
SDL and MSC Based Test Generation forDistributed Test ArchitecturesJens Grabowski, Beat Koch, Michael Schmitt, and Dieter HogrefeInstitute for Telematics, University of Lübeck,Ratzeburger Allee 160, D-23538 Lübeck, Germany,eMail: {jens,bkoch,schmitt,hogrefe}@itm.mu-luebeck.deAbstractMost of the SDL and MSC based test generation methods and tools produce non-concurrent TTCN test cases only. If the test equipment itself is a distributed system,the implementation of such test cases is a di�cult task and requires a substantialamount of additional work. In this paper, we explain how concurrent TTCN testcases can be generated directly from SDL system speci�cations and MSC test pur-poses. To do this, explicit synchronization points have to be indicated in the MSCtest purposes, and information about the existing test components and their con-nections has to be provided.Keywords: SDL, MSC, TTCN, distributed systems, distributed test systems, con-formance testing, test generation.1 IntroductionSupporting simulation, validation, code generation and test generation are themost important reasons for using SDL [4,15] as system speci�cation languageand MSC [12,16] as requirement speci�cation language within the softwarelife-cycle for distributed systems. Validation, simulation and code generationtools for SDL and MSC descriptions are commercially available and heavilyused in industry [1,14,11].Contrarily, the use of test generation tools is not very popular yet. There area lot of reasons for this: Fully automatic test generation methods mainly faildue to complexity. Even for toy examples, they calculate an amount of testcases which cannot be handled in practice. Pragmatic problems are related tothe fact that speci�cation based test generation is not applicable equally in allstages of the software life-cycle: In most cases, no detailed SDL speci�cationis developed for small and medium sized software modules and therefore, SDLPreprint submitted to Elsevier Preprint 18th December 1998

based test generation methods cannot be used for software module testing andsoftware integration testing.However, tools which follow a pragmatic approach, such as Autolink, SaM-sTaG, TGV, TTCgeN or TVEDA, are used increasingly in industry, researchand standardization [3,2,6,7,10,13]. Most of them provide generation of testcases guided by test purposes. SDL is used for system speci�cation; MSCor observer processes are used for test purpose description and the Tree andTabular Combined Notation (TTCN) [9] is used for the representation of thegenerated test cases.The current tools compute test cases with one global tester process controllingand observing the entire system under test. Thus, the test cases are describedin the non-concurrent form of TTCN. The use of such test cases is problematicif the SUT is a distributed system with components at di�erent locations. Inthat case, the test equipment itself forms a distributed system, and the testcase can be seen as a program running on the distributed test system. Itis obvious that the implementation of a non-concurrent TTCN test case ondistributed test equipment is a complicated and error-prone task. The useof concurrent TTCN, which directly supports the distribution of test casesamong test components, would be more appropriate.The generation of concurrent TTCN instead of non-concurrent TTCN is nottrivial, because additional information is needed which cannot be deducedfrom an SDL speci�cation. In this paper, we present our ideas of generatingconcurrent TTCN test cases based on SDL system speci�cations and MSCtest purposes. Throughout the paper, we describe our approach by using theterminology de�ned in the Conformance Testing Methodology and Framework(CTMF) [8].The paper is structured in the following manner: In Section 2, we give anintroduction to the concepts of concurrent TTCN. Section 3 presents methodsfor the de�nition of test component con�gurations and the synchronization oftest events. In Section 4, an algorithm for the generation of concurrent testcases is described. Finally, Section 5 contains a summary and an outlook onour future plans.
2 Concurrent TTCNIn 1996, TTCN [9] has been extended with mechanisms for specifying testsuites for distributed test systems. In this section, we introduce the mostimportant concepts of concurrent TTCN.2

MTC

TC_ZTC_Y

MCP_Y MCP_Z

PCO_Y

CP_YZ

PCO_ZPCO_XFigure 1. Example test component con�guration2.1 Test component con�gurationIn TTCN, a test system is structured into a number of Test Components(TCs). In the non-concurrent case, only one Main Test Component (MTC)exists which is de�ned implicitly. In the concurrent case, one MTC and oneor more Parallel Test Components (PTCs) exist. The MTC is responsible forthe creation of the PTCs and the computation of the �nal test verdict.The TCs may or may not communicate with the System Under Test (SUT) viaPoints of Control and Observation (PCOs). A PCO is exclusively assigned toone TC. Communication at PCOs is bidirectional and asynchronous, i.e., themodel for a PCO is a combination of two in�nite FIFO bu�ers. The messagesexchanged at PCOs are either Protocol Data Units (PDUs) or Abstract ServicePrimitives (ASPs). In the following, we will just use the term ASP, but thiscould be exchanged with PDU at all times.Communication between two TCs can be performed by an asynchronous ex-change of Coordination Messages (CMs) at Coordination Points (CPs). Sim-ilar to a PCO, a CP can also be understood as a combination of two in�niteFIFO bu�ers.Even if there is no CP speci�ed between the MTC and a PTC, two types ofimplicit communication are de�ned: (1) PTCs assign their test verdict to theglobal result variable which is used by the MTC to compute the �nal testverdict, and (2) the MTC can check if a PTC has terminated.The connections between the MTC, PTCs and the SUT are described witha Test Component Con�guration (TCC). A test suite may contain severalTCCs. For each concurrent test case, one TCC has to be chosen. Figure 1shows a TCC: The MTC is connected with two PTCs through coordinationpoints MCP Y and MCP Z. In addition, the MTC controls one PCO (PCO X).The PTC TC Y communicates with the SUT through PCO Y. TC Z controls andobserves the SUT through PCO Z. Finally, the two parallel test componentsmay exchange CMs through coordination point CP YZ.3

2.2 Behavior description in concurrent TTCNThe behavior description in concurrent and non-concurrent TTCN is basicallyidentical. The behavior of an MTC is described by using a Test Case DynamicBehaviour table. PTCs are speci�ed as test steps. The behavior of these teststeps may be de�ned as local trees within the Test Case Dynamic Behaviourtable or by using separate Test Step Dynamic Behaviour tables.An example of a concurrent TTCN test case is shown in Figure 10. The be-havior of the MTC is speci�ed by the main behavior tree. The PTC descrip-tions are included as local trees. The MTC creates all PTCs by calling thecorresponding behavior descriptions with the CREATE construct (line 1). Thetermination of the PTCs is checked by means of DONE events (lines 7 and 11).Communication among TCs is treated the same way as communication withthe SUT. In Figure 10, statement MCP 2!Proceed(Sync2,Y) on line 6 denotesthe sending of CM Proceed(Sync2,Y) via CP MCP 2 to PTC PTC 2. Thecorresponding receive event of the PTC can be found on line 24.2.3 Synchronization of test componentsThe synchronization of TCs may be done implicitly or explicitly. Implicitsynchronization is performed at the start and the termination of the test caseexecution: The MTC creates all PTCs and is able to check their termination.Explicit synchronization can be performed by exchanging CMs between TCs.The exchange of CMs can only be used to coordinate the actions of TCscontrolling di�erent PCOs. It cannot be used to ensure the correct order oftest events at di�erent PCOs. This is due to the asynchronous communicationmechanism via in�nite FIFO bu�ers and can be explained by means of a simpleexample:We have two TCs, TC1 and TC2, controlling di�erent PCOs. TC1 sends an ASPM1 to the SUT and as a reaction, an ASP M2 is sent by the SUT to TC2. Wecan try to ensure the correct order of sending of M1 by TC1 and the receptionof M2 by TC2 by using one of the following two strategies:(1) A coordination message CM1 is sent by TC1 to TC2 as an indication thatM2 is the next message to be received from the SUT.(2) TC2 knows that M2 is the reaction to M1 sent by TC1 and therefore sendsa coordination message CM2 to TC1 as a request to send M1.In the �rst case, M2 may overtake CM1 and TC2 will interpret this as a failurealthough the actual order was correct. In the second case, neither TC1 nor TC2will detect if the SUT sends M2 during the transmission of CM2 (i.e. beforeM1 has been sent), and an incorrect order will pass the test. Thus, neitherof the strategies can be used to ensure the correct order of sending M1 andreceiving M2. Assuming additional knowledge about the transmission time of4

messages does not help either: According to CTMF, �the relative speed ofsystems executing the test case should not have an impact on the test result�.3 Test purpose speci�cation for distributed test architecturesTest purpose description with system level MSCs has proven to be an e�ec-tive and intuitive method for tool-supported TTCN test generation from SDLspeci�cations [5]. In a system level MSC, there is one instance for the SUT 1and one instance for every PCO, with all channels to the environment of theSDL system being considered to be PCOs. For the generation of test cases inthe concurrent TTCN format, additional information has to be provided. Thisinformation concerns the TCC and the synchronization of TCs.3.1 De�ning test component con�gurationsAn SDL speci�cation de�nes the functionality of a system by describing itsdynamic behavior. The concrete and �nally implemented system architecture,including the distribution of the di�erent components, is not described. Theuse of structural SDL concepts, e.g., blocks, processes, services, or procedures,may give some hints about the system architecture, but they are only meansfor structuring the speci�cation. Whether two blocks or processes executeon the same or on several computers at di�erent locations is not described.Therefore, it is not possible to determine an appropriate TCC from an analysisof the SDL speci�cation for which we intend to generate test cases. Additionalinformation has to be provided which identi�es(1) the TCs and their roles (either MTC or PTC),(2) the assignment of PCOs to TCs (connections between TCs and the SUT),(3) the CPs, and(4) the assignment of CPs to TCs (connections among TCs).This information may be provided in a graphical form, e.g., an SDL systemor block diagram, in form of the corresponding TTCN tables, or in form of atool speci�c command language. A more sophisticated tool may also be ableto calculate a default con�guration automatically, e.g., a TCC where eachPTC handles one PCO only and the MTC is responsible for PTC creation,synchronization, and calculation of the �nal test verdict.In order to implement the automatic generation of concurrent TTCN testcases from SDL system speci�cations and MSC test purposes, we have torestrict ourselves to certain types of TCCs. Therefore, we require that eachPTC handles at least one PCO and that it is connected to the MTC with a1 The restriction that the entire SUT is represented only by one instance can beweakened without problems. Due to our experience [13], we keep it here.5

CP. The MTC primarily controls and synchronizes the PTCs. It does not haveto handle PCOs on its own, but we require that it is able to exchange CMswith all PTCs.3.2 Synchronization of test components and test purpose descriptionsFor test speci�cation, we distinguish two types of synchronization: Implicitand explicit synchronization.3.2.1 Implicit synchronizationImplicit synchronization is done at the start and may be done at the end of atest case by the MTC. The corresponding CREATE constructs and DONE eventscan be generated automatically by a tool.Further synchronization is needed if it has to be guaranteed that the �rstsend event happens after the creation of all PTCs or if the PTCs shouldindicate their termination to the MTC. For these cases, one of the explicitsynchronization mechanisms has to be used.3.2.2 Explicit synchronizationDuring the execution of a concurrent TTCN test case, the TCs are not awareof the state of the other TCs. If the execution of a test event PCO X!DataReq bya TC TC A should happen after the execution of test event PCO Y!ReleaseReqby TC TC B, then TC A and TC B have to exchange CMs to accomplish theexecution of PCO X!DataReq and PCO Y!ReleaseReq in the correct order.The points in the control �ow of the TCs at which such a synchronizationshould take place can not be calculated automatically, because they may de-pend on the intention of the test designer. For example, for the situationdescribed above, the test designer intends to test the appropriate treatmentof a DataReq during the release of a connection. Without additional infor-mation, a test generation tool will not care whether the ReleaseReq is sentbefore DataReq or not. As a consequence, for such cases the synchronizationof TCs has to be speci�ed explicitly by the test designer within the MSC testpurpose.Depending on the number of TCs involved and test events to be coordinated,the CM exchange which is necessary for an explicit synchronization may be-come very complex. To cope with simple as well as complex situations, weprovide two means for the speci�cation of explicit synchronization. First, itcan be done by describing the CM exchange directly and second, by usingMSC conditions for the de�nition of synchronization points. For the lattercase, the exchange of CMs among the TCs is generated automatically.6

PCO_X PCO_Y PCO_Z SUT

MSC Sync_1

c

Ready

a

b

Controlled
by MTC

Controlled
by TC_Y

Controlled
by TC_Z

Figure 2. Explicit synchronization by means of a coordination messageExplicit synchronization with coordination messages. De�ning ex-plicit synchronization by describing the exchange of CMs within the MSCtest purpose is not as easy as it seems to be at �rst glance. The reason isthat in the MSCs we use for test purpose description, the instances representPCOs and not the TCs controlling the PCOs. 2 However, CMs are exchangedbetween TCs and therefore the actual sender and receiver processes of theCMs are not represented in the MSC test purposes.Nevertheless, we allow to specify CMs between PCO instances and interpretthem as follows: A CM CM1 with an origin at PCO instance PCO A and a targetat PCO instance PCO B coordinates test events at PCO A and PCO B. The originrefers to the send event of CM1 by the TC controlling PCO A. The target refersto the corresponding receive event by the TC controlling PCO B. The order ofevents (including send and receive events of CMs) along a PCO instance hasto be preserved by the TC controlling the PCO. It should be noted that nographical distinction between CMs and ASPs has to be made in the MSC testpurposes. Origin and target of a CM arrow have to be PCO instances. ForASPs, either the origin or target has to be the SUT instance.Figure 2 shows an MSC test purpose description. The corresponding TCC isthe one presented in Figure 1. The MSC includes the CM Ready drawn by thetest designer. It has to be interpreted as follows: TC Y should send the CMReady after the reception of ASP b at PCO Y, and TC Z should send ASP cafter the reception of CM Ready. In this case, the CM Ready forces the TCsto perform exactly the order PCO X!a ! PCO Y?b ! PCO Z!c of test eventsduring their communication with the SUT.However, the speci�cation of CMs by the test designer becomes di�cult ifmore than two TCs are involved, and if receive events of CMs are alternativesto the reception of ASPs.Figure 3 provides a test purpose example for the same TCC as in the previousexample (Figure 1). The test run should execute as follows: First, TC X sendsASP a via PCO X to the SUT, which in turn answers with ASPs b, c and d tobe observed at PCO Y and PCO Z, respectively. ASP e should be sent via PCO Z2 Note that a TC may control and observe more than one PCO.7

PCO_X PCO_Y PCO_Z SUT

MSC Sync_2

e

Ready

a

b

Controlled
by MTC

Controlled
by TC_Y

Controlled
by TC_Z

c

d

Figure 3. Complex explicit synchronization by means of coordination messages
PCO_X PCO_Y PCO_Z SUT

MSC Sync_3

e

a

b

Controlled
by MTC

Controlled
by TC_Y

Controlled
by TC_Z

c

d

SynchronizationFigure 4. Explicit synchronization by means of a conditionafter the reception of b, c and d. To ensure this, the reception of b has to becon�rmed by means of CM Ready sent by TC Y.ASPs c and d are received via the same FIFO queue PCO Z, and their orderis given by the test purpose. The CM Ready is received by TC Z via a secondFIFO queue, i.e., the CP between TC Y and TC Z. It cannot be predicted if theCM Ready is received before, after or between the reception of c and d. Thus,a coregion with generalized ordering has to be used to specify all possibleorders of reception.It is obvious that the manual drawing of CMs becomes increasingly compli-cated if even more TCs, CMs and CPs are involved. In order to ease the testspeci�cation, we present another possibility to describe explicit synchroniza-tion in the next paragraph.Explicit synchronization with conditions. In order to get a simple butrobust and consistent mechanism to specify synchronization, we use MSCconditions. The conditions used for test synchronization purposes should onlycover PCO instances. We call them synchronization conditions. They de�necommon Synchronization Points (SPs) within the message �ow at the di�erentPCOs. 8

PCO_X PCO_Y PCO_Z SUT

MSC Sync_4

e

a

b

Controlled
by MTC

Controlled
by TC_Y

Controlled
by TC_Z

c

d

Ready

Ready

ProceedFigure 5. Automatically generated CM exchange for the condition in Figure 4Figure 4 shows an MSC test purpose description with a synchronization con-dition. The desired e�ect of the synchronization is the same as in Figure 3:TC Z should send ASP e not before the ASPs b, c and d have been received.During test case generation, the synchronization conditions are used to calcu-late the actual exchange of CMs between TCs. There are several possibilitiesto perform a synchronization by means of message exchange, but a discussionabout the advantages and disadvantages of the di�erent possibilities would gobeyond the scope of this paper.For an implementation, we have decided to support one mechanism only whichallows to synchronize the ASP exchange of an arbitrary number of PCOs. Thesynchronization is managed by the MTC, and the principle of the mechanismis simple: As already stated above, synchronization conditions de�ne commonSPs within the ASP exchange at di�erent PCOs. A PCO can be seen as asequential process, and the TC handling the PCO as the process manager. Ifa PCO reaches an SP, this is reported to the MTC, and the PCO goes into awaiting state. If the test event following the SP is the receiption of an ASP,the PCO waits for the ASP. If it is a send event, the PCO has to wait for aCM from the MTC to get the permission to send the next ASP to the SUT.This mechanism assures that all PCOs involved in the synchronization reachthe SP before the execution of the test case continues.By applying this mechanism, the CM exchange shown in Figure 5 is gener-ated automatically for the condition in Figure 4. The Ready CMs are used toindicate that the SP has been reached, and the CM Proceed is used to allowthe sending of ASP e.4 Test case generation procedureIn this section, we will show how a test case speci�ed in concurrent TTCN canbe derived from an SDL speci�cation and an MSC test purpose. Two algo-rithms are presented for the computation of the behavior trees of an MTC and9

PTCs. Explicit exchange of CMs is not considered; however, we will explainthe way synchronization conditions can be treated.4.1 Interface to an SDL/MSC simulatorThe test generation algorithm is based on the basic functionality providedby a general purpose state space exploration tool which allows the combinedsimulation of an SDL speci�cation and an MSC test purpose [7,11,14]. Inparticular, we require that the following two functions are available:next events(statesim) � Given a state statesim , next events returns a setof all events which may occur next. State statesim describes both the currentglobal state of the simulated SDL system (i.e., the state, timers and variablevalues of each individual process, queue contents etc.) and the progress inthe MSC (i.e., the events which are to be simulated next at each instance). Ifnext events returns the empty set, we assume that the MSC has been veri�edcompletely, i.e., a path through the reachability graph of the SDL system hasbeen found which satis�es the MSC. 3next state(statesim ,e) � Given a state statesim and an event e, next statereturns the state which is obtained if e is executed in statesim .There are several di�erent types of events that might happen during simula-tion. Some of them may only refer to the SDL system (e. g., internal eventsthat are not represented in the MSC), while others may only refer to the MSC(e. g., messages related to synchronization conditions). During test generation,we consider four types of events which are listed below. All other events whichmight be reported by the simulator engine are skipped during test generation.That means, they are executed in order to get to the next system state, butthey are not transformed into TTCN events.Event 'Send from SDL environment' (pco!sig) � ASPs sent from the en-vironment into the SDL system during simulation become TTCN send events.In order to be able to specify a send event, the simulator is required to returnboth the complete signal and the channel (PCO) through which the ASP wassent.Event 'Send to SDL environment' (pco?sig) � ASPs sent by the SDLsystem to its environment become receive events in the TTCN test case. Inanalogy to send events, the simulator has to report both the PCO and ASP.Event 'Enter synchronization' (enter sync(id,pco,Cur,All)) � When-ever an instance in the MSC test purpose may reach a synchronization con-dition, a special event called enter sync has to be returned by function3 For simplicity, we neglect the possibility that a deadlock occurs or the simulationis stopped, because the behavior of the SDL system does not comply to the MSC.10

(1) testgen(2) {(3) for i = 1 : : : n do(4) {(5) rootptci := new start node();(6) testgen ptc(i,rootsim,rootptci)(7) }(8) rootmtc := new start node();(9) testgen mtc(rootsim,add trans(rootmtc,(10) CREATE(PTC1:TestPTC1,...,PTCn:TestPTCn)))(11) }Figure 6. Invocation of the test generation for the PTCs and the MTCnext events. enter sync has four parameters: id denotes the unique identi-�er of the condition; pco is the name of the PCO instance which reached thesynchronization condition; Cur is the set of instances that have reached thecondition so far; and All denotes the set of all instances which are involved inthe synchronization.Event 'Leave synchronization' (leave sync(id,pco)) � When all in-stances engaged in a synchronization have entered the condition, the simulatorskips the condition silently. However, for all instances in the MSC which senda message directly after the condition, an additional noti�cation is required toindicate that the message is allowed to be sent now. To �nd out whether suchan event has to be created by the simulator engine, an initial static analysisof the MSC is su�cient.4.2 Test generation algorithms for MTC and PTCsThere are two approaches to generate a distributed test case based on a givenSDL speci�cation and an MSC test purpose: On the one hand, a complete be-havior tree may be generated �rst which covers all signals exchanged betweenthe tester and the SUT, plus additional information about synchronization.Based on this sequential test description, single behavior trees for all PTCsand the MTC can be derived. Alternatively, separate behavior trees for thePTCs and the MTC may be created immediately at the time of the simulationof the SDL speci�cation. The test generation algorithms for both approachesare basically the same. For the sake of simplicity, we present a solution for thelatter approach.In Figures 6, 7 and 8, the construction of the behavior trees for the PTCs andthe MTC is explained. Figure 6 describes the invocation of the test generationfunctions. In Figures 7 and 8, the core algorithms are presented.The algorithms for the MTC and the PTCs are structurally similar. To acertain extend, the algorithm for the MTC is the inverse of the algorithm for11

(1) testgen ptc(i,statesim,statetest)(2) {(3) E := next events(statesim);(4) if (9 e 2 E : e = pco!sig ^ pco 2 PCOi)(5) {(6) nextstatetest := add trans(statetest,e);(7) testgen ptc(i,next state(statesim,e),nextstatetest);(8) }(9) else if (9 e 2 E : e = enter sync(id,pco,Cur,All) ^(10) pco 2 PCOi ^ (PCOi \All) � Cur ^ All 6� PCOi)(11) {(12) nextstatetest := add trans(statetest,MCPi!Ready(id));(13) testgen ptc(i,next state(statesim,e),nextstatetest);(14) }(15) else for all e 2 E do(16) {(17) if (e = pco?sig ^ pco 2 PCOi)(18) nextstatetest := add trans(statetest,e);(19) else if (e = leave sync(id,pco) ^ pco 2 PCOi)(20) nextstatetest := add trans(statetest,MCPi?Proceed(id,pco));(21) else(22) nextstatetest := statetest;(23) testgen ptc(i,next state(statesim,e),nextstatetest);(24) }(25) } Figure 7. Test generation algorithm for PTCithe PTCs. For example, if a PTC sends a message to the MTC, a correspondingreceive event has to be added to the MTC behavior description. In addition,CREATE constructs and DONE events have to be added to the root and the leavesof the MTC behavior tree (line 10 in Figure 6 and line 5 in Figure 8). Dueto the similarity of both algorithms, we will concentrate on the description ofthe PTC generation in the following.We assume that the PTCs are numbered (i 2 f1::ng). The set of all PCOswhich belong to a parallel test component PTCi is de�ned as PCOi .The PTC algorithm is invoked with three parameters: i denotes the numberof the PTC; statesim is the current node in the reachability graph of the SDLsystem (initially the root node; see line 6 in Figure 6) and statetest is thecurrent node in the behavior tree to be constructed.At �rst, all possible next events are requested from the simulator engine byfunction next state (line 3 in Figure 7). Then it is checked whether the PTCcan send either an ASP to the SUT (line 4) or a coordination message tothe MTC (lines 9 and 10). Whenever a test component can send a signal, weassume that it should do so immediately. In this case, no other alternativesare taken into account. Instead, the send event is added to the behavior tree12

(1) testgen mtc(statesim,statetest)(2) {(3) E := next events(statesim);(4) if (E = ?)(5) nextstatetest := add trans(statetest,?DONE(PTC1,: : :,PTCn))(6) else if (9 e 2 E : e = pco!sig ^ pco 2 PCOMTC)(7) {(8) nextstatetest := add trans(statetest,e);(9) testgen mtc(next state(statesim,e),nextstatetest);(10) }(11) else if (9 e 2 E : e = leave sync(id,pco) ^(12) 9 i 2 f1::ng : pco 2 PCOi)(13) {(14) nextstatetest := add trans(statetest,MCPi!Proceed(id,pco));(15) testgen mtc(next state(statesim,e),nextstatetest);(16) }(17) else for all e 2 E do(18) {(19) if (e = pco?sig ^ pco 2 PCOMTC)(20) nextstatetest := add trans(statetest,e);(21) else if (e = enter sync(id,pco,Cur,All) ^(22) 9 i 2 f1::ng : pco 2 PCOi ^ (PCOi \All) � Cur ^(23) All 6� PCOi)(24) nextstatetest := add trans(statetest,MCPi?Ready(id));(25) else(26) nextstatetest := statetest;(27) testgen mtc(next state(statesim,e),nextstatetest);(28) }(29) } Figure 8. Test generation algorithm for the MTC(lines 6 and 12) and the algorithm is invoked recursively with the successornode of statesim and nextstatetest (lines 7 and 13). Only if the PTC cannotsend a signal, all possible events have to be considered, as indicated by theloop in lines 15�24.If an event has to be appended to the behavior tree, a transition to a newnode (nextstatetest) is inserted into the tree (lines 6, 12, 18 and 20). Other-wise, nextstatetest is set to statetest (line 22). By invoking itself recursively,testgen ptc explores the whole state space of the SDL speci�cation. Due tothe interleaving semantics of SDL, the algorithm might reach a state where itwants to add an already existing vertex to the behavior tree. In order to han-dle this, function add trans(state,e) has been introduced. If a vertex fromstate labelled with e exists, it simply returns the successor node; otherwise anew successor node is added.There are two CMs used for the communication between a PTC and the MTC:CM Ready(id) is sent from a PTC to the MTC in order to indicate that13

PCO_X PCO_Y PCO_Z SUT

MSC Test

Sig_F

Sig_A

Sig_B

Controlled
by PTC_1

Controlled
by PTC_2

Controlled
by MTC

Sync2

PCO_W

Controlled
by PTC_1

Sync1

Sig_C

Sig_D

Sig_E

Sig_GFigure 9. MSC Test used for test generationall relevant instances of the PTC have reached synchronization condition id(line 12). It is only sent, if (1) an enter sync event is reported by the simulatorengine, (2) all instances of the PTC which are involved in the synchronizationhave already reached the condition ((PCOi \ All) � Cur) and (3) there areother TCs which are also involved in the synchronization (All 6� PCOi) (lines 9and 10). In reverse, CM Proceed(id,pco) is received from the MTC andindicates that the PTC is allowed to send further ASPs via pco (line 20).4.3 ExampleThe test generation is illustrated by the following example. In Figure 9, anMSC test purpose is shown for which a test case is to be generated. For thisMSC Test, a test con�guration with two PTCs and an MTC is de�ned. PTC 1controls two di�erent PCOs (PCO W and PCO X), whereas PTC 2 communicateswith the SUT only via PCO Y. The MTC exchanges signals both with the PTCsvia MCP 1 and MCP 2 and with the SUT via PCO Z.Figure 10 shows the behavior descriptions for both the MTC and the twoPTCs (named Test PTC 1 and Test PTC 2). As can be seen, only one syn-chronization message is sent to the MTC for each PTC. The size of an MTCmainly depends on the number of PTCs which are involved in a synchroniza-tion, since the MTC must be able to receive Ready CMs in every possibleorder.5 Summary and outlookIn this paper, we have presented our approach to automatic generation of testcases in concurrent TTCN format. To do this, a test component con�guration14

Test Case Dynamic Behaviour

Test Case Name : Test_Concurrent

Group :

Purpose :

Configuration : Conf

Default :

Comments : The tester consists of a Main Test Component and two Parallel Test Components

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 CREATE(PTC_1:Test_PTC_1,
 PTC_2:Test_PTC_2)

2 MCP_2 ? Ready(Sync1)

3 PCO_Z ! Sig_C C_Sig_C

4 MCP_1 ? Ready(Sync2)

5 MCP_2 ? Ready(Sync2)

6 MCP_2 ! Proceed(Sync2,Y)

7 ?DONE(PTC_1,PTC_2) R

8 MCP_2 ? Ready(Sync2)

9 MCP_1 ? Ready(Sync2)

10 MCP_2 ! Proceed(Sync2,Y)

11 ?DONE(PTC_1,PTC_2) R

Test_PTC_1

12 PCO_X ! Sig_A C_Sig_A

13 PCO_X ? Sig_D C_Sig_D

14 PCO_W ? Sig_E C_Sig_E

15 MCP_1 ! Ready(Sync2)

16 PCO_W ? Sig_G C_Sig_G (P)

17 PCO_W ? Sig_E C_Sig_E

18 PCO_X ? Sig_D C_Sig_D

19 MCP_1 ! Ready(Sync2)

20 PCO_W ? Sig_G C_Sig_G (P)

Test_PTC_2

21 PCO_Y ? Sig_B C_Sig_B

22 MCP_2 ! Ready(Sync1)

23 MCP_2 ! Ready(Sync2)

24 MCP_2 ? Proceed(Sync2,Y)

25 PCO_Y ! Sig_F C_Sig_F (P)

Detailed Comments :Figure 10. A concurrent TTCN test case for MSC Testand information concerning the synchronization of TCs has to be provided.If the synchronization is speci�ed by means of conditions, a correspondingexchange of CMs between TCs can be generated automatically. We have pro-vided the corresponding algorithms and presented a small example explainingthe output of the algorithms.The implementation of our approach has already started and the results of the�rst experiments have been promising. If our approach proves its applicabilityto real world examples, we also intend to implement it in the Autolink tool.
AcknowledgementsWe would like to thank Stefan Heymer for valuable comments on earlier draftsof this paper and for careful proofreading.15

References[1] Cinderella SDL product description. http://www.cinderella.dk[2] M. Clatin, R. Groz, M. Phalippou, R. Thummel. Two Approaches Linking a TestGeneration Tool with Veri�cation Techniques. Proceedings of IWPTS'95, Evry,1995.[3] L. Doldi, V. Encontre, J.-C. Fernandez, T. Jéron, S. Le Bricquir, N. Texier,M. Phalippou. Assessment of Automatic Generation Methods of ConformanceTest Suites in an Industrial Context. Testing of Communicating Systems, vol. 9,Chapman & Hall, 1996.[4] J. Ellsberger, D. Hogrefe, A. Sarma. SDL � Formal Object-oriented Languagefor Communicating Systems. Prentice Hall, 1997.[5] ETSI TC MTS. CATG Handbook. European Guide, ETSI, Sophia-Antipolis,1998.[6] J. Grabowski, D. Hogrefe, R. Scheurer, Z.R. Dai. Applying SAMSTAG to theB-ISDN Protocol SSCOP. Testing of Communicating Systems, vol. 10, Chapman& Hall, 1997.[7] J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test PurposeSpeci�cation by MSCs. In �SDL'93 � Using Objects� (O. Færgemand, A. Sarma,editors). North-Holland, October 1993.[8] ISO. Information Technology � OSI-Conformance Testing Methodology andFramework � Part 1: General Concepts. ISO IS 9646-1, 1994.[9] ISO. Information Technology � OSI-Conformance Testing Methodology andFramework � Part 3: The Tree and Tabular Combined Notation (TTCN). ISOIS 9646-3, 1996.[10] H. Kahlouche, C. Viho, M. Zendri. An Industrial Experiment in AutomaticGeneration of Executable Test Suites for a Cache Coherency Protocol. Testingof Communicating Systems, vol. 11, Kluwer Academic Press, 1998.[11] ObjectGEODE product description. http://www.verilog.fr[12] E. Rudolph, P. Graubmann, J. Grabowski. Tutorial on Message Sequence Charts(MSC-96). Forte/PSTV'96, Kaiserslautern, October 1996.[13] M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, B. Koch. Autolink � Putting SDL-based Test Generation into Practice. Testing of Communicating Systems, vol. 11,Kluwer Academic Press, 1998.[14] Telelogic TAU product description. http://www.telelogic.se[15] ITU-T Rec. Z.100 (1996). Speci�cation and Description Language (SDL).Geneva, 1996.[16] ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC). Geneva, 1996.16

