Major
Normal
Minimal
Trivial
Enhancement

Figure 5.4.: Eclipse Bugzilla Epsilon projects entries grouped by severity.

 0

 20

 40

 60

 80

 100

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Fixed
Invalid
Wontfix
Duplicate
Worksforme
Moved
NotEclipse
NONE

Figure 5.5.: Eclipse Bugzilla Epsilon projects entries grouped by resolution.

77

5. Language Evaluations

The amount of books not older then 2 years found in 20 minutes research is one. It
was only possible to find the official Epsilon book [118]. The amount of articles not older
then 2 years found in 20 minutes research is 10. Since Epsilon is composed by diverse lan-
guages, only articles that have at least one reference to the ETL language were considered.
It was possible to observe that the majority of the articles found are from a small group of
researches. Relevant articles found are [93, 116, 117, 137]. The amount of tutorials found
not older then 2 years in 20 minutes research, considering only tutorials related to the ETL
language, was none. It was possible to find screencasts, but none related to ETL. Consider-
ing the learning material and information about the technology provided by the official
website, it was possible to find two simple examples of transformation using ETL, as also
a good documentation from the Epsilon project in the form of an eBook [118]. It was also
possible to find 12 articles, but none directly related to ETL. The official site also provides
a FAQ, Web Log (BLOG), forum, newsgroup, and one live application for executing EOL
programs. It was also possible to find 10 screencasts, but none related to ETL. The fig-
ure below shows the quantity of topics and replies in the official form from the last five
years.7

 0

 100

 200

 300

 400

 500

 600

 700

 800

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
m

e
s
s
a
g
e
s

Year

Unanswered
Topics
Replies

Figure 5.6.: Epsilon forum usage.

The Epsilon project was started in 2005, it was not possible to find a forum from the
period of 2005 to 2006. The data collected in 2007 was based on the forum located in [24],

72009 until 02.12.2009.

78

5. Language Evaluations

the period from 2008 contains data from the forums [23, 24] and 2009 from forum [23]. The
quantity of topics and replies in the official forum from the last five years is 1066.

5.4.2. Language Characteristics

The ETL transformation language is evaluated based on [89] is described below.

Specification

Epsilon calls explicitly the pre block before calling all matched rules, and after the trans-
formation the post block is executed. The pre block can be used for initializing variables,
analyzing pre conditions, or one specific imperative implementation. The post block is ex-
ecuted at the end of the transformation process, and can be used to execute one imperative
part of the implementation, such as it is done in our case study where the post block is
used to detect the bad smells in the source model.

Transformation Rules

The transformation rules provides syntactic separation between the target and the source
models. This separation is achieved by using the transforms and to keywords. In the
transforms block is set the element that must match with the source model element, and
the to block contains the target model element that is created in the case of a match. It also
provides application controls feature by creating a conditions in the guard block for execut-
ing the rule or not. ETL also does not provide multidirectionality, so that transformations
are executed from the source to the target model. According to [117], ETL supports the
creation of more than one output model. We consider that this feature provides ETL with
the intermediate structure feature, so that a second output model can be used during the
transformation for other purposes, such as for tracing the M2M transformation. Rules in
ETL do not support parameterization, only ETL operations does.

The domain languages supported by ETL are Ecore, and UML, and the transformations can
be endogenous, or exogenous. The domain static mode supports in, out, and in/out, depending
on how each domain is set in the workflow. It was not possible to find a way of using
dynamic mode restrictions in ETL, since the domain static modes are defined before executing
the transformation. One possible solution would be to execute more transformations in one
workflow, and setting the domains static modes for each transformation differently. The body
supports variables, patterns, and its executable logic is based on a hybrid language paradigm,
the value specification is imperative assignment, and the element creation is implicit or explicit.
ETL is considered syntactically typed.

79

5. Language Evaluations

Rule Application Control

The rule location determination in ETL is deterministic. By executing the ETL implementation
in the case study it is possible to observe a deterministic way of accessing the elements in
the source model.

The rule scheduling form is a mix of implicit supported by matched rules, and explicit pre
and post blocks, that are called automatically by the transformation process. The operation
blocks are also called explicitly from inside rules and other operations. The rule interaction
supports operations recursions. Phasing is also possible by executing ETL transformations
in a sequence, or using the pre and post blocks to explicitly execute a specific sequence of
operations.

Rule Organization

Considering the rule organization, its modularity mechanism is provided by organizing the
rules in modules. The reuse mechanism provided by ETL is the support of rule inheritance,
and its organizational structure is source-oriented.

Source-Target Relationship

The source-target relationship provided in ETL is defined in the workflow, it can create a new
target, and update an existing target.

Incrementality

ETL does not support any type of incrementality.

Directionality

The transformation directionality in ETL is unidirectional.

Tracing

The tracing support is provided by ETL.

5.4.3. Further Comments

Compared to other technologies, it took less time to get implemented. This hybrid ap-
proach of declarative and imperative implementations, such as, ATL makes the implemen-
tation more flexible. The model querying is very similar to OCL.

80

5. Language Evaluations

The approach of Epsilon of having one specific language for each task, such as EML for
merging models and ETL for transforming models, creates a clear distinction of imple-
mentations in the source code. By using a workflow, it is possible to create an execution
path that calls the source code from each language, so that it is possible to integrate dif-
ferent Epsilon transformation languages in the transformation process. In the case study
implementation, only the ETL language was used. This clear distinction of programming
languages divided by tasks, can make the source code and a transformation project better
organized by tasks, but in the other hand, it increases the workflow complexity.

One tool that in our point of view is missing in Epsilon is a debugger. A workaround
would be the use of the println() function to write one specific text in the console. A de-
bugger in a transformation process is very good for analyzing queries, checking variables
and using breakpoints.

The post block available in Epsilon also creates a lot of flexibility, it was possible to
implement the entire bad smell detection in the case study in the post block. In ATL it
was necessary to create another transformation process for implementing the bad smell
detection block, since it does not provide this type of feature.

Epsilon EOL uses the operation keyword for declaring operations. In UML, the
operation keyword is used as an attribute from the CallOperationAction. It was not
possible to execute the transformation using the operation keyword in the query, a
workaround is to use its getter to access the field’s value such as is shown in Listing 5.4.
1 return aBehaviorDiagramsList−>select(e|
2 e.isTypeOf(Source!Activity))−>collect(f|f.node)−>flatten()−>
3 select(g|g.isTypeOf(Source!CallOperationAction))−>select(h|
4 h.getOperation() = self)−>size()−>toString()−>asReal();

Listing 5.4: EOL operation keyword issue

Another issue found, as in the case of ATL, there is a difference between using 0 and 0.0.
Integer values should always be compared to Integer values, and Real values should be
compared with Real number, such as 0.0. Mixing them does not generate an exception in
the execution, but the comparison is not resolved correctly.

5.4.4. Conclusions

The conclusions described below are based on the evaluation schema, transformation lan-
guage classification, and on the case study implementation. Each characteristic is evalu-
ated individually.

Efficiency

Considering the efficiency provided by the ETL tooling, the time needed for executing the
case study implementation was a few milliseconds faster than the slowest transformation

81

5. Language Evaluations

language execution. It was more than two times slower than the fastest transformation
execution.

Portability

Considering the portability of its tooling, it is not available in the standard Eclipse Model-
ing Tool IDE installation, so that it must be installed separately. This is one of the facts that
contributed to the extra time needed creating a new project, configuring it, and running
the template project without errors, since the tooling had to be installed first. But no prob-
lems or difficulties in the tooling installation were found. Concerning the portability of the
transformation projects, the few transformation projects available found, were installed
in the Eclipse IDE without problems.

Usability

The Epsilon ETL usability characteristic, concerning its tooling and language features, con-
tributed to the fastest case study to be implemented considering the other three implemen-
tations. language features such as the use of operations in conjunction with rules makes
the implementation more flexible. These operations are functions that supports param-
eters and may return a value or object, similar to other programming languages which
makes ETL easier to understand and learn. The use of the post block for implementing the
bad smell detection after the metrics calculation also facilitates the implementation using
ETL. In other implementations it was necessary to create another transformation imple-
mentation for detecting the bad smells. Concerning its tooling, the editor does not provide
the live detection of errors in the implementation, and the autocompletion feature that
enhances usability of the transformation projects implementations and the language fea-
tures. The tracing feature provided by its tooling enhances the understandability of a M2M
transformation projects executions by generating some kind of footprints of the transfor-
mation project execution that can be analyzed by the developer to better understand the
transformation execution.

Analyzing the publicly available third party transformation projects found, it was pos-
sible to find simple ETL examples, to more complex ones, including projects that not only
uses ETL, but also other Epsilon languages that are used combined, providing good exam-
ples for learning and understanding the ETL tooling, language features and the transfor-
mation projects themselves. Considering the technology that can be used in conjunction,
Epsilon provides a set of languages specialized for specific tasks, all of them are built on
top of EOL, including ETL. Since the base language is the same, the learning process of the
language features is much faster, once one of the other languages is known. Well known
technologies such as Ant, EMF, and Java can also be used in conjunction, and so enhancing

82

5. Language Evaluations

the tooling usability, since it avoids the need of learning technology specific tooling that is
only used in this technology.

Considering the learning material found in 20 minutes research such as books, articles,
and tutorials it was possible to find one up-to-date eBook about Epsilon, containing all
specifications about all languages. It was also possible to find a few articles related to the
ETL language. The learning material in the official website is well structured, and con-
tains good material about ETL, including the eBook mentioned above [118] containing the
entire Epsilon specification, screencasts, and an embedded application for executing EOL
instructions. By analyzing the Epsilon forum (Figure 5.6) it is possible to observe that there
are no unanswered topics. The only unanswered topics found were announcement topics
from the Epsilon developer. The learning material, and the good community support pro-
vides a good source for learning and understanding of its tooling, language features, and
tools implementations.

Maintainability

Considering the ETL tooling, it does not provide a debugger tool for supporting code
maintenance, that is useful tool for analyzing bugs, and evaluating long queries. Such a tool
would enhance the maintainability of transformation projects by providing the developer
with the possibility of identifying erroneous executions of the transformation processes us-
ing debugger features, such as breakpoints and evaluating variables in one specific part of
the transformation process. An editor function for refactoring the source code, that would
contribute to a good maintainability of the transformation projects, is also not available. Its
tooling provides the tracing feature for tracing M2M transformation processes, an useful
feature used for generating the footprints of the transformation process, and so enhancing
the maintainability of transformation projects.

The lower amount of implemented lines in the case study could indicate that the trans-
formation projects are easier to maintain due to transformation language features that
enhance the transformation projects maintainability, such as inheritance of rules, the distri-
bution of rules in different files are provided in ETL, and the use of operation. In Table 5.3
all releases in the last two years are listed. It is possible to observe that the last release
contains bug fixing and by analyzing the release documentation, it is also possible to ob-
serve that not only bug fixing has been done, but enhancements were implemented, that
is a good indicative that tooling implementation is been maintained. Enhancements of the
language features can also be proposed in the bug tracking system, enhancing the main-
tainability of the tooling implementation.

Analyzing Figure 5.4 it is possible to analyze the maintainability of its tooling implemen-
tation, and language features. A steep growth of bugs in 2009 is observed, that could
indicate quality issues due to its maintainability. The amount of enhancements entries is
larger than in other transformation language observing it proportionally. In Figure 5.5 are

83

5. Language Evaluations

the bug entries grouped by resolution. It is possible to observe that the amount of fixed
bugs raised considerable, this could indicate that more developers are working in the tool-
ing implementation.

Functionality

Technologies that can be used in conjunction to ETL, that enhances the tooling functional-
ities are the integration of Apache Ant for automating tasks, Epsilon transformation lan-
guages that can be combined and used together, providing transformation projects with more
functionalities. ETL can be executed in Java standalone applications, and can create and
call methods from Java objects, features that enhance the functionalities of the transforma-
tion projects.

The tooling provided contains an editor, and a supplementary set of tools such as a
front-end for GMF, and an EMF tree-based editor for displaying models. The editor source
code autocompletion function could not find elements from the metamodels in the auto-
completion. This feature is very useful especially in accessing complex metamodels such
as the UML metamodel. It also does not provide live error detection such as it is available
in other editors.

The functionalities provided by the language features makes it suitable for detecting bad
smells, metric calculations, and also for performing refactoring. It is a hybrid transfor-
mation language that supports imperative and declarative implementations. It provides
a good phasing support compared to ATL, by also providing a block that is called implic-
itly by the transformation process at the end of the transformation, called post block, that
is only called if the block has been declared. It also supports more than one source and
target model, exogenous transformations, and intermediate structures support. The in-place
transformation, that is a good feature in the refactoring processes, is not supported in ETL.
An Epsilon language that supports in-place transformations, and can be used in refactoring
processes is EWL.

Continuity

ETL provides a few publicly available third party transformation projects for evaluating
the transformation language. These projects are important for developers that are evaluat-
ing transformation approaches to analyze its features before adopting the transformation
language in projects, so that they are a relevant aspect in the continuity of the transfor-
mation language. No company is officially supporting the Epsilon project, only indirectly
by individual developers in companies that are using Epsilon. A large amount of compa-
nies that supports a technology is a good indicative of continuity, since it can indicate that
these companies are somehow using or providing professional support for the analyzed
technology.

84

5. Language Evaluations

The project is coordinated by a small group of people. The enhancements and bug fix-
ing are discussed by a small group of people, official committers are currently two, and
two new committers are expected in a near future. Analyzing the group that coordinates
the project is an important factor in evaluating a technology, since strategic decisions that
imply directly in the continuity of the project is taken by this group. Considering the ma-
terial found during the 20 minutes research time, it was possible to observe a considerable
amount of articles found that were written by a specific group of authors.

The release frequency is high, the last release contains not only bug fixing, but there are
also enhancements, which shows that not only bug fixing is been done, but also new func-
tionalities are implemented, a good indicative of continuity. Observing Figure 5.6 there is
a growth in the amount of messages posted, this indicates that the community of Epsilon
users is growing, another good indicative of continuity. The fact that all messages are an-
swered is also a good indicative for new possible developers, since it guarantees some level
of feedback from the community regarding questions.

5.5. Operational QVT

QVT is a specification, therefore, there are many different implementations from QVT.
Only the Eclipse QVT implementation in considered in this evaluation as tooling. The top-
ics related to the research of the amount of books, articles, and tutorials in 20 minutes listed
in Table 5.1 are evaluated based in the QVT specification, and not based on the Eclipse Op-
erational QVT implementation.

5.5.1. Schema Evaluation

The time needed to execute the compiled implementation in Operational QVT is 1,870
seconds8. Configuring and compiling a template project without errors was fast, only 30
minutes were needed to reference all metamodels, models, define an output file, and im-
plement one simple entry point function for the transformation. Since the QVT plugin is
available in the standard Eclipse Modeling Tool installation, it was not necessary to install
any other plugin. There is also a GUI for configuring the transformation process, so that
it is possible to set the input and output models, the metamodels, and set the tracing con-
figurations. The only point that took time to figure out was to register the BSDMC_MM.
To register this metamodel, it is necessary to open the projects configuration, enter in the
QVT Settings menu, then select the Metamodel Mappings and then register the metamodel.

The number of the case study implementation lines, not considering the source code
documentation is 527 lines. The time needed for the implementation of the entire case
study was approximately 40 hours.

8This value has been calculated by taking the average time of 10 consecutive executions.

85

5. Language Evaluations

The QVT tool support in Eclipse is provided by an editor that supports code completion,
syntax highlighting, outline view, and error detection. Another tool is a GUI for configur-
ing the transformation process. No free debugger is available for Eclipse. According to
the official forum [25], there is one debugger shipped as part of the commercial tool Bor-
land Together [58], and an open source debugger implementation is in progress. Another
open source QVT plugin for Eclipse is SmartQVT[57]. This plugin is not shipped with the
standard Eclipse Modeling Tool installation, and its last release is more then one year old9.

The amount of public transformation projects available for the Operational QVT im-
plementation from Eclipse are two. Both are available in the standard Eclipse Modeling
Tool installation. Since QVT is an OMG standard, other implementation examples that
uses the models supported by the Eclipse QVT implementation should, in theory, also run
in the QVT Eclipse implementation. None metric calculation and bad smell detection
public projects were found that uses QVT.

The different technologies that may be used in conjunction are OMG OCL, Apache Ant
for automating the transformation process, standalone Java applications, such as described
in [75], and considering the Eclipse implementation an EMF integration. It also provides
Black Boxing mechanisms for including non-QVT implementations to the transformation
process. In the acknowledgments section in [128] are listed all companies and institutions
that contributed or supported the OMG QVT specification. This way it is not possible to
exactly define the number of manufactures that officially support the use of this technol-
ogy. The number of companies and institutions listed is 27, between them are companies
such as Borland, Hewlett Packard [35], Sun Microsystems that since 27.01.2010 belong to
oracle [53], and Thales, as also institutions such as INRIA, University of Paris VI [67], Kings
College London [41], and University of York [65].

The group responsible for the technology maintenance and coordination is the OMG.
This group was founded in 1989, and according to [128] it is a not-for-profit computer
industry standards consortium that produces and maintains computer industry specifica-
tions for interoperable, portable and reusable enterprise applications in distributed, het-
erogeneous environments. This group is also responsible for the specification from UML,
MOF, XMI, OCL, Common Warehouse Metamodel (CWM), SMM, and others. According
to the M2M proposal [27], the QVT implementation in Eclipse is coordinated by Borland.

Considering the release frequency in two years, it was possible to find in the official
Eclipse Operational QVT website four stable version for download. The table containing
the last releases is shown in Table 5.4. It was not possible to find the last official release
containing new features. There were no references about the new versions enhancements
and bug fixing. Observing the projects in Bugzilla, it was possible to find one enhance-
ment before the release of version 2.0.1. But it does not guarantee that this enhancement is
available in this version.

9checked on 31.01.2010

86

5. Language Evaluations

Table 5.4.: Operational QVT releases in the last two years

Version Date
2.0.1 01.09.2009
2.0.0 16.06.2009
1.0.1 08.11.2008
1.0.0 11.06.2008

The Bug tracking system analysis in Eclipse Bugzilla in the last five years10, filter-
ing the project M2M and components QVT_OML-Doc, QVT_OML-Engine, QVT_OML-UI,
QVT_OML-Website are shown in Figures 5.7 and 5.8. No bug entries were found from the
period of 2005 to 2006 in the Eclipse Bugzilla system.

 0

 50

 100

 150

 200

 250

 300

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Blocker
Critical
Major
Normal
Minimal
Trivial
Enhancement

Figure 5.7.: Eclipse Bugzilla QVT projects entries grouped by severity.

102009 until 08.12.2009.

87

5. Language Evaluations

 0

 50

 100

 150

 200

 250

 300

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Fixed
Invalid
Wontfix
Duplicate
Worksforme
Moved
NotEclipse
NONE

Figure 5.8.: Eclipse Bugzilla QVT projects entries grouped by resolution.

The amount of books not older then 2 years found in 20 minutes research is 5. From
this set of books, two are about QVT [123, 124], and 3 contains references or chapters related
to QVT. The amount of articles not older then 2 years found in 20 minutes research is
20. Interesting articles found, in our point of view, are [119, 121]. The amount of tutorials
found not older then 2 years in 20 minutes in research are two, but none of them are
specific for the Eclipse Operational QVT implementation.

The learning material and information about the technology provided by the official
website, considering the Eclipse Operational QVT project, is very scarce, it has a wiki that
have very few topics, a forum, and the only document available is [94]. Since QVT is a
specification, an other QVT implementations are available, it is possible to find a large
amount materials in other websites.

Figure 5.9 shows the quantity of topics and replies in the official form from the last
five years11, that are based on the data collected from [25], and filtered by messages related
to QVT. The number of messages found in 2009 is 467.

112009 until 02.12.2009.

88

5. Language Evaluations

 0

 100

 200

 300

 400

 500

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
m

e
s
s
a
g
e
s

Year

Unanswered
Topics
Replies

Figure 5.9.: QVT forum usage.

Considering the quantity of topics and replies in the official forum from the last five
years, it is possible to observe that the amounts of messages found in the forum are in-
creasing in since 2007. The amount of unanswered topics is also very low. The quantity of
topics and replies in the official forum from the last five years is 840.

5.5.2. Language Characteristics

The Operational QVT transformation language is evaluated based on [89] is described be-
low.

Transformation Rules

Transformation rules, in Operational QVT, do not provide a clear syntactic separation. In gen-
eral cases a left-right syntactic separation can be found in mappings, in which left side in an
element from the target model, and the right side is the element from the source model.
Such as it is shown in Listing 4.15. Application controls is also supported using when blocks
in mappings, to define guard conditions. Post conditions are supported by using where
blocks inside mapping operations. Multidirectionality is not supported in Operational QVT,
so that the transformation is always executed in one direction, differently from QVT Re-
lational and Core, that supports Multidirectionality. It also supports intermediate structures,

89

5. Language Evaluations

by creating a second model in the M2M transformation for other purposes as tracing. The
rules parameterization supports control parameters, that are values passed as parameter, high-
order rules, but does not support generics, such as element types as parameters.

The domain languages supported by Operational QVT are Ecore based metamodels, MOF,
UML2 metamodels. The transformation can be endogenous, or exogenous. The domain static
modes in, out, and in/out are defined in the transformation header. The dynamic mode restric-
tion is considered partial, since it is not possible to change the static mode from domains
during the transformation, but it is possible to set the static modes of values passed as pa-
rameters in mappings, that could be part of the target or source model. The body supports
variables, patters, and its executable logic is based on a imperative language, that supports
rules recursion, and the value specification is imperative assignment, and the element creation is
explicit. Operational QVT is considered syntactically typed.

Rule Application Control

The rule location determination is deterministic, since for each transformation process exists
only one entry point, and the order of rules called is defined in the user implementation.

The rule scheduling form is explicit and internal, since the rule scheduling is implemented
by the user, within the transformation implementation, and not implemented in a different
file, or diagram. The rule iteration supports mechanisms of recursion. Since the rules calling
order is defined by the user in the implementation, the user can define exactly what trans-
formation is going to be executed in one specific phase of the transformation process, so
that phasing is supported.

Rule Organization

The rule organization concerning the modularity mechanisms, is supported in Operational
QVT in the form of libraries, and in the form of modules that can be imported to a trans-
formation. The reuse mechanisms consist of the import of libraries by using the facilities
access and extension. Importing modules by using the import keyword for accessing for
example, other mappings. In mapping operations, Operational QVT supports mapping
inheritance, merge, and disjunction. Its organizational structure is independent, but in many
cases it is source-driven.

Source-Target Relationship

The Source-Target relationship in Operational QVT can create new target, it can perform in-
place transformations, and update in existing targets.

90

5. Language Evaluations

Incrementality

Incrementality is not available in Operational QVT, since the target model is always over-
written.

Directionality

The transformation directionality is unidirectional, since Operational QVT is an imperative
language.

Tracing

The tracing support is provided by QVT specification, and available in the Operational
QVT implementation.

5.5.3. Further Comments

The inheritance implementation in QVT is more flexible than compared to the other trans-
formation languages evaluated. Listing 5.5 shows in inheritance implementation in our
case study.
1 mapping Source::Class::AbstractCalculateMetricIncludeName() :
2 BSDMC_MM::MetricResult {
3 targetObject := self.name;
4 }
5
6 mapping Source::Class::AbstractCalculateMetric(): BSDMC_MM::MetricResult
7 merges Source::Class::AbstractCalculateMetricIncludeName {
8 init {
9 log(’Executing AbstractCalculateMetric() INIT Block’,null,0) when

10 self.name = ’X990’;
11 }
12 log(’Executing AbstractCalculateMetric() BODY Block’,null,0) when
13 self.name = ’X990’;
14 targetObjectType := self.metaClassName();
15 parentObject := self.package.getQualifiedName();
16 parentObjectType := self.package.name;
17 end {
18 log(’Executing AbstractCalculateMetric() END Block’,null,0) when
19 self.name = ’X990’;
20 }
21 }
22
23 mapping Source::Class::CalculateMetricCBO(): BSDMC_MM::MetricResult
24 inherits Source::Class::AbstractCalculateMetric {
25 init {
26 log(’Executing CalculateMetricCBO() INIT Block’,null,0) when
27 self.name = ’X990’;
28 }
29

91

5. Language Evaluations

30 log(’Executing CalculateMetricCBO() BODY Bock’,null,0) when
31 self.name = ’X990’;
32 id := 1;
33 text := ’Calculate Coupling Between Object Classes (CBO)’;
34 type := MetricsTypes::mtCouplingBetweenObjects;
35 self.GetClassesRelatedInRelationships()−>xcollect(f|
36 result.metricResultItem += result.map CreateMetricItem(f));
37 value := result.metricResultItem−>size();
38 end {
39 log(’Executing CalculateMetricCBO() END Block’,null,0) when
40 self.name = ’X990’;
41 }
42 }

Listing 5.5: QVT Inheritance example

Interesting to observe is the order that the mapping blocks are executed. Listing 5.6 was
extracted from the Eclipse console after the execution of the case study QVT implemen-
tation and it shows the blocks calling order in the mapping. The first block to be ex-
ecuted is the init block from the CalculateMetricCBO, the next blocks to be executed
are the blocks from the superclass AbstractCalculateMetric. And at the end are exe-
cuted the blocks body, and end from the CalculateMetricCBO mapping. It is also pos-
sible to observe in the listing above the merging of the AbstractCalculateMetric and
AbstractCalculateMetricIncludeName mapping in line 7.
1 Level 0 − Executing CalculateMetricCBO() INIT Block
2 Level 0 − Executing AbstractCalculateMetric() INIT Block
3 Level 0 − Executing AbstractCalculateMetric() BODY Block
4 Level 0 − Executing AbstractCalculateMetric() END Block
5 Level 0 − Executing CalculateMetricCBO() BODY Bock
6 Level 0 − Executing CalculateMetricCBO() END Block

Listing 5.6: QVT inherited class calling order

5.5.4. Conclusions

The conclusions described below are based on the evaluation schema, transformation lan-
guage classification, and on the case study implementation. Each characteristic is evalu-
ated individually.

Efficiency

After implementing the case study, and analyzing the language based on the evaluation
schema, we can observe that considering the tooling efficiency characteristic, it was the
second fastest implementation in the source code execution. Compared to the fastest exe-
cution it was more than twice as slow as the fastest execution, but compared to the other
two languages, it was over two times faster. This good performance is very important in

92

5. Language Evaluations

detecting bad smells, calculating metrics, performing refactoring in larger models, and in
the execution of complex transformations in large models.

Portability

All tooling necessary for creating and configuring a new project was available in the
Eclipse Modeling Tools IDE standard installation, so that it was not necessary to install any
plugin, or library to configure the case study template project. Considering the transfor-
mation projects portability, creating a new project, configuring it, and executing it without
errors was fast. Installing the two transformation projects in the IDE where a straightfor-
ward process. This QVT implementation is integrated in to Eclipse, but QVT is an OMG
specification, so that OML source code implemented in another QVT tool should in theory,
be portable to the Operational QVT tooling. The two transformation projects available are
shipped with in the Eclipse Modeling Tools IDE, installing the two transformation projects
was a straightforward process.

Usability

Considering the usability of its tooling, and language features, Operational QVT was the
second fastest implementation, especially because of the tooling provided. Good features
provided by its tooling, and language features are the code autocompletion including the
metamodel structure, and the live error detection in the editor, two features that enhances
the understanding, and learning of the language features, and the transformation projects
during the implementation time. The tracing feature provided by the language feature and
its tooling enhances the understandability of a M2M transformation project execution.

The two publicly available third party transformation projects are very well docu-
mented projects, one containing a simple M2M transformation, and the other is an example
of defining a simple black-box library in Java. This two transformation projects enhances
the learnability and the understandability of the language features, and transformation
project. Considering the different technologies that can be used in conjunction, its integra-
tion to EMF contributes to the user’s understandability, and learnability of the Operational
QVT implementation tooling, once the user is familiarized to EMF. Apache Ant, and Java
are technologies that are not QVT specific, and that are used by the community for other
tasks not related to QVT, this enhances the understanding and learning its tooling. A fac-
tor that also contributes to a better understanding and learning of its language features is
the support of the OCL standard.

Considering the research of learning material in 20 minutes, two books were found, in
which it was the only transformation language that had books written especially for the
transformation language. It has the highest amount of literature found during the research
period. It provides a good source of information for learning and understanding the tool-

93

5. Language Evaluations

ing related to the Operational QVT implementation, language features, and the Opera-
tional QVT tools implementations. The material found in the Operational QVT implemen-
tation in Eclipse is very scarce compared to the other transformation materials. But since
QVT it is a specification, other material about the QVT OML can be found in other QVT
implementations websites, providing a good source of information of the usability of its
language specification. The forum activity (Figure 5.9) shows that it is an active forum,
and has a small amount of unanswered topics, providing a good source of information of
its tooling, tools implementations, and language features.

Maintainability

Considering its tooling, a debugger, and a refactoring tools that contributes to a better
maintainability of the transformation projects are not available in Operational QVT. A de-
bugger is a very important tool in analyzing bugs, especially in analyzing OCL queries in
large models. The refactoring tool is an important tool that can be used in M2M transfor-
mation projects implementations. A good project documentation, containing information
about each release is a good indicative of maintainability. Considering the maintainability of
its tooling, and the tools implementation, the releases in the last two years in Table 5.4,
it is possible to observe that the time between releases it is relatively constant, so that it is
being maintained with bug fixing. It was not possible to find a list containing which bugs
where fixed, so that it is not possible to identify the last release containing new features.

Analyzing Figure 5.8, it is possible to identify that the amount of entries in the bug track-
ing system is not increasing so rapidly as in the other evaluated languages, it could be
an indicative of a good maintainability of the tooling implementation. It is also possible
to observe that the amount of bugs fixed in the last two years is relatively constant, and
the amount of open bugs increased. It could mean that more developers in the project are
needed.

Language features that enhance the maintainability of the transformation projects are
inheritance, and merge of mappings as also from entire transformations, it is possible to di-
vide the implementation in different modules. The amount of the implementation source
code lines is 15% smaller than the larger implementation. This result can be due to its reuse
mechanisms, and also due its compactness in writing OCL queries. The tracing feature is
specified in the QVT specification, and also implemented in the Operational QVT tooling,
providing a good support for analyzing and detecting bugs in the M2M transformation
processes.

Functionality

Considering the functionality characteristic related to technologies that can be used with
Operational QVT tooling in the Eclipse platform, Ant can be used for automating trans-

94

5. Language Evaluations

formation projects task. Specified in the QVT specification, and available in the Oper-
ational QVT tooling, Black-Box functionalities provides the transformation projects with
the possibility of calling other programming language code during the transformation pro-
cess execution. The functionalities provided by the Operational QVT tooling, is a GUI for
configuring the transformation projects, editor functionalities such as code completion in-
cluding the UML metamodel, and the live error detection.

Considering the language features, Operational QVT is an imperative language, its rule
application control is implemented by the user, so that the rules scheduling is defined by
the user in the implementation. Since the rules execution order is defined by the user
in the implementation, phasing is fully supported. This feature can be used in bad smell
detection process, so that it is divided in two phases, one for detecting metrics, and the
other for detecting the bad smells based on the metrics result, such as implemented in the
case study. It also supports intermediate structures, that can be used in implementations
for performing refactoring in a in-place transformation for example, in which temporary
data is stored in the target model during the transformation process, but it is not saved in
the result model. Such as in the other transformation languages it also supports exogenous
transformations.

Continuity

The two publicly available third party transformation projects are a good source of in-
formation for the evaluation in the adoption of QVT in a project, especially showing the
flexibility of the Operational QVT implementation in Eclipse. There is one simple transfor-
mation project , and another one providing Black-Box functionalities.

Quantitatively, it also has the largest amount of companies and institutions that support
the specification. Qualitatively, many of the listed companies are in the IT sector. This large
amount of companies that supports the specification is a good indicative of the technology
continuity. The QVT specification is coordinated by OMG, that is also responsible for the
coordination of other important specifications related to MDA, as for MDA itself. The
Operational QVT component in Eclipse is coordinated by Borland, that is a company with
tradition in the IT market, another good indicative of the Operational QVT continuity, as
also a relatively constant release frequency.

Considering the bug tracking system analysis, it is possible to observe an increase of
bugs in the last year, that could indicate that the community that uses Operational QVT
is growing. Analyzing Figure 5.9, there is a growth of messages posted in the forum, and
this could be an indicative that the community of Operational QVT users is growing. The
amount of unanswered messages is very low compared to other transformation languages,
it is also a good indicative for possible new developers, since it guarantees some level of
feedback from the community regarding questions.

95

5. Language Evaluations

5.6. Xtend

The Xtend transformation language was formerly available in the oAW project, but in its
new version it is part of the Eclipse Xpand project. In the evaluation schema are listed
topics that evaluate the Xtend language in a broader way, by evaluating characteristics
related to its project. These topics are those related to project coordination, bug tracking
system analysis, forum usage, tool support, and the material available in the official site.
All other topics are evaluated exclusively taking in consideration only the Xtend language.
In section 5.6.2 is only the Xtend language is evaluated.

5.6.1. Schema Evaluation

The time needed to execute the compiled implementation was 4,110 seconds12. Config-
uring and compiling a template project without errors took 210 minutes to reference all
metamodels, models, define an output file, and implement one simple entry point for the
transformation.

The number of the case study implementation lines, including the workflow, and not
considering the source code documentation is 582 lines. The time needed for the imple-
mentation of the case study was approximately 60 hours.

The tool support is composed by an editor that is integrated to the Eclipse IDE providing
the user with code completion, syntax highlighting, error detection, an outline view, GUI
for configuring the projects workflow, workflow syntax highlighting, and a debugger. The
refactorings available in Xtend are rename extension, extract extension, and move extension.

The amount of public transformation projects available in the official website is none.
There are no Xtend transformation projects available in its official website. The metric
calculation and bad smell detection public projects found was also none.

The different technologies that can be used in conjunction with Xtend are Xpand and
Check languages, the oAW workflow for automating the transformation process, Java by
calling Java implementations during the transformation process, XWeave [102] is a model
weaver that supports weaving models and metamodels, and the EMF framework inte-
grated technologies that can be used in conjunction.

The number of manufactures that officially support the use of this technology are five,
considering the companies that provides training and support for the Xpand project are
listed in [50]. It was also possible to find a list of 8 institutions and companies that used
the oAW project, including Itemis [39], and Borland.

The group responsible for the technology maintenance and coordination is the oAW
group. As it is described in [49], it is composed by a group of people, and not companies.
But it is expected that most team members act on behalf of companies, and spend at least

12This value has been calculated by taking the average time of 10 consecutive executions.

96

5. Language Evaluations

some of the work time working on oAW. The team is between other tasks responsible
for voting on the inclusion of additional core components and addons, responsible for
building, maintaining, and running the oAW infrastructure such as Concurrent Versions
System (CVS), bug tracking system, build, and websites.

The release frequency in the last two years are shown in the table Table 5.5 below. The
oAW project was until version 4.3.1 an oAW project. By integrating it to the Eclipse mod-
eling project, it was necessary to adapt the version to the Eclipse version structure. In
Eclipse, every incubated project must start with version 0. As in the Xpand project case.

Table 5.5.: oAW and Xpand releases in the last two years

Version Date
0.7.2 12.08.2009
0.7.1 17.07.2009
0.7.0 16.06.2009
4.3.1 22.12.2008
4.3.0 05.05.2008

According to the Eclipse Xpand release notes, the last official release containing new
features is Xpand version 0.7.1.

The Bug tracking system analysis in Eclipse Bugzilla in the last five years13, filtering the
project M2T and component Xpand are shown in Figures 5.7 and 5.8. No bug entries were
found from the period of 2005 to 2006 in the Eclipse Bugzilla system.

132009 until 08.12.2009.

97

5. Language Evaluations

 0

 50

 100

 150

 200

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Blocker
Critical
Major
Normal
Minimal
Trivial
Enhancement

Figure 5.10.: Eclipse Bugzilla Xpand projects entries grouped by severity.

 0

 50

 100

 150

 200

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
b
u
g
s

Year

Fixed
Invalid
Wontfix
Duplicate
Worksforme
Moved
NotEclipse
NONE

Figure 5.11.: Eclipse Bugzilla Xpand projects entries grouped by resolution.

98

5. Language Evaluations

The amount of books not older then 2 years found in a 20 minutes research was one.
The book [103] is not specifically about oAW, Xtend, or Xpand, but contains good infor-
mation about the use of Xtend. It was also possible to find 2 books older than two years in
this research period. The books found are [135, 143].

The amount of articles not older then 2 years found in a 20 minutes research was nine.
A few of the articles found are [90, 96, 113]. The amount of tutorials not older then 2 years
found on a 20 minutes research is one. It was possible to find a tutorial about using oAW
in [46]. It was also possible to find a series of screencasts in [51].

Concerning the learning material and information about the technology provided by
the official website, it is composed by a tutorial [46], access to the source code, Bugzilla
access, developer information, a forum available in [26], download page, an empty FAQ, a
detailed plan about the Xpand 0.8.0 release, an empty wiki, list of committers and contrib-
utors, and newsgroup. The grand majority of information about Xpand can still be found
in [47]. This webpage is the old official site from Xpand. There it is possible to find among
others a large amount of documentation, screencasts, a forum related to the oAW Version
4, and a list of companies that provides training and consulting.

There are two official forums, the forum M2T from Eclipse [26], and one forum based on
the oAW 4 version available in [48]. The Eclipse M2T forum is not exclusive for the Xpand
project, so that the messages related to the Xpand project were filtered out. The messages
from the oAW 4 forum, consists of all messages related to the oAW project in the older
forum. Figure 5.12 shows the quantity of topics and replies in the official form from the
last five years14. The quantity of topics and replies in the official forum from the last five
years is 11489.

142009 until 02.12.2009.

99

5. Language Evaluations

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

2005
2006

2007
2008

2009

A
m

o
u
n
t
o
f
m

e
s
s
a
g
e
s

Year

Unanswered
Topics
Replies

Figure 5.12.: Xtend forums usage.

5.6.2. Language Characteristics

The Xtend transformation language is evaluated based on [89] is described below.

Transformation Rules

Transformation rules, do not provide a clear syntactic separation. But in general, in the case
of a function, it is a left-right syntactic separation. A function creates a new instance us-
ing the keyword create, the values passed as parameters could be considered as the left
side of the transformation, and the return object created, the right side of the transforma-
tion. Application controls are supported by ternary operations, or by Java implementations.
Xtend do not support multidirectionality, so that for executing one transformation in the
other direction, one new implementation is needed. It also supports intermediate structures,
by creating a second model in the M2M transformation for other purposes such as tracing.
Considering the rules parameterizations, Xtend supports control parameters, that are values
that are passed as parameter, generics that allows data or element types being passed as
parameter, but does not support high-order rules, that are other rules that are passed as
parameters. According to [147], Xtend does not support Reflection, and Aspects.

The domain languages supported by Xtend are UML2, ECore, IBM Rational Software Ar-
chitect / Modeler, XML Schema (XSD), oAW-Classic Metamodel, and JavaBeans meta-

100

5. Language Evaluations

model. The transformation can be endogenous, or exogenous. The static modes, in, out, and
in/out are defined in the workflow. Dynamic mode restriction is not supported in same Xtend
transformation, since the models static modes are defined in the workflow. The body sup-
ports variables, patters, and its executable logic is based on a imperative language, that sup-
ports rules recursion, and the value specification is imperative assignment, and the element cre-
ation is explicit. Xtend is considered syntactically typed.

Rule Application Control

The Rule location determination is deterministic, since for each transformation process exists
only one entry point, and the order of rules called is defined in the user implementation.

The rule scheduling form in Xtend is explicit and internal, since the rule scheduling is im-
plemented by the user, within the transformation implementation, and not implemented
in a different file, or diagram. The rule iteration support mechanisms of recursion. Since the
rules calling order is defined by the user in the implementation, the user can define exactly
what transformation is going to be executed in one specific phase of the transformation
process, so that phasing is supported.

Rule Organization

The rule organization concerning the modularity mechanisms, it is possible to organize the
rules in modules, known as Extensions in Xtend. According to [147], reuse mechanism are
provided in Xtend by using Java extensions. Its organizational structure is independent, but
in many cases it is source-driven.

Source-Target Relationship

The Source-Target relationship in Xtend can create new target, it can perform in-place transfor-
mations in existing targets.

Incrementality

Incrementality is not supported in M2M transformations in Xtend, since the target model is
always overwritten.

Directionality

The transformation directionality is unidirectional, since it is an imperative language.

101

5. Language Evaluations

Tracing

The tracing support is provided by Xtend, but it must be explicitly added to the transfor-
mation code according to [73].

5.6.3. Further Comments

The first case study implementation was in Xtend. During this implementation it was also
necessary to create the logic for querying the UML model. The debugger functionality was
very helpful for implementing the queries, especially the more complex ones.

All implementations use the same logic for calculating the bad smells. Since this was
the first transformation language implemented, the time needed to understand the UML
metamodel for accessing and calculating the metrics were subtracted from the time needed
for implementing the case study using this transformation language.

Such as commented in section 4.5, for performance reasons, Xtend does not execute one
function again if the same values are passed as parameters, one workaround is to pass one
extra parameter that is always different, such as a counter variable.

5.6.4. Conclusions

The conclusions described below are based on the evaluation schema, transformation lan-
guage classification, and on the case study implementation. Each characteristic is evalu-
ated individually.

Efficiency

Considering the efficiency of its tooling, the time needed for executing the case study imple-
mentation was the highest one. The fastest implementation was over five times faster than
the Xtend execution. This execution time is similar to the third fastest implementation.

Portability

The tooling provided is available in the Eclipse Modeling Tools IDE standard installation,
so that it was not necessary to install any plugin, or library. Analyzing the portability of
the transformation projects, the creation of a new project, configuring it, and executing
it without errors, took more time compared to other implementations. It was not possi-
ble to find transformation projects in the official website. Xtend transformation projects
implemented in the oAW 4 must be migrated to the oAW 5 tooling as described in [74].

102

5. Language Evaluations

Usability

Concerning the usability characteristic of its tooling, and language features, the time
needed for implementing the case study, compared to other transformation languages. The
fastest implementation was twice as fast as the Xtend implementation. The tooling pro-
vides a good source autocompletion, and a good live error detection of the source code, that
enhances the learnability and the understandability of the language features and transfor-
mation projects. The oAW workflow file in the case study implementation contributed
to a higher time needed to configure a template project, since it took some time to find a
documentation describing the differences between oAW 4 and oAW 5 workflow configu-
ration. The language feature inherits features from the expression language, also used by
other oAW languages, which enhances the understandability, and the learnability of Xtend
languages, once one of the two other languages are known. It was not possible to find any
publicly available third party transformation project that could enhance the learnability
and understandability of the tooling, and the language features in its official website.
Technologies that can be used in conjunction with Xtend are the oAW languages Xpand,
and Check. Its integration with EMF, and its Java support makes the understanding and
learning of the transformation projects, and the tooling faster.

Considering the number of book, articles, and tutorials found in 20 minutes research, it
was possible to find a tutorial about oAW and also screencasts, providing a good source of
information of its tooling, language features, and tools implementation. The book [103]
contains a chapter about the Xpand project, that explains the expression language, Xtend,
and Xpand languages. The learning material found in the official website is scarce com-
pared to other transformation languages, but a large amount of material can be found in the
old oAW website [47], providing a good amount of learning material for its tooling, lan-
guage features, and tools implementation. Figure 5.12 shows the forums data collected,
based on the old oAW forum, and in the new Eclipse Xpand project forum, it is possible
to observe that it has the highest amount of messages, and a low rate of unanswered mes-
sages, providing a good source of learning material, and enhancing the usability of Xtend.

Maintainability

Its tooling enhances the maintainability of the transformation projects by providing a good
debugger, especially in analyzing variables. In analyzing a variable using the debugger, it
is possible to evaluate all child elements from the variables listed in the variables view. It is
especially useful in analyzing complex queries in large models where it is possible to eval-
uate all sub elements from the analyzed variable. One nice feature not available, would
be a breakpoint function that only stops on defined conditions. This feature is available in
other debuggers [21] and it is very useful especially in analyzing large models. Another
tooling feature that enhances the transformation projects maintainability is a refactoring

103

5. Language Evaluations

tool. It provides the refactoring functions rename extension, extract extension, and move ex-
tension.

The tracing feature provided by its tooling for evaluating M2M transformation projects
for detecting bugs and analyzing the behavior of the transformation execution enhances
the maintainability of transformation projects. One disadvantage of the tracing provided in
Xtend is that it must be added explicitly in the users source code, differently than in other
transformation languages where the tracing can be automatically generated. Analyzing
the maintainability of its tooling, and tools implementation, considering the releases, the last
version containing new features is the version 0.7.1, but not in the current version 0.7.2.

Considering the bug tracking system entries to analyze the maintainability of its tooling
implementation, and language features it was only possible to find bug entries from the
years 2008 and 2009. Two bug tracking systems where used in this analysis, the Eclipse
Xpand project in Eclipse Bugzilla, and the old Bugzilla located in the oAW 4 website. By
analyzing the bug tracking systems, it is possible to evaluate the quality of bugs found
in its tooling implementation, as also enhancements proposed by the community for its
tooling, and language features. Based on the data collected in Figures 5.10, and 5.11, it
is possible to observe that there is a bug policy for bugs classification, it is also possible to
identify that a large amount of bugs where fixed in 2009, also considering the small amount
of bugs entries in 2008.

Functionality

The Xtend tooling is one part of the Xpand Eclipse project, so that the transformation
language can be used in conjunction with other oAW languages, such as the Xpand for
executing M2T transformations, and the Check language for constraint checking. Another
tooling that enhances the transformation projects functionalities is the use of an oAW work-
flow for automatizing transformation projects. Java operations can also be called in Xtend
implementation, or Xtend can also be integrated to a standalone Java implementation.

The tooling enhances the technology functionalities by providing a GUI for configuring
the transformation projects basic settings, as for example setting the workflow file. The
code autocompletion also shows the metamodel element, which is very useful especially in
building complex queries. Another tooling that enhances the functionalities are a debugger,
and the live error detection editor’s function.

Considering the Xtend language features, showed that it can also be used for detecting
bad smells, calculating metrics, and also refactoring models. It is an imperative language,
so that the rule application control is implemented by the user. Phasing is supported since the
rules calling order is defined by the user. Phasing was used in our case study, by dividing in
the implementation the metric calculation phase, and the bad smell detection phase. It also
support diverse domains, useful for working with different models, especially in exogenous
transformations. In can also execute in-place transformations, useful in refactoring process,

104

5. Language Evaluations

as also intermediate structures are supported.

Continuity

The lack of publicly available third party transformation projects available in the official
website does not contribute to the adoption of Xtend in projects by new developers. Simple
examples of transformation projects that explain how transformations using Xtend works,
and showing its features are important for new developers that are evaluating different
technologies before choosing one to work with. A good amount of transformation projects
and learning material can be found in the old official oAW website, but new developers
tend to search for this kind of information in the website where the new version is avail-
able. Considering the material found in the research, the book [103] contains a chapter
about the Xpand project, but analyzing the entire book, it is possible to observe that the
majority of M2M transformations are described using QVT, and not Xtend.

Considering the companies that officially supports Xpand, it was possible to find a group
of companies that provide training, and support for Xpand, and also eight companies that
used oAW were found, including Borland and Itemis. Companies that provide profes-
sional support and training contribute to the technology continuity, since it is a factor that
is considered by companies before adopting one technology to use.

The group responsible for the coordination of the oAW project is based on persons that
are professionally active in the field of software development using oAW, guidelines about
the team structure, voting system, roles, tasks, so that it is organized in a very structured
way. Such clear guidelines, and developers that are professionally active in the field of
software development using oAW can contribute to the enhancement of the software con-
tinuity.

The last release of the Xpand project does not have enhancements, only bug fixing. It
was possible to find enhancements in version 0.7.1. Consecutive version releases without
new features is not considered a good indicative of continuity.

The transformation language with the most active forum community is oAW as it is
shown in Figure 5.12. This large amount of messages is an indicative that oAW is used by
a large community of developers, and a good indicative of the technology continuity.

105

6. Conclusion

The use of UML models for specifying structural and behavioral characteristics of soft-
ware is increasing. The use of tools and methods for ensuring software quality in models
nowadays is an important part of the software development cycle. Model transformation
languages can be used in the UML quality engineering field, in tasks such as metric cal-
culation, bad smell detection, and refactoring. After analyzing the four transformation
languages in this thesis, we conclude that all of them are suitable for UML quality engi-
neering in metric calculation, bad smell detection, and refactoring processes.

Analyzing the transformation languages features, ETL is the only transformation lan-
guage that does not provide in-place transformation, which is a functionality that is com-
monly used in refactoring processes. All analyzed transformation languages support in-
termediate structures, which is also a functionality useful in in-place refactoring processes.
The support of exogenous transformation is an important feature provided by all trans-
formation languages, which is useful in developing tools that should work with different
metamodel types.

Phasing is also an important feature supported by all transformation languages ana-
lyzed, which consists of defining one specific set of rules that should be executed in a
specific phase of the transformation process. In the two hybrid languages, ATL and ETL,
it is possible to explicitly call rules in imperative blocks of the source code. Operational
QVT and Xtend are imperative languages, so that the sequence order of the rules called, is
defined in the implementation. An important transformation language feature not avail-
able in the analyzed languages is the incrementality feature introduced in [89]. This feature
consists of detecting a modification in the source or target model, so that a transformation
can be executed only in a specific part model, such as the modified model part. It can
increase the tooling efficiency, and is useful in tasks such as models synchronization.

Considering the LLOC metric calculated in each case study implementation, it is possible
to observe that the QVT implementation has the smaller amount of source code lines. This
compactness can enhance the maintainability of code by reducing the amount of source
code lines that must be maintained. This result can be due to its compactness in writ-
ing OCL queries, and due to its reuse mechanisms such as rule inheritance and merging.
This implementation took 15% less source code lines than the largest implementation. This
compactness, the simplicity of the Operational QVT language syntax, and the QVT liter-
ature found, also contributed to the low implementation time needed in the case study
compared to other transformation languages.

106

6. Conclusion

The transformation languages features, and tooling in Operational QVT, ATL, ETL, and
Xtend are good documented. This good documentation enhances the usability of these
transformation languages. Considering the Xtend documentation, mostly is available in
the old oAW website, and not in the Eclipse Xpand project website. Another good source
of information about the language features, and tooling are the forums, especially the ATL,
Xtend, ETL forums. The ATL and Xtend forums has the largest number of messages com-
pared to the other forums. In the ETL forum it was possible to observe in the research that
no messages from the community were unanswered, the only not answered messages are
those posted by the developers. This feedback provided by the ETL forum is also a good
source of information.

The ATL, Operational QVT, and Xtend tooling is integrated in the Eclipse Modeling
Tools installation out-of-the-box, while the Epsilon project, that contains ETL must be in-
stalled separately. All the transformation languages tooling provide tracing functionalities,
an important feature for analyzing transformation executions in large models, such as in
refactoring processes in identifying what elements were modified during the M2M trans-
formation process. Operational QVT and the ATL tooling had a good efficiency in execut-
ing the case study implementation, compared to the other transformation languages. The
performance was almost two times faster than the other two languages evaluated.

The source code editors provided by the transformation languages Operational QVT and
Xtend can also display the metamodel structure in the code completion, which is a feature
that enhances the usability of the transformation language, especially useful in building
large and complex queries. Only the transformation languages Xtend and ATL have a
debugger tool, which is important in finding bugs and maintaining the transformation
projects. The debugger tool available in Xtend is considered good, since it can not only
display the elements from metamodels, but also all sub elements in the form of a tree view
in the variables view. A very good feature in debugging and building long queries.

By analyzing the amount of open bugs in the bug tracking system from each of the eval-
uated transformation languages, Operational QVT has the lowest amount of open bugs
related to its tooling and tooling implementation in the last five years. This evaluation
considers the amount of bugs proportionally to the total amount of bugs in each transfor-
mation language. This is a good indicative that its tooling and tooling implementation is
being maintained.

ATL was the transformation language that had the largest number of public available
transformation projects. It was also the only transformation language were it was possible
to find a transformation project for metric calculation.

The language with a good continuity is Operational QVT. Factors that contributed to this
result are the QVT specification by OMG, and the QVT specification support by important
companies from the IT sector. Operational QVT is based on the QVT specification, so that
there are many tools available in the market that implements the QVT specifications, and
in this way contributing in the transformation language continuity.

107

6. Conclusion

6.1. Outlook

The results of this thesis can be used as decision point for selecting one transformation
language to be used in the development of tools related to UML quality engineering. Sev-
eral extensions of this thesis are possible, the already implemented code in the case study
can be extended for calculating other metrics, bad smells, and for refactoring models. The
metamodel BSDMC_MM specified in this thesis provides all necessary structures for exe-
cuting the above described tasks.

Other transformation languages could be also evaluated based on the analysis presented
in this thesis. Such M2M transformation languages are EMF Model Query, Tefkat, the
declarative languages of QVT core and relation languages, Kermeta, and ModelMorf. This
evaluation can be extended by analyzing not only M2M transformation languages, but also
include general purpose languages such as Java to the languages evaluated.

Expanding the evaluation schema presented in this thesis, by creating a second level of
topics, specific for each of the subject analyzed, such as tooling and transformation projects,
and based on this new level, evaluate how exactly each of the subjects influence other
subjects from the evaluated technology considering the ISO 9126 characteristics.

This evaluation schema could also be extended by taking in consideration how each of
the transformation languages characteristics based on the study of Czarnecki and Helsen
[89], can influence the ISO 9126 characteristics of the analyzed technology.

A larger set of metrics can be added to the evaluation schema. These metrics would be
calculated for each of the case study implementations. Based on these metrics it is possible
to take further conclusions about characteristics related to the transformation language.

Calculating metrics and detecting bad smells in large models, can be very time consum-
ing. Include to the evaluation schema, topics related to the efficiency of the transformation
languages concerning specific tasks in source models from different sizes. Conclusions
such as the feasibility in using an evaluated transformation language in specific tasks, tak-
ing in consideration specific model sizes, can be taken based on such evaluation.

Another extension of this thesis is the creation of a very detailed methodology for eval-
uating the continuity classification introduced in this work. This evaluation could be an-
alyzed based on many more factors relevant in predicting the continuity of the evaluated
technologies.

108

List of Tables

5.1. Evaluation Schema . 61
5.2. ATL releases in the last two years . 64
5.3. Epsilon releases in the last two years . 76
5.4. Operational QVT releases in the last two years 87
5.5. oAW and Xpand releases in the last two years 97

109

List of Figures

2.1. Code Generation Process in MDA . 6
2.2. UML Diagrams . 9
2.3. UML Metamodeling . 10
2.4. ISO 9126 quality model for external and internal quality. 12
2.5. Top Level feature classification . 14
2.6. QVT metamodels relationships . 23

3.1. Case study complete process . 30
3.2. BSDMC_MM Class Diagram . 31
3.3. Example model class diagram . 34
3.4. Source model Sequence Diagram for initializing all objects 35
3.5. Activity Diagram from method X990::initializeVariables 36
3.6. Activity Diagram from method FuelTank::CalculateAutonomy 36
3.7. Activity Diagram from method EngineWS67::initializeVariables 37

5.1. Eclipse Bugzilla ATL projects entries grouped by severity. 65
5.2. Eclipse Bugzilla ATL projects entries grouped by resolution. 65
5.3. ATL forum usage. 66
5.4. Eclipse Bugzilla Epsilon projects entries grouped by severity. 77
5.5. Eclipse Bugzilla Epsilon projects entries grouped by resolution. 77
5.6. Epsilon forum usage. 78
5.7. Eclipse Bugzilla QVT projects entries grouped by severity. 87
5.8. Eclipse Bugzilla QVT projects entries grouped by resolution. 88
5.9. QVT forum usage. 89
5.10. Eclipse Bugzilla Xpand projects entries grouped by severity. 98
5.11. Eclipse Bugzilla Xpand projects entries grouped by resolution. 98
5.12. Xtend forums usage. 100

110

Listings

2.1. ATL header example . 18
2.2. ATL header syntax . 18
2.3. ATL header example . 18
2.4. ATL rule syntax . 18
2.5. ATL rule example . 19
2.6. EOL pre and post condition in operations example 21
2.7. ETL rule syntax . 21
2.8. ETL rule example . 22
2.9. QVT relations source code example . 23
2.10. OML header example . 24
2.11. OML example . 24
2.12. OML mapping general syntax . 25
2.13. OML mapping example . 25
2.14. Xtend example . 27
2.15. Workflow of the Xtend case study implementation 28
2.16. OCL example . 29
2.17. Another OCL example . 29

4.1. ATL transformation initialization . 42
4.2. ATL CalculateMetricInProperties rule . 43
4.3. ATL CalculateMetricFRiC rule . 44
4.4. ATL CountRefDBFound helper . 44
4.5. ATL GetPropertyReferencesInOpaqueActions helper 45
4.6. ATL GetPropertyReferencesInCreateObjectAction helper 46
4.7. ETL transformation initialization . 46
4.8. ETL CalculateMetricInProperties rule . 47
4.9. ETL CalculateMetricFRiC operation . 48
4.10. ETL CountRefDBFound operation . 48
4.11. ETL GetPropertyReferencesInOpaqueActions operation 49
4.12. ETL GetPropertyReferencesInCreateObjectAction operation 49
4.13. Operational QVT transformation initialization 51
4.14. Operational QVT CalculateMetricInProperties mapping 52

111

Listings

4.15. Operational QVT CalculateMetricFRiCs and CalculateMetricFRiC
mappings . 52

4.16. Operational QVT CountRefDBFound query . 53
4.17. Operational QVT GetPropertyReferencesInOpaqueActions query 53
4.18. Operational QVT GetPropertyReferencesInCreateObjectAction query . 54
4.19. Xtend transformation initialization . 55
4.20. Xtend CalculateMetricInProperties function 55
4.21. Xtend CalculateMetricFRiCs and CalculateMetricFRiC functions 56
4.22. Xtend CountRefDBFound function . 57
4.23. Xtend GetPropertyReferencesInOpaqueActions function 58
4.24. Xtend GetPropertyReferencesInCreateObjectAction function 58

5.1. ATL comparison issue . 69
5.2. ATL query example . 69
5.3. QVT query example . 69
5.4. EOL operation keyword issue . 81
5.5. QVT Inheritance example . 91
5.6. QVT inherited class calling order . 92

112

A. Acronyms

AGG Attributed Graph Grammar System

AM3 ATLAS MegaModel Management

AMW Atlas Model Weaver

AmmA AtlanMod Model Management Architecture

API Application Programming Interface

ATL ATLAS Transformation Language

AtoM3 A Tool for Multi-formalism Meta-Modelling

BLOG Web Log

BSDMC_MM Bad Smell Detection and Metrics Calculation Metamodel

CBO Coupling Between Object Classes

CWM Common Warehouse Metamodel

CVS Concurrent Versions System

DSL Domain Specific Language

ECL Epsilon Comparison Language

EGL Epsilon Generation Language

EWL Epsilon Wizard Language

EMF Eclipse Modeling Framework

EML Epsilon Merging Language

EMOF Essential Meta Object Facility

EOL Epsilon Object Language

113

A. Acronyms

Epsilon Extensible Platform of Integrated Languages for mOdel maNagement

ETL Epsilon Transformation Language

EU European Union

EVL Epsilon Validation Language

FAQ Frequently Asked Questions

FiWC Field in Wrong Class

FLAME Formal Library for Aiding Metrics Extraction

FRiC Field Related in Class

Fujaba From UML to Java And Back Again

GMF Graphical Modeling Framework

GMT Generative Modeling Technologies

GUI Graphic User Interface

GReAT Graph Rewrite And Transformation

IDE Integrated Development Environment

ISO International Organization for Standardization

IT Information Technology

JMI Java Metadata Interface

JVM Java Virtual Machine

KM3 Kernel Meta Meta Model

LHS Left Hand Side

LLOC Logical Lines of Code

M2M Model to Model

M2T Model to Text

MDA Model Driven Architecture

114

A. Acronyms

MDD Model Driven Development

MDE Model Driven Engineering

MDR Meta Data Repository

MDSD Model Driven-Software Development

MWE Modeling Workflow Engine

MOF Meta Object Facility

MOLA MOdel transformation LAnguage

MOOD Metrics for Object-Oriented Design

MOOSE Metrics for Object-Oriented Software Engineering

MTF Model Transformation Framework

NOC Number of Children

oAW openArchitectureWare

OCL Object Constraint Language

OMG Object Management Group

OML Operational Mapping Language

OMT Object Modeling Technique

OO Object Oriented

PDM Platform Description Model

PIM Platform Independent Model

PSM Platform Specific Model

QMOOD Quality Model for Object-Oriented Design

QVT Query/View/Transformation

RFP Request For Proposal

RHS Right Hand Side

115

A. Acronyms

SMM Software Metrics Meta-Model

TDM Transformation Description Model

UML Unified Modeling Language

UML2 Unified Modeling Language version 2

VIATRA2 VIsual Automated model TRAnsformations

VM Virtual Machine

XMI XML Metadata Interchange

XML Extensible Markup Language

XSD XML Schema

XSLT Stylesheet Language Transformation

YATL Yet Another Transformation Language

116

Bibliography

[1] Airbus - Welcome to Airbus.com! Available online at http://www.airbus.com/
en/. Last checked : 31.01.2010.

[2] alphaWorks : Model Transformation Framework. Available online at http://www.
alphaworks.ibm.com/tech/mtf. Last checked: 06.01.2010.

[3] Apache Ant - Welcome. Available online at http://ant.apache.org/. Last checked
: 13.02.2010.

[4] ATL 3.0.0 New and Noteworthy - Eclipsepedia. Available online at http://wiki.
eclipse.org/ATL_3.0.0_New_and_Noteworthy. Last checked : 07.01.2010.

[5] ATL Basic Examples and Patterns. Available online at http://www.eclipse.org/
m2m/atl/basicExamples_Patterns/. Last checked: 06.01.2010.

[6] ATL Language Troubleshooter. Available online at http://wiki.eclipse.org/
ATL_Language_Troubleshooter. Last checked: 06.01.2010.

[7] ATL Project. Available online at http://www.eclipse.org/m2m/atl/. Last checked:
28.02.2010.

[8] ATL Standard Library - Eclipsepedia. Available online at http://wiki.eclipse.
org/ATL_Standard_Library. Last checked: 06.01.2010.

[9] ATL Transformations. Available online at http://www.eclipse.org/m2m/atl/
atlTransformations/#UML22Measure. Last checked: 06.01.2010.

[10] AtlanMod Partners. Available online at http://www.emn.fr/z-info/atlanmod/
index.php/Partners. Last checked: 06.01.2010.

[11] Atlas Model Weaver. Available online at http://www.eclipse.org/gmt/amw/. Last
checked: 06.01.2010.

[12] ATL/Developer Guide - eclipsepedia. Available online at http://wiki.eclipse.
org/ATL/Developer_Guide. Last checked: 06.01.2010.

[13] atl_discution By Thread. Available online at http://atlanmod.emn.fr/www/atl_
discussion_archive/. Last checked: 06.01.2010.

117

http://www.airbus.com/en/
http://www.airbus.com/en/
http://www.alphaworks.ibm.com/tech/mtf
http://www.alphaworks.ibm.com/tech/mtf
http://ant.apache.org/
http://wiki.eclipse.org/ATL_3.0.0_New_and_Noteworthy
http://wiki.eclipse.org/ATL_3.0.0_New_and_Noteworthy
http://www.eclipse.org/m2m/atl/basicExamples_Patterns/
http://www.eclipse.org/m2m/atl/basicExamples_Patterns/
http://wiki.eclipse.org/ATL_Language_Troubleshooter
http://wiki.eclipse.org/ATL_Language_Troubleshooter
http://www.eclipse.org/m2m/atl/
http://wiki.eclipse.org/ATL_Standard_Library
http://wiki.eclipse.org/ATL_Standard_Library
http://www.eclipse.org/m2m/atl/atlTransformations/#UML22Measure
http://www.eclipse.org/m2m/atl/atlTransformations/#UML22Measure
http://www.emn.fr/z-info/atlanmod/index.php/Partners
http://www.emn.fr/z-info/atlanmod/index.php/Partners
http://www.eclipse.org/gmt/amw/
http://wiki.eclipse.org/ATL/Developer_Guide
http://wiki.eclipse.org/ATL/Developer_Guide
http://atlanmod.emn.fr/www/atl_discussion_archive/
http://atlanmod.emn.fr/www/atl_discussion_archive/

Bibliography

[14] ATL/Howtos. Available online at http://wiki.eclipse.org/index.php/ATL_
Howtos. Last checked: 06.01.2010.

[15] AToM3 a tool for multi-formalism meta-modelling. Available online at http://
atom3.cs.mcgill.ca/index_html. Last checked: 06.01.2010.

[16] BAE Systems. Available online at http://www.baesystems.com/. Last checked:
31.01.2010.

[17] CARROLL. Available online at http://www.carroll-research.org/uk/index.
htm. Last checked: 06.01.2010.

[18] Compuware Corporation. Available online at http://www.compuware.com/. Last
checked: 14.02.2010.

[19] Context & Objectives - INESS Project. Available online at http://www.iness.eu/
spip.php?article2. Last checked: 31.01.2010.

[20] CZT - Welcome to CZT. Available online at http://czt.sourceforge.net/. Last
checked: 06.01.2010.

[21] Delphi from Embarcadero | RAD Application Development Software. Avail-
able online at http://www.embarcadero.com/products/delphi. Last checked :
07.01.2010.

[22] Developer Resources for Java Technology. Available online at http://java.sun.
com/. Last checked : 13.02.2010.

[23] Eclipse Community Forums: Epsilon. Available online at http://www.eclipse.
org/forums/index.php?t=thread&frm_id=22. Last checked: 06.01.2010.

[24] Eclipse Community Forums: GMT (Generative Modeling Technologies). Available
online at http://www.eclipse.org/forums/index.php?t=thread&frm_id=109.
Last checked: 06.01.2010.

[25] Eclipse Community Forums: M2M(model-to-model transformation). Available
online at http://www.eclipse.org/forums/index.php?t=thread&frm_id=23. Last
checked: 06.01.2010.

[26] Eclipse Community Forums: M2T (model-to-text transformation). Available on-
line at http://www.eclipse.org/forums/index.php?t=thread&frm_id=24&. Last
checked: 06.01.2010.

[27] Eclipse M2M Proposal. Available online at http://www.eclipse.org/proposals/
m2m/. Last checked : 09.01.2010.

118

http://wiki.eclipse.org/index.php/ATL_Howtos
http://wiki.eclipse.org/index.php/ATL_Howtos
http://atom3.cs.mcgill.ca/index_html
http://atom3.cs.mcgill.ca/index_html
http://www.baesystems.com/
http://www.carroll-research.org/uk/index.htm
http://www.carroll-research.org/uk/index.htm
http://www.compuware.com/
http://www.iness.eu/spip.php?article2
http://www.iness.eu/spip.php?article2
http://czt.sourceforge.net/
http://www.embarcadero.com/products/delphi
http://java.sun.com/
http://java.sun.com/
http://www.eclipse.org/forums/index.php?t=thread&frm_id=22
http://www.eclipse.org/forums/index.php?t=thread&frm_id=22
http://www.eclipse.org/forums/index.php?t=thread&frm_id=109
http://www.eclipse.org/forums/index.php?t=thread&frm_id=23
http://www.eclipse.org/forums/index.php?t=thread&frm_id=24&
http://www.eclipse.org/proposals/m2m/
http://www.eclipse.org/proposals/m2m/

Bibliography

[28] Eclipse Modeling - M2M - Operational QVT - downloads. Available online at http:
//www.eclipse.org/modeling/m2m/downloads/index.php?project=qvtoml. Last
checked : 11.01.2010.

[29] Eclipse.org home. Available online at http://www.eclipse.org/. Last checked:
26.02.2010.

[30] EMF model query developer guide. Available online at http://help.eclipse.
org/galileo/index.jsp?nav=/9. Last checked: 06.01.2010.

[31] Epsilon. Available online at http://www.eclipse.org/gmt/epsilon/. Last
checked: 06.01.2010.

[32] Epsilon Model Connectivity. Available online at http://www.eclipse.org/gmt/
epsilon/doc/emc/. Last checked: 06.01.2010.

[33] Fujaba Homepage. Available online at http://www.fujaba.de/. Last checked:
06.01.2010.

[34] Home, WesternGeco. Available online at http://www.westerngeco.com/. Last
checked: 31.01.2010.

[35] HP United States - Computers, Laptops, Servers, Printers and more. Available on-
line at http://www.hp.com/#Product. Last checked: 31.01.2010.

[36] http://www.ample-project.net/. Available online at http://www.ample-project.
net/. Last checked: 31.01.2010.

[37] IBM Research - Zurich. Available online at http://www.zurich.ibm.com/. Last
checked: 31.01.2010.

[38] ISIS repository - GReAT. Available online at http://repo.isis.vanderbilt.edu/
tools/get_tool?GReAT. Last checked : 13.01.2010.

[39] itemis AG - Model Based Software Development. Available online at http://www.
itemis.com/. Last checked: 31.01.2010.

[40] Kermeta - Breathe life into your metamodels - Kermeta. Available online at http:
//www.kermeta.org/. Last checked: 06.01.2010.

[41] King’s College London :Home :King’s College London. Available online at http:
//www.kcl.ac.uk/. Last checked: 31.01.2010.

[42] Live. Available online at http://www.eclipse.org/gmt/epsilon/live/. Last
checked: 06.01.2010.

119

http://www.eclipse.org/modeling/m2m/downloads/index.php?project=qvtoml
http://www.eclipse.org/modeling/m2m/downloads/index.php?project=qvtoml
http://www.eclipse.org/
http://help.eclipse.org/galileo/index.jsp?nav=/9
http://help.eclipse.org/galileo/index.jsp?nav=/9
http://www.eclipse.org/gmt/epsilon/
http://www.eclipse.org/gmt/epsilon/doc/emc/
http://www.eclipse.org/gmt/epsilon/doc/emc/
http://www.fujaba.de/
http://www.westerngeco.com/
http://www.hp.com/#Product
http://www.ample-project.net/
http://www.ample-project.net/
http://www.zurich.ibm.com/
http://repo.isis.vanderbilt.edu/tools/get_tool?GReAT
http://repo.isis.vanderbilt.edu/tools/get_tool?GReAT
http://www.itemis.com/
http://www.itemis.com/
http://www.kermeta.org/
http://www.kermeta.org/
http://www.kcl.ac.uk/
http://www.kcl.ac.uk/
http://www.eclipse.org/gmt/epsilon/live/

Bibliography

[43] Members - AtlanMod. Available online at http://www.emn.fr/z-info/atlanmod/
index.php/Members. Last checked: 06.01.2010.

[44] ModelMorf Homepage. Available online at http://121.241.184.234:8000/
ModelMorf/ModelMorf.htm. Last checked: 07.01.2010.

[45] Modelplex website - Homepage. Available online at http://www.modelplex-ist.
org/. Last checked: 06.01.2010.

[46] openArchitectureware tutorial. Available online at http://www.
openarchitectureware.org/pub/documentation/4.3.1/html/contents/emf_
tutorial.html. Last checked: 06.01.2010.

[47] openarchitectureware.org - Official openArchitectureware Homepage. Avail-
able online at http://www.openArchitectureWare.org/index.php. Last checked:
06.01.2010.

[48] openarchitectureware.org - Official openArchitectureware Homepage. Available
online at http://www.openarchitectureware.org/forum/index.php?forum=2.
Last checked : 07.01.2010.

[49] openarchitectureware.org - openArchitectureware Charter. Available online at
http://www.openarchitectureware.org/article.php/oaw_charter?menu=
About_Charter. Last checked: 06.01.2010.

[50] openarchitectureware.org - Professional Support & Consulting. Available online
at http://www.openArchitectureWare.org/staticpages/index.php/support?
menu=Professional%20Support. Last checked: 06.01.2010.

[51] openarchitectureware.org - Screencasts. Available online at http://www.
openarchitectureware.org/staticpages/index.php/oaw_screencasts. Last
checked: 06.01.2010.

[52] OpenEmbeDD - OpenEmbeDD. Available online at http://openembedd.org/
home_html. Last checked: 06.01.2010.

[53] Oracle 11g, Siebel, PeopleSoft | Oracle, Software. Hardware. Complete. Available
online at http://www.oracle.com/index.html. Last checked: 31.01.2010.

[54] Project-ATLAS:Programme blanc ANR FLFS (2006-2009). Available online at http:
//ralyx.inrialpes.fr/2007/Raweb/atlas/uid39.html. Last checked: 06.01.2010.

[55] Projects - AtlanMod. Available online at http://www.emn.fr/z-info/atlanmod/
index.php/Projects. Last checked : 09.01.2010.

120

http://www.emn.fr/z-info/atlanmod/index.php/Members
http://www.emn.fr/z-info/atlanmod/index.php/Members
http://121.241.184.234:8000/ModelMorf/ModelMorf.htm
http://121.241.184.234:8000/ModelMorf/ModelMorf.htm
http://www.modelplex-ist.org/
http://www.modelplex-ist.org/
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/emf_tutorial.html
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/emf_tutorial.html
http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/emf_tutorial.html
http://www.openArchitectureWare.org/index.php
http://www.openarchitectureware.org/forum/index.php?forum=2
http://www.openarchitectureware.org/article.php/oaw_charter?menu=About_Charter
http://www.openarchitectureware.org/article.php/oaw_charter?menu=About_Charter
http://www.openArchitectureWare.org/staticpages/index.php/support?menu=Professional%20Support
http://www.openArchitectureWare.org/staticpages/index.php/support?menu=Professional%20Support
http://www.openarchitectureware.org/staticpages/index.php/oaw_screencasts
http://www.openarchitectureware.org/staticpages/index.php/oaw_screencasts
http://openembedd.org/home_html
http://openembedd.org/home_html
http://www.oracle.com/index.html
http://ralyx.inrialpes.fr/2007/Raweb/atlas/uid39.html
http://ralyx.inrialpes.fr/2007/Raweb/atlas/uid39.html
http://www.emn.fr/z-info/atlanmod/index.php/Projects
http://www.emn.fr/z-info/atlanmod/index.php/Projects

Bibliography

[56] Siemens AG - Global Web Site. Available online at http://w1.siemens.com/
entry/cc/en/. Last checked: 31.01.2010.

[57] SmartQVT - A QVT implementation. Available online at http://smartqvt.
elibel.tm.fr/index.html. Last checked: 06.01.2010.

[58] Software Architecture Design, Visual UML & Business Process Modeling - from
Borland. Available online at http://www.borland.com/us/products/together/
index.html. Last checked: 06.01.2010.

[59] SouceForge.net: epsilonlabs. Available online at http://sourceforge.net/apps/
mediawiki/epsilonlabs/index.php?title=Main_Page. Last checked: 06.01.2010.

[60] Team-AtlanMod:IdM++. Available online at http://ralyx.inria.fr/2008/
Raweb/atlanmod/uid35.html. Last checked: 06.01.2010.

[61] Tefkat : The EMF transformation Engine. Available online at http://tefkat.
sourceforge.net/. Last checked: 06.01.2010.

[62] Telefónica. Available online at http://www.telefonica.com/en/home/jsp/home.
jsp. Last checked: 31.01.2010.

[63] Thales Group Home. Available online at http://www.thalesgroup.com/. Last
checked : 31.01.2010.

[64] The <AGG> Homepage. Available online at http://user.cs.tu-berlin.de/
~gragra/agg/. Last checked : 14.01.2010.

[65] The University of York. Available online at http://www.york.ac.uk/. Last
checked: 29.01.2010.

[66] Topcased - Home. Available online at http://www.topcased.org/. Last checked:
06.01.2010.

[67] Université Pierre et Marie CURIE - Sciences et Médecine - UMPC - Paris. Available
online at http://www.upmc.fr/. Last checked: 31.01.2010.

[68] Usine Logicielle - Detailed introduction. Available online at http://www.
usine-logicielle.org/index.php?option=com_content&task=view&id=
17&Itemid=30&limit=1&limitstart=1. Last checked: 06.01.2010.

[69] VIATRA2 - Eclipsepedia. Available online at http://wiki.eclipse.org/VIATRA2.
Last checked : 13.01.2010.

121

http://w1.siemens.com/entry/cc/en/
http://w1.siemens.com/entry/cc/en/
http://smartqvt.elibel.tm.fr/index.html
http://smartqvt.elibel.tm.fr/index.html
http://www.borland.com/us/products/together/index.html
http://www.borland.com/us/products/together/index.html
http://sourceforge.net/apps/mediawiki/epsilonlabs/index.php?title=Main_Page
http://sourceforge.net/apps/mediawiki/epsilonlabs/index.php?title=Main_Page
http://ralyx.inria.fr/2008/Raweb/atlanmod/uid35.html
http://ralyx.inria.fr/2008/Raweb/atlanmod/uid35.html
http://tefkat.sourceforge.net/
http://tefkat.sourceforge.net/
http://www.telefonica.com/en/home/jsp/home.jsp
http://www.telefonica.com/en/home/jsp/home.jsp
http://www.thalesgroup.com/
http://user.cs.tu-berlin.de/~gragra/agg/
http://user.cs.tu-berlin.de/~gragra/agg/
http://www.york.ac.uk/
http://www.topcased.org/
http://www.upmc.fr/
http://www.usine-logicielle.org/index.php?option=com_content&task=view&id=17&Itemid=30&limit=1&limitstart=1
http://www.usine-logicielle.org/index.php?option=com_content&task=view&id=17&Itemid=30&limit=1&limitstart=1
http://www.usine-logicielle.org/index.php?option=com_content&task=view&id=17&Itemid=30&limit=1&limitstart=1
http://wiki.eclipse.org/VIATRA2

Bibliography

[70] Welcome to NetBeans. Available online at http://netbeans.org/. Last checked:
06.01.2010.

[71] Xanium On-Demand Solutions. Available online at http://www.xactium.com/.
Last checked: 22.01.2010.

[72] XSL Transformations (XSLT). Available online at http://www.w3.org/TR/xslt.
Last checked: 06.01.2010.

[73] openArchitectureware User Guide: Version 4.3.1, December 2008. Available on-
line at http://www.openArchitectureWare.org/pub/documentation/4.3.1/
openArchitectureWare-4.3.1-Reference.pdf. Last checked : 20.01.2010.

[74] [galileo] Convert Xpand/Xtend projects from oaw4, July 2009. Avail-
able online at http://ekkescorner.wordpress.com/2009/07/23/
galileo-convert-xpandxtend-projects-from-oaw4/. Last checked: 29.01.2010.

[75] QVTOML/Examples/InvokeInJava - Eclipsepedia. Available online at http://
wiki.eclipse.org/QVTOML/Examples/InvokeInJava. Last checked: 06.01.2010,
Last checked: 06.01.2010.

[76] F. Allilaire, J. Bézivin, F. Jouault, and I. Kurtev. ATL: Eclipse support for model
transformation. 2006.

[77] M. Andersson and P. Vestergren. Object-Oriented Design Quality Metrics. Master’s
thesis, Uppsala University, Sweden, June 2004.

[78] ATLAS group LINA & INRIA, Nantes - France. ATL: Atlas Transformation Lan-
guage, 2005. Available online at http://www.eclipse.org/m2m/atl/doc/ATL_
VMSpecification[v00.01].pdf. Last checked: 20.01.2010.

[79] ATLAS group LINA & INRIA, Nantes - France. KM3: Kernel MetaMetaModel,
August 2005. Available online at http://www.eclipse.org/gmt/am3/km3/doc/
KernelMetaMetaModel%5Bv00.06%5D.pdf. Last checked: 20.01.2010.

[80] J. Bansiya and C. G. Davis. A Hierarchical Model for Object-Oriented Design Qual-
ity Assessment. IEEE Transactions on Software Engineering, 28(1):4–17, 2002.

[81] A. L. Baroni. Formal definition of object-oriented design metrics. Master’s thesis,
Vrije Universiteit Brussel, 2002.

[82] A. L. Baroni and F. B. e Abreu. A Formal Library for Aiding Metrics Extraction.
2003.

122

http://netbeans.org/
http://www.xactium.com/
http://www.w3.org/TR/xslt
http://www.openArchitectureWare.org/pub/documentation/4.3.1/openArchitectureWare-4.3.1-Reference.pdf
http://www.openArchitectureWare.org/pub/documentation/4.3.1/openArchitectureWare-4.3.1-Reference.pdf
http://ekkescorner.wordpress.com/2009/07/23/galileo-convert-xpandxtend-projects-from-oaw4/
http://ekkescorner.wordpress.com/2009/07/23/galileo-convert-xpandxtend-projects-from-oaw4/
http://wiki.eclipse.org/QVTOML/Examples/InvokeInJava
http://wiki.eclipse.org/QVTOML/Examples/InvokeInJava
http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification[v00.01].pdf
http://www.eclipse.org/m2m/atl/doc/ATL_VMSpecification[v00.01].pdf
http://www.eclipse.org/gmt/am3/km3/doc/KernelMetaMetaModel%5Bv00.06%5D.pdf
http://www.eclipse.org/gmt/am3/km3/doc/KernelMetaMetaModel%5Bv00.06%5D.pdf

Bibliography

[83] W. Brown, R. Malveau, and T. Mowbray. AntiPatterns: Refactoring Software, Architec-
tures, and Projects in Crisis. Wiley, 1998.

[84] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for object oriented
design. SIGPLAN Not., 26(11):197 – 211, 1991.

[85] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for Object Oriented Design.
IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

[86] V. Cortellessa, S. di Gregorio, and A. di Marco. Using ATL for transformations in
software performance engineering: a step ahead of java-based transformations? In
WOSP ’08: Proceedings of the 7th international workshop on Software and performance,
pages 127–132, New York, NY, USA, 2008. ACM.

[87] K. Czarnecki and M. Antkiewicz. Mapping Features to Models: A Template Ap-
proach Based on Superimposed Variants. In GPCE 2005 - Generative Programming
and Component Enginering. 4th International Conference, pages 422–437. Springer,
2005.

[88] K. Czarnecki and S. Helsen. Classification of Model Transformation Approaches.
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven Archi-
tecture, 2003.

[89] K. Czarnecki and S. Helsen. Feature-based survey of model transformation ap-
proaches. IBM Systems Journal, 45(3):621–645, 2006.

[90] S. Davy, B. Jennings, and J. Strassner. Application Domain Independent Policy Con-
flict Analysis Using Information Models. In Network Operations and Management
Symposium, 2008. NOMS 2008. IEEE, pages 17–24, April 2008.

[91] Ł. Dobrzański. UML Model Refactoring: Support for Maintenance of Executable
UML Models. Master’s thesis, Blekinge Institut of Technologie, Sweden, July 2005.

[92] G. Doux, F. Jouault, and J. Bézivin. Transforming BPMN process models to BPEL
process definitions with ATL. In GraBaTs 2009 : 5th International Workshop on Graph-
Based Tools, 2009.

[93] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes. Engineering a DSL for
Software Traceability. In Software Language Engineering, volume 5452/2009, pages
151–167, 2009.

[94] R. Dvorak. Model transformation with operation QVT. Borland Software Corpora-
tion, 2008.

123

Bibliography

[95] F. B. e Abreu. Design Metrics for Object-Oriented Software Systems. European Con-
ference on Object-Orietend Programming, August 1995.

[96] T. Van Enckevort. Refactoring UML models: using openarchitectureware to mea-
sure UML model quality and perform pattern matching on UML models with OCL
queries. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference compan-
ion on Object oriented programming systems languages and applications, pages 635–646.
ACM, 2009.

[97] F. Fondement and R. Silaghi. Defining Model Driven Engineering Processes. In
Third International Workshop in Software Model Engineering (WiSME), held at the 7th
International Conference on the Unified Modeling Language (UML), 2004.

[98] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Object Technology Series. Addison-Wesley Professional, third edition, September
2003.

[99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the
Design of Existing Code. Object Technology Series. Addison-Wesley Professional,
1999.

[100] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, 1995.

[101] D. Gasevic, D. Djuric, and V. Devedzic. Model Driven Engineering and Ontology De-
velopment. Springer-Verlag, 2009.

[102] I. Groher and M. Voelter. XWeave: Models and Aspects in Concert. 2007. Available
online at http://www.voelter.de/data/workshops/AOM2007.pdf. Last checked :
27.01.2010.

[103] R. C. Gronback. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit.
The Eclipse series. Addison-Wesley Professional, first edition, March 2009.

[104] V. Gruhn, D. Pieper, and C. Roettgers. MDA: Effektives Software-Engineering mit
UML2 und Eclipse. Xpert.press. Springer, 2006.

[105] P. Huber. The Model Transformation Language Jungle - An Evaluation and Exten-
sion of Existing Approaches. Master’s thesis, TU Wien, May 2008.

[106] International Organization for Standardization (ISO) / International Electrotechni-
cal Commission (IEC). ISO/IEC Standard No. 9126-1:2001(E), June 2001.

124

http://www.voelter.de/data/workshops/AOM2007.pdf

Bibliography

[107] A. A. Jalbani, J. Grabowski, H. Neukirchen, and B. Zeiss. Towards an Integrated
Quality Assessment and Improvement Approach for UML Models. In SDL 2009:
Design for Motes and Mobiles, volume 5719/2009 of Lecture Notes in Computer Science,
pages 63–81. Springer Berlin / Heildelberg, 2009.

[108] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. ATL: a QVT-like Trans-
formation Language. October 2006.

[109] F. Jouault and I. Kurtev. Transforming models with ATL. 2005.

[110] F. Jouault and I. Kurtev. On the interoperability of model-to-model transformation
languages. In Science of Computer Programming, volume 68, pages 114–137. Elsevier
North-Holland, Inc., 2007.

[111] Frédéric Jouault, editor. Model Transformation with ATL. 1st International Workshop,
MtATL 2009 - Preliminary Proceedings, July 2009.

[112] A. Kalnins, J. Barzdins, and E. Celms. Model transformation language MOLA. In
Model-Driven Architecture: Foundations and Applications, pages 14–28, 2004.

[113] N. Klein and R. Nikonowicz. Wiederverwendbare Generatorkomponenten in het-
erogenen projektumfeldern. In Software Engineering 2009, pages 113–123, Kaiser-
slautern, March 2009.

[114] D. S. Kolovos. Dimitris Kolovos: Home Page. Available online at http://
www-users.cs.york.ac.uk/~dkolovos/. Last checked: 06.01.2010.

[115] D. S. Kolovos. An Extensible Platform for Specification of Integrated Languages for Model
Management. PhD thesis, University of York, 2008.

[116] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. A Framework for Composing Modu-
lar and Interoperable Model Management Tasks. In Workshop on Model Driven Tools
and Process Integration (MDTPI) EC-MDA ’08, 2008.

[117] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. The Epsilon Trasnformation Lan-
guage. In Theory and Practice of Model Transformations, volume 5063/2008 of Lecture
Notes in Computer Science, pages 36–60. Springer Berlin / Heildelberg, 2008.

[118] D. S. Kolovos, L. Rose, R. F. Paige, and F. A. C. Polack. The Epsilon Book. September
2009.

[119] B. P. Lamancha, P. R. Mateo, I. R. de Guzmán, M. P. Usaola, and M. P. Velthius. Au-
tomated model-based testing using the UML testing profile and QVT. In MoDeVVa
’09: Proceedings of the 6th International Workshop on Model-Driven Engineering, Verifica-
tion and Validation, pages 1–10. ACM, 2009.

125

http://www-users.cs.york.ac.uk/~dkolovos/
http://www-users.cs.york.ac.uk/~dkolovos/

Bibliography

[120] M. López-Sanz, J. M. Vara, E. Marcos, and C. E. Cuesta. A model-driven approach
to weave architectural styles into service-oriented architectures. In MoSE+DQS
’09: Proceeding of the first international workshop on Model driven service engineering and
data quality and security, pages 53–60, New York, NY, USA, 2009. ACM.

[121] S. Marković and T. Baar. Semantics of OCL specified with QVT. In Software Systems
Modeling, volume 7, pages 399–422. Springer Berlin / Heildelberg, October 2008.

[122] T. Mens and T. Tourwé. A Survay of Software Refactoring. In IEEE Transactions on
Software Engineering, volume 30, pages 126–139. IEEE Press, 2004.

[123] S. Nolte. QVT - Relations Language : Modellierung mit der Query Views Transformation.
Xpert.press. Springer-Verlag Berlin Heidelberg, first edition, 2009.

[124] S. Nolte. QVT - Operational Mappings : Modellierung mit der Query Views Transforma-
tion. Xpert.press. Springer-Verlag Berlin Heidelberg, first edition, 2010.

[125] Object Management Group (OMG). MDA Guide Version 1.0.1, June 2003. Available
online at http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf. Last checked :
20.01.2010.

[126] Object Management Group (OMG). Meta Object Facility (MOF) Core Specification,
Version 2.0, January 2006. Available online at http://www.omg.org/spec/MOF/2.0/
PDF/. Last checked : 20.01.2010.

[127] Object Management Group (OMG). MOF 2.0/XMI Mapping, Version 2.1.1, Decem-
ber 2007. Available online at http://www.omg.org/spec/XMI/2.1.1/PDF/. Last
checked : 20.01.2010.

[128] Object Management Group (OMG). Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification, April 2008. Available online at http://www.omg.org/
spec/QVT/1.0/PDF/. Last checked : 20.01.2010.

[129] Object Management Group (OMG). Architecture-Driven Modernization (ADM):
Software Metrics Meta-Model FTF - Beta 1, March 2009. Available online at http:
//www.omg.org/spec/SMM/1.0/Beta1/PDF. Last checked : 20.01.2010.

[130] Object Management Group (OMG). OMG Unified Modeling Language (OMG UML),
Infrastructure. Version 2.2, February 2009. Available online at http://www.omg.org/
cgi-bin/doc?formal/09-02-04.pdf. Last checked : 20.01.2010.

[131] Object Management Group (OMG). OMG Unified Modeling Language (OMG UML)
Superstructure Version 2.2, February 2009. Available online at http://www.omg.org/
cgi-bin/doc?formal/09-02-03.pdf. Last checked : 20.01.2010.

126

http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/XMI/2.1.1/PDF/
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.omg.org/spec/QVT/1.0/PDF/
http://www.omg.org/spec/SMM/1.0/Beta1/PDF
http://www.omg.org/spec/SMM/1.0/Beta1/PDF
http://www.omg.org/cgi-bin/doc?formal/09-02-04.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-04.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-03.pdf
http://www.omg.org/cgi-bin/doc?formal/09-02-03.pdf

Bibliography

[132] Object Management Group (OMG). Object Constraint Language, Version 2.2, Febru-
ary 2010. Available online at http://www.omg.org/spec/OCL/2.2/. Last checked :
14.02.2010.

[133] O. Patrascoiu. YATL:Yet Another Transformation Language. In Proceedings of the 1st
European MDA Workshop, MDA-IA, pages 83–90. University of Twente, the Neder-
lands, January 2004.

[134] R. Petrasch and O. Meimberg. Model Driven Architecture: Eine praxisorientierte Ein-
führung in die MDA. dpunkt.verlag GmbH, first edition, 2006.

[135] G. Pietrek and J. Trompeter (Hrsg.). Modellgetriebene Softwareentwicklung. MDA und
MDSD in der Praxis. Entwickler.press, first edition, 2007.

[136] E. Riccobene and P. Scandurra. Weaving executability into uml class models at
pim level. In BM-MDA ’09: Proceedings of the 1st Workshop on Behaviour Modelling
in Model-Driven Architecture, pages 1–9, New York, NY, USA, 2009. ACM.

[137] L. Rose, R. F. Paige, D. S. Kolovos, and F. A. C. Polack. Constructing Models with
the Human-Usable Textual Notation. In Model Driven Engineering Languages and
Systems, volume 5301/2009 of Lecture Notes in Computer Science, pages 249–263,
2009.

[138] L. H. Rosenberg. Applying and interpreting object oriented metrics. Available
online at http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.
html. Last checked: 06.01.2010.

[139] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference
Manual. Object Technology Series. Addison-Wesley Professional, second edition,
2004.

[140] M. Sarker. An overview of Object Oriented Design Metrics. Master’s thesis, Umeå
University, Sweden, June 2005.

[141] J. M. Spivey. The Z Notation: A Reference Manual, second edition. Second edition,
1998. Available online at http://spivey.oriel.ox.ac.uk/mike/zrm/zrm.pdf.
Last checked : 20.01.2010.

[142] T. Stahl and M. Voelter. Model-Driven Software Development: Technology, Engineering,
Management. John Wiley & Sons, first edition, June 2006.

[143] T. Stahl, M. Völter, S. Efftinge, and A. Haase. Modellgetriebene Softwareentwicklung:
Techniken, Engineering, Management. Dpunkt Verlag, 2007.

127

http://www.omg.org/spec/OCL/2.2/
http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html
http://satc.gsfc.nasa.gov/support/STC_APR98/apply_oo/apply_oo.html
http://spivey.oriel.ox.ac.uk/mike/zrm/zrm.pdf

Bibliography

[144] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling
Framework. The Eclipse series. Addison-Wesley, second edition, January 2009.

[145] G. Sunyé, D. Pollet, Y. L. Traon, and J. Jézéquel. Refactoring UML Models. In UML
2001 - The Unified Modeling Language - Modeling Languages, Concepts, and Tools, vol-
ume 2185-2001 of Lecture Notes in Computer Science, pages 134–148. Springer Berlin
/ Heildelberg, 2001.

[146] N. Tsantalis and A. Chatzigeorgiou. Identification of Move Method Refactoring
Opportunities. In IEEE Transactions on Software Engineering, volume 35, pages 347–
367, May-June 2009.

[147] B. Veliev. Model-to-Model transformationen in openArchitectureWare. In Trans-
formationen in der modellgetriebenen Software-Entwicklung, pages 82–100. Universität
Karlsruhe – Fakultät für Informatik, 2007.

[148] C. Werner. UML Profile for Communication Systems : A New UML Profile for the Speci-
fication and Description of Internet Communication and Signaling Protocols. PhD thesis,
Georg-August-Universität zu Göttingen, 2006.

128

	Introduction
	Related Work
	Contributions
	Thesis Structure

	Foundations
	Model Driven Engineering (MDE)
	Model to Model Transformation (M2M)
	Unified Modeling Language (UML)
	Software Metrics
	Bad Smells
	Refactoring
	International Organization for Standardization (ISO) 9126 Standard
	A Classification for Evaluating Model Transformation Languages
	Languages and Technologies

	Case Study
	Bad Smell Detection and Metrics Calculation Metamodel
	The Example Model
	Bad Smell Detection
	Model Metrics

	Case Study Implementation
	Overview
	ATLAS Transformation Language (ATL)
	Epsilon Transformation Language (ETL)
	Operational QVT Language
	Xtend

	Language Evaluations
	Analyzed Subjects of the Transformation Language
	Evaluation Schema
	ATLAS Transformation Language (ATL)
	Epsilon Transformation Language (ETL)
	Operational QVT
	Xtend

	Conclusion
	Outlook

	List of Tables
	List of Figures
	List of Listings
	Acronyms
	Bibliography

