
| Autolink |A Tool for the Automatic and Semi-Automatic Test GenerationMichael Schmitt, Beat Koch, Jens Grabowski and Dieter HogrefeUniversity of L�ubeck, Institute for Telematics, Ratzeburger Allee 160, D-23538 L�ubeck, Germany,e-mail: [schmitt,bkoch,jens,hogrefe]@itm.mu-luebeck.de, http://www.itm.mu-luebeck.deAbstractDue to increasing interest in validation and test generation tools, Telelogic AB, Malm�o, and theInstitute for Telematics of the University of L�ubeck have started a research and developmentproject which aims at bringing new test generation facilities to the Tau tool set. For thatpurpose, a software component is developed which supports the automatic and semi-automaticgeneration of TTCN test suites based on SDL speci�cations and MSC test cases. The projectfollows a pragmatic approach and is driven by practical experience. Autolink is currentlyused by the Project Team 100 at the European Telecommunications Standardisation Institute(ETSI), where it has to prove its usefulness in everyday work.1 IntroductionAutolink is part of Tau, a commercial product by Telelogic AB, Malm�o. Tau combines the twowell-known tool sets SDT and ITEX. It provides tools for the formal design, implementation andtesting of communicating systems software. In particular, it supports the use of the speci�cationlanguages SDL, MSC and TTCN. Tau includes graphical editors, analysers, simulation tools andapplication code generators.One tool of Tau is the SDT Validator. The Validator is based on state space explorationtechniques [3]. It builds up the state space of a given SDL speci�cation and examines it withregard to some properties. In particular, the Validator provides� an automated fault detection mechanism, which �nds inconsistencies and problems like dead-locks, range errors and implicit signal consumption;� an MSC veri�cation mechanism, which allows to verify an SDL system against requirementsdescribed by MSCs.Autolink is a component which uses and extends the SDT Validator's functions.Figure 1 shows the Tau environment in which Autolink is embedded. SDT allows the user toconstruct SDL speci�cations and test them with the Validator, whereas ITEX supports the userin the development of TTCN test suites.With Autolink one can specify test cases within the SDT Validator. The tool then automat-ically generates a TTCN test suite with constraints and dynamic behaviour tables. This test suitecan be completed and re�ned in ITEX. Additionally a Link executable, which can be automaticallyderived from the SDL speci�cation, allows to generate all static TTCN declarations which are notprovided by Autolink.The rest of this paper is structured as follows: In Section 2 we give a survey of the di�erent stepsof test suite generation. A short description of the search algorithm is given in Section 3. Section 4contains some examples for the use of Autolink. Finally, in Section 5, plans for version 2 ofAutolink are presented.

SDT ITEX

Link Executable

TTCN test suite
(Constraints Part &

Dynamic Part)

Link Tool

Validator
(Autolink)

Complete
ITEX Test Suite

Declarations Part

SDL
Specification

Test Suite
Overview

TAU

Figure 1: Test Generation { System Overview
Define test case

Define constraint

Internal test case
representation List of constraints

Generate test suite

TTCN test suite
in MP format

Modify constraint

Test case representation
(System Level MSC)

Process
test case

Figure 2: The Test Suite Generation2 Autolink Version 1The generation of a TTCN test suite with Autolink proceeds in several steps. These steps areoutlined in Figure 2. Most of the steps can be iterated as indicated by loops in the diagram.Test case de�nition At �rst, test cases have to be de�ned for which a test suite is intended tobe generated. In Autolink a test case is derived from a path. A path is a sequence of events (liketasks, signal exchanges, etc.) that have to be performed in order to traverse from a start state inthe state space of an SDL system to an end state. The Validator allows to specify paths in severaldi�erent ways, including both selective and brute force strategies. Some examples are:

� Manual navigation in the state space. The SDT Validator provides a special windowwhich allows users to manually explore the state space and thereby to de�ne paths in ane�cient way.� MSC veri�cation. The Validator searches for a path that satis�es a given MSC. This pathis then used as a test case.� Observer processes. An observer process is a special kind of process within an SDL system,which is able to observe other processes and the SDL system in general. Observer processesallow an automatic de�nition of a large set of tests for an SDL system. Each time a path isfound by the Validator that satis�es the condition de�ned in an observer process, a reportis generated. At the end of the state space exploration, the reports can be converted intoMSC test cases. A typical �eld of application for observer processes is test generation basedon SDL symbol coverage.All three methods to de�ne a path can be combined. The user may also use the SDT Simulator,a tool that works similar to the SDT Validator and helps to debug a speci�cation. One advantageof using the SDT Simulator is its support of ASN.1 data types. The user may also manually createMSCs using the MSC editor.The path is stored in the form of a system level MSC, i. e., an MSC with only one instanceaxis for the SDL system and one or more instances axes for the environment. A system level MSCshows only the visible interaction that is supposed to take place between an implementation andthe test system. Note that a system level MSC is an abstraction of a path. There may exist severalpaths in the state space of the SDL system which show the same external behaviour and hencelead to the same system level MSC.Usually test cases are logically structured into several parts, e. g. a preamble, a test body anda postamble. These parts are called test steps. Autolink allows to incorporate test steps in testcases by using MSC references. Test steps again may refer to other test steps. During test caseprocessing, Autolink keeps track of the nested structure of test cases and test steps. Thus, teststeps can be output in di�erent ways in a test suite, e. g., as local trees in a test case descriptionor globally in the test steps library. If a test case is structured into preamble, test body andpostamble, Autolink automatically assigns preliminary pass verdicts at the end of the test body.Test case processing. The system level MSCs are taken as input for test case processing, whichresults in an internal representation for each test case. This representation consists of a sequenceof send and receive events leading to a TTCN pass verdict. In addition, alternative receive eventsare looked up and added to the test case with a TTCN inconclusive verdict. Section 3 describesthe search algorithm that builds the internal test case representation.In addition to the internal test case representation a list of constraints is generated. The useris able to assign more reasonable names to the constraints generated by Autolink before the testsuite is saved. He may also manually de�ne and remove signal constraints or merge two constraintde�nitions at any time. Merging constraints is useful if two constraints have the same meaning orif a signal parameter with di�erent values in two constraints is irrelevant.Test suite generation. Finally a TTCN test suite in MP format is generated based on theinternal test case representation and the list of constraints. The TTCN test suite consists of fourmain sections, but only the constraints and dynamic behaviour parts are generated by Autolink.Declarations can be generated automatically using the Link tool; the overview part can also begenerated automatically by Itex.Constraints are saved in ASN.1 format. Thereby a problem has to be solved that is caused bythe di�erent notations for data structures in SDL and ASN.1. Parameters of SDL signals havetypes, but no names, whereas ASN.1 always demands a name for the �elds of a data structure. Inorder to generate a TTCN test suite that is well-formed, generic �eld names are created.Dynamic behaviour tables can be generated by evaluating the internal representations for eachtest case. As mentioned above, Autolink allows to output test steps in several ways.

State space graph
of the SDL system

List of events
for the current transition

Autolink’s
internal event tree

e1: Process X starts

e2: Env sends C

e3: Reset of timer T

2

1

3 4

5 6 7

! Ap1

p3 ! C

p2 p4? B ? D i1? EFigure 3: Test case processing algorithm3 The Test Case Generation AlgorithmThe processing of test cases consists of three distinctive parts. After some preparatory work, astate space exploration algorithm is used to build up the internal data structure which representsa test case. Finally, post-processing of the internal test case data structure is needed.Three data structures are used during the state space exploration. They are shown in Figure 3.1. State space graph Just one path through the state space of an SDL system is stored as astack of states at any given time.2. Event list Whenever a transition from one SDL system state to a successor state is computed,a list of events is generated.3. Autolink event tree Each node of the Autolink event tree corresponds to a TTCN event. Itcontains type information about the event, a list of the event nodes with pass verdicts onthe next level, and a list of events with TTCN inconclusive verdicts on the next level. Allevents on the same level will appear as alternatives in TTCN notation.Here is a short description of the state space exploration algorithm. Let us assume that we arein State 4 in the state space and p2 is the current node in the Autolink event tree. Now State 5 iscomputed. This produces a list of events.Event e1 of the list is checked against the system level MSC. The test shows that e1 is notrelevant to the MSC, so e2 has to be checked next.e2 is an observable event and it satis�es the MSC. Therefore it is appended as a pass eventp3 to the current node in the Autolink event tree. p3 also becomes the new current node in theAutolink event tree.e3 is not an observable event, therefore it can be ignored. It is also the last event in the list.This means that the transition is completed and State 5 in the state space graph has been reached.To continue the exploration, the �rst successor to State 5 has to be computed.An inconclusive node is appended to the Autolink event tree if an event e in the list of eventsis observable but does not satisfy the MSC. To continue the exploration, the next successor of theprevious state has to be computed. If we had such an event, e. g., in the transition from State 1to State 2 in Figure 3, then the transition from State 1 to State 3 would be computed next.For every state s in the stack, the current node p(s) in the Autolink event tree is saved. Ifthere is no successor to state s, then the next successor of state s � 1 is computed and p(s � 1)becomes the current node in the Autolink event tree. The exploration ends if no more successorsto the start state are found.Post-processing removes unwanted events from the Autolink event tree. First, it is assumedthat the environment always sends signals to the system as soon as possible, whereas receive eventsoccur with an unde�ned delay. Therefore, alternative receive events to a send from the environment

ISAP1 inres MSAP2

ICONreq

MDATind

(. CR, zero, 0 .)
MDATreq

(. CC, one, 55 .)
ICONconf

IDATreq

0
MDATind

(. DT, one, 0 .)
MDATreq

(. AK, one, 55 .)
IDISreq

IDISind

MDATind

(. DR, one, 55 .)

msc CompleteTestRun

Figure 4: Complete MSC test runare removed from the Autolink event tree. Second, incomplete pass paths may have been generatedduring the state space exploration. The �rst event in a branch which does not end with a passverdict is reassigned as an event with inconclusive verdict, and the rest of the branch is discarded.Test steps Test steps are represented in the Autolink event tree by two special nodes whichindicate the beginning and the end of a test step. In order to generate correct test step descriptions,a change in the semantics of MSC references has been necessary: While ITU-T RecommendationZ.120 considers an MSC reference as some sort of macro, Autolink requires that a test step iscompletely evaluated before the next test steps starts. This restriction is especially relevant forMSCs with more than two instances axes where there is no total ordering of the events of theenvironment.4 ExamplesIn this section we present some examples based on the Inres protocol [2].Figure 4 shows a complete test run which tests whether it is possible to establish a connection,send one packet of data and then release the connection.Autolink allows to use test steps in test cases. Therefore the test case above can be structuredinto a preamble (connection establishment), a test body and a postamble (disconnection) as shownin Figure 5 (a), (b) and (c).When processing the test case Autolink builds an internal test case representation which isthe basis for several possible TTCN outputs. Figure 6 presents one possible output format forStructuredTestRun. In this case the test steps are directly included in the test case description.Figure 7 shows another possible test case description derived from the same internal representation.Here, test steps are described by local trees.5 Future plansVersion 1 of Autolink [4] has already been shipped by Telelogic AB. It is used by a team workingon Project 100 at the European Telecommunications Standardisation Institute (ETSI). The goal

ISAP1 inres MSAP2

Preamble

IDATreq

0
MDATind

(. DT, one, 0 .)
MDATreq

(. AK, one, 55 .)

Postamble

StructuredTestRunmsc

(a) MSC test run with references
ISAP1 inres MSAP2

ICONreq

MDATind

(. CR, zero, 0 .)
MDATreq

(. CC, one, 55 .)
ICONconf

msc Preamble

(b) Preamble of (a) ISAP1 inres MSAP2

IDISreq

IDISind

MDATind

(. DR, one, 55 .)

msc Postamble

(c) Preamble of (a)Figure 5: Structured MSC test description
Test Case Dynamic Behaviour

Test Case Name:

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 ISAP1 ! ICONreq TestCase2_001

2 MSAP2 ? MDATind TestCase2_014

3 MSAP2 ! MDATreq TestCase2_003

4 ISAP1 ? ICONconf TestCase2_004

5 ISAP1 ! IDATreq TestCase2_005

6 MSAP2 ? MDATind TestCase2_006

7 MSAP2 ! MDATreq TestCase2_007

(PASS)

8 ISAP1 ! IDISreq TestCase2_008

9 ISAP1 ? IDISind TestCase2_016

10 MSAP2 ? MDATind TestCase2_011 PASS

11 MSAP2 ? MDATind TestCase2_011

12 ISAP1 ? IDISind TestCase2_016 PASS

13 ISAP1 ? IDISind TestCase2_016 INCONC

14 MSAP2 ? MDATind TestCase2_014 INCONC

15 ISAP1 ? IDISind TestCase2_016 INCONC

16 ISAP1 ? IDISind TestCase2_016 INCONC

Detailed Comments:

StructuredTestRun

Figure 6: TTCN test case description for StructuredTestRun

Test Case Dynamic Behaviour

Test Case Name:

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +Preamble

2 ISAP1 ! IDATreq TestCase2_005

3 MSAP2 ? MDATind TestCase2_006

4 MSAP2 ! MDATreq TestCase2_007

(PASS)

5 +Postamble

6 ISAP1 ? IDISind TestCase2_016 INCONC

Preamble

7 ISAP1 ! ICONreq TestCase2_001

8 MSAP2 ? MDATind TestCase2_014

9 MSAP2 ! MDATreq TestCase2_003

10 ISAP1 ? ICONconf TestCase2_004

11 MSAP2 ? MDATind TestCase2_014 INCONC

12 ISAP1 ? IDISind TestCase2_016 INCONC

13 ISAP1 ? IDISind TestCase2_016 INCONC

Postamble

14 ISAP1 ! IDISreq TestCase2_008

15 ISAP1 ? IDISind TestCase2_016

16 MSAP2 ? MDATind TestCase2_011 PASS

17 MSAP2 ? MDATind TestCase2_011

18 ISAP1 ? IDISind TestCase2_016 PASS

Detailed Comments:

StructuredTestRun

Figure 7: Test steps stored as local treesof this project is the development of a test suite for the INAP CS2 protocol using automatedsoftware tools. Before that, several parties have used Telelogic's Link tool for semi-automatic testsuite generation [1].Experiences with Link and Autolink have shown that today the amount of time which has tobe spent with manual post-processing of test suites is too high. It consumes too much of the timewhich has been won by the automatic generation in the �rst place. Therefore, improvements of thereadability of the generated TTCN code are required with high priority. Later, methods to controlthe state space explosion during the exploration will have to be implemented. In particular, weplan the following extensions:� Detection of identical subtrees. If there is a series of consecutive receive events at dif-ferent PCOs, then all permutations of the order in which these events are observed haveto be generated. Currently, the complete subsequent event tree is duplicated for every per-mutation. By detecting permutations of receive events and storing them as local trees, thereadability of test cases will be improved a lot.� Support of concurrent TTCN. Concurrent TTCN is not supported today, because notall of the necessary information (e.g., declaration of test components) can be deduced fromthe SDL system or the system level MSC. This information will have to be supplied bythe user. Di�erent strategies for the automatic generation of coordination messages will beimplemented, e. g. synchronisation of all parallel test components before each send event.

� Support of timers. Timers on environment axes in the system level MSC will be translatedinto TTCN timers.� Support of test groups. A test suite is normally structured into test groups. A testgroup is a set of test cases which focuses on testing a speci�c aspect of the speci�cation. Atthe moment, this structuring has to be done in a post-processing step, i.e., after test casegeneration. In practice this is done before or during the test purpose de�nition. Thereforewe intend to develop a mechanism which allows to relate paths, test purposes and test casesto test groups. This means that the next version of Autolink will generate parts of theTTCN overview part automatically from the provided additional structuring information.� De�nition of stable testing states. Test cases should start and end in stable testingstates. A stable testing state is a state where the system has to wait for an input from theenvironment before it is able to continue. Currently the user has to de�ne the whole pathfrom the start state of the SDL speci�cation to a state from where the test purpose can betested. But in practice, test cases do not necessarily begin in the start state of the SDLspeci�cation. Therefore we intend to provide a mechanism which allows to de�ne and searchfor stable testing states as start states for the test case development.� Support of TTCN matching mechanisms. Autolink version 1 calculates the con-straints for receive events from the selected path. The constraints include concrete values forthe ASP and/or PDU parameters. In practice, during a test run often the concrete values ofsome parameters are not important, or a whole range of values is allowed. Currently, in suchcases the TTCN output has to be modi�ed manually, i.e., TTCN matching mechanisms haveto be introduced. We intend to avoid this post-processing step by allowing to use TTCNmatching mechanisms in MSC test descriptions.� Parameterisation of test steps. Currently, a lot of basically identical test cases aregenerated, which only di�er in the parameters of signals sent to and received from the imple-mentation under test. By providing mechanisms for the parameterisation of test steps, thenumber of test cases in a test suite can be reduced signi�cantly.� Structuring of test cases based on High Level MSCs (HMSCs). In the next Au-tolink version it will be possible to use HMSCs for test speci�cation. The structuringinformation from HMSCs will be used to generate better readable test cases.Further plans include the automatic generation of Unique Input/Output (UIO) sequences,preambles and postambles. It is generally acknowledged that the main problem of �nding UIOsequences, preambles and postambles is the explosion of the state space during its exploration.Therefore our work will focus on developing strategies and mechanisms for dealing with this prob-lem. Especially, we will start to implement tools for a static and a dynamic pre-investigation ofSDL speci�cations and for performing measurements of the test generation capabilities.Static pre-investigation will be based on a data
ow analysis. It will provide information aboutall message parameters that in
uence the behaviour of the SDL speci�cation. This informationcan be used to manually de�ne the actual parameter values which have to be sent by the testequipment during a test run.Dynamic pre-investigation will be based on symbolic execution of the SDL speci�cation. It willallow to calculate \optimal input data" and to propose stable testing states.While the number of states which can be examined by test case generators in a certain amount oftime is almost constant, the complexity of the search within the state space of an SDL speci�cationdepends on the options and search heuristic chosen by the user. The complexity and thus thecapabilities of a test case generator for a particular SDL speci�cation can be measured by anumber of simulation runs. An automatic comparison of the results will provide information for areasonable choice of options and heuristics.Acknowledgements The authors like to thank Anders Ek and Per-Olov Nilsson from Telel-ogic AB for their continuous support of the Autolink project. Many thanks go to Stefan Heymerfor proof-reading of this paper.

References[1] A. Ek, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch, and M. Schmitt. Towards the industrialuse of validation techniques and automatic test generation methods for SDL speci�cations.Schriftenreihe der Institute f�ur InformatiknMathematik Report A-97-03, Medizinische Univer-sit�at zu L�ubeck, L�ubeck, January 1997.[2] D. Hogrefe. Estelle, LOTOS und SDL - Standard Spezi�kationssprachen f�ur verteilte Systeme.Springer, 1989.[3] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, EnglewoodCli�s, New Jersey, 1991.[4] B. Koch and M. Schmitt. Autolink Version 1 User Manual. Telelogic AB, Malm�o, March1997.Publications concerning Autolink can be downloaded fromhttp://www.itm.mu-luebeck.de/research/autolink/

