Towards a Harmonization of UML-Sequence Diagrams and MSC
Ekkart Rudolph®, Jens Grabowski’, and Peter Graubmann®

*Technical University of Munich, Institute for Informatics, Arcisstrasse 21, D-80290
Miinchen, Germany, eMail: rudolphe@informaik.tu-muenchend.de

bInstitute for Telematics, University of Liibeck, Ratzeburger Allee 160, D-23538 Liibeck,
Germany, eMail: jens@itm.mu-luebeck.de

“Siemens AG, ZT SE 2, Otto-Hahn-Rin 6, D-81739 Miinchen, Germany, eMail:
Peter.Graubmann@mchp.siemens.de

Sequence Diagrams as part of UML play an important role within use case driven ob-
ject oriented (OO) software engineering. They can be seen as OO variants of the ITU-T
standard language Message Sequence Chart (MSC) which is very popular mainly in the
telecommunication area. Both notations would benefit from a harmonization. A more
formal and powerful notation for Sequence Diagrams may arise, on the one hand. On the
other hand, the application area of MSC might be considerably enlarged. In this context,
it has to be noted that the acceptance of a language in the OO community essentially
depends on a clear visualization of constructs typical for OO modelling. It is argued
that Sequence Diagrams can be transformed into MSC diagrams if some enhancements
of MSC are introduced. Such a transformation demonstrates the big advantage of MSC
concerning composition mechanisms, particularly, in comparison with the rather obscur-
ing branching constructs in Sequence Diagrams. At the same time, such a transformation
may be used for a formalization of Sequence Diagrams in UML since MSC has a formal
semantics based on process algebra.

Keywords: MSC, UML, OO, software engineering, distributed systems, real time sys-
tems, telecommunication

1. Introduction

Sequence Diagrams in UML [10] resulted from two sources: Ivar Jacobson’s interaction
diagrams (Objectory) [3] and the 1992 version of the MSC language (MSC-92)! [11]. From
MSC-92 first an OO variant, called OMSC, was developed at Siemens [2] which essentially
combined a subset of MSC with constructs typical for OO design, in particular, the
construct for method calls. Sequence Diagrams are a further development and adjustment
of OMSC. They do not claim to have the same degree of formality yet as MSC. This refers

!The terms MSC-92, MSC-96 and MSC-2000 refer to the 1992, 1996 and 2000 versions of the MSC
recommendation Z.120. MSC without version indication refers to the actual 1996 language definition
[11].

to both syntax and semantics. The syntax is not equally fixed in UML as in the I'TU-T
Recommendation Z.120 [12]. Therefore, different authors referring to UML use slightly
different variants and take over some more constructs from MSC.

Sequence Diagrams and use cases are closely related within UML [1,10]. Sequence
Diagrams are derived from use cases. A use case diagram shows the relationship among
actors and use cases within a system. A use case diagram is a graph of actors, a set
of use cases enclosed by a system boundary, communication associations between the
actors and the use cases, and generalizations among the use cases. A given use case
is typically characterized by multiple scenarios. Scenarios are described by means of
Sequence Diagrams.

Sequence Diagrams are used whenever dynamic aspects are considered. The interaction
between objects always arises from methods or processes being attached to objects. Such
processes need time, have to be ordered possibly with respect to other processes, can
be called only under certain guards, need parameters and provide results. Sequence
Diagrams are useful whenever such correlations shall be visualized without showing the
concrete programming code of a special programming language. Thereby, an abstraction
of details of the later implementation is essential. Often, only a rather coarse overall
view of the interplay of the concerned objects is important. Nevertheless, in its strongest
refinement, Sequence Diagrams in OO systems can take over a similar role which in a
procedural paradigm flow diagrams can play.

MSC is an ITU-T standard trace language for the specification and description of
the communication behaviour of system components and their environment by means
of message exchange [12]. In general, MSC applications can be attached to the area
of reactive and distributed systems, and its main application area lies in the field of
telecommunication systems. Traditionally, MSC is used primarily in connection with SDL.
Indeed, it also arose from the same ITU-T study group as SDL. Contrary to Sequence
Diagrams, MSC is a rather advanced language with a well defined syntax and semantics
[4,6,9,12,13].

After the 1996 edition, MSC has been considered several times by Rational as a candi-
date for the trace description of object interaction in UML. A main obstacle essentially
was the missing notion of flow of control in MSC. A harmonization of MSC and Sequence
Diagrams certainly will enhance the application area of MSC by bringing it more to the
attention of the OO community. However, the introduction of flow of control into MSC
is more than a pure marketing strategy. It also pays attention to the fact that traditional
telecommunication developing methods and OO techniques grow together. Beyond that,
the introduction of flow of control to MSC appears as a challenging and promising sub-
ject in itself. The explicit representation of flow of control, in addition to the message
flow representation, offers a completely new view of the implicit event trace which may
contribute considerably to transparency and expressiveness of the description. It is also a
natural place to introduce new communication mechanisms into MSC, e.g., synchronous
communication, remote procedure call, etc. [8]. Though the role of flow of control in MSC
appears to be not yet completely settled, it may be looked at already as a description,
supplementary to the message flow. In this paper the role of flow of control within MSC
will be clarified and the benefits of its explicit representation will be explained. A par-
ticular problem is how and on which level flow of control patterns can be embedded into

the MSC language. Last not least, an intuitive graphical representation is crucial.
Within Chapter 2, the constructs of Sequence Diagram are presented and compared
with corresponding constructs in MSC. In Chapter 3, a proposal for the introduction of
flow of control into MSC is given and an interpretation of flow of control based on event
structures is presented. The possible interpretation as critical region in case of shared
resources is mentioned. Chapter 4 contains concluding remarks and an outlook.

2. Sequence Diagrams and MSC

Sequence Diagrams are an advanced form of Ivar Jacobson’s interaction diagrams [3].
Sequence Diagrams, however, now go much beyond the purely sequential interaction dia-

grams. The following sections provide a more detailed comparison of Sequence Diagrams
and MSC.

2.1. General remarks

Sequence Diagrams and MSCs represent different views of system modelling and also
refer to different application areas. Sequence Diagrams offer a software oriented view
where the target program normally is running on one processor and the flow of control is
passing between various program modules.

Contrary to that, MSCs are typically applied to the description of logically and physi-
cally distributed systems with asynchronous communication mechanisms. The specifica-
tion by means of MSCs normally refers to a fairly high level of abstraction focusing on the
causal relations between the contained events. The introduction of control flow to these
highly concurrent behaviour descriptions appears much less obvious than in the case of
Sequence Diagrams. The harmonization of MSC and Sequence Diagrams is intended to
connect the software oriented view of Sequence Diagrams with the distributed conception
of MSC.

The MSC example in Figure 2 which is obtained by translating the UML example
in Figure 1 into MSC-96 clearly shows that the information of control flow is missing.
The complete diagram in Figure 2 seems to be rather disconnected in comparison with
Figure 1. In addition, the return message is not distinguished graphically from the calling
message (a corresponding construct is missing in MSC-96). An advantage is that the
MSC diagram is not overloaded by symbols.

2.2. Diagram area

For describing the interworking of several entities in a graphical form, the constructs
of Sequence Diagrams and MSC have to be arranged according to the syntax rules in a
diagram area.

Sequence Diagrams: The diagram area of Sequence Diagrams (Figure 1) has two di-
mensions: the vertical dimension represents time, in the horizontal dimension different
objects are described. Usually, merely the ordering of events in time is shown. However,
for real time applications, the time axis may actually show a metric. In comparison with
MSC, the diagram area of Sequence Diagrams is not bounded by a frame.

MSC: Also the diagram area of MSC, e.g., Figure 2, is two-dimensional with the vertical
dimension representing time and the horizontal dimension representing different instances.

object symbol

guard condition synchronous method call
object creation

0b3:C3 ob4:C4
] T lifeline branching T
N 3 \ |
i .

[x>0Jfoo(x) ! B ob2c2
=7 ! : N
3 doit(z) 3 >
message [x<0]bar(x) ! |
branching > doit(w) > |
\ activation
O
activation FE i
/ | 5 [S

‘\\ call return

object callsitself

<——termination

object lifelne

Figure 1. A Sequence Diagram example from the UML1.1 reference manual

Within MSC-96, only time ordering is provided. In MSC-2000, means for real time
descriptions is expected. The diagram area of MSC is surrounded by a frame which
represents the system environment. In contrast to instances (Section 2.3), no ordering of
communication events is assumed at the environment.

2.3. Objects and instances

The entities which interwork are called objects in Sequence Diagrams and instances in
MSC.

Sequence Diagrams: An object denotes a unique instance of an object class and is
meant to be an entity to which a set of operations can be applied and which has a state
that stores the effects of the operations. Graphically, an object in Sequence Diagrams is
described by an object symbol and an object lifeline.

An object symbol is represented by a rectangular box which is drawn on top of a life
line containing the object name and class name separated by a colon (e.g., obl:C1 in
Figure 1). An object lifeline is shown as a vertical dashed line. The lifeline represents
the existence of the object at a particular time. In contrast to MSC instance axes, object
lifelines do not possess an explicit end symbol unless the termination of the respective
object shall be expressed.

Objects may create other objects and may terminate. If an object is created within a
Sequence Diagram, then the message that causes the creation is drawn with its arrow head

msc examplel
""""""""" " ob1:CL ‘ ‘ 0b3:C3 ‘ @
opt
>
*********************************** > wec |
foo(x)
’%
reply_foo(x) reply_doit(z)
4 —
bar(x) .
P doit(w)
>
reply_bar(x) < reply_doit(w)
more
reply_more
reply_opt
<
- |

Figure 2. Sequence Diagram example in Figure 1 translated into MSC-96

attached to the object symbol of the created object. Contrary to MSC, create messages
in Sequence Diagrams have the same syntax as normal messages, i.e., they show as solid
lines with, possibly, names and parameters. An example of object creation can be found
in Figure 1, the creation of ob1:C1 is the result of the creation message opt() coming from
the system environment.

An object may terminate itself or its termination may be caused by a destroy operation
called from some other object. The termination of an object is indicated by a cross symbol
at the end of the object lifeline. In Figure 1 the objects ob1:C1 and ob2:C2 terminate
themselves. In order to indicate the call of a destroy operation the termination symbol
may be the target of a message arrow.

MSC: An MSC instance consists of an instance head, an instance aris and either an
instance end or an instance stop symbol. The instance head is graphically represented
by a rectangular box. Within the instance head, an entity type may be specified in
addition to the instance name. An MSC instance axis corresponds to an object lifeline in
Sequence Diagrams. Instances are shown by vertical lines or, alternatively, by columns.
The instance axis line is solid to indicate the total ordering of events. A coregion may
be attached to the instance axis in form of a dashed line. The instance end in an MSC
diagram is indicated explicitly by an instance end symbol, i.e., a small solid rectangular
box.

An instance can terminate itself by executing a stop event. The termination of an
instance is graphically represented by a stop symbol in form of a cross at the end of the
instance axis. In contrast to Sequence Diagrams, the stop event is not allowed to be the
target of a message. This is due to the fact that the termination of an MSC instance by
another instance is not considered a valid concept within MSC.

An MSC instance may be created by another MSC instance. The MSC create symbol is
a dashed horizontal arrow which may be associated with a parameter list. A create arrow
originates from a parent instance and points at the instance head of the child instance.

2.4. Communication

Communication among the entities in Sequence Diagrams and MSC are described in
form of arrows. Different types of arrows are used to denote different types of commu-
nication. Generally, we may distinguish between synchronous and asynchronous com-
munication. Synchronous means that the involved parties have to meet and during the
meeting the communication is performed. Asynchronous means that the communication
partners exchange messages which are buffered, i.e., the sending of messages and their
consumption are decoupled.

Sequence Diagrams: The communication in Sequence Diagrams is based on method
calls. Methods are attached to objects and can be compared to procedures in imperative
paradigms. The call of a method is only possible from another method, but, calling and
called method can be attached to different objects.

Method calls may be synchronous or asynchronous. In case of a synchronous method
call, the calling object is suspended until the called object has performed the called method
and has given back the result of the method. This can be seen as passing program control
from the calling object to the called object and back. In case of an asynchronous method
call, the calling object will not be suspended, i.e., may perform other actions during the
execution of the called method, and may not wait for an answer about the success of the
called method from the corresponding object.

In Sequence Diagrams, a synchronous method call is described by a solid arrow with a
full arrow head. The return is shown as a dashed arrow with a thin arrow head. On the
called side, both, method call and return message normally are connected by a vertical
bar (thin vertical rectangle) representing the activated method. There are several variants
admitted. Method call and return message may be combined to one bi-directional arrow
with one full arrow head in the direction of the call and one thin arrow head in the return
direction in case where no special activity is shown. In a procedural flow of control, the
return message may be omitted, otherwise it is mandatory. In case of an asynchronous
method call, the arrow describing the call message is solid and drawn with a half arrow
head. The arrows of synchronous and asynchronous method calls are labelled with the
call name and argument values (in parentheses).

Method calls in general are nested. An object may call itself directly or indirectly. In
this case, the nested method symbols (vertical bars) are drawn slightly to the right of the
previous one.

A method call in a Sequence Diagram normally is shown as a horizontal solid arrow
from the lifeline of one object to the lifeline of another object. The horizontal arrow
indicates that the duration required to call the method is atomic, that means, it is brief

compared to the granularity of the interaction and nothing else can happen during the call
transmission. If the method call requires some time to arrive, during which something
else can occur (such as a method call in the opposite direction) then the call arrow is
slanted downward.

Method calls in Sequence Diagrams contain some additional concepts which are not
contained in the MSC message concept: a call in Sequence Diagrams may contain sequence
numbers (to show the sequence of the method call in the overall interaction) and guard
conditions by placing Boolean expressions in braces.

MSC: MSC only provides a means to describe asynchronous communication. A construct
for synchronous communication is still missing.

Communication in MSC is performed by the exchange of messages. One message rep-
resents two events, namely message sending and reception. A message is graphically
represented by a solid arrow with a full arrow head. A message name is attached to the
message arrow. To the message name, a parameter list may be assigned in parentheses.

Messages in MSC may be horizontal or have a downward slope and may be bent. The
special form has no additional semantics, no concrete timing semantics is connected with
the special graphical form. The message name, if necessary, with a parameter list in
parantheses, is attached to the message arrow.

2.5. Methods and activation

The concepts of methods and the activation of methods are related to the OO view of the
world. Denoting that a method is activated means that it has control and is performing
some tasks. In case of a synchronous call the activation ends when the method decides
to give the control back to the calling object, i.e., during the activation the calling party
is suspended. For the asynchronous case, the called object decides itself when it returns
into passive state.

Sequence Diagrams: The activation of a method graphically is shown as a tall thin
rectangle whose top is aligned with its initiation time and whose bottom is aligned with
its completion time.

The top of the activation symbol is attached to the arrow representing the method call,
and, if there is a return message, the base of the symbol is attached to the tail of the
return message. For example, in Figure 1 the object ob1:C1 is activated by the call opt()
from the environment and remains activated throughout the entire Sequence Diagram.
The object ob1:C1 terminates itself and returns some results to the environment. During
the described communication behaviour, ob1:C1 may call a method in ob3:C3.

Activations may be nested, if a method of an object with already existing activations
is called. In this case, the new activation symbol is drawn slightly to the right of the
previous one, so that it appears to stack up visually. This can be seen on the lifeline
of ob1:C1 in Figure 1. By means of the call more() the object calls a method which is
owned by itself. Please note, that the existence of nested activations does not necessarily
describe concurrency.

Actions being performed during an activation may be described in text next to the
activation symbol or in the left margin, alternately the method call may indicate the
action with its name.

MSC: The UML-terms method and activation do not have an immediate counterpart in
MSC. However, for inclusion of such concepts into MSC-2000 a corresponding proposal
has been made. It will be presented in Section 3 [8].

2.6. Branching, iteration and other structural concepts

Both in Sequence Diagrams and MSCs, some structural concepts have been introduced
for a compact representation of either complex situations or more than one communication
behaviour. Contrary to MSC, the structural concepts contained in Sequence Diagrams
are rather limited and concern alternatives and iteration only.

Sequence Diagrams: A Sequence Diagram can exist in two forms: a generic form and
an instance form. In the generic form which may contain branches and loops it describes
several communication behaviours. In the instance form it describes one actual behaviour.

In generic Sequence Diagrams, object life-lines may branch and merge, thus showing
alternatives (e.g., ob4:C4 in Figure 1). The branching of a method call is also allowed:
it is represented by multiple arrows emanating from one common origin. The guards for
messages included in Sequence Diagrams can be interpreted as an if-statement, without
else-part. An example of a method call branching protected by guards can be seen in
Figure 1. The choice of the method calls foo(x) and bar(x) by obl:C1 depends on the
fulfilment of the gate conditions [X>0] and [X<O0].

A connected set of method calls in a Sequence Diagram may be enclosed and marked
as an iteration.

MSC: Within MSC, the branching and iteration constructs can be described by inline
expressions. Their clarity is an advantage of MSC. A corresponding construct for method
call guards, however, is missing. The inclusion of guards for alternatives is planned to-
gether with the inclusion of formal data descriptions for MSC-2000. Even then, as is
shown by the example in Fig. 6, local data attached to one object cannot be simply trans-
lated into guards within the inline expression which in general refers to several objects.
The problem of non-locality of choices in MSC has been pointed out already before [5].

2.7. Real time specification

In Sequence Diagrams and MSCs, usually only time ordering of events is described.
For real time applications, however, the time axis may have an actual metric and time
specifications and constraints may be added to the diagram.

Sequence Diagrams: Various labels indicating timing marks can be shown either in
the margin or near the transitions or activations that they refer to. These labels may be
used to indicate the transition time for messages: One label (e.g., a in Figure 3) may be
attached to the tail of a method call representing the sending time, another label (e.g.,
b) may be attached to the arrow head indicating the reception time. These labels may
be used in constraint expressions (e.g., [b - a < 5 sec]).

MSC: A corresponding explicit notation for the indication of time and time constraints
does not exist in MSC-96. Time annotations can be provided in form of comments, but
from a formal point of view the time annotations in Sequence Diagrams may also be seen
as some sort of comments. A syntax definition for time descriptions in MSC-2000 is in
preparation.

‘ ob1:C1 ‘ ‘ 0b2:C2 ‘ ‘ 0b3:C3 ‘ time labels

msglp)

msg2(p)

a

b
[b-a<5sec]

B — - | 3 time

constraint

Figure 3. Sequence Diagrams with time labels

2.8. MSC concepts, not supported in Sequence Diagrams

MSC concepts, not or only partially supported in Sequence Diagrams, are MSC refer-
ence, High level MSC (HMSC), inline expression, coregion, generalized ordering, instance
decomposition, gates, special timer constructs, action symbols and conditions.

MSC reference, HMSC, inline expression: MSC references and HMSC are not sup-
ported by Sequence Diagrams in UML 1.1. Inline expressions partially enter Sequence
Diagrams. According to the UML 1.1 manual, a connected set of messages may be en-
closed and marked as an iteration which is very close to the idea of inline expressions. For
a scenario, the iteration indicates that the set of messages can occur multiple times. How-
ever, no concrete syntax showing the graphical representation of this iteration construct
is provided.

Coregion and generalized ordering: Sophisticated ordering constructs like coregion
and generalized ordering are not supported in Sequence Diagrams. A total ordering of
events along each object lifeline is assumed.

Instance decomposition: Instance decomposition admitting refinement of instances is
not supported.

Gates: As already said before, Sequence Diagrams do not contain an explicit environment
and therefore also no explicit gates. The environment may be represented by an additional
environmental lifeline, like the leftmost lifeline in Figure 1, or by messages with no lifeline
as target or source.

Special timer constructs: Special timer constructs are not part of the UML Sequence
Diagram syntax. MSC includes language constructs for expressing the setting, resetting
and time-out of timers.

Action: An explicit action symbol containing informal text is not included in Sequence
Diagrams. An action being performed may be labelled in text next to the activation
symbol or in the left margin, alternately the name of a method call may indicate an
action.

Condition: Condition symbols indicating initial, final, intermediate, global and non-
global states do not exist in Sequence Diagrams.

10

msc synchronous-communication msc asynchronous-communication
A B A B
activation
region call
suspension activation
region ; region ;
g S reply.
activation E
region I
(a) synchronous call (b) asynchronous call

Figure 4. Synchronous and asynchronous calls in MSC

3. Introduction of flow of control into MSC

In this section we make a proposal for the introduction of flow of control into MSC. For
this we assume that objects and method calls of Sequence Diagrams can be translated
into instances and messages in MSC.

3.1. Definition of flow of control for plain MSCs

Within Sequence Diagrams the notion of flow of control plays an important role. A
strict distinction is made between passive objects which do not have control and active
objects which have control. “Having control” means that an object which has control
is able to execute its program code independently from other objects. An active object
may calculate some data, may communicate asynchronously with other objects or may
call other methods.

Thus, only active objects can call a method whereas passive objects can be activated
by a method call. In the simplest case of a sequential program and synchronous commu-
nication, only one object has the control at a time. By means of a synchronous method
call, the control is passed from one object to another.

In concurrent systems, the control may be distributed over several objects, i.e., several
objects may have control at the same time. Depending on the level and purpose of spec-
ification the control flow in Sequence Diagrams may be indicated explicitly in graphical
form whereby the active part is represented by the activation construct (Section 2.5).

The possibility to explicitly indicate the flow of control in a similar way seems to be
essential for the acceptance of the MSC language for OO modelling. It certainly offers a
significant new visualization of the processes occurring in the system. Because of that,
a corresponding activation construct, the activation region, has been proposed recently
within ITU-T for MSC-2000 [8]. An activation region indicates the activity carried out
due to a synchronous or an asynchronous method call. It also indicates the flow of control
in an MSC since the activation denotes which instance has control.

It turns out that the activation region alone is not sufficient for a clear definition of
flow of control in MSC. For the detailed specification of the flow of control, two regions
are employed (Figure 4a):

11

Activation region: The activation region may be explicitly represented by a tall thin
vertical shadowed rectangle like in Sequence Diagrams. An activation region describes
that an instance has been activated.

Suspension region: The suspension region indicates the blocking state of a synchronous
call which is explicitly represented by a tall thin vertical white rectangle with dotted
vertical border lines. The suspension region has no counterpart in Sequence Diagrams.
It has been suggested to clearly distinguish the blocking state within a synchronous call
from the activation region. In Sequence Diagrams, a suspension is graphically indicated
as an activation which is rather misleading.

For modelling method calls in MSC, two kinds of calls are used: synchronous calls
with blocking mechanism for the calling instance and asynchronous calls without block-
ing mechanism. It should be noted that the term synchronous call used in this context
refers to the blocking mechanism and does not mean that the communication is atomic.
A synchronous call is represented by a normal message and a message reply in form of
a dashed arrow (Figure 4a). The asynchronous call is represented by a normal message
(Figure 4b). Due to the suspension region, synchronous and asynchronous calls are suffi-
ciently distinguished so that no special arrow head symbols are necessary as is the case in
Sequence Diagrams. As shown in Figure 5a the mixture of synchronous and asynchronous
calls is also possible and does not lose transparency for the reader.

It should be noted that the specification of the control flow should be left as an option
to the user depending on the purpose and on the stage of design. In particular, no uniform
representation is demanded, i.e., even within one MSC diagram it should be admitted to
indicate the flow of control only for certain parts.

On normal instances, i.e., outside of activation and suspensions regions, we assume the
usual syntax rules for message events [12] with few extensions concerning synchronous
calls: Synchronous calls are also allowed from and to normal instances. As a static
semantics rule, it is requested that no events may occur between a synchronous call and
the corresponding call reply.

The description of the flow of control for plain MSCs is governed by few relatively
simple rules:

1. An activation region starts with a call input or with the instance begin (see also
Rule 13).

2. In case of a synchronous call, the activation region is terminated by the sending of
the corresponding call reply.

3. In case of an asynchronous call, the activation region terminates before the reception
of the subsequent new call input.

4. Both, asynchronous and synchronous calls can start from an activation region.

5. If a synchronous call starts from an activation region, the region goes over to a
suspension region.

6. If an asynchronous call starts from an activation region, the region remains active.

12

msc mixture msc severalMSCconstructs

A B C

A B
\
ml
P g ma

Figure 5. Use of flow of control in MSC

7.
8.
9.
10.
11.

12.

13.

Call inputs must not enter activation regions.

A suspension region starts with a synchronous call from an activation region.

A suspension region is terminated by the reception of the corresponding call reply.
No calls may start from a suspension region.

Call inputs must not enter suspension regions apart from a direct or indirect syn-
chronous call of the instance to itself in which case the suspension region goes over
to an activation region. The activation region is then drawn slightly shifted above
the suspension region which indicates that the suspension region is only interrupted.

Other orderable events like create output, action, timer set and reset may be at-
tached to an activation region. Time-out should be treated like call inputs.

We allow activation and suspension regions to be split between different MSCs, in
analogy to timer events. If an activation or suspension region is continued in a
subsequent MSC, it finishes at the instance end of the first MSC and starts at the
instance begin of the second MSC. As a special case, an instance may start with an
activation region from the very beginning (start instance).

In order to get an intuitive idea, the activation region may be compared with SDL state
transitions triggered by message inputs (Figure 5b). The SDL start transition corresponds
to the start instance. A formal syntax and semantics description may be derived from
these rules.

In the following, the integration of a syntax description for the flow of control into
the MSC syntax is sketched only. For the synchronous communication, a return message
(graphically represented by a dashed arrow line) has to be introduced in addition to the
existing message construct. Incomplete return messages should be introduced in analogy
to incomplete messages. The return message events should be added to the list of orderable
events. Return message events follow the same syntax rules as the normal message events,

13

but a number of new static semantics rules has to be added, e.g., a return message
input has to occur always after the corresponding message output. Activation regions
and suspension regions may be integrated into the MSC syntax description similarly
to coregions, i.e., in the graphical syntax an activation symbol has to be introduced
containing an activation event area, and a suspension symbol containing a suspension
event area. Activation regions optionally may follow a message input, suspension regions
always have to follow synchronous message outputs within activation regions. Activation
regions also may contain higher order language constructs like inline expressions and
MSC references. Finally, activation regions and suspensions regions have to be added to
coregions. The inclusion of flow of control into the structural concepts of MSC will be
discussed in Section 3.3.

3.2. Interpretation of flow of control

Within the ITU-T MSC standardization group, the formal definition of flow of control
and its semantics has attracted special attention. The following definition has been given
in terms of event structures abstracting from special regions:

"Flow of control can be understood as a sequence of events also distributed over
several instances, but still representing the accomplishment of one behavioral
purpose.

The sequence of events should be such that two events following each other in
the flow of control either are events following each other on the same instance
axis or are the two events of the same message.

Flow of control may be forked to a flow of control tree / graph, and several
flow of controls may be present in an MSC. A fork then ’produces’ a new flow
of control that needs a new identification.

One instance may be involved in more than one flow of control. Independence
of flow of control must be defined. It is clear that two flow of controls do not
share the same event (other than possibly the forking event). Other restrictions
do not seem to be needed or desirable.”

This formulation of flow of control certainly gives a completely new view within MSC:
A flow of control appears as a special kind of event flow whereby emphasis is put on the
independence of different flows of control. At present, this independence only refers to the
exclusion of shared events since MSC is defined in terms of event structures. Intuitively,
control structures also have the interpretation of critical regions with respect to shared
resources. Depending on the role which in the future the inclusion of formal data concepts
within MSC will play, this provides a special semantics of control structures already on the
MSC level or only on later stages of design and implementation. Without data concepts,
flow of control seems to have no special dynamic semantics but it implies several static
semantic rules and it contributes strongly to the intuition.

3.3. Inclusion of structural concepts
In the following, a generalization of the flow of control to structural concepts is sketched.
It should be noted that the inclusion of structural concepts certainly needs further elabora-

14

msc example2

,,,,,,,,,,,,,,,,, > obict | | obacs | ob4:C4
alt { [x>0]

doit(z)

doit(z)

doit(w)

>
Jdomw) I

Figure 6. MSC in Figure 2 extended by flow of control

tion. In particular, the representation of flow of control within nested structural concepts,
e.g., inline expressions, poses special problems since it soon loses transparency.

MSC references and inline expressions: The definition of flow of control for plain
MSCs can be generalized to MSC references and inline expressions in a straightforward
manner. The rules stated in Section 3.1 have just to be applied to individual inline sections
or to the plain MSCs referred to by MSC references. An illustrations for the inclusion of
flow of control is provided for inline expressions by Figure 6.

Instance decomposition: MSC offers the possibility of instance refinement by means
of decomposed instances. This mechanism can be used within OO modelling to describe
objects including other objects and communication behavior caused by the encapsulation,
i.e., reading and changing encapsulated data structures by calling special access functions
[7]. By that, the behavior of systems can be modelled on different levels of abstraction.
The flow of control on the decomposed instance may be specified according to the same
rules as on normal instances (Figure 7a). However, no formal mapping to the flow of
control of the refining MSC (Figure 7b) is assumed.

Coregion and generalized ordering: MSC provides several means for the specification
of parallel activities within one instance. Apart from parallel operator expressions, the

msc status_request

msc encapsulation msc user2 manager User_B

user2
system decomposed socket manager off_hook

User_B_Free

T4
ack digit

ack in FIFO

read
ack in FIFO

seizure

A

P ack
socket_rec o RPN l Bl
Lo us o
< 77777 y”” ‘ ri
l : connect
: P R 4

—

socket_rec

(a) Decomposition (b) Refinement (c) Coregion

Figure 7. Instance decomposition, instance refinement and coregion (generalized ordering)

coregion and generalized ordering constructs are tailored for this purpose. Such constructs
allow the specification of logically and causally independent tasks in a form where no time
ordering between them is provided. Such a specification is ideally suited on early stages
of design where decisions concerning implementation are not yet made. An introduction
of the concept of flow of control to coregions and generalized ordering constructs imposes
some additional restrictions due to the static semantics rules stated in Section 3.1. In
case of an explicit specification of activation and suspension regions, we assume a total
event ordering along these regions. Figure 7c shows the case where activation regions
are embedded in a coregion. The activation regions are partially ordered by means of
generalized ordering constructs graphically represented by dotted lines. The example
demonstrates that one object may be able to cope with several method calls in parallel.
The order of execution of events is left open apart from the prescribed generalized ordering
and the total order imposed by the activation regions themselves.

In case of non-explicit representation of flow of control, some ordering consistency rules
have to be obeyed within the coregion since otherwise reception and sending of method
calls might be arbitrarily interchanged. These ordering rules can be derived from the
static semantics rules provided in Section 3.1.

4. Conclusion and outlook

It the preceding chapters, it has been shown that flow of control can be integrated
consistently into MSC. Therefore, the representation of the flow of control should be in-
cluded in MSC-2000. Within this paper, the most important features of flow of control
have been tackled. As can be seen from Figure 6 in Chapter 3, some constructs in Se-
quence Diagram have no immediate counterpart in MSC: At present, there are no formal
means in MSC to express guard conditions, a deficiency which hopefully will be removed
in MSC-2000. Since the create construct in Sequence Diagrams implies a method call,
e.g., in Figure 6 the creation of object ob2:C2 has been described by a create message

16

followed by a MSC method call message. Possibly, a better way of harmonization with
UML may be found in the future. In addition, the different kinds of messages need further
elaboration. Certainly, one also needs special MSC language constructs to discriminate
between asynchronous and synchronous messages in the sense of atomic or non-atomic
events. Concerning the two regions proposed in Section 3, we have restricted ourselves to
simple flow of control descriptions governed by basic syntax rules. For the specification
of flow of control within highly concurrent systems, these rules may turn out to be too
stringent. Therefore, a generalization has been proposed by the ITU-T MSC standard-
ization group whereby also call inputs and asynchronous replies are allowed to enter the
activation region. The usefulness and graphical form of such more complex flow of con-
trol descriptions certainly need further investigations. Beyond that, the development of
a formal semantics for flow of control is still in a beginning state.

REFERENCES

1. M. Andersson, J. Bergstrand. Formalizing Use Cases with Message Sequence Charts.
Master Thesis, Lund Institute of Technology, 1995.

2. F.Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of Patterns,
Pattern Oriented Software Architecture. John Wiley & Sons, New-York 1996

3. 1. Jacobson et al. Object-Oriented Software Engineering, A Use Case Driven Approach.
Addison-Wesley, 1994.

4. O. Haugen. The MSC-96 Distillery. In SDL’97: Time for Testing - SDL, MSC and
Trends, Proceedings of the 8th SDL Forum in Evry, France (A. Cavalli and A. Sarma
editors), North-Holland, Sept. 1997.

5. P.B. Ladkin, S. Leue. Four issues concerning the semantics of message flow graphs.
Formal Description Techniques VII, FORTE 94 (D. Hogrefe and S. Leue editors),
Chapman & Hall, 1995.

6. S. Mauw. The formalization of Message Sequence Charts, In: Computer Networks
and ISDN Systems - SDL and MSC) (Guest editor: O. Haugen), Volume 28 (1996),
Number 12, June 1996.

7. A. Rinkel. MSC: A unwversal tool for describing and analysing communication struc-
tures. Technical Report, ITU-T Experts Meeting St. Petersburg, April 1995.

8. E. Rudolph. Control flow for synchronous and asynchronous calls, a unifying approach
(UMSC). Technical Report, ITU-T Experts Meeting Sophia Antipolis, October 1998.

9. E. Rudolph, P. Graubmann, J. Grabowski. Tutorial on Message Sequence Charts
(MSC-96). Forte/PSTV’96, Kaiserslautern, October 1996.

10. J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modelling Language, Reference
Manual Version 1.1. Rational 1997.

11. ITU-T Rec. Z.120 (1993). Message Sequence Chart (MSC'). Geneva, 1994.

12. ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC'). Geneva, 1996.

13. ITU-T Rec. Z.120 (1998). Message Sequence Chart (MSC'), Annex B. Geneva, 1998.

