
85

Conformance Testing with TTCN
I N A S C H I E F E R D E C K E R A N D J E N S G R A B O W S K I

The Tree and Tabular Combined Notation (TTCN) is a semi-formal notation which supports
the specification of abstract test suites for protocol conformance testing. An abstract test
suite is a collection of abstract test cases1). As indicated by the name TTCN, test cases are
described in the form of behavior trees and different kinds of tables are used for the graphi-
cal representation of test suites.

Ina Schieferdecker (33) received
her PhD from the Technical Uni-
versity Berlin in 1994. Since 1993
she has been a researcher at
GMD Fokus, and a lecturer at
Technical University Berlin since
1995. Her interests cover testing
methods for distributed systems
and formal methods for the
design, validation and prototyp-
ing of distributed systems. She
has been head of the Compe-
tence Center for Testing, Inter-
operability and Performance
(TIP) since 1997 and is actively
involved in several testing pro-
jects. She has published several
papers on testing telecommuni-
cations systems and developing
test systems, and is involved in
the definition of MSC in ITU-T
SG10 and of TTCN-3 in ETSI.

Schieferdecker@fokus.gmd.de

Jens Grabowski (38) graduated
from the University of Hamburg
with a diploma degree in Com-
puter Science and Chemistry.
He spent two years at SIEMENS
AG in Munich focusing on proto-
col specification and protocol
validation based on Petri Nets,
SDL and MSC. 1990–1995 he
was research scientist at the
University of Berne, where he
received his PhD in 1994. Since
1995 Grabowski has been
researcher and lecturer at the
Institute for Telematics at the
Medical University in Lübeck;
since 1996 he has also worked
as expert in several ETSI stan-
dardization projects. He is a
member of the ETSI experts
team which develops the third
edition of TTCN.

jens@itm.mu-luebeck.de

1) CTMF and TTCN use the terms abstract and executable to distinguish between implementation-
independent and implementation-dependent concepts, e.g. abstract test suite and executable test
suite, abstract test case and executable test case or abstract service primitive. This paper intro-
duces mainly implementation-independent CTMF and TTCN concepts. Qualifiers like abstract or
executable will only be used in case of ambiguities.

“Product testing is still seen as the only reli-
able way to assure that outsourced products
meet the required specification and are suit-
able for inclusion in the live network.”
Cited from Counting on IT, Issue 7 by
National Physical Laboratory, UK, Summer
1998.

1 Introduction
TTCN [3] is the means of the Conformance
Testing Methodology and Framework (CTMF)
for the description of test suites for conformance
testing. See terminology and explanations in
Box 1. TTCN has two syntactical forms (Figure

1), called TTCN/gr (TTCN GRaphical form) and
TTCN/mp (TTCN Machine Processable form).
TTCN/gr is intended to be used by humans and
TTCN/mp is developed for the exchange of doc-
uments between different computers and for fur-
ther processing of TTCN test suites. A TTCN/gr
description can be translated into an equivalent
TTCN/mp representation and vice versa. In this
paper only TTCN/gr examples are presented.

In the following, the different TTCN constructs
are described by developing an example test
suite2). The system to be tested is a parcel ser-
vice. A test case should check whether the parcel

1 (PS_Init:= Reset_ParcelService())

2 [PS_Init] (P)

3 [NOT PS_Init] I

Detailed Comments:

Nr Label Behaviour Description Constraints Ref Verdict Comments

Test Step Name : Preamble

Group :

Objective : To bring the SUT into the initial state

Default :

Comments :

Description :

Test Step Dynamic Behaviour

Figure 1 The TTCN forms: TTCN/gr and corresponding TTCN/mp code below the table

...
$Begin_TestStep
$TestStepId Preamble
$TestStepRef Example_ATS/
$Objective /* To bring the SUT into the initial state */
$DefaultsRef
$BehaviourDescription
$BehaviourLine
$LabelId
$Line [0] (PS_Init:= Reset_ParcelService())
$Cref
$VerdictId
$End_BehaviourLine
$BehaviourLine

$LabelId
$Line [1] [PS_Init]
$Cref
$VerdictId (P)
$End_BehaviourLine
$BehaviourLine
$LabelId
$Line [1] [NOT PS_Init]
$Cref
$VerdictId I
$End_BehaviourLine
$End_BehaviourDescription
$End_TestStep

Telektronikk 4.2000

86 Telektronikk 4.2000

Underlying Service

LT

TCP

IUT

UT

PCO

PCO

PDUs

ASPs

Conceptual Test Architecture

Conformance Testing Framework

Testing a system is performed in order to assess its quality and to

find errors. An error is considered to be a discrepancy between

observed or measured values provided by the system under test

and the specified or theoretically correct values. Testing is the pro-

cess of exercising or evaluating a system or system component by

manual or automated means to verify that it satisfies specified

requirements. It approves a quality level of a tested system.

Conformance testing in particular is the process of testing the

extent to which implementations of OSI protocol entities adhere to

the requirements stated in the relevant standard or specification.

Conformance testing is functional black-box testing. The term

functional refers to the correct functional behavior of an Implemen-

tation Under Test (IUT), i.e. the correct input/output behavior in

each state. Black-box testing means that the internal structure of

the IUT remains hidden, i.e. it is a black box for the test developer.

The OSI conformance testing procedure is defined in the interna-

tional ISO/IEC standard 9646 Conformance Testing Methodology

and Framework (CTMF) [1]. CTMF consists of seven parts and

covers the following aspects: concepts (part 1), test suite specifi-

cation and test system architectures (part 2), test notation (part 3),

test realization (part 4), means of testing and organizational

aspects (part 5, 6, and 7). The Tree and Tabular Combined Nota-

tion (TTCN) is defined in part 3 of CTMF. By definition, the target

systems to be tested according to the CTMF principles are imple-

mentations of OSI protocol entities. However, CTMF and TTCN

are applicable in a much wider scope than OSI-based systems.

The CTMF principles and TTCN have also been applied success-

fully for conformance testing of ODP-, TINA-, CORBA- and IP-

based systems, APIs and reactive systems in general3).

In conformance testing, the IUT is an implementation of an OSI

protocol entity. The IUT is part of an open system called System

Under Test (SUT). The conceptual conformance test architecture

is shown in the figure below.

The IUT has an upper and a lower interface through which it is

tested. Conformance testing is done at standardized interfaces

called Points of Control and Observation (PCOs)4). Typically, the

lower interface of an IUT is accessible only from remote. There-

fore, the underlying service of the IUT is used to define an appro-

priate PCO on a remote site, i.e. the lower interface of the IUT is

moved to the remote site. Communication is always meant to be

asynchronous and therefore, a PCO is modeled by two FIFO

queues, i.e. one queue for each direction.

CTMF distinguishes between an Upper Tester function (UT) and a

Lower Tester function (LT). As indicated by the names, the upper

interface of the IUT is controlled by the UT and the lower interface

is controlled by the LT. During the test, the UT plays the role of a

user that makes use of the service provided by the IUT and the LT

plays the role of a peer entity of the IUT, i.e. the LT and the IUT

communicate in order to provide the service to the UT.

IUT and UT communicate by means of Abstract Service Primitives

(ASPs). Conceptually, IUT and LT provide their service by

exchanging Protocol Data Units (PDUs). In practice, the PDUs are

encoded in ASPs of the underlying service, i.e. PDUs will not be

exchanged directly. However, CTMF allows to abstract from the

encoding of PDUs, i.e. allows to specify the exchange of PDUs in

abstract test cases. Therefore, it is not necessary to distinguish

between ASP and PDU explicitly, and hence, only the term PDU is

used.

As shown in the figure, Test Coordination Procedures (TCP) can

be used to coordinate the actions of LT and UT. This might be

necessary if LT and UT are realized in separate tester processes.

The figure presents the conceptual test architecture only. In prac-

tice, several variations of the conceptual test architecture are

used. The test methods defined in CTMF are local, distributed,

coordinated and remote test method. They differ in the possibili-

ties to coordinate LT and UT and the ability to control and observe

2) Only a few TTCN tables can be presented in this paper, but the complete example test suite is available from the authors.
3) An overview of the use of conformance testing and TTCN is given in [9].
4) In most cases, a PCO maps to a Service Access Point (SAP) in the OSI basic reference model.

87Telektronikk 4.2000

Postamble

End State
(Verification)

End State
(Test Body)

Test State

Stable State

Preamble

Test Body

Verification

Test Case Scheme

the IUT. In addition, CTMF defines a multi-party context which

allows to combine the different test architectures in order to spec-

ify tests with several UT and LT processes.

The test case development starts with the identification of test pur-

poses. A test purpose is a prose description of a single require-

ment or a set of related requirements which should be tested. Test

purposes are identified based on the requirements in the specifi-

cation of the IUT.

A test case is the implementation of a test purpose for a particular

test architecture, i.e. a complete specification of the actions

required to achieve a specific test purpose. The definition of a test

case follows the schema shown below.

A test case starts and ends in stable testing states, which need

not to be identical. It consists of a preamble, a test body, an

optional verification step and a postamble. With the preamble, the

IUT is driven from a stable testing state to the test state from

which the test body is performed in order to check the test pur-

pose. If the end state of the test body is not unique, it has to be

checked by a verification step and then a postamble is used to

drive the IUT into a stable testing state again. Otherwise, the IUT

is put into a stable testing state immediately with the postamble.

Test cases developed according to the principles of CTMF are

abstract. Executable test cases are derived from abstract ones by

compilation and adaptation to the Means of Testing (MoT). The

MoT is the combination of equipment and procedures that can

perform the derivation, selection, parameterization and execution

of test cases. It consists typically of dedicated test devices and

facilities for the coordination of test devices and the observation of

the IUT. These facilities may be installed inside the SUT.

service behaves as shown in Figure 2. A pro-
ducer asks for a service offer and the parcel ser-
vice indicates within a certain time frame that
a 24h delivery service is available. Then, the
goods are sent to the parcel service, which deliv-
ers them to the consumer. The consumer accepts
the goods by sending an acknowledgement to
the parcel service. The acknowledgement is for-
warded as a confirmation to the producer. The
confirmation is expected within 24h in accor-
dance with the service assured by the parcel ser-
vice. Not shown in Figure 2 is the possibility of
the parcel service promoting new services to the
producer by sending advertisements at any time.

The test architecture for testing the parcel ser-
vice is shown in Figure 3. The IUT is the parcel
service which is connected to the LT functions
Consumer and Producer through the PCOs
LT_Cons and LT_Prod. This test architecture
can be seen as a combination of two remote test
methods in a multi-party context, i.e. a special
variant of the conceptual test architecture de-

scribed in Box 1. In this section, a non-concur-
rent test case will be developed, i.e. the
behaviour of both LT functions will be imple-
mented in one test component which controls
and observes both PCOs.

2 Basics of TTCN
A TTCN test suite is composed of four parts: an
overview part (Section 2.1), a declarations part
(Section 2.2), a constraints part (Section 2.3) and
a dynamic part (Section 2.4).

2.1 Overview Part and
Test Suite Structure

The overview part of a TTCN test suite can be
seen as a table of contents and provides all infor-
mation needed for the general presentation and
understanding of the test suite. It defines the test
suite name and test architecture, describes the
test suite structure, provides references to addi-
tional documents related to the test procedure
and includes indexes for the test cases, test steps
and default behaviour descriptions5).

5) The meaning of test steps and default behaviour descriptions will be explained in Section 2.4.

Conformance Testing Framework, continued

88 Telektronikk 4.2000

The documents related to the test procedure are
the specification on which the test suite is based,
a PICS (Protocol Implementation Conformance
Statement) document and a PIXIT (Protocol
Implementation eXtra Information for Testing)
document. In most cases, the referenced specifi-
cation is a protocol standard. The PICS docu-
ment is a questionnaire on mandatory and
optional features of the IUT and the PIXIT docu-
ment is a questionnaire on additional informa-
tion required for the test execution such as
address and timer information.

The different elements of a TTCN test suite
appear in a predefined strict order. Only in the
dynamic part it is possible to define a logical
structure for test cases, test steps and default
behaviour descriptions by putting them into
groups and subgroups (Figure 4). Test events are
the smallest elements and are explained in Sec-
tion 2.4.2. The test suite for the parcel service
example contains only one test group, which is
specified in Figure 5.

2.2 The Declarations Part
The declarations part provides definitions and
declarations used and referenced in the subse-
quent parts of the test suite. Specifically, the
declarations part defines and declares types,
operations, selection expressions, test compo-
nents, PCOs, timers, variables, constants and the
encoding of ASPs and PDUs. In the following,
the data types are explained and examples of
operation definitions, test suite parameter decla-
rations, variable declarations, timer declarations
and PDU type definitions are given.

Parcel
Service
(IUT)

CustomerProducer

Test Case Description

LT_ConsLT_Prod

Figure 3 Test Architecture
for the Parcel Service

Test Event Test Event Test Event

Test Step Test Step Test Step

Test Case Test Case Test Case

Test Group Test Group

Test Group Test Group Test Group

Test Suite
Figure 4 Structure in a Test Suite

Customer

T_ParcelService

Parcel ServiceProducer

MSC Example

24h_Service

Acceptance

Offer

Indication

T_Consumer
Send

Confirmation

Deliver

Acknowledge

Figure 2 Behaviour of a Parcel Service

89Telektronikk 4.2000

2.2.1 Data Types
TTCN has its own data type system and allows
the usage and definition of ASN.1 data types.6)

The TTCN type system includes the predefined
data types INTEGER, BOOLEAN, BITSTRING,
HEXSTRING, OCTETSTRING, and various
character strings such as IA5String, Numeric-
String and PrintableString. In addition, TTCN
allows to define structured types which are com-
parable to C structures or ASN.1 sequences. For
the usage of ASN.1, TTCN provides special
tables, which include pure ASN.1 code.

2.2.2 Test Suite Operations
Test suite operations are comparable to functions
in common programming languages like C or
Pascal. They can be used to encapsulate any
functionality relevant for the test execution such
as setting up basic connections, resetting the IUT
or just calculating a specific value. An example
for the definition of a test suite operation is
shown in Figure 6. The table header contains the
name of the operation, a description of the input
parameters and the type of the result. The table
body includes the behaviour specification of the
operation which may either be given in the form
of a pseudo-code like procedural definition lan-
guage or in the form of an informal textual
description. For simplicity, the behaviour speci-
fication of the operation in Figure 6 has been
omitted.

2.2.3 Test Suite Parameters
Test suite parameters are global parameters of
the test suite. Typically, they are derived from
the PICS and PIXIT documents and are constant
during test execution. Test suite parameters
serve as a basis for test case selection and for the
parameterization of test cases. The declaration of
the test suite parameter Duration_T_Parcel-
Service of the parcel service example is shown
in Figure 7. The parameter is used to set the
duration of timer T_ParcelService in Figure 9.

2.2.4 Variables
TTCN supports two types of variables: test suite
variables and test case variables. Test suite vari-
ables are defined globally and retain their values
throughout the whole test campaign. They are
used to pass information from one test case to
another. Test case variables are also declared
globally, but their scope is local to a test case.
Each test case receives a fresh copy of all test
case variables when it is started. The declaration
of the test case variable PS_Init with the initial
value TRUE is shown in Figure 8. In Figure 1,
PS_Init is used to store the result of the test suite
operation Reset_ParcelService given in Figure 6.

Figure 5 Test Suite Structure

Suite Name : Example_ATS

Standards Ref : None

PICS Ref : None

PIXIT Ref : None

Test Method(s) : Remote Test Method

Comments : This is an ATS for explaining selected TTCN constructs.

Test Suite Structure

Test Group Reference Selection Ref Test Group Objective Page Nr

Valid/ Test the valid behaviour 18
of the Parcel Service.

Detailed Comments:

Figure 8 Declaration of a Test Case Variable

Test Case Variable Declaration

Variable Name Type Value Comments

PS_Init BOOLEAN TRUE This is to store the result of the
Reset_ParcelService TSO.

Detailed Comments:

Figure 7 Declaration of a Test Suite Parameter

Test Suite Parameter Declarations

Parameter name Type PICS/PIXIT Ref Comments

Duration_T_ParcelService INTEGER This is the timeout
period for the timer to
watchdog the indication
process of the Parcel
Service.

Detailed Comments:

Figure 6 Definition of a Test Suite Operation

Operation Name : Reset_ParcelService

Result type : BOOLEAN

Comments : This is used to initialize the Parcel Service, e.g. the storage
capacity should be reset.

Test Suite Operation Definition

Description

...

Detailed Comments:

6) For further information on ASN.1, please refer to [7] and to the paper on ASN.1 in this issue of the journal.

90 Telektronikk 4.2000

2.2.5 Timer Declarations
As shown in Figure 9, timers are declared with
their name, an optional default duration and a
timeout period in the range from pico second
(ps) up to minute (min). The two timers
T_ParcelService and T_Consumer of the parcel
service example (Figure 4) are declared in Fig-
ure 9. The default duration of T_ParcelService

is set to the test suite parameter Duration_T_
ParcelService (Figure 7). The default duration
of T_Consumer is given by an expression of type
INTEGER reflecting the 24h=24*60min dura-
tion for the 24h service.

2.2.6 PDU Definitions
Instances of PDU types are (either directly or
embedded in ASPs) sent to or received from the
IUT at PCOs. As presented in Figure 10, the def-
inition of a PDU type consists of its name, the
PCO type associated with the PDU type, and a
list of PDU fields. Each PDU field is defined by
its name and its type. The encoding of PDU
fields follows the relevant protocol specification
unless encoding information is included in the
test suite. Figure 10 defines the Offer PDU of the
parcel service example (Figure 2). The definition
is given in the form of an ASN.1 PDU type defi-
nition and shows the usage of ASN.1 in TTCN.
The table body includes a pure ASN.1 type defi-
nition. The Offer PDU type uses a unique object
identifier referring to the type of goods and an
INTEGER value referring to the amount of
goods that should be delivered.

2.3 The Constraints Part
The constraints part of a TTCN test suite pro-
vides the values of the PDUs (and ASPs) to be
sent to or received from the IUT. This is done by
means of PDU (and ASP) constraints. A PDU
constraint is related to a PDU type and describes
a concrete value or value ranges of the PDU
type. Constraints are referenced in the dynamic
part of a test suite (Section 2.4) in order to de-
scribe the PDU exchange in the different test
cases. A constraint specification will follow the
structure of the corresponding PDU type and can
be specified either in tabular form or in the form
of the ASN.1 value notation.

A constraint for a PDU which should be sent to
the IUT, has to provide concrete values for all
PDU fields. An example constraint for the Offer
PDU type (Figure 10) is presented in Figure 11.
It defines the value of the type_of_good field to
be {1 2 3 4 5} and the value of the amount_of_
good field to be 100.

A constraint for a PDU that is received from the
IUT may define value ranges for the PDU fields.
TTCN provides powerful matching mechanisms
to specify specific values (if concrete values are
expected) and to specify value ranges (if several
values are expected). Value ranges can be speci-
fied by referring to any value of a given type, by
listing specific values, by complementing spe-
cific values or by providing value patterns.
Value patterns are described by using wildcards
such as ‘*’, ‘-‘ or ‘?’.

Figure 9 Timer Declaration

Timer Declaration

Timer Name Duration Unit Comments

T_ParcelService Duration_T_ParcelService min Timer between Offer and
Indication

T_Consumer 24*60 min Timer between Send and
Confirmation

Detailed Comments:

Figure 10 A PDU Type Declaration

PDU Name : Offer

PCO Type : LT_PCO

Encoding Rule Name :

Encoding Variation :

Comments : Ask for an offer to deliver certain goods by the Parcel
Service

ASN.1 PDU Type Definition

Type Definition

SEQUENCE {type_of_good OBJECT IDENTIFIER, amount_of_good INTEGER}

Detailed Comments:

Figure 11 Sending Constraint for an Offer PDU

Constraint Name : Offer_Large

PDU Type : Offer

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments : Sending a question for an offer to the Parcel Service

ASN.1 PDU Constraint Declaration

Constraint Value

{type_of_good {1 2 3 4 5}, amount_of_good 100}

Detailed Comments:

91Telektronikk 4.2000

An example for a constraint of the Indication
PDU which should be received from the IUT of
the parcel service example is shown in Figure
12. The Indication PDU which matches the con-
straint must have information about the deliv-
ered goods, i.e. the kind and amount of goods
must be identical to the information contained in
the preceding Offer PDU (Figure 11). In addi-
tion, an order number and an indication of the
24h service has to be received, but these can
have any values (indicated by ‘?’). The comment
field can be omitted or have any value (indicated
by ‘*’).

2.4 The Dynamic Part
The dynamic part describes the dynamic
behaviour of the tester processes by test cases,
test steps and default behaviour descriptions.

2.4.1 Test Cases, Test Steps and
Default Behaviour Descriptions

A test case is a complete program, which has to
be executed in order to judge whether a test pur-
pose (cf. Box 1) is fulfilled or not. Test cases
can be structured into test steps and default be-
haviour descriptions.

A test step can be seen as a procedure definition
which can be called in test cases by means of an
ATTACH operation. Figure 13 presents a TTCN
test case description. In lines 1 and 4 of the table
body, the test steps Preamble and Postamble are
attached to the test case behaviour. The corre-
sponding TTCN specifications can be found in
Figure 1 and Figure 14.

A default behaviour description is a special test
step and copes with exceptional test situations
where the IUT does not behave in an expected
manner. In contrast to a test step, a default
behaviour description is not used inside a test
case or test step behaviour description. Instead,
it is referenced in the table header. Figure 15
presents the default behaviour description Other-
wiseFail. This is the default for the parcel ser-
vice example and referenced by the test case
shown in Figure 13.

The specification of the test behaviour is identi-
cal for test cases, test steps and default
behaviour descriptions and can be found in the
body of the corresponding tables (Figures 1, 13,
14, 15). The body consists of columns and rows.
The Nr. column includes row numbers. The
Label column allows to specify labels for the
TTCN statements defined in the Behaviour
Description column. The Constraints Ref. col-
umn provides references to constraints (Section
2.3). The Verdict column includes verdict
assignments to indicate the success or failure of
a test run with respect to the sequence of state-
ments that have been performed. In the follow-

Figure 12 Receiving Constraint for an Indication PDU

Constraint Name : Indication_24h

PDU Type : Indication

Derivation Path :

Encoding Rule Name :

Encoding Variation :

Comments : Receive an offer from the Parcel Service.

ASN.1 PDU Constraint Declaration

Constraint Value

{goods {type_of_good {1 2 3 4 5}, amount_of_good 100}, order ?,
delivery_time 24, comments*}

Detailed Comments:

Figure 13 Test Case Description

Test Case Name : Indication_1

Group : Valid/

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Selection Ref :

Description : Test the offer and indication sequence of behaviour.

Test Case Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +Preamble

2 LT_Prod !Offer Offer_Large
START T_ParcelService

3 L1 LT_Prod ?Indication Indication_24h (P)
CANCEL T_ParcelService

4 +Postamble

5 LT_Prod ?Advertisement Advertisement_Any Ignore
advertisement

6 GOTO L1

Detailed Comments:

Figure 14 Test Step Description

Test Step Name : Postamble

Group :

Objective : To reset the test system and to assign the final verdict.

Default :

Comments :

Description :

Test Step Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CANCEL

2 [TRUE] R

Detailed Comments:

92 Telektronikk 4.2000

ing sections, all TTCN statements are intro-
duced, the execution of behaviour descriptions
is explained and the assignment of test verdicts
is described.

2.4.2 TTCN Statements
The Behaviour Description column includes
TTCN statements. TTCN statements can be
grouped into test events, control constructs and
pseudo events.

Test events are SEND, IMPLICIT SEND,
RECEIVE, OTHERWISE and TIMEOUT.
SEND and IMPLICIT SEND specify the send-
ing of PDUs. RECEIVE and OTHERWISE
denote the processing of received PDUs. OTH-
ERWISE is the mechanism for dealing with
unforeseen test events and denotes that the test
system shall accept any incoming PDU. TIME-
OUT events check for the expiration of timers.
Test events may be qualified and/or followed by
assignments and timer operations. Instead of
keywords, TTCN uses ‘!’ to describe send
events and ‘?’ to denote receive events. For
example, the statement LT_Prod ! Offer (Figure
13, line 2) describes the sending of PDU Offer
via PCO LT_Prod to the IUT and the statement
LT_Prod ? Advertisement (Figure 13, line 5)
denotes the reception of PDU Advertisement at
PCO LT_Prod from the IUT.

Control constructs are ATTACH, GOTO and
REPEAT. The ATTACH construct allows to
attach test steps. GOTO transfers control to a
statement identified by a label in the Label col-
umn and REPEAT is used for the specification
of loops.

Pseudo events are qualifiers (i.e. boolean expres-
sions), timer operations (i.e. SET, READTIMER
and RESET) and assignments.

The TTCN statements in a behaviour description
can be grouped into statement sequences and
sets of alternatives. Statement sequences are
represented one after the other on separate lines,

being indented from left to right. The statements
on lines 1 to 4 in Figure 13 constitute a state-
ment sequence. Statements on the same level of
indentation and identical predecessor form a set
of alternatives. In Figure 13, the statements on
lines 3 and 5 form a set of alternatives. They are
on the same level of indentation and their com-
mon predecessor is the statement on line 2.

2.4.3 Behaviour Execution
The execution of a behaviour description will be
explained by means of Figure 13. Execution
starts with the first level of indentation (line 1)
and proceeds towards the last level of indenta-
tion (lines 4 and 6). Only one alternative out of a
set of alternatives at the current level of indenta-
tion is executed, and execution proceeds with the
next level of indentation relative to the executed
alternative. For example, the statements on lines
3 and 5 are alternatives. If the statement on line
3 is executed, processing continues with the
statement on line 4. Execution of a behaviour
description stops if the last level of indentation
has been visited, a final test verdict has been
assigned (see below), or a test case error has
occurred.

Before a set of alternatives is evaluated, a snap-
shot is taken. This means that the state of the test
component, the state of all PCOs and all expired
timer lists related to the test case are updated and
frozen until the set of alternatives has been eval-
uated. This guarantees that the evaluation of a
set of alternatives is an atomic and deterministic
action.

Alternatives are evaluated in the order of their
specification. The first alternative with success-
ful evaluation is executed, i.e. all conditions of
that alternative are fulfilled. Execution then pro-
ceeds with the set of alternatives on the next
level of indentation. If no alternative can be
evaluated successfully, a new snapshot is taken
and the evaluation of the set of alternatives is
started again.

2.4.4 Verdict Assignment
Test verdicts are assigned in the Verdict column
of test cases, test steps and default behaviour de-
scriptions. TTCN supports three different ver-
dicts: PASS to indicate that the test behaviour
gives evidence for conformance, FAIL to de-
scribe that the specification has been violated,
and INCONCLUSIVE for cases where neither
a PASS nor a FAIL can be given.

TTCN distinguishes between preliminary and
final test verdicts. Preliminary verdicts are given
in parentheses, e.g. the preliminary PASS in line
3 of Figure 13. Final verdict assignments are
specified without parentheses, e.g. the three final
FAIL verdicts in Figure 15. The difference

Figure 15 Default Behaviour
Description

Default Name : OtherwiseFail

Group :

Objective : Cover all unexpected reactions from the IUT.

Comments :

Description :

Dynamic Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 LT_Prod?OTHERWISE F

2 LT_Cons?OTHERWISE F

3 ?TIMEOUT F

Detailed Comments:

93Telektronikk 4.2000

between a preliminary and a final test verdict is
that the assignment of a final test verdict termi-
nates the test case execution, i.e. it can be con-
sidered to be a combination of a verdict assign-
ment and a subsequent stop operation.

For the handling of test verdicts, each test case
has a predefined variable R. Variable R stores
the current preliminary verdict of a test case and
its value becomes the final verdict if the test case
ends without the assignment of a final verdict. In
other words, the assignment of a test verdict in
the Verdict column of a behaviour description is
an assignment to variable R. As shown in Figure
14, variable R can also be used to calculate the
final verdict of a test case. The entry R in the
Verdict column indicates that the test case ends
and that the actual value of R will be the final
verdict.

There are special rules for the assignment of ver-
dicts during the execution of a test case. They
are shown in Figure 16 and can be summarized
as: “A verdict can only become worse”. For
example, if the value of R is (FAIL), then the
assignment of (PASS) or (INCONCLUSIVE)
will have no effect on R. Please note that the
value none in Figure 16 describes the situation
where R has not been initialized, i.e. no prelimi-
nary verdict has been assigned to R.

2.4.5 The Example Test Case
The test case Indication_1 in Figure 13 should
be read as follows: the test case starts with the
execution of test step Preamble in order to ini-
tialise the parcel service. Afterwards, an Offer is
sent to the parcel service at PCO LT_Prod and
the timer T_ParcelService is started. Then, two
alternative events are expected:. Either, an Indi-
cation or an Advertisement is received. If an
Indication is received (line 3), the timer
T_ParcelService is cancelled, a preliminary
PASS verdict is assigned and Postamble is exe-
cuted in order to reset the test system. If an
Advertisement is received (line 5), a GOTO
statement is used (line 6) to put the test case con-
trol back to the set of alternatives at label L1 in
order to await the expected Indication PDU.

The Preamble (Figure 1) executes the test suite
operation Reset_ParcelService and stores the
result in the test case variable PS_Init. In case
of a successful initialisation, i.e. the value of
PS_Init is TRUE, a preliminary PASS verdict is
assigned (line 2) and the test case proceeds with
the execution. If the initialisation is not success-
ful, i.e. PS_Init has the value FALSE, a final
INCONCLUSIVE verdict is assigned (line 3)
which terminates the test execution.

The Postamble (Figure 14) resets the test system
by cancelling all running timers (line 1). Finally,

it assigns the final verdict by referring to the
value of the special verdict variable R (line 2).

The default behaviour OtherwiseFail (Figure 15)
defines that the reception of any other PDU at
LT_Prod (line 1) or LT_Cons (line 2) will lead
to the assignment of a FAIL verdict and the ter-
mination of the test case. In addition, the occur-
rence of a timeout (line 3) will also terminate the
test case with the final test verdict FAIL.

3 Concurrency in TTCN
The term concurrent TTCN refers to TTCN lan-
guage constructs and concepts for the descrip-
tion of concurrent test cases. In concurrent
TTCN, each test case consists of several test
components that execute independently and in
parallel. A Main Test Component (MTC) con-
trols the test case execution and creates Parallel
Test Components (PTCs). The MTC cannot stop
PTCs but has the possibility to check their termi-
nation by means of a DONE statement. A test
case always ends when the MTC ends. Each test
component controls its own local verdict. The
final verdict of a test case is calculated according
to the rules described in Figure 16 by the MoT.

Test components can coordinate themselves by
exchanging Coordination Messages (CMs) at
Coordination Points (CPs). CPs connect test
components and are similar to PCOs. CMs are
similar to PDUs, but they are used for the infor-
mation exchange among test components only.

A concurrent test configuration for the parcel
service example is given in Figure 17. It uses
PTC_Main as MTC, which creates the PTCs
PTC_Prod and PTC_Cons. The PTCs control

Current Entry in verdict column
value of R (PASS) (INCONC) (FAIL)

none pass inconc fail

pass pass inconc fail

inconc inconc inconc fail

fail fail fail fail

Figure 16 Handling of Test
Verdicts

Parcel
Service
(IUT)

PTC_ProdPTC_Prod

LT_ConsLT_Prod

CP1

PTC_Main

Figure 17 Example of a
Concurrent Test Architecture

94 Telektronikk 4.2000

and observe the IUT via the PCOs LT_Prod and
LT_Cons. They coordinate themselves through
the coordination point CP1.

The definition of the MTC PTC_Main for an
example test case is shown in Figure 18. After
the Preamble (line 1), PTC_Main creates
PTC_Prod and PTC_Cons (line 2). The
behaviour of the PTCs is given by the test step
descriptions Deliver_1_Prod and
Deliver_1_Cons. The test behaviour can be
related to Figure 2: Deliver_1_ Prod covers the
testing of the sequence from Offer to Confirma-
tion at PCO LT_Prod, while Deliver_1_Cons
covers the Delivery and Acknowledgment events
at PCO LT_Cons. PTC_Main waits for the ter-
mination of the two PTCs through a DONE
statement. The MTC assumes their successful
termination by assigning a preliminary pass ver-
dict7) (line 3). Finally, the Postamble finishes
the test case.

The use of a CM is shown in Figure 19. The CM
Continue on line 1 enables the PTC to proceed
with the test execution by expecting to receive
a Delivery PDU at PCO LT_Cons (line 2). The
Delivery should be parameterized with the cor-
rect order number which was sent to PTC_Cons
as a parameter of the CM. This number is used
as a parameter to the constraint for Delivery. At
the end, PTC_Cons initiates a proper Acknowl-
edgment and terminates.

4 Outlook:
Next Version of TTCN

Currently, the third edition of TTCN (TTCN-3)
is in work at ETSI [4, 10]. TTCN-3 is a text-
based language for the specification of tests for
reactive systems. TTCN-3 is on a syntactical
(and methodological) level a drastic change
compared to the previous TTCN versions. How-
ever, the main concepts of TTCN have been
retained and improved and new concepts have
been included, so that TTCN-3 will be applica-
ble for a broader class of systems. New concepts
are e.g. a test execution control program to
describe relations between test cases such as
sequences, repetitions and dependencies on test
outcomes, dynamic concurrent test configura-
tions, and test behaviour in asynchronous and
synchronous communication environments. Fur-
ther improved concepts are, e.g. the integration
of ASN.1, the module and grouping concepts to
improve the test suite structure, and the test
component concepts to describe concurrent test
setups.

Figure 18 Description of PTC_Main

Test Case Name : Deliver_1

Group : Valid/

Purpose :

Configuration : Example_Conc_Conf

Default :

Comments :

Selection Ref :

Description : Test the offer and indication sequence of behaviour.

Test Case Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +Preamble

2 CREATE (PTC_Prod: Deliver_1_Prod,
PTC_Cons: Deliver_1_Cons)

3 ?DONE(PTC_Prod, PTC_Cons) (P)

4 +Postamble

Detailed Comments:

Figure 19 Description of PTC_Cons

Test Step Name : Deliver_1_Cons

Group : ConcurrentVersion/

Objective :

Default : OtherwiseFail_LT_Cons

Comments :

Description :

Test Step Dynamic Behaviour

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CP1 ?Continue(Order_No:= Continue_Order_Recv
Continue.order)

2 LT_Cons ?Deliver Deliver_Large (P)
(Order_No)

3 LT_Cons !Acknowledge Acknowledge_Large
(Order_No)

Detailed Comments:

testcase Indication_1() runs on MTCType {
// Test the offer and indication sequence of behaviour

activate(OtherwiseFail)
Preamble();
LT_Prod.send(Offer_Large);
T_ParcelService.set;
alt {

[] LT_Prod.receive(Indication_24h) {
T_ParcelService.stop;
verdict.set(pass);
Postamble()

}
[] LT_Prod.receive(Advertisement_Any); {

goto alt;
}

}
}

Figure 20 TTCN-3 Description of Figure 13

7) Please note that any worse verdict returned by
one of the test components will overrule this
assignment according to the table given in
Figure 16.

95Telektronikk 4.2000

The top-level unit of a TTCN-3 test suite is the
module which can import definitions from other
modules. A module consists of a definitions part
and a control part. The definitions part of a mod-
ule covers definitions for test components, their
communication interfaces, type definitions, test
data templates (previously known as con-
straints), functions, and test cases. The control
part of a module calls the test cases and
describes the test campaign. For this, control
statements similar to statements in other pro-
gramming languages (e.g. if-then-else and while
loops) are supported. They can be used to spec-
ify the selection and execution order of individ-
ual test cases. TTCN-3 provides a variety of
constructs to describe test behaviour within a
test case such as the alternative reception of
communication events and their interleaving.
Moreover, default behaviour can be covered, e.g.
unexpected reactions from the system under test.
In addition to the automatic test verdict assign-
ment, more powerful logging mechanisms are
provided, e.g. for detailed tracing. An example
of a TTCN-3 test case definition is shown in
Figure 20. It is the TTCN-3 representation of the
TTCN test case in Figure 13.

In addition to the pure textual format, TTCN-3
will define at least two presentation formats: A
tabular conformance testing presentation format
[5] that resembles the tabular form of TTCN and
a graphical presentation format [6, 8] that sup-
ports the presentation and also the development
of TTCN-3 test cases, as Message Sequence
Charts (MSC).

References
1 ISO. Information Technology – Open Sys-

tems Interconnection – Conformance Testing
Methodology and Framework. – Seven Parts
Standard. Geneva, 1991–1999 (includes [2]
and [3]). (ISO/IEC 9646.)

2 ISO. Information Technology – Open Sys-
tems Interconnection – Conformance Testing
Methodology and Framework – Part 2:
Abstract test suite specification. Geneva,
1991. (ISO/IEC 9646-2.)

3 ISO. Information Technology – Open Sys-
tems Interconnection – Conformance Testing
Methodology and Framework – Part 3: The
Tree and Tabular Combined Notation
(TTCN). 2nd ed. Geneva, 1998. (ISO/IEC
9646-3.)

4 ETSI. TTCN-3 – Core Language. European
Norm (EN) 00063-1 (provisional). Sophia-
Antipolis, 2000. (ETSI TC MTS.)

5 ETSI. TTCN-3 – Tabular Presentation For-
mat. EN00063-2 (provisional). Sophia-
Antipolis, 2000. (ETSI TC MTS.)

6 ETSI. TTCN-3 – MSC Presentation Format.
EN00063-3 (provisional). Sophia-Antipolis,
2000. (ETSI TC MTS.)

7 ITU. Information Technology – Abstract
Syntax Notation One (ASN.1). Geneva, 1994.
(ITU-T Recommendations X.680-683.)

8 ITU. Message Sequence Chart (MSC).
Geneva, 2000. (ITU-T Recommendation
Z.120.)

9 Walter, T, Schieferdecker, I, Grabowski, J.
Test Architectures for Distributed Systems –
State of the Art and Beyond (Invited Paper).
In: Testing of Communicating Systems.
Petrenko, A, Yevtuschenko, N (eds.). Dor-
drect, Kluwer, 1998, 149–174. (Volume 11.)

10 Grabowski, J et al. On the Design of the new
Testing Language TTCN-3. In: Testing of
Communicating Systems. Ural, H, Probert,
R L, von Bochmann, G (eds.). Dordrect,
Kluwer, 2000, 161–176. (Volume 13.)

