
1
Towards a Harmonization of UML-Sequence Diagrams and MSCEkkart Rudolpha, Jens Grabowskib, and Peter GraubmanncaTechnical University of Munich, Institute for Informatics, Arcisstrasse 21, D-80290M�unchen, Germany, eMail: rudolphe@informaik.tu-muenchend.debInstitute for Telematics, University of L�ubeck, Ratzeburger Allee 160, D-23538 L�ubeck,Germany, eMail: jens@itm.mu-luebeck.decSiemens AG, ZT SE 2, Otto-Hahn-Rin 6, D-81739 M�unchen, Germany, eMail:Peter.Graubmann@mchp.siemens.deSequence Diagrams as part of UML play an important role within use case driven ob-ject oriented (OO) software engineering. They can be seen as OO variants of the ITU-Tstandard language Message Sequence Chart (MSC) which is very popular mainly in thetelecommunication area. Both notations would bene�t from a harmonization. A moreformal and powerful notation for Sequence Diagrams may arise, on the one hand. On theother hand, the application area of MSC might be considerably enlarged. In this context,it has to be noted that the acceptance of a language in the OO community essentiallydepends on a clear visualization of constructs typical for OO modelling. It is arguedthat Sequence Diagrams can be transformed into MSC diagrams if some enhancementsof MSC are introduced. Such a transformation demonstrates the big advantage of MSCconcerning composition mechanisms, particularly, in comparison with the rather obscur-ing branching constructs in Sequence Diagrams. At the same time, such a transformationmay be used for a formalization of Sequence Diagrams in UML since MSC has a formalsemantics based on process algebra.Keywords: MSC, UML, OO, software engineering, distributed systems, real time sys-tems, telecommunication1. IntroductionSequence Diagrams in UML [10] resulted from two sources: Ivar Jacobson's interactiondiagrams (Objectory) [3] and the 1992 version of the MSC language (MSC-92)1 [11]. FromMSC-92 �rst an OO variant, called OMSC, was developed at Siemens [2] which essentiallycombined a subset of MSC with constructs typical for OO design, in particular, theconstruct for method calls. Sequence Diagrams are a further development and adjustmentof OMSC. They do not claim to have the same degree of formality yet as MSC. This refers1The terms MSC-92, MSC-96 and MSC-2000 refer to the 1992, 1996 and 2000 versions of the MSCrecommendation Z.120. MSC without version indication refers to the actual 1996 language de�nition[11].



2to both syntax and semantics. The syntax is not equally �xed in UML as in the ITU-TRecommendation Z.120 [12]. Therefore, di�erent authors referring to UML use slightlydi�erent variants and take over some more constructs from MSC.Sequence Diagrams and use cases are closely related within UML [1,10]. SequenceDiagrams are derived from use cases. A use case diagram shows the relationship amongactors and use cases within a system. A use case diagram is a graph of actors, a setof use cases enclosed by a system boundary, communication associations between theactors and the use cases, and generalizations among the use cases. A given use caseis typically characterized by multiple scenarios. Scenarios are described by means ofSequence Diagrams.Sequence Diagrams are used whenever dynamic aspects are considered. The interactionbetween objects always arises from methods or processes being attached to objects. Suchprocesses need time, have to be ordered possibly with respect to other processes, canbe called only under certain guards, need parameters and provide results. SequenceDiagrams are useful whenever such correlations shall be visualized without showing theconcrete programming code of a special programming language. Thereby, an abstractionof details of the later implementation is essential. Often, only a rather coarse overallview of the interplay of the concerned objects is important. Nevertheless, in its strongestre�nement, Sequence Diagrams in OO systems can take over a similar role which in aprocedural paradigm ow diagrams can play.MSC is an ITU-T standard trace language for the speci�cation and description ofthe communication behaviour of system components and their environment by meansof message exchange [12]. In general, MSC applications can be attached to the areaof reactive and distributed systems, and its main application area lies in the �eld oftelecommunication systems. Traditionally, MSC is used primarily in connection with SDL.Indeed, it also arose from the same ITU-T study group as SDL. Contrary to SequenceDiagrams, MSC is a rather advanced language with a well de�ned syntax and semantics[4,6,9,12,13].After the 1996 edition, MSC has been considered several times by Rational as a candi-date for the trace description of object interaction in UML. A main obstacle essentiallywas the missing notion of ow of control in MSC. A harmonization of MSC and SequenceDiagrams certainly will enhance the application area of MSC by bringing it more to theattention of the OO community. However, the introduction of ow of control into MSCis more than a pure marketing strategy. It also pays attention to the fact that traditionaltelecommunication developing methods and OO techniques grow together. Beyond that,the introduction of ow of control to MSC appears as a challenging and promising sub-ject in itself. The explicit representation of ow of control, in addition to the messageow representation, o�ers a completely new view of the implicit event trace which maycontribute considerably to transparency and expressiveness of the description. It is also anatural place to introduce new communication mechanisms into MSC, e.g., synchronouscommunication, remote procedure call, etc. [8]. Though the role of ow of control in MSCappears to be not yet completely settled, it may be looked at already as a description,supplementary to the message ow. In this paper the role of ow of control within MSCwill be clari�ed and the bene�ts of its explicit representation will be explained. A par-ticular problem is how and on which level ow of control patterns can be embedded into



3the MSC language. Last not least, an intuitive graphical representation is crucial.Within Chapter 2, the constructs of Sequence Diagram are presented and comparedwith corresponding constructs in MSC. In Chapter 3, a proposal for the introduction ofow of control into MSC is given and an interpretation of ow of control based on eventstructures is presented. The possible interpretation as critical region in case of sharedresources is mentioned. Chapter 4 contains concluding remarks and an outlook.2. Sequence Diagrams and MSCSequence Diagrams are an advanced form of Ivar Jacobson's interaction diagrams [3].Sequence Diagrams, however, now go much beyond the purely sequential interaction dia-grams. The following sections provide a more detailed comparison of Sequence Diagramsand MSC.2.1. General remarksSequence Diagrams and MSCs represent di�erent views of system modelling and alsorefer to di�erent application areas. Sequence Diagrams o�er a software oriented viewwhere the target program normally is running on one processor and the ow of control ispassing between various program modules.Contrary to that, MSCs are typically applied to the description of logically and physi-cally distributed systems with asynchronous communication mechanisms. The speci�ca-tion by means of MSCs normally refers to a fairly high level of abstraction focusing on thecausal relations between the contained events. The introduction of control ow to thesehighly concurrent behaviour descriptions appears much less obvious than in the case ofSequence Diagrams. The harmonization of MSC and Sequence Diagrams is intended toconnect the software oriented view of Sequence Diagrams with the distributed conceptionof MSC.The MSC example in Figure 2 which is obtained by translating the UML examplein Figure 1 into MSC-96 clearly shows that the information of control ow is missing.The complete diagram in Figure 2 seems to be rather disconnected in comparison withFigure 1. In addition, the return message is not distinguished graphically from the callingmessage (a corresponding construct is missing in MSC-96). An advantage is that theMSC diagram is not overloaded by symbols.2.2. Diagram areaFor describing the interworking of several entities in a graphical form, the constructsof Sequence Diagrams and MSC have to be arranged according to the syntax rules in adiagram area.Sequence Diagrams: The diagram area of Sequence Diagrams (Figure 1) has two di-mensions: the vertical dimension represents time, in the horizontal dimension di�erentobjects are described. Usually, merely the ordering of events in time is shown. However,for real time applications, the time axis may actually show a metric. In comparison withMSC, the diagram area of Sequence Diagrams is not bounded by a frame.MSC: Also the diagram area of MSC, e.g., Figure 2, is two-dimensional with the verticaldimension representing time and the horizontal dimension representing di�erent instances.



4
opt()

ob4:C4

ob1:C1

activation

object symbol

termination

[x>0]foo(x)

more()

object calls itself

[x<0]bar(x)
doit(w)

activation

guard condition

message
branching

object creation

doit(z)

ob3:C3

ob2:C2

object lifelne

call return

lifeline branching

synchronous method call

Figure 1. A Sequence Diagram example from the UML1.1 reference manualWithin MSC-96, only time ordering is provided. In MSC-2000, means for real timedescriptions is expected. The diagram area of MSC is surrounded by a frame whichrepresents the system environment. In contrast to instances (Section 2.3), no ordering ofcommunication events is assumed at the environment.2.3. Objects and instancesThe entities which interwork are called objects in Sequence Diagrams and instances inMSC.Sequence Diagrams: An object denotes a unique instance of an object class and ismeant to be an entity to which a set of operations can be applied and which has a statethat stores the e�ects of the operations. Graphically, an object in Sequence Diagrams isdescribed by an object symbol and an object lifeline.An object symbol is represented by a rectangular box which is drawn on top of a lifeline containing the object name and class name separated by a colon (e.g., ob1:C1 inFigure 1). An object lifeline is shown as a vertical dashed line. The lifeline representsthe existence of the object at a particular time. In contrast to MSC instance axes, objectlifelines do not possess an explicit end symbol unless the termination of the respectiveobject shall be expressed.Objects may create other objects and may terminate. If an object is created within aSequence Diagram, then the message that causes the creation is drawn with its arrow head



5
ob1:C1 ob3:C3 ob4:C4

[x>0]

doit(z)

reply_doit(z)
reply_foo(x)

[x<0]

doit(w)bar(x)

reply_bar(x) reply_doit(w)

reply_more

more

opt

ob2:C2

alt

foo(x)

msc example1

reply_opt

Figure 2. Sequence Diagram example in Figure 1 translated into MSC-96attached to the object symbol of the created object. Contrary to MSC, create messagesin Sequence Diagrams have the same syntax as normal messages, i.e., they show as solidlines with, possibly, names and parameters. An example of object creation can be foundin Figure 1, the creation of ob1:C1 is the result of the creation message opt() coming fromthe system environment.An object may terminate itself or its termination may be caused by a destroy operationcalled from some other object. The termination of an object is indicated by a cross symbolat the end of the object lifeline. In Figure 1 the objects ob1:C1 and ob2:C2 terminatethemselves. In order to indicate the call of a destroy operation the termination symbolmay be the target of a message arrow.MSC: An MSC instance consists of an instance head, an instance axis and either aninstance end or an instance stop symbol. The instance head is graphically representedby a rectangular box. Within the instance head, an entity type may be speci�ed inaddition to the instance name. An MSC instance axis corresponds to an object lifeline inSequence Diagrams. Instances are shown by vertical lines or, alternatively, by columns.The instance axis line is solid to indicate the total ordering of events. A coregion maybe attached to the instance axis in form of a dashed line. The instance end in an MSCdiagram is indicated explicitly by an instance end symbol, i.e., a small solid rectangularbox.



6An instance can terminate itself by executing a stop event. The termination of aninstance is graphically represented by a stop symbol in form of a cross at the end of theinstance axis. In contrast to Sequence Diagrams, the stop event is not allowed to be thetarget of a message. This is due to the fact that the termination of an MSC instance byanother instance is not considered a valid concept within MSC.An MSC instance may be created by another MSC instance. The MSC create symbol isa dashed horizontal arrow which may be associated with a parameter list. A create arroworiginates from a parent instance and points at the instance head of the child instance.2.4. CommunicationCommunication among the entities in Sequence Diagrams and MSC are described inform of arrows. Di�erent types of arrows are used to denote di�erent types of commu-nication. Generally, we may distinguish between synchronous and asynchronous com-munication. Synchronous means that the involved parties have to meet and during themeeting the communication is performed. Asynchronous means that the communicationpartners exchange messages which are bu�ered, i.e., the sending of messages and theirconsumption are decoupled.Sequence Diagrams: The communication in Sequence Diagrams is based on methodcalls. Methods are attached to objects and can be compared to procedures in imperativeparadigms. The call of a method is only possible from another method, but, calling andcalled method can be attached to di�erent objects.Method calls may be synchronous or asynchronous. In case of a synchronous methodcall, the calling object is suspended until the called object has performed the called methodand has given back the result of the method. This can be seen as passing program controlfrom the calling object to the called object and back. In case of an asynchronous methodcall, the calling object will not be suspended, i.e., may perform other actions during theexecution of the called method, and may not wait for an answer about the success of thecalled method from the corresponding object.In Sequence Diagrams, a synchronous method call is described by a solid arrow with afull arrow head. The return is shown as a dashed arrow with a thin arrow head. On thecalled side, both, method call and return message normally are connected by a verticalbar (thin vertical rectangle) representing the activated method. There are several variantsadmitted. Method call and return message may be combined to one bi-directional arrowwith one full arrow head in the direction of the call and one thin arrow head in the returndirection in case where no special activity is shown. In a procedural ow of control, thereturn message may be omitted, otherwise it is mandatory. In case of an asynchronousmethod call, the arrow describing the call message is solid and drawn with a half arrowhead. The arrows of synchronous and asynchronous method calls are labelled with thecall name and argument values (in parentheses).Method calls in general are nested. An object may call itself directly or indirectly. Inthis case, the nested method symbols (vertical bars) are drawn slightly to the right of theprevious one.A method call in a Sequence Diagram normally is shown as a horizontal solid arrowfrom the lifeline of one object to the lifeline of another object. The horizontal arrowindicates that the duration required to call the method is atomic, that means, it is brief



7compared to the granularity of the interaction and nothing else can happen during the calltransmission. If the method call requires some time to arrive, during which somethingelse can occur (such as a method call in the opposite direction) then the call arrow isslanted downward.Method calls in Sequence Diagrams contain some additional concepts which are notcontained in the MSC message concept: a call in Sequence Diagrams may contain sequencenumbers (to show the sequence of the method call in the overall interaction) and guardconditions by placing Boolean expressions in braces.MSC:MSC only provides a means to describe asynchronous communication. A constructfor synchronous communication is still missing.Communication in MSC is performed by the exchange of messages. One message rep-resents two events, namely message sending and reception. A message is graphicallyrepresented by a solid arrow with a full arrow head. A message name is attached to themessage arrow. To the message name, a parameter list may be assigned in parentheses.Messages in MSC may be horizontal or have a downward slope and may be bent. Thespecial form has no additional semantics, no concrete timing semantics is connected withthe special graphical form. The message name, if necessary, with a parameter list inparantheses, is attached to the message arrow.2.5. Methods and activationThe concepts ofmethods and the activation of methods are related to the OO view of theworld. Denoting that a method is activated means that it has control and is performingsome tasks. In case of a synchronous call the activation ends when the method decidesto give the control back to the calling object, i.e., during the activation the calling partyis suspended. For the asynchronous case, the called object decides itself when it returnsinto passive state.Sequence Diagrams: The activation of a method graphically is shown as a tall thinrectangle whose top is aligned with its initiation time and whose bottom is aligned withits completion time.The top of the activation symbol is attached to the arrow representing the method call,and, if there is a return message, the base of the symbol is attached to the tail of thereturn message. For example, in Figure 1 the object ob1:C1 is activated by the call opt()from the environment and remains activated throughout the entire Sequence Diagram.The object ob1:C1 terminates itself and returns some results to the environment. Duringthe described communication behaviour, ob1:C1 may call a method in ob3:C3.Activations may be nested, if a method of an object with already existing activationsis called. In this case, the new activation symbol is drawn slightly to the right of theprevious one, so that it appears to stack up visually. This can be seen on the lifelineof ob1:C1 in Figure 1. By means of the call more() the object calls a method which isowned by itself. Please note, that the existence of nested activations does not necessarilydescribe concurrency.Actions being performed during an activation may be described in text next to theactivation symbol or in the left margin, alternately the method call may indicate theaction with its name.



8MSC: The UML-terms method and activation do not have an immediate counterpart inMSC. However, for inclusion of such concepts into MSC-2000 a corresponding proposalhas been made. It will be presented in Section 3 [8].2.6. Branching, iteration and other structural conceptsBoth in Sequence Diagrams and MSCs, some structural concepts have been introducedfor a compact representation of either complex situations or more than one communicationbehaviour. Contrary to MSC, the structural concepts contained in Sequence Diagramsare rather limited and concern alternatives and iteration only.Sequence Diagrams: A Sequence Diagram can exist in two forms: a generic form andan instance form. In the generic form which may contain branches and loops it describesseveral communication behaviours. In the instance form it describes one actual behaviour.In generic Sequence Diagrams, object life-lines may branch and merge, thus showingalternatives (e.g., ob4:C4 in Figure 1). The branching of a method call is also allowed:it is represented by multiple arrows emanating from one common origin. The guards formessages included in Sequence Diagrams can be interpreted as an if-statement, withoutelse-part. An example of a method call branching protected by guards can be seen inFigure 1. The choice of the method calls foo(x) and bar(x) by ob1:C1 depends on theful�lment of the gate conditions [X>0] and [X<0].A connected set of method calls in a Sequence Diagram may be enclosed and markedas an iteration.MSC: Within MSC, the branching and iteration constructs can be described by inlineexpressions. Their clarity is an advantage of MSC. A corresponding construct for methodcall guards, however, is missing. The inclusion of guards for alternatives is planned to-gether with the inclusion of formal data descriptions for MSC-2000. Even then, as isshown by the example in Fig. 6, local data attached to one object cannot be simply trans-lated into guards within the inline expression which in general refers to several objects.The problem of non-locality of choices in MSC has been pointed out already before [5].2.7. Real time speci�cationIn Sequence Diagrams and MSCs, usually only time ordering of events is described.For real time applications, however, the time axis may have an actual metric and timespeci�cations and constraints may be added to the diagram.Sequence Diagrams: Various labels indicating timing marks can be shown either inthe margin or near the transitions or activations that they refer to. These labels may beused to indicate the transition time for messages: One label (e.g., a in Figure 3) may beattached to the tail of a method call representing the sending time, another label (e.g.,b) may be attached to the arrow head indicating the reception time. These labels maybe used in constraint expressions (e.g., [b - a < 5 sec]).MSC: A corresponding explicit notation for the indication of time and time constraintsdoes not exist in MSC-96. Time annotations can be provided in form of comments, butfrom a formal point of view the time annotations in Sequence Diagrams may also be seenas some sort of comments. A syntax de�nition for time descriptions in MSC-2000 is inpreparation.



9
ob1:C1 ob2:C2 ob3:C3

time
constraint

b

time labels

[b - a < 5 sec]

a
msg2(p)

msg3(p)

msg1(p)

Figure 3. Sequence Diagrams with time labels2.8. MSC concepts, not supported in Sequence DiagramsMSC concepts, not or only partially supported in Sequence Diagrams, are MSC refer-ence, High level MSC (HMSC), inline expression, coregion, generalized ordering, instancedecomposition, gates, special timer constructs, action symbols and conditions.MSC reference, HMSC, inline expression: MSC references and HMSC are not sup-ported by Sequence Diagrams in UML 1.1. Inline expressions partially enter SequenceDiagrams. According to the UML 1.1 manual, a connected set of messages may be en-closed and marked as an iteration which is very close to the idea of inline expressions. Fora scenario, the iteration indicates that the set of messages can occur multiple times. How-ever, no concrete syntax showing the graphical representation of this iteration constructis provided.Coregion and generalized ordering: Sophisticated ordering constructs like coregionand generalized ordering are not supported in Sequence Diagrams. A total ordering ofevents along each object lifeline is assumed.Instance decomposition: Instance decomposition admitting re�nement of instances isnot supported.Gates: As already said before, Sequence Diagrams do not contain an explicit environmentand therefore also no explicit gates. The environment may be represented by an additionalenvironmental lifeline, like the leftmost lifeline in Figure 1, or by messages with no lifelineas target or source.Special timer constructs: Special timer constructs are not part of the UML SequenceDiagram syntax. MSC includes language constructs for expressing the setting, resettingand time-out of timers.Action: An explicit action symbol containing informal text is not included in SequenceDiagrams. An action being performed may be labelled in text next to the activationsymbol or in the left margin, alternately the name of a method call may indicate anaction.Condition: Condition symbols indicating initial, �nal, intermediate, global and non-global states do not exist in Sequence Diagrams.



10
BA

call

call_reply

suspension
region

activation
region

activation
region

msc synchronous-communication
B

activation
region

msc asynchronous-communication

call

A

(a) synchronous call (b) asynchronous callFigure 4. Synchronous and asynchronous calls in MSC3. Introduction of ow of control into MSCIn this section we make a proposal for the introduction of ow of control into MSC. Forthis we assume that objects and method calls of Sequence Diagrams can be translatedinto instances and messages in MSC.3.1. De�nition of ow of control for plain MSCsWithin Sequence Diagrams the notion of ow of control plays an important role. Astrict distinction is made between passive objects which do not have control and activeobjects which have control. \Having control" means that an object which has controlis able to execute its program code independently from other objects. An active objectmay calculate some data, may communicate asynchronously with other objects or maycall other methods.Thus, only active objects can call a method whereas passive objects can be activatedby a method call. In the simplest case of a sequential program and synchronous commu-nication, only one object has the control at a time. By means of a synchronous methodcall, the control is passed from one object to another.In concurrent systems, the control may be distributed over several objects, i.e., severalobjects may have control at the same time. Depending on the level and purpose of spec-i�cation the control ow in Sequence Diagrams may be indicated explicitly in graphicalform whereby the active part is represented by the activation construct (Section 2.5).The possibility to explicitly indicate the ow of control in a similar way seems to beessential for the acceptance of the MSC language for OO modelling. It certainly o�ers asigni�cant new visualization of the processes occurring in the system. Because of that,a corresponding activation construct, the activation region, has been proposed recentlywithin ITU-T for MSC-2000 [8]. An activation region indicates the activity carried outdue to a synchronous or an asynchronous method call. It also indicates the ow of controlin an MSC since the activation denotes which instance has control.It turns out that the activation region alone is not su�cient for a clear de�nition ofow of control in MSC. For the detailed speci�cation of the ow of control, two regionsare employed (Figure 4a):



11Activation region: The activation region may be explicitly represented by a tall thinvertical shadowed rectangle like in Sequence Diagrams. An activation region describesthat an instance has been activated.Suspension region: The suspension region indicates the blocking state of a synchronouscall which is explicitly represented by a tall thin vertical white rectangle with dottedvertical border lines. The suspension region has no counterpart in Sequence Diagrams.It has been suggested to clearly distinguish the blocking state within a synchronous callfrom the activation region. In Sequence Diagrams, a suspension is graphically indicatedas an activation which is rather misleading.For modelling method calls in MSC, two kinds of calls are used: synchronous callswith blocking mechanism for the calling instance and asynchronous calls without block-ing mechanism. It should be noted that the term synchronous call used in this contextrefers to the blocking mechanism and does not mean that the communication is atomic.A synchronous call is represented by a normal message and a message reply in form ofa dashed arrow (Figure 4a). The asynchronous call is represented by a normal message(Figure 4b). Due to the suspension region, synchronous and asynchronous calls are su�-ciently distinguished so that no special arrow head symbols are necessary as is the case inSequence Diagrams. As shown in Figure 5a the mixture of synchronous and asynchronouscalls is also possible and does not lose transparency for the reader.It should be noted that the speci�cation of the control ow should be left as an optionto the user depending on the purpose and on the stage of design. In particular, no uniformrepresentation is demanded, i.e., even within one MSC diagram it should be admitted toindicate the ow of control only for certain parts.On normal instances, i.e., outside of activation and suspensions regions, we assume theusual syntax rules for message events [12] with few extensions concerning synchronouscalls: Synchronous calls are also allowed from and to normal instances. As a staticsemantics rule, it is requested that no events may occur between a synchronous call andthe corresponding call reply.The description of the ow of control for plain MSCs is governed by few relativelysimple rules:1. An activation region starts with a call input or with the instance begin (see alsoRule 13).2. In case of a synchronous call, the activation region is terminated by the sending ofthe corresponding call reply.3. In case of an asynchronous call, the activation region terminates before the receptionof the subsequent new call input.4. Both, asynchronous and synchronous calls can start from an activation region.5. If a synchronous call starts from an activation region, the region goes over to asuspension region.6. If an asynchronous call starts from an activation region, the region remains active.



12
m1

m4

m4

m1

msc mixture

m2

m3

m5

m5

A B C

RespConf

Activated

severalMSCconstructsmsc

A B C

T5

FACILITY (CR)

Waiting

add to queue

Active Active

Request

(a) (b)Figure 5. Use of ow of control in MSC7. Call inputs must not enter activation regions.8. A suspension region starts with a synchronous call from an activation region.9. A suspension region is terminated by the reception of the corresponding call reply.10. No calls may start from a suspension region.11. Call inputs must not enter suspension regions apart from a direct or indirect syn-chronous call of the instance to itself in which case the suspension region goes overto an activation region. The activation region is then drawn slightly shifted abovethe suspension region which indicates that the suspension region is only interrupted.12. Other orderable events like create output, action, timer set and reset may be at-tached to an activation region. Time-out should be treated like call inputs.13. We allow activation and suspension regions to be split between di�erent MSCs, inanalogy to timer events. If an activation or suspension region is continued in asubsequent MSC, it �nishes at the instance end of the �rst MSC and starts at theinstance begin of the second MSC. As a special case, an instance may start with anactivation region from the very beginning (start instance).In order to get an intuitive idea, the activation region may be compared with SDL statetransitions triggered by message inputs (Figure 5b). The SDL start transition correspondsto the start instance. A formal syntax and semantics description may be derived fromthese rules.In the following, the integration of a syntax description for the ow of control intothe MSC syntax is sketched only. For the synchronous communication, a return message(graphically represented by a dashed arrow line) has to be introduced in addition to theexisting message construct. Incomplete return messages should be introduced in analogyto incomplete messages. The return message events should be added to the list of orderableevents. Return message events follow the same syntax rules as the normal message events,



13but a number of new static semantics rules has to be added, e.g., a return messageinput has to occur always after the corresponding message output. Activation regionsand suspension regions may be integrated into the MSC syntax description similarlyto coregions, i.e., in the graphical syntax an activation symbol has to be introducedcontaining an activation event area, and a suspension symbol containing a suspensionevent area. Activation regions optionally may follow a message input, suspension regionsalways have to follow synchronous message outputs within activation regions. Activationregions also may contain higher order language constructs like inline expressions andMSC references. Finally, activation regions and suspensions regions have to be added tocoregions. The inclusion of ow of control into the structural concepts of MSC will bediscussed in Section 3.3.3.2. Interpretation of ow of controlWithin the ITU-T MSC standardization group, the formal de�nition of ow of controland its semantics has attracted special attention. The following de�nition has been givenin terms of event structures abstracting from special regions:"Flow of control can be understood as a sequence of events also distributed overseveral instances, but still representing the accomplishment of one behavioralpurpose.The sequence of events should be such that two events following each other inthe ow of control either are events following each other on the same instanceaxis or are the two events of the same message.Flow of control may be forked to a ow of control tree / graph, and severalow of controls may be present in an MSC. A fork then 'produces' a new owof control that needs a new identi�cation.One instance may be involved in more than one ow of control. Independenceof ow of control must be de�ned. It is clear that two ow of controls do notshare the same event (other than possibly the forking event). Other restrictionsdo not seem to be needed or desirable."This formulation of ow of control certainly gives a completely new view within MSC:A ow of control appears as a special kind of event ow whereby emphasis is put on theindependence of di�erent ows of control. At present, this independence only refers to theexclusion of shared events since MSC is de�ned in terms of event structures. Intuitively,control structures also have the interpretation of critical regions with respect to sharedresources. Depending on the role which in the future the inclusion of formal data conceptswithin MSC will play, this provides a special semantics of control structures already on theMSC level or only on later stages of design and implementation. Without data concepts,ow of control seems to have no special dynamic semantics but it implies several staticsemantic rules and it contributes strongly to the intuition.3.3. Inclusion of structural conceptsIn the following, a generalization of the ow of control to structural concepts is sketched.It should be noted that the inclusion of structural concepts certainly needs further elabora-



14
ob1:C1 ob3:C3 ob4:C4

[x>0]

more

[x<0]

doit(w)

alt

msc example2

bar(x) doit(w)

opt

ob2:C2

foo(x)

more

opt

doit(z)

foo(x)
doit(z)

bar(x)

Figure 6. MSC in Figure 2 extended by ow of controltion. In particular, the representation of ow of control within nested structural concepts,e.g., inline expressions, poses special problems since it soon loses transparency.MSC references and inline expressions: The de�nition of ow of control for plainMSCs can be generalized to MSC references and inline expressions in a straightforwardmanner. The rules stated in Section 3.1 have just to be applied to individual inline sectionsor to the plain MSCs referred to by MSC references. An illustrations for the inclusion ofow of control is provided for inline expressions by Figure 6.Instance decomposition: MSC o�ers the possibility of instance re�nement by meansof decomposed instances. This mechanism can be used within OO modelling to describeobjects including other objects and communication behavior caused by the encapsulation,i.e., reading and changing encapsulated data structures by calling special access functions[7]. By that, the behavior of systems can be modelled on di�erent levels of abstraction.The ow of control on the decomposed instance may be speci�ed according to the samerules as on normal instances (Figure 7a). However, no formal mapping to the ow ofcontrol of the re�ning MSC (Figure 7b) is assumed.Coregion and generalized ordering: MSC provides several means for the speci�cationof parallel activities within one instance. Apart from parallel operator expressions, the



15
encapsulationmsc

user2
decomposed

ack

system

ack in FIFO

ack in FIFO
read

msc user2

managersocket

ack

socket_rec

socket_rec

T4

manager

msc

status

busy

status_request

User_B

digit

answer

ack

connect

seizure

off_hook
User_B_Free

(a) Decomposition (b) Re�nement (c) CoregionFigure 7. Instance decomposition, instance re�nement and coregion (generalized ordering)coregion and generalized ordering constructs are tailored for this purpose. Such constructsallow the speci�cation of logically and causally independent tasks in a form where no timeordering between them is provided. Such a speci�cation is ideally suited on early stagesof design where decisions concerning implementation are not yet made. An introductionof the concept of ow of control to coregions and generalized ordering constructs imposessome additional restrictions due to the static semantics rules stated in Section 3.1. Incase of an explicit speci�cation of activation and suspension regions, we assume a totalevent ordering along these regions. Figure 7c shows the case where activation regionsare embedded in a coregion. The activation regions are partially ordered by means ofgeneralized ordering constructs graphically represented by dotted lines. The exampledemonstrates that one object may be able to cope with several method calls in parallel.The order of execution of events is left open apart from the prescribed generalized orderingand the total order imposed by the activation regions themselves.In case of non-explicit representation of ow of control, some ordering consistency ruleshave to be obeyed within the coregion since otherwise reception and sending of methodcalls might be arbitrarily interchanged. These ordering rules can be derived from thestatic semantics rules provided in Section 3.1.4. Conclusion and outlookIt the preceding chapters, it has been shown that ow of control can be integratedconsistently into MSC. Therefore, the representation of the ow of control should be in-cluded in MSC-2000. Within this paper, the most important features of ow of controlhave been tackled. As can be seen from Figure 6 in Chapter 3, some constructs in Se-quence Diagram have no immediate counterpart in MSC: At present, there are no formalmeans in MSC to express guard conditions, a de�ciency which hopefully will be removedin MSC-2000. Since the create construct in Sequence Diagrams implies a method call,e.g., in Figure 6 the creation of object ob2:C2 has been described by a create message



16followed by a MSC method call message. Possibly, a better way of harmonization withUML may be found in the future. In addition, the di�erent kinds of messages need furtherelaboration. Certainly, one also needs special MSC language constructs to discriminatebetween asynchronous and synchronous messages in the sense of atomic or non-atomicevents. Concerning the two regions proposed in Section 3, we have restricted ourselves tosimple ow of control descriptions governed by basic syntax rules. For the speci�cationof ow of control within highly concurrent systems, these rules may turn out to be toostringent. Therefore, a generalization has been proposed by the ITU-T MSC standard-ization group whereby also call inputs and asynchronous replies are allowed to enter theactivation region. The usefulness and graphical form of such more complex ow of con-trol descriptions certainly need further investigations. Beyond that, the development ofa formal semantics for ow of control is still in a beginning state.REFERENCES1. M. Andersson, J. Bergstrand. Formalizing Use Cases with Message Sequence Charts.Master Thesis, Lund Institute of Technology, 1995.2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of Patterns,Pattern Oriented Software Architecture. John Wiley & Sons, New-York 19963. I. Jacobson et al.Object-Oriented Software Engineering, A Use Case Driven Approach.Addison-Wesley, 1994.4. O. Haugen. The MSC-96 Distillery. In SDL'97: Time for Testing - SDL, MSC andTrends, Proceedings of the 8th SDL Forum in Evry, France (A. Cavalli and A. Sarmaeditors), North-Holland, Sept. 1997.5. P.B. Ladkin, S. Leue. Four issues concerning the semantics of message ow graphs.Formal Description Techniques VII, FORTE 94 (D. Hogrefe and S. Leue editors),Chapman & Hall, 1995.6. S. Mauw. The formalization of Message Sequence Charts, In: Computer Networksand ISDN Systems - SDL and MSC) (Guest editor: O. Haugen), Volume 28 (1996),Number 12, June 1996.7. A. Rinkel. MSC: A universal tool for describing and analysing communication struc-tures. Technical Report, ITU-T Experts Meeting St. Petersburg, April 1995.8. E. Rudolph. Control ow for synchronous and asynchronous calls, a unifying approach(UMSC). Technical Report, ITU-T Experts Meeting Sophia Antipolis, October 1998.9. E. Rudolph, P. Graubmann, J. Grabowski. Tutorial on Message Sequence Charts(MSC-96). Forte/PSTV'96, Kaiserslautern, October 1996.10. J. Rumbaugh, I. Jacobson, G. Booch. The Uni�ed Modelling Language, ReferenceManual Version 1.1. Rational 1997.11. ITU-T Rec. Z.120 (1993). Message Sequence Chart (MSC ). Geneva, 1994.12. ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC ). Geneva, 1996.13. ITU-T Rec. Z.120 (1998). Message Sequence Chart (MSC ), Annex B. Geneva, 1998.


