
1Partial Order Simulation of SDL Speci�cationsDaniel Toggweiler, Jens Grabowski, and Dieter HogrefeUniversity of Berne, Institute for Informatics, Neubr�uckstr. 10, CH-3012 Berne,Switzerland, ftoggweil, grabowsk, hogrefeg@iam.unibe.chThe need of e�cient simulation methods for validation and veri�cation of protocol speci�-cations leads to the development of partial order simulation methods. Two new algorithmsfor the partial order simulation of SDL speci�cations are presented. Both algorithms haveshown to be useful for the automatic generation of test cases. They are implemented inthe test case generation tool SaMsTaG. The results of some experiments are discussed.1. IntroductionDue to complexity the possibilities for validation and veri�cation of communication pro-tocols often are very restricted. A lot of complexity is introduced by the semantics of thespeci�cation language which is used to describe the behavior of the protocol functions.For example, SDL [10] is based on interleaving semantics. Concurrency is introduced byindeterminism, i.e., the execution of an SDL speci�cation is described by all interleavedtraces1 of concurrently executed events.Exploring all interleaved traces is not always necessary for veri�cation. Traces whichcorrespond to the same concurrent execution contain related information. Subsequently,partial order simulation methods exist for veri�cation [1,4,6,9]. They attempt to limitthe exploration of traces for concurrent executions. At best for each concurrent executiononly one trace is generated.We intend to improve the automatic generation of test cases for SDL speci�cations byusing partial order simulation methods. Our test case generation method is SaMsTaG2[2,7]. SaMsTaG generates test cases by searching system traces with speci�c propertiesin the state space of an SDL speci�cation. The most problematic point of SaMsTaGis the search procedure. Until now, due to the SDL interleaving semantics, SaMsTaGinvestigated all interleaved traces of the given speci�cation within the search algorithm.But for test case generation in most cases it is su�cient to examine one trace only foreach concurrent execution.Consequently, we developed and implemented the Independence Prioritizing Simula-tion (IPS) and the Condition Locking Simulation (CLS). These new algorithms adaptthe ideas of partial order simulation methods to the needs of SaMsTaG. They are pre-sented in this paper. However, the bene�ts of partial order simulation methods for SDL1Throughout this paper a trace is meant to be a totally ordered sequence of events.2SaMsTaG is an abbreviation for 'Sdl And Msc baSed Test cAse Generation'.

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 2speci�cations are not restricted to SaMsTaG. Therefore IPS and CLS are describedindependently from SaMsTaG.Throughout this paper we assume that we simulate closed SDL systems, i.e., systemswhich do not communicate with the system environment. This is no restriction, becauseit is always possible to model the behavior of the environment by means of special SDLprocesses which are able to send and receive all possible signals at any time. The advan-tage of this assumption is that we are able to treat the communication with the systemenvironment in the same way as the communication among SDL processes.The paper is organized in the following way: Section 2 introduces some fundamentalnotions. A small example is introduced in Section 3. Throughout the paper it will beused to explain the mechanism of partial order simulation methods. The IPS algorithmis described in Section 4. Section 5 presents the CLS algorithm. The results of someexperiments are discussed in Section 6. In Section 7 summary and outlook are presented.2. FoundationsIt is common practice to describe the behavior of an SDL system in form of a behaviortree. Figure 2 (a) presents a part of a behavior tree. The root of the tree S0 describes theinitial state and the leaves S2 and S3 denote �nal states. The other nodes describe stateswhich are reached during the simulation of the system. State transitions are representedby annotated edges. The annotations describe the events which lead to the correspondingstate transition.The meaning of the terms state and event may need some clari�cation. A state ismeant to be an SDL system state which comprises the local states of the processes, thevalues of variables, and the contents of all queues. An event denotes an arbitrary SDLevent like input, output, or task. In principle it makes no di�erence to use complete(atomic) state transitions3 instead of SDL events only.In general, the behavior tree of an SDL system is not �nite. One reason for this isthat often an ongoing and never ending behavior is required by the application area ofSDL, e.g., a telephone system should not end. Another reason is the existence of in�nitesignal queues which may lead to an in�nite state space of the SDL system.However, the traces of an SDL system can be examined by using an arbitrary SDLsimulator which provides the functions initialize, enabled-events, and execute-event. Wedescribe these functions by using the following BNF notation:< FunctionName > ([< Parameter > f; < Parameter >g�])[!< ReturnV alue >](1) initialize() ! InitialState : initializes the SDL simulator and returns the startstate of the simulation.(2) enabled-events(State) ! StackOfEnabledEvents : returns for a given state astack of all enabled events, i.e., events which can be executed next.(3) execute-event(State;Event) ! NextState : takes State as actual state, executesEvent, and returns the new state.3An SDL state transition is meant to be a sequence of events which is performed by one process andwhich leads from one SDL state to the next SDL state.

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 31 declare2 S stack of states := (initialize());3 TR stack of events := ();4 AL stack of stack of events := ();5 UpperBound integer constant := external;67 InterleavingSimulation()8 f9 push(AL; enabled-events(top(S)));10 while(:isempty(top(AL)) ^ length(TR) < UpperBound)11 f12 e := top(top(AL));13 push(S; execute-event(top(S); e));14 push(TR; e);15 push(AL; rest(pop(AL)));16 call : InterleavingSimulation();17 g18 pop(S); pop(TR); pop(AL);19 gFigure 1. Interleaving Simulation (ILS) algorithmThe function enabled-events returns a stack of events. A stack is a data structure whichcan be used to store elements of some type. It can be accessed and manipulated only byapplying the functions push, pop, top, rest, isempty, and length.(4) push(Stack;Element) : pushes Element on the top of Stack.(5) pop(Stack)! Element : removes and returns the top element of Stack.(6) top(Stack)! Element : returns the element which was last pushed on Stack.(7) rest(Stack)! Stack : removes the top element of Stack and returns the resultingstack.(8) isempty(Stack)! BooleanV alue : returns the boolean value true if Stack is emptyand false if Stack is not empty.(9) length(Stack)! IntegerV alue : returns the number of elements which are actuallystored in Stack.Based on the functions (1) - (9) we de�ne an algorithm which is able to examine the tracesof an SDL system. The algorithm is called interleaving simulation (ILS) and is shown inFigure 1.The expression (initialize()) in line 2 denotes a stack which only includes the initialstate of the SDL system. The empty parentheses () in the lines 3 and 4 describe empty

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 4
g

S3

S0

S2

S1 S4 S5

S6 S7

a

b c

d e

f h

i
k(a) Bottom

e

d

Bottom

c

S0

S1

S2

Bottom

a

b

Bottom

S

Bottom

ALTR(b)Figure 2. The interleaving simulation algorithm at workstacks. The ILS algorithm makes use of the global data structures S, TR, AL, andUpperBound. The ILS algorithm always remembers the complete path, i.e., states andevents, from the initial state to the actual state. The states are stored in the stack S andthe events, i.e., the actual trace, are stored in TR. The alternatives are stored in AL. Incase of in�nite behavior a termination criterion is needed. We use a length restriction forthe examined traces. The maximal length is given by the constant UpperBound.The way how the ILS algorithm explores the behavior of an SDL system is shownschematically in Figure 2. The dashed arrow in (a) indicates the way through the statespace of the investigated system. (b) describes the contents of S, TR, and AL immediatelyafter the execution of b, i.e., the actual state is S2.3. ExampleIn Figure 3 a small SDL speci�cation is presented. The system is called Example. Itconsists of the processes P1, P2, and P3. The processes do not communicate with thesystem environment, i.e., the system is closed. The system is �nite, i.e., the systembehavior ends in a global state where the local state of P2 is P2 State, and the processesP1 and P3 are stopped. P1, P2, and P3 exchange the signals a, b, c, and d.Process P1 may perform two events in arbitrary order. The events are the receptionof d from P2 and the sending of a to P2. Process P3 has a similar behavior. It mayperform the reception of b from P2 and the sending of c to P2 in arbitrary order. ProcessP2 reacts on the reception of the signals a and c. On the input of a it gives b to P3 andon the reception of c, signal d is sent to P1. A detailed analysis shows that some signalsmay cross each other. This applies for the signals a and d , and for the signals c and b.Applying the ILS algorithm will lead to an exploration of the behavior tree shownin Figure 4. The states are not inscribed with state names because we are interested intraces only. The edges are annotated with event descriptions. A ' !' denotes an outputevent, e.g., the annotation !a describes the output of signal a, and a '?' describes aninput, e.g., ?a represents the input of signal a. The process which performs the sendor receive event needs no special identi�cation. Each signal can be sent, resp. received,

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 5
System Example SDL Overview

Block Example

P1
�
(1,1)

P2
�
(1,1)

P3
�
(1,1)

SR12

a

d

SR23

b

c

(a) System diagram
Process P2 P2_Page(1)

P2_State

 c

 d

P2_State

 a

 b(c) Process de�nition of P2

Process P1 P1_Page(1)

P1_State1

 NONE

 a

P1_State3

 d

 d

P1_State2

 NONE

 a(b) Process de�nition of P1
Process P3 P3_Page(1)

P3_State1

 NONE

 c

P3_State3

 b

 b

P3_State2

 NONE

 c (d) Process de�nition of P3Figure 3. SDL speci�cation of the example system

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 6

!c

?a

!c

!a

?c

!b

!c

?a

?c

?a

?c

!a

!d

?b

!c

!b

!b

!d

!b

!d

!d

!a

?d

!c ?c !d ?d

?b

?c

?c !d ?d

!d

?b !d ?d

?b ?d

?c

!d

?b
?c !d ?d

?b !d ?d

?b

?d

?d
?b

?b

?c

?c !d ?d

?b

!d

!d ?d

?b

?d

?d

?b

?a

?d

!b

?d

?b

?d

?d

?b

!b ?b
?a ?b

?b

?c

?c !d ?d

?b

!d

!d ?d

?b

?d

?d

?b

?a

?d

!b

?d

?b

?d

?d

?b

!b ?b

?a !b ?b

?a

?d

!b

?d

?b

?d

?d

?b

!b ?b

?a !b ?b

?a

?d

!b

?d

?b

?d

?d

?b

!b ?b

?a !b ?b

!a ?a !b ?b

?d
?b

!b

!a

Figure 4. Applying the ILS algorithm to the example systemby one process only. The input NONE events in P1 and P3 are omitted because theydescribe no communication events. They specify the spontaneous sending of a and c.Since parallelism is described by all interleaved traces of concurrently executed events thebehavior tree in Figure 4 looks complicated.Various traces of Figure 4 belong to the same concurrent execution. Within a concur-

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 7
d

b

c

P1 P2 P3

msc MSC1

a (a)
d

a

c

b

P1 P2 P3

msc MSC3

(c)
b

d

c

P1 P2 P3

msc

a

MSC2

(b)
P1 P2 P3

msc MSC4

a

d

c

b(d)Figure 5. Concurrent executions of the example systemrent execution only the causal dependencies between events are considered which resultin a partially ordered set of events in contrary to traces in which the events are orderedtotally with respect to their execution time. The concurrent executions can be describedin a compact and intuitive manner by using Message Sequence Charts (MSCs) [11]. OurSDL example (cf. Figure 3) has four concurrent executions. They are depicted in Figure 5.The valid traces belonging to an MSC are described by the traces which do not violatethe partial order of the MSC. Our aim is to generate one trace only for each concurrentexecution. By using the knowledge that the events of one process are totally ordered intime and that the order of events of di�erent processes are mediated by messages an MSCrepresentation of the concurrent execution can be constructed from each trace.4. The Independence Prioritizing Simulation algorithmDuring the simulation process the ILS algorithm identi�es the concurrently enabled eventsfor each reached state. Under certain conditions such events can be executed in arbitraryorder. The idea of the Independence Prioritizing Simulation (IPS) algorithm is to takeadvantage of this fact. Independently from our work, a similar idea has been investigatedby Holzmann and Peled [5]. But, their approach is adapted to the speci�c needs ofveri�cation and not to the needs of test case generation and the simulation of SDL systems.However, at �rst we have to de�ne the conditions which have to be checked duringthe simulation of the SDL system. We de�ne three conditions which identify dependentevents, i.e., events which cannot be executed in arbitrary order. For presenting compactcondition formulas we need some de�nitions and notations.

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 8For an arbitrary SDL system with a �nite set of events4 let� O be the set of output events,� I be the set of input events,� ST be the set of spontaneous transitions (input NONE),� T be the set of timeout events,� Pe denote the process executing the event e,� Qe the input queue a�ected by the execution of event e,� initiates(ei; ej) a function which returns true, if ei, ej belong to the same SDL statetransition and ei 2 ST [T , and� Dep(ei; ej) state that ei and ej are dependent.Condition 1. Generally we assume that channels and signalroutes are undelayed. Inthis case output events, that do not originate from the same process, but do a�ect thesame input queue, inuence the concurrent execution. This is expressed formally by:if ei; ej 2 O ^ Pei 6= Pej ^ Qei = Qej then Dep(ei; ej)Condition 2. Consider the case, where a signal can be consumed and a spontaneoustransition or a timeout is possible. Then the SDL process has to make an indeterministicchoice between the di�erent events. The choice inuences the concurrent execution. Thisis formally expressed by:if Pei = Pej ^ ei; ej 2 I [T [ST ^ (ei 62 I _ ej 62 I) then Dep(ei; ej)Condition 3. If an SDL state transition is initiated by an event ed and another event ejof this SDL state transition is dependent on another event ek, then ed must be dependenton ek too. This is formally expressed by:if Dep(ej ; ek) ^ initiates(ed; ej) then Dep(ed; ek)The conditions 1 - 3 are based on the control and signal ow of an SDL system. There-fore they are only applicable to systems which do not share variables between processes,i.e., the use of the constructs view, export, import and remote procedure call is prohibited.A further restriction concerning the use of delayed channels has been mentioned alreadyin the description of Condition 1.It is obvious, that the existing conditions can be re�ned and precised. The advantageof the conditions 1 - 3 is, that they can be checked statically before the simulation starts.The dependencies between events do not change during run time. For describing the IPSalgorithm a de�nition of the terms independent and globally independent is needed.De�nition of independent and globally independent. Let E be all events of anSDL system and e,ei 2 E.� e and ei are independent if none of the conditions 1-3 is valid.� e is globally independent if 8ei 2 Enfeg : e and ei are independent.4Equal events in di�erent SDL state transitions are meant to be di�erent events.

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 91 declare global2 S stack of states := (initialize());3 TR stack of events := ();4 AL stack of stack of events := ();5 UpperBound integer constant := external;67 IndependencePrioritizingSimulation()8 f9 if (9e 2 enabled-events(top(S)) : e is globally independent)10 then push(AL; (e))11 else push(AL; enabled-events(top(S)));12 while(:isempty(top(AL)) ^ length(TR) < UpperBound)13 f14 e := top(top(AL));15 push(S; execute-event(top(S); e));16 push(TR; e);17 push(AL; rest(pop(AL)));18 call : IndependencePrioritizingSimulation();19 g20 pop(S); pop(TR); pop(AL);21 gFigure 6. Independence Prioritizing Simulation (IPS) algorithmRoughly spoken, the execution order of globally independent events which are enabledconcurrently has no inuence on the corresponding concurrent execution. Therefore we areallowed to assume an arbitrary execution order of these events without running the dangerto loose any concurrent execution. This idea is realized in the Independence PrioritizingSimulation algorithm (IPS) which is shown in Figure 6. The IPS algorithm works in asimilar manner as the ILS algorithm (cf. Figure 1). But, if there are globally independentevents enabled in a state s, an arbitrary one is selected as the only transition which isexecuted from s (cf. lines 9-11 in Figure 6).By applying the IPS algorithm to our example system the behavior tree (cf. Figure 7)is reduced from 34 to six paths. Each one of the events ?a, !b, ?c and !d is globallyindependent and the following six pairs of events are dependent: (!a; !c), (!c; !a), (!a; ?b),(?b; !a), (?b; !c), and (!c; ?b).It is obvious, that the IPS algorithm is not applicable if the system behavior includesa loop of globally independent events. Furthermore the algorithm does not achieve anyimprovement if all events are dependent.5. The Condition Locking Simulation algorithmThe application of the IPS algorithm leads to the exploration of six di�erent traces al-though we can distinguish four concurrent executions only. In this section we present an

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 10
!a !c

?c

!d

?d

?a

!b

?b !c

!c ?c

?c

!d

!d

?d

?d

!a

!a?a

?a!b

!b?b

?b?b?d

?b ?d

?b?dFigure 7. Applying the IPS algorithm to the example systemalgorithm which explores one trace only for each concurrent execution.The algorithm is explained by means of a �nite system consisting of n events e1; : : : ; enwhich permits traces of a �nite length only. Since the execution order of independentevents may be neglected, a concurrent execution is de�ned by the execution order of thedependent events. We represent a concurrent execution uniquely by using an n�n matrix.Only some �elds of the matrix are �lled with boolean values. A �eld at location (i; j)is �lled if the events ei and ej are dependent. The value is true if ei is executed beforeej. Otherwise it is false. The matrix is called condition matrix (CM) and the matrix�elds CM(1 : : : n; 1 : : : n) are called conditions. Now our problem of generating one traceonly for each concurrent execution is reduced to the problem of computing each possiblecondition matrix exactly once.Consider the case where an SDL system S with the initial state s0 is in the actualstate s. Let� s1; : : : ; sn be the possible successor states of s,� e1; : : : ; en be the events leading from s to s1; : : : ; sn,� Defs be the set of conditions whose boolean values are de�ned by the simulationfrom the initial state s0 to s (if s is the initial state Defs = ;),� Udefs be the conditions whose values are not de�ned yet,� Tre1 := fCM(1; n) j Dep(e1; en)^ e1 is executed before eng is the set of conditionswhich evaluate to true when e1 is executed, and� Fae1 := fCM(n; 1) j Dep(en; e1)^ e1 is executed before eng is the set of conditionswhich evaluate to false when e1 is executed.When e1 is executed the system changes to the new state s1. The sets Defs1 and Udefs1are calculated by Defs1 := Defs [Tre1 [Fae1 and Udefs1 := Udefsn(Tre1 [Fae1).

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 11The concept of the condition matrix and the calculation of the sets can be integratedinto the IPS algorithm. All possible condition matrices will be generated at least once.The result will be the same as using the original IPS algorithm (cf. Section 4), i.e., certaincondition matrices will be generated more than once. We describe the problem by usinga small example.Consider the situation where the system S is in the state s and the events e1 and e2 canbe executed next. The events e1 and e2 are independent, but not globally independent.Therefore during simulation they are treated as alternatives. Both alternatives will beexamined although e1 and e2 can be executed in arbitrary order without having anyinuence on the corresponding concurrent execution. This can be shown by calculatingthe sets de�ned above. Let s12 be the state which is reached if e1 is executed before e2and let s21 be the state which is reached if e2 is executed before s1. Then:Defs12 = (Defs[Tre1 [Fae1)[Tre2 [Fae2 = (Defs[Tre2 [Fae2)[Tre1 [Fae1 = Defs21andUdefs12 = Udefsn(Tre1[Fae1[Tre2[Fae2) = Udefsn(Tre2[Fae2[Tre1[Fae1) = Udefs21The solution to this problem is to evaluate the simulation run starting in state swith event e1 in the normal manner, and to lock the execution of e1 when the alterna-tive run starting in s with e2 is examined until we can guarantee that an already com-puted condition matrix cannot be generated again. This can be guaranteed if a conditionCM(1; n) 2 Tre1 ^ Udefs changes its value to false. Such a criterion can be checkedduring the simulation process.The algorithm implementing the ideas of a condition matrix and event locking is calledCondition Locking Simulation (CLS) algorithm. It creates each possible condition matrixexactly once. The proof for this and a formal description of the algorithm can be foundin [8].In the following the CLS algorithm is described informally by referring to the IPSalgorithm presented in Figure 6 and explaining the changes to be made:� Global data structures (lines 1-5){ In addition to the global data structures of IPS the CLS algorithm uses acondition matrix CM and a stack of stacks of locked events (LE).� Evaluation of the enabled events (lines 9-11){ delete all events from the list of enabled events which are stored within the topelement of LE.� Forward steps (lines 14-18){ make a copy of the top element of LE and push it onto LE{ delete all events from LE which are dependent to e{ enter the changes caused by the execution of e into CM{ after the forward step (line 18) push e onto the top element of LE� Backward step (line 20){ undo the changes in CM caused by the execution of the event stored in thetop element of TR{ pop the top element from the LE stack

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 12
!a !c

?c

!d

?d

?a

!b

?b !c

!c ?c

?c

!d

!d

?d

!a

!a?a

?a

!b

?b?d

?b

?d

!b

?bFigure 8. Applying the CLS algorithm to the example systemBy applying the CLS algorithm to our example four traces are explored. The correspond-ing behavior tree is presented in Figure 8.The CLS algorithm has been explained by means of a static and �nite system whichpermits only traces of �nite length. For the treatment of in�nite SDL systems we general-ized the CLS algorithm. The generalization has to cope with dynamic condition matrices.The details can be found in [8].6. ExperimentsThe presented algorithms ILS, IPS, and CLS are implemented. We compared their capa-bilities by using them to simulate a test architecture of the Inres protocol [3]. Here wepresent the results of three experiments which have been carried out on a Sun Sparc 5workstation.Speed of the algorithms. Wemeasured the number of states generated per second. Theexact values of this experiment are shown in Figure 9. Astonishingly the ILS algorithmis slower then IPS and CLS. The reason for this is that, in general the ILS algorithm hasto store more alternatively enabled events for each state.Exploring a complete behavior tree up to a given depth. The results of this testare shown in Figure 10. The depth of the tree is described on the horizontal axis. Thenumber of generated nodes is presented in logarithmic scale along the vertical axis. Theexperiments show that the partial order simulation algorithms allow to explore behaviortrees up to a bigger depth than the interleaving simulation.Generation of test cases. The algorithms have been implemented in the SaMsTaGtest case generator [2,7]. We generated a test case for the Inres protocol. We used

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 13Algorithm Maximal Speed Minimal Speedstates per second states per secondILS 1111 909IPS 1111 1000CLS 1111 1000Figure 9. The speed of the algorithms
10

100

1000

10000

100000

1e+06

0 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 e

xp
an

de
d

no
de

s

depth of searchtree

ILS
IPS

CLS

Figure 10. Exploring complete behavior treesAlgorithm Consumed timeILS Interrupted after 7 hours, more than 10 mio states have been exploredIPS 8'33"CLS 3'39"Figure 11. Using ILS, IPS, and CLS for test case generationa test purpose which checks the data transfer with an acknowledgement after the �rsttransmission of the data package. The results of this experiment are shown in Figure 11.They emphazise the power of partial order simulation methods for test case generation.7. Summary and outlookWe presented two algorithms which adapt the ideas of partial order simulation methodsto SDL speci�cations. The algorithms are implemented and their power for the automatic

SDL'95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 14generation of test cases has been proven by some experiments.However, the �rst version of the SaMsTaG tool uses interleaving simulation for testcase generation. In order to reduce the complexity of the generation process we imple-mented additional heuristics like reasonable environment or strong reasonable timers [7].These heuristics have proven to be useful for interleaving simulation. Consequently, westarted to investigate whether these heuristics also improve the test case generation basedon partial order simulation methods.AcknowledgementsThe presented work is funded partially by the KWF-Project No. 2555.1 'Graphical Meth-ods in the Test Process', the R & D project No. 299 'Conformance Testing - A Tool forthe Generation of Test Cases' funded by Swiss PTT, and the SPP IF project 'The Auto-matic Generation of Test Purposes'. The authors would like to thank Dr. E. Rudolph forproofreading and valuable comments.REFERENCES1. P. Godefroid. Partial-Order Methods for the Veri�cation of Concurrent Systems { AnApproach to the State-Explosion Problem. PhD thesis, Universite de Liege, Facult�edes Sciences Appliqu�ees, October 1994.2. J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Spec-i�cation by MSCs. In: SDL'93 - Using Objects. North-Holland, October 1993.3. D. Hogrefe. OSI Formal Speci�cation Case Study: The INRES Protocol and Service.Technical Report IAM-91-012, University of Berne, May 1991. Update May 1992.4. G. Holzmann, P. Godefroid, D. Pirottin. Coverage Preserving Reduction Strategies forReachability Analysis. In: Proceedings 12th IFIP WG 6.1 International Symposiumon Protocol Speci�cation Testing and Veri�cation. North-Holland, June 1992.5. G. Holzmann and D. Peled. An Improvement in Formal Veri�cation. In: Proceedingsof Seventh International Conference on Formal Description Techniques (FORTE'94)in Berne (Switzerland), October 1994.6. R. Langerak. True Concurrency Models for LOTOS. In: FORTE'94 - Tutorial Notes,October 1994.7. R. Nahm. Conformance Testing Based on Formal Description Techniques and Mes-sage Sequence Charts. PhD thesis, University of Berne, February 1994.8. D. Toggweiler. E�cient Test Generation for Distributed Systems Speci�ed by Au-tomata. PhD thesis, University of Berne, May 1995.9. P. Wolper, P. Godefroid. Partial-order Methods for Temporal Veri�cation. In: CON-CUR'93, 4th International Conference on Concurrency Theory, Lecture Notes in Com-puter Science, vol. 715, Springer-Verlag. August 1993.10. Z.100 (1993), CCITT Speci�cation and Description Language (SDL), ITU-T, June1994.11. Z.120 (1993), Message Sequence Chart (MSC), ITU-T, September 1994.

