
Self-adaptive Functional Testing of Services
Working in Continuously Changing Contexts

Edith Werner, Helmut Neukirchen, and Jens Grabowski
University of Göttingen, Institute for Informatics

Software Engineering for Distributed Systems Group
Lotzestr. 16-18, D-37083 Göttingen, Germany

Phone: +49 551 39-14414 Fax:+49 551 39-14415
{ewerner,neukirchen,grabowski}@informatik.uni-goettingen.de

Abstract

Web Services and ad-hoc networks are examples for systems that work in con-
tinuously changing contexts. The services provided by such systems can be tested
in a laboratory environment using the standard conformance testing methodology.
Testing the inter-working of services with other services in all contexts is an im-
possible task, because the possible usages of services may not be known or may
increase due to the development of new services. Thus, errors may occur and have
to be detected and handled at runtime.

Our approach to this problem is self-adaptive functional testing, which is a com-
bination of monitoring and active testing at runtime. In order to locate an error which
has been detected during monitoring, existing test cases are adapted automatically
to the specific situation and applied afterwards at runtime.

Motivation

Existing approaches for testing communicating systems, like the international ISO/IEC
standard 9646 Conformance Testing Methodology and Framework [4], are well studied,
mature and have been successfully applied to service testing [2]. Single services as
well as composite and distributed services can be tested that way in a laboratory by
emulating the service environment.

Since testing cannot be exhaustive, it is impossible to test all possible behaviours of
a system under test by conformance testing. As a consequence, interoperability tests
are often performed in addition to cover different behaviours than the conformance
test did. Interoperability tests are usually also conducted in a laboratory, however the
environment is provided by a limited number of other implementations.

For static systems which are only used in a restricted context, these kind of tests
may be regarded as adequate. However, modern services are intended to be building
blocks, i.e. being used as parts of even larger services. The context in which such
a service is deployed is usually not known in advance. Moreover, those services may
change their own configuration dynamically at runtime. This may include the distribution
of its sub-systems and the bindings of the service to external services and subscribers.



Examples for such systems are Web Services [3], CORBA systems [8] or ad-hoc
networks [9]. This class of systems is hard to test, because it involves dynamically
changing configurations.

While the basic functionality of such services can be tested in a laboratory using
conformance and interoperability tests, all the different choreographies, i.e. the inter-
actions with different users, and different orchestrations, i.e. the invocation of further
(sub-)service providers, cannot be tested in a laboratory, because the number of ade-
quate tests grows exponentially with the number of components involved. Thus, failures
of such services occur usually at runtime in productive use, even though the service has
previously passed all laboratory tests. In these cases, the failures are likely triggered
by a configuration which is valid, but has not been tested before.

As a solution, we propose self-adaptive functional testing as a new test approach,
which allows the test system to adapt existing test cases to the changing contexts of a
service under test. The basic idea of self-adaptive functional testing will be described
in the next section of this short paper. After that, the mechanisms which might be used
for test case adaption are presented. Finally, we point out open issues as an outlook,
and in the last section, a conclusion is given.

Self-adaptive Testing

Self-adaptive testing is the automatic adaptation of existing test cases to the current
context of a service in which an error occurred. The goal of self-adaptive testing is to
enable a test system to reproduce observed errors in a running service. This eases
diagnostics and localisation of an error.

An Approach to Self-adaptive Testing

As a prerequisite of our approach for testing services working in changing contexts,
we assume that the service under test has been tested in laboratory using standard
conformance tests and that these test cases are available. Since the service under test
will be running as part of a larger system, the laboratory test can be regarded as a kind
of module test.

The first step in our approach is to monitor the system permanently which yields
traces of the current behaviour, i.e. passive testing [5, 7]. In the best case, we can use
built-in monitors, but if there are none available, separate monitors have to be integrated
into the system.

In order to detect errors, the traces observed during monitoring are compared to the
service’s conformance tests. An error is detected if a test case fails. The trace could
also be compared to the service’s specification, but often this is not available.

When an error is observed, it may be classified as internal or external error. An
internal error occurs within the service under test, whereas an external error occurs
in another part of the monitored system. While external errors are outside the scope
of the provider of the service under test, internal errors have to be investigated more
detailed. To locate an internal error, it is desirable to be able to reproduce it.

In the case of an internal error, the next step is to replay the monitored trace. If the
error can be reproduced that way, no adaptation is necessary and the trace leading to
the error is reported to the service’s maintainer.



Otherwise, the known test cases could be used to check whether the system still
conforms to its specification. If that is not the case, e.g. because the observed error
caused inconsistencies in the service under test, the service has to be restarted. The
adaptive approach should then be executed under laboratory conditions, because the
risk of driving the service under test again in an inconsistent state is high. However, if
the system is robust against the error, this can even be done on the deployed system.

If the system still conforms to its specification, i.e. it passes the existing conformance
tests, the existing test cases are adapted by the mechanisms described in Section
in order to reestablish the context of the error. The obtained new test case is then
executed on the system and its results are monitored. If the new test case reproduces
the error, the adaptation algorithm terminates and the test system switches back to
monitoring. The error and the test case revealing it are then reported to the service’s
maintainer.

Creating new test cases by adaptation is an incremental approach, we start with
the most simple adaptation and gradually progress to more complex adaptations as the
simple ones fail to reproduce the observed error. When the adaptation algorithm ter-
minates successfully, the newly obtained test case could be added to the set of known
test cases, e.g. if it specifies a hitherto unknown, but nevertheless valid behaviour of
the service.

Adaptation Mechanisms

The adaptation of existing test cases to a context where an error has been detected may
be related to configuration and behaviour. Thus, we distinguish between configuration
adaptation and behaviour adaptation.

Configuration adaptation includes the activation and deactivation of points for mon-
itoring and for testing. Additional points for testing may be necessary, if the context
under investigation requires more peer services than emulated during the conformance
test in the laboratory. Monitoring points may be activated, if more detailed trace infor-
mation is required to locate an error which reoccurs at regular intervals.

For behaviour adaptation, adaptation mechanisms related to control flow and adap-
tation mechanisms related to data dependencies may be required. Hence, we further
distinguish between control flow adaptation and data dependency adaptation.

Control flow adaptation includes the sequential and parallel composition of test
cases. Such a composition may be applicable, if the context under investigation is a
multi-context which consists of several single-contexts. The conformance test in the
laboratory may have tested single-contexts in isolation by several test cases, but not
their independence.

Data dependency adaptation includes the detection of data dependencies in differ-
ent test cases, which have not been detected during the conformance test. Such an
adaptation requires a data flow analysis based on the conformance test cases and the
monitor trace leading to the error.

Open Issues

The presented work on self-adaptive functional testing has just started. Thus, we pro-
vided in this paper only the motivation and basic idea of our approach. Our future work



will concentrate on further research of adaptive testing. Especially, the following items
need further investigation:

Probing effects: By adding a monitor to the deployed system, the system itself is
changed. Thus, the errors observed in such an instrumented system may not
be typical for the non-instrumented system. Furthermore, it has to be considered
that our monitoring and active testing may have impacts on the performance of
the system. In case of a severe error, which is triggered by active testing, even a
breakdown of the whole system may be caused.

Security: An important aspect of modern services is security. Web Services allow e.g.
to encrypt the transmitted data. For analysing the monitored data, an interception
of the unencrypted data might be required. On the other hand, it has to be con-
sidered that self-adaptive testing is performed on a system which is in productive
use, i.e. the processed data is real, sensitive data which may be subject of privacy
restrictions.

Economic aspects: Costs and effects of using an external service have to be taken
into account when trying to reproduce an error, because calls to external services
due to active testing may result in charging of costs, e.g. when using a commer-
cial information service or booking a flight. Furthermore, it has to be considered
whether it is at all desirable to reproduce an error at runtime, if the error results
e.g. in a denial of service.

Combination operations: The operations for recombining existing test cases into new
test cases have just been sketched in this paper. For practical application, further
research is necessary, e.g. which combination operators are useful, how to iden-
tify stable states in test cases and how to relate them to the logged traces.

Termination criteria: The number of test cases which can be obtained by self-adaptive
testing may exceed a feasible extent. If the test system is unsuccessful in repro-
ducing an error, it has to be decided when to stop adapting new test cases. Es-
pecially in a running system which may be already in an error condition and thus
triggered the active testing, the additional load of active testing has to be taken
into account.

Furthermore, we want to implement and assess this approach. As a case study, we
want to test Web Services self-adaptively. For this, a suitable test architecture will be
realised. In addition to the implementation under test, we intend to implement also the
monitoring and injection points of the test system based on Web Services technology.
Albeit it is not necessary that implementation under test and test infrastructure are
implemented using the same technology, a Web Services-based test architecture yields
a highly reusable test infrastructure.

Conclusion

In this work-in-progress paper, we introduced a new approach for self-adaptive func-
tional testing which is suitable for testing services operating in continuously changing
contexts. The aim of self-adaptive testing is to reproduce and classify errors which



occur in a running system. This is important to perform the right countermeasures to
defeat the error.

Our self-adaptive testing approach is based on monitoring a service during operation
and only applying intrusive active tests after an error has been detected. To obtain test
cases which are able to reproduce the detected error, existing functional test cases
are automatically adapted. Several adaptation mechanisms can be used to recombine
existing test cases into new ones.

The proposed approach could also be applied to testing of component-based soft-
ware, e.g. Java Beans [6]. Even though such software components are usually not used
in continuously changing contexts, they are however designed to be used in unknown
contexts, which is a special case of dynamically changing contexts.

Related Work

While conformance and interoperability testing are established, self-adaptive functional
testing is a new area. During our literature study, we found only one paper which
deals with self-adaptive testing: In [1], a so-called frame representation of test suites
is used. This representation supports to describe initial and final states of test cases
which allows to combine them into larger ones.

Future Work

The presented ideas are only a starting point. Our future work will focus on implement-
ing a case study in order to assess our approach and investigate the open issues which
have been discussed in the previous section.

References

[1] G. Adamis and K. Tarnay. Frame-Based Self-adaptive Test Case Selection. In
R. Laddaga, P. Robertson, and H.E. Shrobe, editors, Self-Adaptive Software, Sec-
ond International Workshop, IWSAS 2001, Balatonfüred, Hungary, May 17-19, 2001
Revised Papers, volume 2614 of Lecture Notes in Computer Science (LNCS).
Springer, 2003.

[2] M. Anlauf. Programming service tests with TTCN. In A. Petrenko and N. Yev-
tuschenko, editors, Testing of Communicating Systems, volume 11. Kluwer, 1998.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web Services Architecture. W3C Working Group Note, February 2004.
World Wide Web Consortium.

[4] Information technology – Open Systems Interconnection – Conformance testing
methodology and framework. ISO/IEC, 1994-1997. International ISO/IEC multipart
standard No. 9646.

[5] D. Lee, A. N. Netravali, K. K. Sabnani, B. Sugla, and A. John. Passive Testing and
its Applications to Network Management. In International Conference on Network
Protocols (ICNP’97). IEEE, October 1997.



[6] SUN Microsystems. Java Beans. http://java.sun.com/products/javabeans.

[7] R.E. Miller and K.A. Arisha:. Fault Identification in Networks by Passive Testing. In
Proceedings 34th Annual Simulation Symposium (SS 2001), pages 277–284. IEEE
Computer Society, 2001.

[8] Common Object Request Broker Architecture (CORBA/IIOP), formal/2004-03-12.
Object Management Group, March 2004.

[9] C. E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.


