SDL and MSC Based Test Generation for
Distributed Test Architectures

Jens Grabowski, Beat Koch, Michael Schmitt, and Dieter Hogrefe

Institute for Telematics, University of Liibeck,
Ratzeburger Allee 160, D-23538 Liibeck, Germany,
eMail: {jens,bkoch,schmitt,hogrefe } @itm.mu-luebeck.de

Abstract

Most of the SDL and MSC based test generation methods and tools produce non-
concurrent TTCN test cases only. If the test equipment itself is a distributed system,
the implementation of such test cases is a difficult task and requires a substantial
amount of additional work. In this paper, we explain how concurrent TTCN test
cases can be generated directly from SDL system specifications and MSC test pur-
poses. To do this, explicit synchronization points have to be indicated in the MSC
test purposes, and information about the existing test components and their con-
nections has to be provided.

Keywords: SDL, MSC, TTCN, distributed systems, distributed test systems, con-
formance testing, test generation.

1 Introduction

Supporting simulation, validation, code generation and test generation are the
most important reasons for using SDL [4,15] as system specification language
and MSC [12,16] as requirement specification language within the software
life-cycle for distributed systems. Validation, simulation and code generation
tools for SDL. and MSC descriptions are commercially available and heavily
used in industry [1,14,11].

Contrarily, the use of test generation tools is not very popular yet. There are
a lot of reasons for this: Fully automatic test generation methods mainly fail
due to complexity. Even for toy examples, they calculate an amount of test
cases which cannot be handled in practice. Pragmatic problems are related to
the fact that specification based test generation is not applicable equally in all
stages of the software life-cycle: In most cases, no detailed SDL specification
is developed for small and medium sized software modules and therefore, SDL

Preprint submitted to Elsevier Preprint 18th December 1998

based test generation methods cannot be used for software module testing and
software integration testing.

However, tools which follow a pragmatic approach, such as AUTOLINK, SAM-
STAG, TGV, TTCgeN or TVEDA, are used increasingly in industry, research
and standardization [3,2,6,7,10,13]. Most of them provide generation of test
cases guided by test purposes. SDL is used for system specification; MSC
or observer processes are used for test purpose description and the Tree and
Tabular Combined Notation (TTCN) [9] is used for the representation of the
generated test cases.

The current tools compute test cases with one global tester process controlling
and observing the entire system under test. Thus, the test cases are described
in the non-concurrent form of TTCN. The use of such test cases is problematic
if the SUT is a distributed system with components at different locations. In
that case, the test equipment itself forms a distributed system, and the test
case can be seen as a program running on the distributed test system. It
is obvious that the implementation of a non-concurrent TTCN test case on
distributed test equipment is a complicated and error-prone task. The use
of concurrent TTCN, which directly supports the distribution of test cases
among test components, would be more appropriate.

The generation of concurrent TTCN instead of non-concurrent TTCN is not
trivial, because additional information is needed which cannot be deduced
from an SDL specification. In this paper, we present our ideas of generating
concurrent TTCN test cases based on SDL system specifications and MSC
test purposes. Throughout the paper, we describe our approach by using the
terminology defined in the Conformance Testing Methodology and Framework
(CTMF) [8].

The paper is structured in the following manner: In Section 2, we give an
introduction to the concepts of concurrent TTCN. Section 3 presents methods
for the definition of test component configurations and the synchronization of
test events. In Section 4, an algorithm for the generation of concurrent test
cases is described. Finally, Section 5 contains a summary and an outlook on
our future plans.

2 Concurrent TTCN

In 1996, TTCN [9] has been extended with mechanisms for specifying test
suites for distributed test systems. In this section, we introduce the most
important concepts of concurrent TTCN.

MTC

A
MCP_Y MCP_Z
A
CP YZ
TC.Y TC Z
PCO_X PCO_Y I PCO_Z

Figure 1. Example test component configuration

2.1 Test component configuration

In TTCN, a test system is structured into a number of Test Components
(TCs). In the non-concurrent case, only one Main Test Component (MTC)
exists which is defined implicitly. In the concurrent case, one MTC and one
or more Parallel Test Components (PTCs) exist. The MTC is responsible for
the creation of the PTCs and the computation of the final test verdict.

The TCs may or may not communicate with the System Under Test (SUT) via
Points of Control and Observation (PCOs). A PCO is exclusively assigned to
one TC. Communication at PCOs is bidirectional and asynchronous, i.e., the
model for a PCO is a combination of two infinite FIFO buffers. The messages
exchanged at PCOs are either Protocol Data Units (PDUs) or Abstract Service
Primitives (ASPs). In the following, we will just use the term ASP, but this
could be exchanged with PDU at all times.

Communication between two TCs can be performed by an asynchronous ex-
change of Coordination Messages (CMs) at Coordination Points (CPs). Sim-
ilar to a PCO, a CP can also be understood as a combination of two infinite
FIFO buffers.

Even if there is no CP specified between the MTC and a PTC, two types of
implicit communication are defined: (1) PTCs assign their test verdict to the
global result variable which is used by the MTC to compute the final test
verdict, and (2) the MTC can check if a PTC has terminated.

The connections between the MTC, PTCs and the SUT are described with
a Test Component Configuration (TCC). A test suite may contain several
TCCs. For each concurrent test case, one TCC has to be chosen. Figure 1
shows a TCC: The MTC is connected with two PTCs through coordination
points MCP_Y and MCP_Z. In addition, the MTC controls one PCO (PCO_X).
The PTC TC_Y communicates with the SUT through PCO_Y. TC_Z controls and
observes the SUT through PCO_Z. Finally, the two parallel test components
may exchange CMs through coordination point CP_YZ.

2.2 Behavior description in concurrent TTCN

The behavior description in concurrent and non-concurrent TTCN is basically
identical. The behavior of an MTC is described by using a Test Case Dynamic
Behaviour table. PTCs are specified as test steps. The behavior of these test
steps may be defined as local trees within the Test Case Dynamic Behaviour
table or by using separate Test Step Dynamic Behaviour tables.

An example of a concurrent TTCN test case is shown in Figure 10. The be-
havior of the M'TC is specified by the main behavior tree. The PTC descrip-
tions are included as local trees. The MTC creates all PTCs by calling the
corresponding behavior descriptions with the CREATE construct (line 1). The
termination of the PTCs is checked by means of DONE events (lines 7 and 11).

Communication among TCs is treated the same way as communication with
the SUT. In Figure 10, statement MCP_2!Proceed (Sync2,Y) on line 6 denotes
the sending of CM Proceed(Sync2,Y) via CP MCP_2 to PTC PTC_2. The
corresponding receive event of the PTC can be found on line 24.

2.3 Synchronization of test components

The synchronization of TCs may be done implicitly or explicitly. Implicit
synchronization is performed at the start and the termination of the test case
execution: The MTC creates all PTCs and is able to check their termination.
Explicit synchronization can be performed by exchanging CMs between TCs.

The exchange of CMs can only be used to coordinate the actions of TCs
controlling different PCOs. It cannot be used to ensure the correct order of
test events at different PCOs. This is due to the asynchronous communication
mechanism via infinite FIFO buffers and can be explained by means of a simple
example:

We have two TCs, TC1 and TC2, controlling different PCOs. TC1 sends an ASP
M1 to the SUT and as a reaction, an ASP M2 is sent by the SUT to TC2. We
can try to ensure the correct order of sending of M1 by TC1 and the reception
of M2 by TC2 by using one of the following two strategies:

(1) A coordination message CM1 is sent by TC1 to TC2 as an indication that
M2 is the next message to be received from the SUT.

(2) TC2 knows that M2 is the reaction to M1 sent by TC1 and therefore sends
a coordination message CM2 to TC1 as a request to send M1.

In the first case, M2 may overtake CM1 and TC2 will interpret this as a failure
although the actual order was correct. In the second case, neither TC1 nor TC2
will detect if the SUT sends M2 during the transmission of CM2 (i.e. before
M1 has been sent), and an incorrect order will pass the test. Thus, neither
of the strategies can be used to ensure the correct order of sending M1 and
receiving M2. Assuming additional knowledge about the transmission time of

messages does not help either: According to CTMF, “the relative speed of
systems executing the test case should not have an impact on the test result”.

3 Test purpose specification for distributed test architectures

Test purpose description with system level MSCs has proven to be an effec-
tive and intuitive method for tool-supported TTCN test generation from SDL
specifications [5]. In a system level MSC, there is one instance for the SUT!
and one instance for every PCO, with all channels to the environment of the
SDL system being considered to be PCOs. For the generation of test cases in
the concurrent TTCN format, additional information has to be provided. This
information concerns the TCC and the synchronization of TCs.

3.1 Defining test component configurations

An SDL specification defines the functionality of a system by describing its
dynamic behavior. The concrete and finally implemented system architecture,
including the distribution of the different components, is not described. The
use of structural SDL concepts, e.g., blocks, processes, services, or procedures,
may give some hints about the system architecture, but they are only means
for structuring the specification. Whether two blocks or processes execute
on the same or on several computers at different locations is not described.
Therefore, it is not possible to determine an appropriate TCC from an analysis
of the SDL specification for which we intend to generate test cases. Additional
information has to be provided which identifies

(1) the TCs and their roles (either MTC or PTC),

(2) the assignment of PCOs to TCs (connections between TCs and the SUT),
(3) the CPs, and

(4) the assignment of CPs to TCs (connections among TCs).

This information may be provided in a graphical form, e.g., an SDL system
or block diagram, in form of the corresponding TTCN tables, or in form of a
tool specific command language. A more sophisticated tool may also be able
to calculate a default configuration automatically, e.g., a TCC where each
PTC handles one PCO only and the MTC is responsible for PTC creation,
synchronization, and calculation of the final test verdict.

In order to implement the automatic generation of concurrent TTCN test
cases from SDL system specifications and MSC test purposes, we have to
restrict ourselves to certain types of TCCs. Therefore, we require that each
PTC handles at least one PCO and that it is connected to the MTC with a

L The restriction that the entire SUT is represented only by one instance can be
weakened without problems. Due to our experience [13], we keep it here.

CP. The MTC primarily controls and synchronizes the PTCs. It does not have
to handle PCOs on its own, but we require that it is able to exchange CMs
with all PTCs.

3.2 Synchronization of test components and test purpose descriptions

For test specification, we distinguish two types of synchronization: Implicit
and explicit synchronization.

3.2.1 Implicit synchronization

Implicit synchronization is done at the start and may be done at the end of a
test case by the MTC. The corresponding CREATE constructs and DONE events
can be generated automatically by a tool.

Further synchronization is needed if it has to be guaranteed that the first
send event happens after the creation of all PTCs or if the PTCs should
indicate their termination to the MTC. For these cases, one of the explicit
synchronization mechanisms has to be used.

3.2.2 Explicit synchronization

During the execution of a concurrent T'TCN test case, the TCs are not aware
of the state of the other TCs. If the execution of a test event PCO_X!DataReq by
a T'C TC_A should happen after the execution of test event PCO_Y!ReleaseReq
by TC TC_B, then TC_A and TC_B have to exchange CMs to accomplish the
execution of PCO_X!DataReq and PCO_Y!ReleaseReq in the correct order.

The points in the control flow of the TCs at which such a synchronization
should take place can not be calculated automatically, because they may de-
pend on the intention of the test designer. For example, for the situation
described above, the test designer intends to test the appropriate treatment
of a DataReq during the release of a connection. Without additional infor-
mation, a test generation tool will not care whether the ReleaseReq is sent
before DataReq or not. As a consequence, for such cases the synchronization
of TCs has to be specified explicitly by the test designer within the MSC test
purpose.

Depending on the number of TCs involved and test events to be coordinated,
the CM exchange which is necessary for an explicit synchronization may be-
come very complex. To cope with simple as well as complex situations, we
provide two means for the specification of explicit synchronization. First, it
can be done by describing the CM exchange directly and second, by using
MSC conditions for the definition of synchronization points. For the latter
case, the exchange of CMs among the TCs is generated automatically.

MSC Sync_1

[Pcox] [Pcoy] [Pcoz | [sur
/ / /
Controlled Controlled Controlled
by MTC by TC_Y by TC_Z

Ready

Figure 2. Explicit synchronization by means of a coordination message

Explicit synchronization with coordination messages. Defining ex-
plicit synchronization by describing the exchange of CMs within the MSC
test purpose is not as easy as it seems to be at first glance. The reason is
that in the MSCs we use for test purpose description, the instances represent
PCOs and not the TCs controlling the PCOs.? However, CMs are exchanged
between TCs and therefore the actual sender and receiver processes of the
CMs are not represented in the MSC test purposes.

Nevertheless, we allow to specify CMs between PCO instances and interpret
them as follows: A CM CM1 with an origin at PCO instance PCO_A and a target
at PCO instance PCO_B coordinates test events at PCO_A and PCO_B. The origin
refers to the send event of CM1 by the TC controlling PCO_A. The target refers
to the corresponding receive event by the TC controlling PCO_B. The order of
events (including send and receive events of CMs) along a PCO instance has
to be preserved by the TC controlling the PCO. It should be noted that no
graphical distinction between CMs and ASPs has to be made in the MSC test
purposes. Origin and target of a CM arrow have to be PCO instances. For
ASPs, either the origin or target has to be the SUT instance.

Figure 2 shows an MSC test purpose description. The corresponding TCC is
the one presented in Figure 1. The MSC includes the CM Ready drawn by the
test designer. It has to be interpreted as follows: TC_Y should send the CM
Ready after the reception of ASP b at PCO_Y, and TC_Z should send ASP c
after the reception of CM Ready. In this case, the CM Ready forces the TCs
to perform exactly the order PCO_X'a — PCO_Y?b — PCO_Z!c of test events
during their communication with the SUT.

However, the specification of CMs by the test designer becomes difficult if
more than two TCs are involved, and if receive events of CMs are alternatives
to the reception of ASPs.

Figure 3 provides a test purpose example for the same TCC as in the previous
example (Figure 1). The test run should execute as follows: First, TC_X sends
ASP a via PCO_X to the SUT, which in turn answers with ASPs b, ¢ and d to
be observed at PCO_Y and PCO_Z, respectively. ASP e should be sent via PCO_Z

2 Note that a TC may control and observe more than one PCO.

MSC Sync_2

[Pcox] [Pcoy] [Pcoz | [sur
/ / /

Controlled Controlled Controlled
by MTC by TC_Y by TC_Z

Figure 3. Complex explicit synchronization by means of coordination messages

MSC Sync_3

[Pcox] [Pcoy] [Pcoz | [‘sur
/ / /

Controlled Controlled Controlled
by MTC by TC_Y by TC_Z

a |o |o |o

< Synchronization

Figure 4. Explicit synchronization by means of a condition

after the reception of b, ¢ and d. To ensure this, the reception of b has to be
confirmed by means of CM Ready sent by TC_Y.

ASPs ¢ and d are received via the same FIFO queue PCO_Z, and their order
is given by the test purpose. The CM Ready is received by TC_Z via a second
FIFO queue, i.e., the CP between TC_Y and TC_Z. It cannot be predicted if the
CM Ready is received before, after or between the reception of ¢ and d. Thus,
a coregion with generalized ordering has to be used to specify all possible
orders of reception.

It is obvious that the manual drawing of CMs becomes increasingly compli-
cated if even more TCs, CMs and CPs are involved. In order to ease the test
specification, we present another possibility to describe explicit synchroniza-
tion in the next paragraph.

Explicit synchronization with conditions. In order to get a simple but
robust and consistent mechanism to specify synchronization, we use MSC
conditions. The conditions used for test synchronization purposes should only
cover PCO instances. We call them synchronization conditions. They define
common Synchronization Points (SPs) within the message flow at the different
PCOs.

MSC Sync_4

[Pcox] [Pcoy] [Pcoz] [sur
/ / /
Controlled Controlled Controlled
by MTC by TC_Y by TC_Z

Ready

a |o |o |o

Ready

Proceed

Figure 5. Automatically generated CM exchange for the condition in Figure 4

Figure 4 shows an MSC test purpose description with a synchronization con-
dition. The desired effect of the synchronization is the same as in Figure 3:
TC_Z should send ASP e not before the ASPs b, ¢ and d have been received.

During test case generation, the synchronization conditions are used to calcu-
late the actual exchange of CMs between TCs. There are several possibilities
to perform a synchronization by means of message exchange, but a discussion
about the advantages and disadvantages of the different possibilities would go
beyond the scope of this paper.

For an implementation, we have decided to support one mechanism only which
allows to synchronize the ASP exchange of an arbitrary number of PCOs. The
synchronization is managed by the MTC, and the principle of the mechanism
is simple: As already stated above, synchronization conditions define common
SPs within the ASP exchange at different PCOs. A PCO can be seen as a
sequential process, and the TC handling the PCO as the process manager. If
a PCO reaches an SP, this is reported to the MTC, and the PCO goes into a
waiting state. If the test event following the SP is the receiption of an ASP,
the PCO waits for the ASP. If it is a send event, the PCO has to wait for a
CM from the MTC to get the permission to send the next ASP to the SUT.
This mechanism assures that all PCOs involved in the synchronization reach
the SP before the execution of the test case continues.

By applying this mechanism, the CM exchange shown in Figure 5 is gener-
ated automatically for the condition in Figure 4. The Ready CMs are used to
indicate that the SP has been reached, and the CM Proceed is used to allow
the sending of ASP e.

4 Test case generation procedure

In this section, we will show how a test case specified in concurrent TTCN can
be derived from an SDL specification and an MSC test purpose. Two algo-
rithms are presented for the computation of the behavior trees of an MTC and

PTCs. Explicit exchange of CMs is not considered; however, we will explain
the way synchronization conditions can be treated.

4.1 Interface to an SDL/MSC simulator

The test generation algorithm is based on the basic functionality provided
by a general purpose state space exploration tool which allows the combined
simulation of an SDL specification and an MSC test purpose [7,11,14]. In
particular, we require that the following two functions are available:

next_events(statesim) — Given a state stateg,,, next_events returns a set
of all events which may occur next. State statey,, describes both the current
global state of the simulated SDL system (i.e., the state, timers and variable
values of each individual process, queue contents etc.) and the progress in
the MSC (i.e., the events which are to be simulated next at each instance). If
next_events returns the empty set, we assume that the MSC has been verified
completely, i.e., a path through the reachability graph of the SDL system has
been found which satisfies the MSC. 3

next_state(statesim,e) — Given a state stateg,, and an event e, next_state
returns the state which is obtained if e is executed in stategy,.

There are several different types of events that might happen during simula-
tion. Some of them may only refer to the SDL system (e.g., internal events
that are not represented in the MSC), while others may only refer to the MSC
(e.g., messages related to synchronization conditions). During test generation,
we consider four types of events which are listed below. All other events which
might be reported by the simulator engine are skipped during test generation.
That means, they are executed in order to get to the next system state, but
they are not transformed into TTCN events.

Event ’Send from SDL environment’ (pco!sig) — ASPs sent from the en-
vironment into the SDL system during simulation become TTCN send events.
In order to be able to specify a send event, the simulator is required to return
both the complete signal and the channel (PCO) through which the ASP was
sent.

Event ’Send to SDL environment’ (pco?sig) — ASPs sent by the SDL
system to its environment become receive events in the TTCN test case. In
analogy to send events, the simulator has to report both the PCO and ASP.

Event ’Enter synchronization’ (enter_sync(id,pco, Cur, All)) — When-
ever an instance in the MSC test purpose may reach a synchronization con-
dition, a special event called enter_sync has to be returned by function

3 For simplicity, we neglect the possibility that a deadlock occurs or the simulation
is stopped, because the behavior of the SDL system does not comply to the MSC.

10

(1) testgen

2 A

(3) for 1 =1 ... n do

(4) {

(5) r00tpse, = new_start_node();

(6) testgen_ptc (7, 100t sm , 700t psc,)

9] }

(8) 100t = new_start_node();

(9) testgen_mtc (rootsy, ,add_trans (root,. ,
(10) CREATE(PTC, :TestPTC,,...,PTC,:TestPTC,)))
(11) }

Figure 6. Invocation of the test generation for the PTCs and the MTC

next_events. enter_sync has four parameters: id denotes the unique identi-
fier of the condition; pco is the name of the PCO instance which reached the
synchronization condition; Cur is the set of instances that have reached the
condition so far; and All denotes the set of all instances which are involved in
the synchronization.

Event ’Leave synchronization’ (leave_sync(id,pco)) — When all in-
stances engaged in a synchronization have entered the condition, the simulator
skips the condition silently. However, for all instances in the MSC which send
a message directly after the condition, an additional notification is required to
indicate that the message is allowed to be sent now. To find out whether such
an event has to be created by the simulator engine, an initial static analysis
of the MSC is sufficient.

4.2 Test generation algorithms for MTC and PTCs

There are two approaches to generate a distributed test case based on a given
SDL specification and an MSC test purpose: On the one hand, a complete be-
havior tree may be generated first which covers all signals exchanged between
the tester and the SUT, plus additional information about synchronization.
Based on this sequential test description, single behavior trees for all PTCs
and the MTC can be derived. Alternatively, separate behavior trees for the
PTCs and the MTC may be created immediately at the time of the simulation
of the SDL specification. The test generation algorithms for both approaches
are basically the same. For the sake of simplicity, we present a solution for the
latter approach.

In Figures 6, 7 and 8, the construction of the behavior trees for the PTCs and
the MTC is explained. Figure 6 describes the invocation of the test generation
functions. In Figures 7 and 8, the core algorithms are presented.

The algorithms for the MTC and the PTCs are structurally similar. To a
certain extend, the algorithm for the MTC is the inverse of the algorithm for

11

(1) testgen ptc(i,stategiy, , stateyest)

2 A

(3) E := next_events(stateg,) ;

(4) if (Je€ E: e = peolsig N pco € PCO;)

(5) {

(6) nextstates; = add_trans(stateies,e) ;

(7 testgen ptc(i,next_state (statesin ,e) , nextstatees) ;

(8) }

(9) else if (de€ E: e = enter_sync(id,pco, Cur,All) A
(10) pco € PCO; N (PCO; N All) C Cur N All € PCO;)
(11) {

(12) nextstatees; = add_trans(statees , MCP;'Ready (id)) ;
(13) testgen ptc(i,next_state (statesin, ,e) , nextstateses) ;
(14) }

(15) else for all e€ F do

(16) {

17) if (e = pco?sig N pco € PCO;)

(18) nexststates; := add_trans(statejes;,e) ;

(19) else if (e = leave_sync(id,pco) A pco € PCO;)
(20) nextstates; := add_trans(statess , MCP;7Proceed(id,pco)) ;
(21) else

(22) neststateg.s = statejes;

(23) testgen ptc(i,next_state (statesin, ,e) , nextstatees) ;
(24) }

(25) }

Figure 7. Test generation algorithm for PTC;

the PTCs. For example, if a PTC sends a message to the MTC, a corresponding
receive event has to be added to the MTC behavior description. In addition,
CREATE constructs and DONE events have to be added to the root and the leaves
of the MTC behavior tree (line 10 in Figure 6 and line 5 in Figure 8). Due
to the similarity of both algorithms, we will concentrate on the description of
the PTC generation in the following.

We assume that the PTCs are numbered (i € {1..n}). The set of all PCOs
which belong to a parallel test component PT'C; is defined as PCO,;.

The PTC algorithm is invoked with three parameters: ¢ denotes the number
of the PTC; stateg, is the current node in the reachability graph of the SDL
system (initially the root node; see line 6 in Figure 6) and state;s is the
current node in the behavior tree to be constructed.

At first, all possible next events are requested from the simulator engine by
function next_state (line 3 in Figure 7). Then it is checked whether the PTC
can send either an ASP to the SUT (line 4) or a coordination message to
the MTC (lines 9 and 10). Whenever a test component can send a signal, we
assume that it should do so immediately. In this case, no other alternatives
are taken into account. Instead, the send event is added to the behavior tree

12

(1) testgen mtc(statesiy, , stateiest)

2 A{
(3) FE := next_events(stategy,) ;
(4) if (F = ©)
(5) nextstates; := add_trans(stateies , PDONE(PTCY,...,PTCy))
(6) else if (Je€ F: e = pcotsig N pco € PCOyrc)
9] {
(8) nextstates; = add_trans(stateies ,e) ;
(9) testgen mtc(next_state (stategiy, , e) , nextstateses) ;
(10) }
(11) else if (de€ E: e = leave_sync(id,pco) A
(12) di e {l..n} : pco € PCO;)
(13) {
(14) nextstates; := add_trans(stategs , MCP;'Proceed (id,pco)) ;
(15) testgen mtc(next_state (statesin ,e) , nextstateses) ;
(16) }
an) else for all e€ F do
(18) {
(19) if (e = pco?sig N pco € PCOyrc)
(20) nexststates; := add_trans(stateies;,e) ;
(21) else if (e = enter_sync(ud,pco, Cur,All) A
(22) die {l.n} : pco € PCO; N (PCO; NAll) C Cur A
(23) All € PCO;)
(24) nextstatees; = add_trans(stateyes; , MCP;7Ready (id)) ;
(25) else
(26) nextstatees; = statepest;
27) testgen mtc(next_state (stategiy, ,) , nextstateses) ;
(28) }
(29)

Figure 8. Test generation algorithm for the MTC

(lines 6 and 12) and the algorithm is invoked recursively with the successor
node of stateg, and nertstate,s (lines 7 and 13). Ounly if the PTC cannot
send a signal, all possible events have to be considered, as indicated by the
loop in lines 15-24.

If an event has to be appended to the behavior tree, a transition to a new
node (neztstateys) is inserted into the tree (lines 6, 12, 18 and 20). Other-
wise, nextstate,s is set to stateps (line 22). By invoking itself recursively,
testgen ptc explores the whole state space of the SDL specification. Due to
the interleaving semantics of SDL, the algorithm might reach a state where it
wants to add an already existing vertex to the behavior tree. In order to han-
dle this, function add_trans (state,e) has been introduced. If a vertex from
state labelled with e exists, it simply returns the successor node; otherwise a
new successor node is added.

There are two CMs used for the communication between a PTC and the MTC:
CM Ready (id) is sent from a PTC to the MTC in order to indicate that

13

MSC Test

[Pcow] [Pcox] [Pcoy] [Pcoz] [sur
/ / / /

Controlled Controlled Controlled Controlled |/
by PTC_1 by PTC_1 by PTC_2 by MTC

s >

Sig_A

Sig_B

Sig_C

Sig_D

Sig_E

< >

Sig_F

Sig_G

Figure 9. MSC Test used for test generation

all relevant instances of the PTC have reached synchronization condition d
(line 12). It is only sent, if (1) an enter_sync event is reported by the simulator
engine, (2) all instances of the PTC which are involved in the synchronization
have already reached the condition ((PCO; N All) C Cur) and (3) there are
other TCs which are also involved in the synchronization (All € PCO;) (lines 9
and 10). In reverse, CM Proceed(id,pco) is received from the MTC and
indicates that the PTC is allowed to send further ASPs via pco (line 20).

4.8 Ezrample

The test generation is illustrated by the following example. In Figure 9, an
MSC test purpose is shown for which a test case is to be generated. For this
MSC Test, a test configuration with two PTCs and an MTC is defined. PTC_1
controls two different PCOs (PCO_W and PCO_X), whereas PTC_2 communicates
with the SUT only via PCO_Y. The MTC exchanges signals both with the P TCs
via MCP_1 and MCP_2 and with the SUT via PCO_Z.

Figure 10 shows the behavior descriptions for both the MTC and the two
PTCs (named Test_PTC_1 and Test_PTC_2). As can be seen, only one syn-
chronization message is sent to the MTC for each PTC. The size of an MTC
mainly depends on the number of PTCs which are involved in a synchroniza-
tion, since the MTC must be able to receive Ready CMs in every possible
order.

5 Summary and outlook

In this paper, we have presented our approach to automatic generation of test
cases in concurrent TTCN format. To do this, a test component configuration

14

Test Case Dynamic Behaviour
Test Case Name : Test_Concurrent
Group
Purpose
Configuration : Conf
Default
Comments : The tester consists of a Main Test Component and two Parallel Test Components
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 CREATE(PTC_1:Test PTC_1,
PTC_2:Test_PTC_2)
2 MCP_2 ? Ready(Syncl)
3 PCO_Z!Sig_C C_Sig_C
4 MCP_1 ? Ready(Sync2)
5 MCP_2 ? Ready(Sync2)
6 MCP_2 ! Proceed(Sync2,Y)
7 ?DONE(PTC_1,PTC_2) R
8 MCP_2 ? Ready(Sync2)
9 MCP_1 ? Ready(Sync2)
10 MCP_2 ! Proceed(Sync2,Y)
11 ?DONE(PTC_1,PTC_2) R
Test PTC 1
12 PCO_X ! Sig_A C_Sig A
13 PCO_X ? Sig_D C_Sig D
14 PCO_W ? Sig_E C_Sig_E
15 MCP_1 ! Ready(Sync2)
16 PCO_W ? Sig_G C_Sig_G P)
17 PCO_W ? Sig_E C_Sig_E
18 PCO_X ? Sig_D C_Sig_D
19 MCP_1! Ready(Sync2)
20 PCO_W ? Sig_G C_Sig_G P)
Test_PTC_2
21 PCO_Y ? Sig_B C_Sig_B
22 MCP_2 ! Ready(Sync1)
23 MCP_2 ! Ready(Sync2)
24 MCP_2 ? Proceed(Sync2,Y)
25 PCO_Y ! Sig_F C_Sig_F P)
Detailed Comments

Figure 10. A concurrent TTCN test case for MSC Test

and information concerning the synchronization of TCs has to be provided.
If the synchronization is specified by means of conditions, a corresponding
exchange of CMs between TCs can be generated automatically. We have pro-
vided the corresponding algorithms and presented a small example explaining
the output of the algorithms.

The implementation of our approach has already started and the results of the
first experiments have been promising. If our approach proves its applicability
to real world examples, we also intend to implement it in the Autolink tool.

Acknowledgements
We would like to thank Stefan Heymer for valuable comments on earlier drafts
of this paper and for careful proofreading.

15

References

[1] Cinderella SDL product description. http://www.cinderella.dk

[2] M. Clatin, R. Groz, M. Phalippou, R. Thummel. Two Approaches Linking a Test
Generation Tool with Verification Techniques. Proceedings of IWPTS 95, Evry,
1995.

[3] L. Doldi, V. Encontre, J.-C. Fernandez, T. Jéron, S. Le Bricquir, N. Texier,
M. Phalippou. Assessment of Automatic Generation Methods of Conformance
Test Suites in an Industrial Contezt. Testing of Communicating Systems, vol. 9,
Chapman & Hall, 1996.

[4] J. Ellsberger, D. Hogrefe, A. Sarma. SDL - Formal Object-oriented Language
for Communicating Systems. Prentice Hall, 1997.

[5] ETSI TC MTS. CATG Handbook. European Guide, ETSI, Sophia-Antipolis,
1998.

[6] J. Grabowski, D. Hogrefe, R. Scheurer, Z.R. Dai. Applying SAMSTAG to the
B-ISDN Protocol SSCOP. Testing of Communicating Systems, vol. 10, Chapman
& Hall, 1997.

[7] J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose
Specification by MSCs. In “SDL’93 — Using Objects” (O. Feergemand, A. Sarma,
editors). North-Holland, October 1993.

[8] ISO. Information Technology — OSI-Conformance Testing Methodology and
Framework — Part 1: General Concepts. ISO IS 9646-1, 1994.

[9] ISO. Information Technology — OSI-Conformance Testing Methodology and
Framework — Part 3: The Tree and Tabular Combined Notation (TTCN). ISO
IS 9646-3, 1996.

[10] H. Kahlouche, C. Viho, M. Zendri. An Industrial Ezperiment in Automatic
Generation of Ezecutable Test Suites for a Cache Coherency Protocol. Testing
of Communicating Systems, vol. 11, Kluwer Academic Press, 1998.

[11] ObjectGEODE product description. http://www.verilog.fr

[12] E. Rudolph, P. Graubmann, J. Grabowski. Tutorial on Message Sequence Charts
(MSC-96). Forte/PSTV’96, Kaiserslautern, October 1996.

[13] M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, B. Koch. Autolink — Putting SDL-
based Test Generation into Practice. Testing of Communicating Systems, vol. 11,
Kluwer Academic Press, 1998.

[14] Telelogic TAU product description. http://www.telelogic.se

[15] ITU-T Rec. Z.100 (1996). Specification and Description Language (SDL).
Geneva, 1996.

[16] ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC). Geneva, 1996.

16

