
The UML 2.0 Testing Profile and its Relation to TTCN-3

I. Schieferdecker1, Z. R. Dai2, J. Grabowski2, A. Rennoch1

1Fraunhofer FOKUS, Competence Center for Testing, Interoperability and Performance,
Kaiserin-Augusta-Allee 31, D-10589 Berlin, http://www.fokus.fhg.de/tip

2University of Lübeck, Institute for Telematics,
Ratzeburger Allee 160, D-23538 Lübeck, http://www.itm.mu-luebeck.de

Abstract. UML models focus primarily on the definition of system structure
and behaviour, but provide only limited means for describing test objectives
and test procedures. However, with the approach towards system engineering
with automated code generation, the need for solid conformance testing has
increased. In June 2001, an OMG Request For Proposal (RFP) on an UML2.0
Testing Profile (UTP) has been initiated. This RFP solicits proposals for a
UML2.0 profile, which enables the specification of tests for structural and
behavioural aspects of computational UML models, and which is capable to
inter-operate with existing test technologies for black box testing. This paper
discusses different approaches for testing with UML and discusses the ongoing
work of the Testing Profile. Special emphasize is laid on the mapping of
UML2.0 testing concepts to the standardized Testing and Test Control Notation
(TTCN-3).

1 Introduction

It is well known that the development and implementation of conformance tests is
expensive w.r.t. time and money. Several initiatives and efforts have been undertaken
to establish an approach to automate - or at least to provide significant support for an
automated - test generation. Algorithms have been defined to derive tests from formal
system specification given in various notations. Their usage has been demonstrated
with sample applications. But today, none of the approaches is widely used in the
industrial practise for large applications. One reason may be the difficulty to select the
test cases from a (theoretical) unbounded number of tests, which result from test
generation algorithms. But often it is simply the lack of a formal system specification
of the implementation under test, i.e. the base for the application of the test generation
algorithms is missing.

Economic reasons still require computer support for test generation to enhance
confidence in software reliability. The traditional distinction between system and test
design appears inefficient and is possibly faulty since knowledge transfer between
two specifications is needed. Today modern system modelling techniques like UML
have an increasing acceptance in the software development community which is much
higher than the acceptance of Formal Description Technics in the past (the reason
might be that the better tool support nowadays). There is a chance to involve system

developers in the test definition process if the modelling language allows to integrate
testing related information. Test related information at this early stage means to
benefit from the know-how of a system developer and to capture testing related ideas
of developers in the test definition process.

In principle, it is possible to start the test derivation with a system model only, i.e.
skeletons of the test cases will be generated from the system model. As mentioned
before, this process may lead to an unbounded number of tests (e.g. due to an infinite
number of test data values). A practical alternative may be the incooperation of test
relevant information into the system model, e.g. with annotations provided by the
system developer to restrict the number of test cases from the very beginning.

UML technology focuses primarily on the definition of system structure and
behaviour and provides limited means for describing test procedures only. With the
approach towards system engineering according to model-driven architectures with
automated code generation, the need for solid conformance testing, certification and
branding has increased. In June 2001, an OMG Request For Proposal (RFP) on an
UML Testing Profile has been initiated. It shall provide specification means to define
precisely tests for structural (static) and behavioural (dynamic) aspects of systems
modelled in UML.

IBM, Ericsson, FOKUS, Motorola, Rational, Softeam and Telelogic formed a con-
sortium to develop that UML Testing Profile (UTP) . This profile is based on the
concepts of the upcoming version of UML, UML2.0, which is still an ongoing work.
The work of UTP is based on recent developments in testing such as TTCN-3 and
COTE . It provides mappings to established test environments such as JUnit and
TTCN-3.

This paper presents different approaches to UML based testing and discusses the

need for test specifications in UML (Section 2). Section 3 presents the recent work
on the UML testing profile. In Section 4, the relationship of UTP and TTCN-3
concepts is discussed. In addition, a possible way of mapping UTP specifications to
TTCN-3 definitions is presented. The paper concludes with an outlook of the UTP
work.

2 Different Approaches on Testing with UML

Several approaches for the integration of testing related information in system
developments with UML exist. According to the classical test methodology, two
different aspects have to be distinguished: the modelling of system related features
(i.e. of the system under test, the SUT), and the definition of the test model features
(i.e. of the test system).

In the following, different testing frameworks and practical approaches based on
UML systems and tools are discussed. One approach is called integration testing . It
adopts the UML syntax and uses statechart diagrams for the objects under test. The
aim of integration testing is to minimize testing costs, time and effort, i.e. to initially
develop customized test drivers, test stubs and test cases and to adapt and rerun them

repeatedly for regression testing purposes at each level of integration. Tool support is
available e.g. for applications built with the UML modelling tools in Rational Rose.

Other initiatives have developed UML based test notations. In , the use of UML to
support test development has been investigated to encourage the parallel development
of a conformance test suite and a standard system specification. The presented
guidelines have been given in the context of TTCN as the target test notation. The
suggested test development activities adopt a straight forward approach, i.e. the
identification of the independent system components is followed by a definition of the
test configuration, test case structure and test cases. UML component or deployment
diagrams can be used to represent the test configuration, e.g. in a distributed
environment system parts are represented by UML components, points of control and
observation (PCOs) by UML interfaces. The test suite structure can be defined in
UML with class diagrams whereas any hierarchy of possible test (sub)groups is
expressed by a nested class structure. The test behaviour of a test case can be defined
using various UML features: UML interaction diagrams, i.e. sequence and
collaboration diagrams, and state transition diagrams.

JUnit[19] is a framework for automated unit tests based on Java. Because of its
simplicity, JUnit has become popular for extreme programming where permanent
code integration and code testing are required. JUnit provides an own graphical user
interface. A JUnit test defines a testsuite which is composed of several test cases or
test suites. A test case contains test methods, a setup() method, a teardown() method,
a main method which runs the testcase and an optional suite() method which groups
test methods in a test suite. At the end of a test run, JUnit reports a pass, failure or
error as its test result. Black box testing can be realized by defining private or
protected test methods. JUnit has already been integrated in many case tools, e.g.
JBuilder. From a UML model, skeletons for unit tests of individual classes or
packages can be recursively generated, including the tested classes and packages.
However, the hard part, namely the coding of the dynamic part of the testcases, is not
addressed.

The consequent application of UML for the specification of a component-based
SUT leads to an interesting approach for the derivation of a component-based test sys-
tem. In , a Test Framework (TFW) is proposed which contains base types of test com-
ponents. The test purpose independent (i.e. generic) behaviour for these components
has been predefined. It covers setup and configuration of a test system, initiation of
tests, exchange of coordination messages between test components and collection of
test results. The full test system itself is built from the test components. For both test
system and SUT the technology independent UML method has been selected e.g. to
allow the test system to share the same static information with the SUT. The TFW
builds the final test system from a generic test system (GTS) which has one test
manager as the main components, one front end, one Main Test Component (MTC)
and a set of parallel TCs (PTC). Similar to the Conformance Testing Methodology
and Framework (CTMF) , the system behaviour of the GTS comprises test preamble
(configuration establishment and test initiation), test body (generic test case) and test
postamble (test end and configuration release), whereas the configuration may be hold
for several tests in sequence. A user defined test system (UTS) will inherit from the
GTS components MTC and TCs and will be refined according to the selected test
purposes. During these refinements, both the test case independent and dependent

behaviour have to be distinguished. The generic behaviour may be overloaded to
locate references to e.g. naming service, timer management, SUT specific initial
objects or UTS specific object repositories, or assign a particular order on the PTC
start, etc. The testcase dependent behaviour can be defined with sequence diagrams to
provide e.g. sequential request/reply pairs at several interfaces. Multiple instances of
these behavioural definitions may be used to describe performance tests, too. It has
been proposed to define other (alternative) behaviour with separate sequence
diagrams (on default events, timeouts, unexpected behaviour to be ignored). An
association of such diagrams to the test case dependent behaviour may be possible
with the introduction of activity diagrams.

In most cases, the automation of test generation processes is based on a sequence
of different tool applications. The tools perform individual tasks within a sequence of
manual or (semi-) automatic transformations (e.g. compilation) of refinements (e.g.
extractions) in a step-wise approach. An UML based test tool chain has been
proposed by the AGEDIS project . The approach is characterized by the goal to
reuse/adopt existing system validation and test code generation tools. It starts with a
standard UML system model managed by usual UML tools. Further processing of the
UML model results (via XML) in the Intermediate Format (IF) which has been
defined and chosen to describe the system model in a state machine manner, and to
have a suitable input document to existing model checking and test suite generation
tools. The resulting Abstract Test Suite (ATS) is provided by the Test Generation
with Verification (TGV) tool in the standardized TTCN format. This allows the ap-
plication of TTCN tools from the telecommunication industry to produce executable
test cases in the desired target API language (e.g. C, C++, Java).

The approaches presented above show that different academic and industrial
initiatives have already been undertaken to test on the basis of UML. It appears
reasonable that testing becomes an issue within UML itself.

3 The UML2.0 Testing Profile

In this section, the ongoing work for the testing profile is presented. The profile is
developed in several steps: the concept space combining various testing areas is
defined, a metamodel aligned with the UML 2.0 meta-model is developed, an the
applicability of the concepts is analyzed via example and a mapping to existing test
infrastructures demonstrates the practical use.

The work on UTP was – besides other sources - based on as the only standardized

test notation TTCN-3. The initial intent to base the UML Testing Profile on the
Graphical Format of TTCN-3 could not be taken directly since additional
requirements from software testing together with the alignment with UML required
additions and generalizations. Major generalizations in UTP are:

• the separation of test behaviour and test evaluation by introducing a new
test component: the arbiter. This enables the easy reuse of test behaviour

for other testing kinds without changing the test behaviour but just the
arbiter. This concept is comparable to the evaluate function of TSSL .

• the integration of the concepts of test control, test group and test case into
just one concept of a test case, which can be decomposed into several
lower level test cases. This enables the easy reuse of test case definitions
in various hierarchies. A test suite is then just a top-level test case. This
concept is comparable to the test object concept of TSSL.

• the support of data partitions not only for observations, but also for
stimuli. This allows to describe test cases logically without having the
need to define the stimulus data completely but as a set or range of values.
This concept is comparable to the concept of Test Data Definitions (TDD)
of ADL .

Furthermore, some additions ease the practical use of the UML Testing Profile:
• an initial test configuration is used to describe the setup of the test

components and the connectivity to the SUT and between each other
• component and deployment diagrams are used to enable the definition of

software components realizing a test suite and to describe the
requirements regarding test execution on certain nodes in a network.

The different background of the UTP members has led to an intensive discussion
on the basic set of terms as a number of topics allow alternative views. The result is
explained by describing the actual terminology. It has been agreed to distinguish three
major groups of terms:

• test architecture, i.e. the elements and their relationship which are
involved in a test,

• test data, i.e. the structures and meaning of values to be processed in a test,
and

• test behaviour, which address the observations and activities during a test.

3.1 Test Architecture

The test architecture sub package covers the concepts for specifying test
components, the interfaces of and connections between test components and to the
SUT. Test components are active entities within the test system which perform the
test behavior defined in a test case (see Test Behavior sub package) by using test data
as defined in the Test Data sub package.

The test architecture is a set of related classes and/or components from which test
case specific configurations may be specified. A test context groups test cases with
the same initial test configuration. The test configuration is a collection of parts
representing test components and the SUT and the connections between the test
components and to the SUT. The test configuration defines both (1) test components
and connections when a test case is started and (2) the maximal number of test
components and connections during the test execution. A test component is an active
object within a test system performing a test scenario. A test component has a set of
interfaces via which it may communicate with other test components or with the SUT
when the respective interfaces are connected. An arbiter is a specific test component
to evaluate test results and to assign the overall verdict of a test case. There is a

default arbiter for functional, conformance testing, which generates pass, fail, inconc,
and error as verdict, where these verdicts are ordered as pass < inconc < fail < error.
In addition to test components, utility parts can be used to denote helper and
miscellaneous parts to realize a test system, e.g. to contain additional data to be used
during testing.

An interface is a specification of a set of possible operations/messages which a
client may request of/send to a test component or to the SUT or which a server may
receive from a test component or SUT. An interface is either procedure-based or
message-based. A connection is a communication path between two interfaces.

The system under test (SUT) is characterised by the set of interfaces via which a
real SUT can be controlled and observed during testing. An SUT can be on different
abstraction levels: a complete systems, a subsystem, a single component, object or
even a class.

An example is given for a bank automaton - an ATM (Fig. 1). The bank automaton

offers various interfaces, in particular, a port to the bank network and interfaces to the
user to insert and withdraw a bankcard as well as to take the money. The test
objective is to check that it is possible to debit the account provided that enough funds
are available. The package ATMTest imports the definition from the ATM SUT and
defines the test suite ATMtestsuite as well as the classes for the test components
HWEmulator and BankEmulator. The test suite is used to define one test case
validWithdrawal(). authorizeCard() is an auxillary operation used within the test
case.

ATMTest

 «testSuite»
ATMTestSuite

«testCase»
+validWithdrawal() : Verdict
-authorizeCard() : Verdict

«testComponent»
HWEmulator

 ref
default ClassifierDefault()

IATM IScreen,
ICardMachine,

hwCom

Account

balance : Integer

credit(a : Integer)

* account

«testComponent»
BankEmulator

IAccount

bePort

* cards

-pinOk : Boolean
-enteredPIN : String
-message : String

ATM::CardData

pinCode : Integer

0..1 -currentCard

ATMTest ATM
«import

Testsuite

TestCase

TestComponent TestComponent

Fig. 1. A UML package containing a test suite for the ATM example

In addition, the test configuration as the internal structure of test suite is given. The
test behavior is assigned to the test case and is invoked when the test case is invoked.
The test suite uses two test components (Fig. 2): a bank emulator be and a hardware
emulator hw. A utility part current represents the bankcard used during the tests. The
test components are connected with the SUT via the interfaces atmPort and netCom.

«testSuite»
ATMTestSuite

«sut»
atm : BankATM

hwe :
HWEmulator

be : BankEmulator

atmPort

hwCom

bePort netCom

current : CardData

TestConfiguration

SUT

TestComponent
Part
TestComponent
Part

Utility Part

Fig. 2. The test configuration for the ATM example

3.2 Test Data

The test data sub package covers the concepts for data sent to the SUT and
received from the SUT. Mechanisms in order to change and compare test data are
used to enable precise and succinct test specifications. Data can be concrete (i.e. a
specific value) or abstract (i.e. a logically described set of values). Logical partitions
are used to define such value sets within test parameters. Coding rules are part of the
test specification and denote the encoding and decoding of test data. By means of
coding rules, the interfaces of the SUT can be bound to certain encodings such as for
CORBA GIOP/IIOP, IDL, ASN.1 PER or XML.

In the ATM example, different messages to and from the SUT are used. They are

declared in the class diagram of the ATM such as

messageDisplay(in Message:string)

In the test behaviour, concrete data is used for example

messageDisplay("EnterPIN")

Another example is of a data declaration is

constant Integer amount {findAccount(current).balance > amount }

where amount is characterized by the constraint contained in parenthesis, i.e. it has

to be less then the balance of the account belonging to the current bankcard.

3.3 Test Behavior

A test case is a specification of one case to test the system, including what to test
with which input, result, and under which conditions. It uses a concrete technical
specification of how the SUT should be tested - the test behaviour. A test case is the
implementation of a test objective for a particular test configuration, which is defined
by the test behaviour. A test case uses an arbiter to evaluate the outcome of its test
behaviour. A test objective is a general description of what should be tested. The test
behaviour is the specification of behaviour performed on a given test configuration,
i.e. sequences, alternatives, loops and defaults of stimuli to and observations from the
SUT. Test behaviours can be defined by any behavioural diagram of UML 2.0, i.e. as
interaction diagrams or state machines. There can be a designated main test behaviour
for a given test configuration. By invocation, test cases can make use of other test
behaviours.

A verdict is the outcome of a test case being pass, fail, inconc, or error as defined
in TTCN-3. Additional verdict information can be used to denote specific test
outcomes e.g. for performance tests. Every test component handles a local verdict.
Verdict updates are reported to the arbiter for calculation of the overall verdict of the
test case. Different schemes to realize an arbiter and the coordination with the test
components exist.

A validation action is an action to evaluate the status of the execution of a test sce-
nario by assessing the SUT observations and/or additional characteristics/parameters
of the SUT. A validation action is performed by a test component and sets the local
verdict of that component.

Defaults can be defined on three levels: individually for events in interaction
diagrams or for states in state machines, for test components of a specific class or for
all test components in a test system, i.e. the basedefault(). These defaults are
evaluated in sequence – from the event default up to the basedefault.

During the execution of a test case a test trace is generated. It contains logs for
each action performed during that test case execution and the test result of that test
case execution. A log action can be used to store additional information in the test
trace.

Fig. 3 (left side) depicts the ATM test case ValidWithdrawal().The objective of the

test is to verify that if a user inserts and authorizes a valid card correctly, he is able to
withdraw money if he has sufficient funds, i.e. the test case defines a test for a valid
withdrawal of money: after authorization of the bankcard (by referencing to the
authorizeCard operation) the withdrawal operation is selected and an amount
requested, which is smaller than the balance of the account related to the bankcard.
This is defined by a logical partition with a constraint on amount (see top on the left
side of Fig. 3). The SUT then interacts with the bank emulator be to debit the account
and delivers the money afterwards. An event specific default DisplayDefault is used
for the display event in order to handle different display messages specifically. The
default behavior is depicted by means of a note notation. The specification of the
default is shown in Fig. 3 (right side). Finally, the verdict is set to pass.

sd ValidWithdrawal

hwe
«sut»
atm be

ref
authorizeCard()

selectOperation(wi thdrawal)

true
withdraw(amount)

netCo

findAccount(current)

account

display(”Take cash”)

deliverMoney(amount)

true

debitAccount(account, amount)

true

constant Integer amount {findAccount(current).balance > amount

<<verdict>>pass

default
DisplayDefault

atmPo

sd DisplayDefault

self

alt display(”Take money”)

display(”Please take money”)

<<verdict>>

<<verdict>>

Fig. 3. Test case ValidWithdrawal and Default DisplayDefault

4 The Relation to TTCN-3

Since there was no accepted test notation in UML yet, the UTP request for
proposal was an ideal opportunity to bring TTCN-3 in form of GFT to the attention of
the UML world. In fact, GFT is the archetype for UTP. UTP uses several concepts
being developed in GFT. Still, GFT and UTP differ in several respects: UTP is based
on the object oriented paradigm of UML where behaviours are bound to objects only,
while GFT is based on the TTCN-3 concept of functions and binding of functions to
test components. UTP uses additional diagrams to define e.g. the test architecture, test
configuration and test deployment. Test behaviour can be defined as interaction
diagrams but also as state machines. While GFT supports dynamic configurations in
terms of kind and number of test components and the connectivity to the SUT and
between test components3, UTP uses static configurations where only the number of
test components may vary but not the structure of the connections between test
components. In addition, UTP has only one FIFO queue per test component, while
GFT uses a FIFO queue per test component port.

New concepts in UTP are the arbiter, the validation action, the test trace and the

logical partition. According to its definition, an arbiter is a special test component
which is responsible for assigning verdicts. Therefore, an arbiter can easily be defined
as a test component in TTCN-3 which is created at the beginning of a test-run. In
order to overrule the verdict mechanism of TTCN-3, a special verdict type has to be
used in addition. Validation action can be realized with external functions. The logical
partition of test data for test stimuli is not supported in TTCN-3. Here, a data
generation function (as an external function) has to be used in order to select a
specific value from that logical partition to be sent to the SUT. A test trace is not

3 In TTCN-3 and hence in GFT, ports can even be connected, reconnected, started, stopped and cleared during test

execution, which leads to dynamic test configurations in terms of connectivity between test components and to the SUT.

specifically part of the TTCN-3 concepts, but can be considered as a test case with
just a single sequential execution and, therefore, requires the same specification
concepts as test cases.

The verdict handling in GFT is bound to the well-established verdict handling of
conformance testing, while UTP uses in addition the ability of user-defined verdicts
and the arbitration of verdicts, i.e. the definition of algorithms of when and how
verdicts are determined. Additional validation actions can be used to calculate local
verdicts of test components by the use of external information from the test execution
suite.

Another difference is that of default handling for unexpected or irrelevant
behaviour from the SUT: GFT uses function-based defaults which can be dynamically
activated and deactivated during test execution, while UTP uses structural defaults,
which are bound to the structure of a test system – from test component level down to
event/state level – leading to a defaults hierarchy and less dynamic default handling.

UTP supports UML data only, i.e. primitive types (Boolean, String, Integer) and
classes, while GFT supports all types available in TTCN-3 such as basic types
(integer, char, universal char, float, Boolean, objid, verdicttype), basic string types
(bitstring, hexstring, octetstring, charstring, universal charstring), user-defined
structured types (record, record of, set, set of, enumerated, union) and anytype. In
addition, any imported data like ASN.1 or IDL is supported.

Last but not least, GFT and UTP are on different levels of abstractions: GFT (being
part of TTCN-3) is on a detailed test case specification level (i.e. on a level from
which executable tests can directly be derived). However, UTP can also be used on
more abstract levels by defining just the principal constituents of e.g. a test purpose or
of a test case without giving all the details needed to execute the tests. While this is of
great advantage in the test design process, additional means have to be taken in order
to generate executable tests. For example, the expressiveness of UML 2.0 sequence
diagrams allows to describe a whole set of test cases by just one diagram, so that test
generation methods have to be applied in order to derive these tests from the diagram.

Overall, UTP is targeted at UML providing selected extensions to the features of

GFT/TTCN-3 as well as restricting/omitting other TTCN-3 features. Table 1
compares the UML 2.0 testing profile concepts with existing TTCN-3 testing
concepts. All UML Testing Profile concepts have direct correspondence or can be
mapped to TTCN-3 testing concepts. A mapping from UTP to TTCN-3 is possible but
not the other way around. The principal approach for the mapping to TTCN-3 consists
of two major steps: (1) take UTP stereotypes and associations and assign them to
TTCN-3 concepts and (2) define procedures how to collect required information for
the TTCN-3 modules to be generated.

Table 1. Relation of UTP and TTCN-3 concepts and
the principal translation from UTP to TTCN-3

UML Testing Profile TTCN-3

Test Architecture:
Package Module
Test Suite Group covering all test cases of a test suite

Having a specific TSI component type (to access the SUT)

Having a specific behavioral function to set up the initial test
configuration for this test suite

System Under Test (SUT) The test system accesses the SUT via the abstract test system interfaces
(TSI).
The SUT interfaces result in port types used by TSI
One additional port is needed to communicate with a user-defined
arbiter
Potentially additional ports are needed to coordinate/synchronize test
components

Interfaces Port types
Test Components Component types
Test Configurations Configuration operations create, start, connect, disconnect, map,

unmap, running and done for dynamic test configurations.
Behavioral function to set up the initial test configuration

Arbiter The UTP default arbiter is a TTCN-3 built-in
User-defined arbiters are realized by the MTC

Test Data:
Test Parameter, Test Argument (Inline) templates are used for both test stimulus and test observations
Coding rules Encode attribute
Test Behaviour:
Test Case Testcase
Test Objective Not part of TTCN-3, just a comment to a test case definition
Test Behaviour Functions generated via mapping functions per behavior feature of a

test suite
Test case behavior resulting from creating test components and starting
their behavior, MTC just as a „controller“ which also controls the
arbiter

Test Trace Not part of TTCN-3, but could be mapped just as a strict sequential
behavioral function

Stimulus Sending messages and Calling operations
Replying to operation invocations
(however, raising exceptions is not yet well handled in UML 2.0)

Observation Rreceiving messages, operation invocations, and operation replies
(however, catching exceptions is not yet well handled in UML 2.0)

Default Altstep and activation/deactivation of the altsteps along the default
hierarchy

Coordination Message exchange between test components.
Verdict The default arbiter and its verdict handling is an integral part of TTCN-

3
For user-defined, a special verdict type and updating the arbiter with
set verdicts is needed

Validation Action External function or data functions resulting in a value of the specific
verdict type

Log Action Log operation

In the following, an example mapping4 is provided for the Bank ATM case study

described in the previous section (test case in Fig. 3). Two TTCN-3 modules are
generated: one for ATM being the SUT (and being defined in a separate UML
package) and another module for the ATM test architecture defining the tests for the
Bank ATM also in a separate UML package. The module ATM provides all the
signatures available at the SUT interfaces, which are used during testing.

4 Please note that UTP will provide an example mapping only as there are several ways to map to TTCN-3. It is not the

intend to restrict the mappings to a single one, but rather to show the principles and to leave options for the
implementers.

module ATM {
 //withdraw(amount : Integer): Boolean
 signature withdraw(integer amount) return boolean;
 //isPinCorrect(c : Integer) : Boolean
 signature isPinCorrect(integer c) return boolean;
 //selectOperation(op : OpKind) : Boolean
 signature selectOperation(OpKind op) return boolean;
 … // and so on
}

The module for the ATM test architecture ATMTestArchitecture imports all the
definitions from the ATM module, defines the group for the ATM test suite, provides
port and component type definitions within the group, the function to set up the initial
test configuration and finally the test cases. In order to make this mapping more
compelling, a user-defined arbiter is assumed in addition and the default handling is
made explicitly.

module ATMTestArchitecture {
 import from ATM all;
 // utility Account type
 type record Account {
 integer balance,
 charstring number
 }
 //credit(a : Integer)
 signature credit(integer a);
 //debit(a : Integer)
 signature debit(integer a);
 // utility accnts : Account [0..*]
 external const Account accnts[0..infinity];
 group ATMSuite {
 … // all the definitions constituting the tests for ATM
 } // group ATMSuite
} // module ATMTestArchitecture

The required and provided interfaces are reflected in corresponding port definitions
atmPort_PType and netCom_PType, which are then used in the component type
definitions BankEmulator_CType and HWEmulator_CType to constitute the
component types for the PTCs:

 //required interfaces: IScreen, ICardMachine, IMoneyBox
 //provided interface: IATM
 type port atmPort_PType procedure {
 in display_; //Iscreen
 in ejectCard; //ICardMachine
 in deliverMoney; //IMoneyBox
 in getStatus; // status information
 out withdraw, isPinCorrect,
 selectOperation, storeCardData; //IATM
 out enterPIN; //to give a PIN
 }
 //required interface: IAccount
 //no provided interface
 type port netCom_PType procedure {
 in debitAccount, findAccount //IAccount
 }
 // test component type BankEmulator
 type component BankEmulator_CType {
 port netCom_PType bePort;
 port Arbiter_PType arbiter; // user defined arbiter

}
 // test component type HWEmulator

 type component HWEmulator_CType {
 port atmPort_PType hwCom;
 port Arbiter_PType arbiter; // user defined arbiter
 }

The following shows the mapping for a user-defined arbiter. A specific type
MyVerdict_Type together with an arbitration function Arbitration is used to
calculate the overall verdict during test case execution. The final assessment is given
by mapping the user-defined verdicts to the TTCN-3 verdict at the end. This enables
e.g. the use of statistical verdicts where e.g. 5% failures lead to fail but less failures to
pass. The arbiter is realized by the MTC. It receives verdict update information via a
separate port arbiter. The arbitrated verdict is stored in a local variable mv.

 //the arbitration
 type enumerated MyVerdict_Type {
 pass_, fail_, inconc_, none_
 }
 type port Arbiter_PType message {
 inout MyVerdict_Type
 }
 // the MTC is just a controller
 type component MTC_CType {
 port Arbiter_PType arbiter; // user defined arbiter
 var MyVerdict_Type mv:= none_;
 }

 function Arbitration

(BankEmulator_CType be, HWEmulator_CType hwe)
 runs on MTC_CType {
 while (be.running or hwe.running) {
 alt {
 [] arbiter.receive(none_) {…}

 [] …}
 }
 }
 if (mv == pass_) { setverdict(pass) }
 else …
 }

The defaults in the defaults hierarchy are mapped to several altsteps, which will be
invoked later along that hierarchy. In this example, an altstep for every component
type is defined, i.e. HWEmulator_classifierdefault and
BankEmulator_classifierdefault.

 altstep HWEmulator_classifierdefault()
 runs on HWEmulator_CType {
 var charstring s;
 [] hwCom.getcall(getStatus:{}) {

 hwCom.reply(getStatus:{} value true);}
 [] hwCom.getcall(ejectCard:{}) {arbiter.send(fail_);}
 [] hwCom.getcall(display_:{?}) -> param (s) {

 if (s == "Connection lost") {
arbiter.send(inconc_) } else {arbiter.send(fail_)} }

 }
 altstep BankEmulator_classifierdefault()
 runs on BankEmulator_CType {
 … }

The component type for the test system interface SUT_CType is constituted by the
ports netCom and atmPort used during testing in the specific test suite. A
configuration function ATMSuite_Configuration sets up the initial test configuration
and is invoked at first by every test case of that test suite.

 // SUT
 type component SUT_CType {
 port netCom_PType netCom;
 port atmPort_PType atmPort;
 }

// setup the configuration
 function ATMSuite_Configuration
 (in SUT_CType theSUT, in MTC_CType theMTC, inout
 BankEmulator_CType be, inout HWEmulator_CType hwe)
 {
 be:=BankEmulator_CType.create;
 map(theSUT:netCom,be:bePort); //map to the SUT
 hwe:=HWEmulator_CType.create;
 map(theSUT:atmPort,hwe:hwCom); //map to the SUT
 connect(theMTC:arbiter,be:arbiter); // arbitration
 connect(theMTC:arbiter,hwe:arbiter); // arbitration
 }

The validWithdrawal test case uses two PTCs hwe and be each having its own test
behaviour, which is defined by behavioural functions validWithdrawal_hwe and
validWithdrawal_be as shown below.

 function validWithdrawal_hwe()

 runs on HWEmulator_CType {
 activate(HWEmulator_default());
 activate(HWEmulator_classifierdefault());
 authorizeCard_hwe();
 hwCom.call(selectOperation:{withdrawal}) {
 [] hwCom.getreply(selectOperation:{?} value true)
 {}
 }
 if (amount <= accnt.balance) {
 hwCom.call(withdraw:{amount},nowait);
 hwCom.getcall(deliverMoney: {amount});
 hwCom.getcall(display_:{"Take cash"});
 hwCom.getreply(withdraw:{?} value true);
 }
 else {
 log("not enough money on the card
 to withdraw amount");
 setverdict(inconc);
 }
 setverdict(pass);
 }

 function validWithdrawal_be()
 runs on BankEmulator_CType {
 activate(BankEmulator_default());
 bePort.getcall(findAccount: {current});
 bePort.reply(findAccount: {current} value accnt);
 bePort.getcall(debitAccount: {accnt,amount});
 bePort.reply(debitAccount: {accnt,amount}
 value true);
 setverdict(pass);
 }

Finally, the test case can be provided. According to the initial test configuration,
two PTCs hwe and be are used. The configuration is set up with
ATMSuite_Configuration. The test behaviour on the PTCs is started with
validWithdrawal_hwe and validWithdrawal_be. The arbiter
Arbitration(be,hwe) controls the correct termination of the test case. This
completes the mapping.

 //+ validWithdrawal() : Verdict
 testcase validWithdrawal_test()

 runs on MTC_CType system SUT_CType {
 var HWEmulator_CType hwe;
 var BankEmulator_CType be; // initial configuration
 ATMSuite_Configuration(system,mtc,be,hwe);
 hwe.start(validWithdrawal_hwe());
 be.start(validWithdrawal_be());
 Arbitration(be,hwe);
 }

5 Outlook

UML has been discovered by both software engineers and test developers to
specify system and test models in a platform independent manner. With an integrated
approach of developing a system and its tests within one framework, tests can be
developed more efficiently and economically. Special attention has been given to the
OMG’s initiative on defining a UML testing profile. It supports independent test
laboratories in their work but also the system engineers to perform the test runs by
their own.

The status of the basic test concepts and terminology which have been presented in
this paper can be regarded as a consensus of different R&D scientists and engineers
working in heterogeneous IT fields like object-oriented systems or telecom protocols
specifically on testing aspects. Fundamental elements of the UML testing profile’s
test architecture, test data and test behaviour have been collected and applied
exemplarily using UML related class and sequence diagrams. A comparison with the
established concepts of TTCN-3 confirms the suitability of the selected definitions in
the UML testing profile. The UML testing profile elements can be mapped to TTCN-
3 but not vice versa. This mapping allows to base implementations of the UML
testing profile on top of TTCN-3 test environments.

At the time of writing this contribution, the work on the UML profile for testing is
still ongoing in OMG and no final decisions have been made on the UML extension
mechanisms, i.e. stereotypes, constraints or tagged values, selected for the different
testing concepts. Due to the dependencies on the UML2.0 release, which is expected
only in 2003, it is expected that the final submission of the UML profile for testing
will be available mid to end of 2003. Nevertheless the importance of testing with
UML has to be elaborated earlier to assist its acceptance.

Acknowledgement

The authors thank the UTP consortium and supporters for the joint work and discussions.
Particular thanks go to Paul Baker, Oystein Haugen, Serge Lucio, Johan Nordin, Eric
Samuelson and Clay Williams.

References

1. J. Hartmann et al.: UML-Based Integration Testing. ISSTA´00. Portland, Oregon.
2. ETSI: Methods for Testing and Specifications (MTS); Methodological approach to

the use of object-orientation in the standards making process. ETSI EG 201 872
(August 2001). Sophia Antipolis (F).

3. ISO/IEC 9646-3: Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework (CTMF) - Part 3: The Tree and
Tabular Combined Notation (TTCN), edition 2, Dec. 1997.

4. M. Born et al.: Test Framework for Component-Based Systems. ICDCS’ 2000 & DS-
VV’2000, Taipei (Taiwan), April 2000.

5. ISO/IEC 9646: Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework (CTMF).

6. C. Crichton et al.: Using UML for Automatic Test Generation: ASE’2001.
7. A. Cavarra et al.: AGEDIS Language Specification. Project Deliverable 2.2. The

AGEDIS project, 2001, http://www.agedis.de.
8. L. Clark et al.: Achieving Cross-Platform Compatibility with Increased Productivity

and Quality using the OMG’s Model Driven Architecture. Lockheed Martin
Corporation, 2001.

9. ETSI ES 201 873-1: The Testing and Test Control Notation version 3; Part 1: TTCN-
3 Core Language. V2.1.0 (2001-10), 2001; also an ITU-T standard Z.140.

10. ETSI DES 201 873-3 V2.0.0: The Testing and Test Control Notation version 3;
Part3: Graphical Presentation Format for TTCN-3 (GFT). V2.0.0 (2001-11), 2001.

11. J.-C. Fernandez et al.: An experiment in automatic generation of test suites for
protocols with verification technology. Science of Computer Programming, 1997.
http://citeseer.nj.new.com/2326.html.

12. C. Jard, S. Pickin: COTE – Component Testing using the Unified Modelling
Language. - ERCIM News No.48, January 2002.

13. T. Vassiliou-Gioles et al.: Configuration and Execution Support for Distributed
Systems.- IWTCS’99, Budapest, Hungary, Sept. 1999.

14. E. Rudolph, J. Grabowski, and P. Graubmann. Towards a Harmonization of UML-
Sequence Diagrams and MSC. In R. Dssouli, G. v. Bochmann, and Y. Lahav, editors,
SDL'99 - The next Millenium. Elsevier, June 1999.

15. E. Rudolph, I. Schieferdecker, and J. Grabowski. Development of an MSC/UML Test
Format. BT'2000 - Formale Beschreibungstechniken für verteilte Systeme. Shaker
Verlag, Aachen, June 2000.

16. R. Soley: Model Driven Architecture: An Introduction. http://www.omg.org.
17. The Open Group: ADL 2.0 Translation System, 1998. http://adl.opengroup.org/
18. I. Wilie et al.: UML Action Specification Language (ASL) Reference Guide.

Kennedy Carter Ltd., Feb. 2001.
19. R. Hightower, N. Lesiecki: Java Tools for eXtreme Programming, Wiley Computer

Publishing, 2002.
20. I.Schieferdecker, J. Grabowski: The Graphical Format of TTCN-3 in the context of

MSC and UML. Proceedings of the 3rd Workshop of the SDL Forum Society on
SDL and MSC (SAM'2002), Aberystwyth (UK), June, 24 - 26, 2002.

21. UML testing profile home page: http://www.fokus.gmd.de/U2TP/

