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The need of efficient simulation methods for validation and verification of protocol specifi-
cations leads to the development of partial order simulation methods. Two new algorithms
for the partial order simulation of SDL specifications are presented. Both algorithms have
shown to be useful for the automatic generation of test cases. They are implemented in
the test case generation tool SAMSTAG. The results of some experiments are discussed.

1. Introduction

Due to complexity the possibilities for validation and verification of communication pro-
tocols often are very restricted. A lot of complexity is introduced by the semantics of the
specification language which is used to describe the behavior of the protocol functions.
For example, SDL [10] is based on interleaving semantics. Concurrency is introduced by
indeterminism, i.e., the execution of an SDL specification is described by all interleaved
traces! of concurrently executed events.

Exploring all interleaved traces is not always necessary for verification. Traces which
correspond to the same concurrent execution contain related information. Subsequently,
partial order simulation methods exist for verification [1,4,6,9]. They attempt to limit
the exploration of traces for concurrent executions. At best for each concurrent execution
only one trace is generated.

We intend to improve the automatic generation of test cases for SDL specifications by
using partial order simulation methods. Our test case generation method is SAMSTAG?
[2,7]. SAMSTAG generates test cases by searching system traces with specific properties
in the state space of an SDL specification. The most problematic point of SAMSTAG
is the search procedure. Until now, due to the SDL interleaving semantics, SAMSTAG
investigated all interleaved traces of the given specification within the search algorithm.
But for test case generation in most cases it is sufficient to examine one trace only for
each concurrent execution.

Consequently, we developed and implemented the Independence Prioritizing Simula-
tion (IPS) and the Condition Locking Simulation (CLS). These new algorithms adapt
the ideas of partial order simulation methods to the needs of SAMSTAG. They are pre-
sented in this paper. However, the benefits of partial order simulation methods for SDL

!Throughout this paper a trace is meant to be a totally ordered sequence of events.
ZSAMSTAG is an abbreviation for ’Sdl And Msc baSed Test cAse Generation’.
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specifications are not restricted to SAMSTAG. Therefore IPS and CLS are described
independently from SAMSTAG.

Throughout this paper we assume that we simulate closed SDL systems, i.e., systems
which do not communicate with the system environment. This is no restriction, because
it is always possible to model the behavior of the environment by means of special SDL
processes which are able to send and receive all possible signals at any time. The advan-
tage of this assumption is that we are able to treat the communication with the system
environment in the same way as the communication among SDL processes.

The paper is organized in the following way: Section 2 introduces some fundamental
notions. A small example is introduced in Section 3. Throughout the paper it will be
used to explain the mechanism of partial order simulation methods. The IPS algorithm
is described in Section 4. Section 5 presents the CLS algorithm. The results of some
experiments are discussed in Section 6. In Section 7 summary and outlook are presented.

2. Foundations

It is common practice to describe the behavior of an SDL system in form of a behavior
tree. Figure 2 (a) presents a part of a behavior tree. The root of the tree SO describes the
initial state and the leaves 52 and S% denote final states. The other nodes describe states
which are reached during the simulation of the system. State transitions are represented
by annotated edges. The annotations describe the events which lead to the corresponding
state transition.

The meaning of the terms state and event may need some clarification. A state is
meant to be an SDL system state which comprises the local states of the processes, the
values of variables, and the contents of all queues. An event denotes an arbitrary SDL
event like input, output, or task. In principle it makes no difference to use complete
(atomic) state transitions® instead of SDL events only.

In general, the behavior tree of an SDL system is not finite. One reason for this is
that often an ongoing and never ending behavior is required by the application area of
SDL, e.g., a telephone system should not end. Another reason is the existence of infinite
signal queues which may lead to an infinite state space of the SDL system.

However, the traces of an SDL system can be examined by using an arbitrary SDL
simulator which provides the functions initialize, enabled-events, and execute-event. We
describe these functions by using the following BNF notation:

< FunctionName > ([< Parameter > {, < Parameter >}*])[—+< ReturnValue >]

(1) initialize() — InitialState : initializes the SDL simulator and returns the start
state of the simulation.

(2) enabled-events(State) — StackO fEnabledEvents : returns for a given state a
stack of all enabled events, i.e., events which can be executed next.

(3) execute-event(State, Fvent) — NextState : takes State as actual state, executes
Fvent, and returns the new state.

3An SDL state transition is meant to be a sequence of events which is performed by one process and
which leads from one SDL state to the next SDL state.
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1 declare

2 S stack of states := (initialize());

3 TR stack of events:= ();

4 AL stack of stack of events := ();

5 Upper Bound integer constant := external;
6

7 InterleavingSimulation()

s

9 push(AL, enabled-events(top(S)));

10 while(—isempty(top(AL)) N length(T R) < UpperBound)
11 [

12 e := top(top(AL));

13 push(S, evecute-event(top(S), €));

14 push(TR, e);

15 push(AL, rest(pop(AL)));

16 call :  InterleavingSimulation();

17 }

18 } pop(S); pop(T'R); pop(AL);

19

Figure 1. Interleaving Simulation (ILS) algorithm

The function enabled-events returns a stack of events. A stack is a data structure which
can be used to store elements of some type. It can be accessed and manipulated only by
applying the functions push, pop, top, rest, isempty, and length.

4) push(Stack, Element) : pushes Element on the top of Stack.

)

5) pop(Stack) — Element : removes and returns the top element of Stack.

6) top(Stack) — Element : returns the element which was last pushed on Stack.
)

(
(
(
(7

rest(Stack) — Stack : removes the top element of Stack and returns the resulting
stack.

(8) tsempty(Stack) — BooleanValue : returns the boolean value true if Stack is empty
and false if Stack is not empty.

(9) length(Stack) — IntegerValue : returns the number of elements which are actually
stored in Stack.

Based on the functions (1) - (9) we define an algorithm which is able to examine the traces
of an SDL system. The algorithm is called interleaving simulation (ILS) and is shown in
Figure 1.

The expression (initialize()) in line 2 denotes a stack which only includes the initial
state of the SDL system. The empty parentheses () in the lines 3 and 4 describe empty
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Figure 2. The interleaving simulation algorithm at work

stacks. The ILS algorithm makes use of the global data structures S, TR, AL, and
Upper Bound. The ILS algorithm always remembers the complete path, i.e., states and
events, from the initial state to the actual state. The states are stored in the stack S and
the events, i.e., the actual trace, are stored in T'R. The alternatives are stored in AL. In
case of infinite behavior a termination criterion is needed. We use a length restriction for
the examined traces. The maximal length is given by the constant Upper Bound.

The way how the ILS algorithm explores the behavior of an SDL system is shown
schematically in Figure 2. The dashed arrow in (a) indicates the way through the state
space of the investigated system. (b) describes the contents of 5, T'R, and AL immediately
after the execution of b, i.e., the actual state is S2.

3. Example

In Figure 3 a small SDL specification is presented. The system is called Frample. 1t
consists of the processes PI1, P2 and P3 The processes do not communicate with the
system environment, i.e., the system is closed. The system is finite, i.e., the system
behavior ends in a global state where the local state of P2 is P2 State, and the processes
P1 and P3 are stopped. PI, P2, and P3 exchange the signals «a, b, ¢, and d.

Process P1 may perform two events in arbitrary order. The events are the reception
of d from P2 and the sending of a to P2. Process P3 has a similar behavior. It may
perform the reception of b from P2 and the sending of ¢ to P2 in arbitrary order. Process
P2 reacts on the reception of the signals @ and ¢. On the input of a it gives b to P% and
on the reception of ¢, signal d is sent to PI. A detailed analysis shows that some signals
may cross each other. This applies for the signals @ and d, and for the signals ¢ and b.

Applying the ILS algorithm will lead to an exploration of the behavior tree shown
in Figure 4. The states are not inscribed with state names because we are interested in
traces only. The edges are annotated with event descriptions. A ’!” denotes an output
event, e.g., the annotation /a describes the output of signal a, and a "¢’ describes an
input, e.g., Ya represents the input of signal a. The process which performs the send
or receive event needs no special identification. Each signal can be sent, resp. received,
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Figure 4. Applying the ILS algorithm to the example system

by one process only. The input NONFE events in P! and P3 are omitted because they
describe no communication events. They specify the spontaneous sending of ¢ and e.
Since parallelism is described by all interleaved traces of concurrently executed events the
behavior tree in Figure 4 looks complicated.

Various traces of Figure 4 belong to the same concurrent execution. Within a concur-
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Figure 5. Concurrent executions of the example system

rent execution only the causal dependencies between events are considered which result
in a partially ordered set of events in contrary to traces in which the events are ordered
totally with respect to their execution time. The concurrent executions can be described
in a compact and intuitive manner by using Message Sequence Charts (MSCs) [11]. Our
SDL example (cf. Figure 3) has four concurrent executions. They are depicted in Figure 5.
The valid traces belonging to an MSC are described by the traces which do not violate
the partial order of the MSC. Our aim is to generate one trace only for each concurrent
execution. By using the knowledge that the events of one process are totally ordered in
time and that the order of events of different processes are mediated by messages an MSC
representation of the concurrent execution can be constructed from each trace.

4. The Independence Prioritizing Simulation algorithm

During the simulation process the ILS algorithm identifies the concurrently enabled events
for each reached state. Under certain conditions such events can be executed in arbitrary
order. The idea of the Independence Prioritizing Simulation (IPS) algorithm is to take
advantage of this fact. Independently from our work, a similar idea has been investigated
by Holzmann and Peled [5]. But, their approach is adapted to the specific needs of
verification and not to the needs of test case generation and the simulation of SDL systems.

However, at first we have to define the conditions which have to be checked during
the simulation of the SDL system. We define three conditions which identify dependent
events, i.e., events which cannot be executed in arbitrary order. For presenting compact
condition formulas we need some definitions and notations.
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For an arbitrary SDL system with a finite set of events* let

e O be the set of output events,

e [ be the set of input events,

e ST be the set of spontaneous transitions (input NONE),
e T’ be the set of timeout events,

o P. denote the process executing the event e,

(). the input queue affected by the execution of event e,

initiates(e;, e;) a function which returns true, if ¢;, €; belong to the same SDL state
transition and ¢; € ST UT, and

o Dep(e;, e;) state that e; and e; are dependent.

Condition 1. Generally we assume that channels and signalroutes are undelayed. In
this case output events, that do not originate from the same process, but do affect the
same input queue, influence the concurrent execution. This is expressed formally by:

if e,e; €0 N Poy # P, N Qe; = Qc; then Dep(e;, e;)

Condition 2. Consider the case, where a signal can be consumed and a spontaneous
transition or a timeout is possible. Then the SDL process has to make an indeterministic
choice between the different events. The choice influences the concurrent execution. This
is formally expressed by:

if Poy =Py Neje; € TUTUST A (e; 1V e; & 1) then Dep(e;,e;)

Condition 3. If an SDL state transition is initiated by an event e; and another event e;
of this SDL state transition is dependent on another event e, then e; must be dependent
on ¢ too. This is formally expressed by:

if Dep(e;,er) A initiates(eq, e;) then Dep(eq, er)

The conditions 1 - 3 are based on the control and signal flow of an SDL system. There-
fore they are only applicable to systems which do not share variables between processes,
i.e., the use of the constructs view, export, import and remote procedure call is prohibited.
A further restriction concerning the use of delayed channels has been mentioned already
in the description of Condition 1.

It is obvious, that the existing conditions can be refined and precised. The advantage
of the conditions 1 - 3 is, that they can be checked statically before the simulation starts.
The dependencies between events do not change during run time. For describing the IPS
algorithm a definition of the terms independent and globally independent is needed.

Definition of independent and globally independent. Let E be all events of an
SDL system and e.e; € E.

o c and ¢; are independent if none of the conditions 1-3 is valid.

o c is globally independent if Ve, € E\{e} : e and ¢; are independent.

*Equal events in different SDL state transitions are meant to be different events.
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1 declare global

2 S stack of states := (initialize());

3 TR stack of events:= ();

4 AL stack of stack of events := ();

5 Upper Bound integer constant := external;

6

7 Independence PrioritizingSimulation()

s

9 if (Je € enabled-events(top(S)): e is globally independent)
10 then push(AL, (e))

11 else push(AL, enabled-events(top(S)));

12 while(—isempty(top(AL)) N length(T R) < UpperBound)
13 [

14 e := top(top(AL));

15 push(S, evecute-event(top(S), €));

16 push(TR, e);

17 push(AL, rest(pop(AL)));

18 call = Independence PrioritizingSimulation();
19 }

20 } pop(S); pop(T'R); pop(AL);

21

Figure 6. Independence Prioritizing Simulation (IPS) algorithm

Roughly spoken, the execution order of globally independent events which are enabled
concurrently has no influence on the corresponding concurrent execution. Therefore we are
allowed to assume an arbitrary execution order of these events without running the danger
to loose any concurrent execution. This idea is realized in the Independence Prioritizing
Simulation algorithm (IPS) which is shown in Figure 6. The IPS algorithm works in a
similar manner as the ILS algorithm (cf. Figure 1). But, if there are globally independent
events enabled in a state s, an arbitrary one is selected as the only transition which is
executed from s (cf. lines 9-11 in Figure 6).

By applying the IPS algorithm to our example system the behavior tree (cf. Figure 7)
is reduced from 34 to six paths. FEach one of the events 7a, b, 7¢ and !d is globally
independent and the following six pairs of events are dependent: (la,!c), (¢, la), (la,?b),
(7b,1a), (7b,1c), and (!¢, 7b).

It is obvious, that the IPS algorithm is not applicable if the system behavior includes
a loop of globally independent events. Furthermore the algorithm does not achieve any
improvement if all events are dependent.

5. The Condition Locking Simulation algorithm

The application of the IPS algorithm leads to the exploration of six different traces al-
though we can distinguish four concurrent executions only. In this section we present an



SDL’95 - Proceedings of the 7th SDL Forum, 25.-29. Sept. 1995, Oslo, Norway 10

Figure 7. Applying the IPS algorithm to the example system

algorithm which explores one trace only for each concurrent execution.

The algorithm is explained by means of a finite system consisting of n events ey, ..., e,
which permits traces of a finite length only. Since the execution order of independent
events may be neglected, a concurrent execution is defined by the execution order of the
dependent events. We represent a concurrent execution uniquely by using an n x n matrix.
Only some fields of the matrix are filled with boolean values. A field at location (¢, 7)
is filled if the events ¢; and e; are dependent. The value is true if ¢; is executed before
e;. Otherwise it is false. The matrix is called condition matriz (CM) and the matrix
fields CM(1...n,1...n) are called conditions. Now our problem of generating one trace
only for each concurrent execution is reduced to the problem of computing each possible
condition matrix exactly once.

Consider the case where an SDL system S with the initial state sq is in the actual
state s. Let

® S1,...,8, be the possible successor states of s,
® c1,...,¢, be the events leading from s to sq,...,s,,

e Def, be the set of conditions whose boolean values are defined by the simulation
from the initial state sq to s (if s is the initial state Defs = ),

o Udef, be the conditions whose values are not defined yet,

o Tr., :={CM(1,n) | Dep(e1,e,) N ey is executed before e, } is the set of conditions
which evaluate to true when e; is executed, and

o Fa., :={CM(n,1)| Dep(e,,e1)Ney is executed before e, } is the set of conditions
which evaluate to false when e is executed.

When e, is executed the system changes to the new state s;. The sets Def,, and Udefs,
are calculated by Defs, := Def; UTr., U Fa., and Udefs, := Udef\(Tr., U Fa,).
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The concept of the condition matrix and the calculation of the sets can be integrated
into the IPS algorithm. All possible condition matrices will be generated at least once.
The result will be the same as using the original IPS algorithm (cf. Section 4), i.e., certain
condition matrices will be generated more than once. We describe the problem by using
a small example.

Consider the situation where the system S is in the state s and the events e¢; and ¢, can
be executed next. The events e; and e, are independent, but not globally independent.
Therefore during simulation they are treated as alternatives. Both alternatives will be
examined although e; and e; can be executed in arbitrary order without having any
influence on the corresponding concurrent execution. This can be shown by calculating
the sets defined above. Let sy be the state which is reached if e; i1s executed before e,
and let s9; be the state which is reached if es 1s executed before s;. Then:

Defs,, = (DefsUTr., UFa., )UTr.,UFa., = (DefsUTr.,UFa.,)UTr., UFa., = Defs,,
and

Udefs,, = Udef\(Tre,UFa.,UTr,,UFa.,) = Udef\(Tr.,UFa.,UTr. UFa. )= Udefs,,

The solution to this problem is to evaluate the simulation run starting in state s
with event e¢; in the normal manner, and to lock the execution of ¢; when the alterna-
tive run starting in s with ey is examined until we can guarantee that an already com-
puted condition matrix cannot be generated again. This can be guaranteed if a condition
CM(1,n) € Tr., AN Udefs changes its value to false. Such a criterion can be checked
during the simulation process.

The algorithm implementing the ideas of a condition matrix and event locking is called
Condition Locking Simulation (CLS) algorithm. It creates each possible condition matrix
exactly once. The proof for this and a formal description of the algorithm can be found
in [8].

In the following the CLS algorithm is described informally by referring to the IPS
algorithm presented in Figure 6 and explaining the changes to be made:

e Global data structures (lines 1-5)

— In addition to the global data structures of IPS the CLS algorithm uses a
condition matrix C'M and a stack of stacks of locked events (LE).

e Evaluation of the enabled events (lines 9-11)

— delete all events from the list of enabled events which are stored within the top
element of LE.

e Forward steps (lines 14-18)
— make a copy of the top element of LE and push it onto LE
— delete all events from LFE which are dependent to e
— enter the changes caused by the execution of e into C'M
— after the forward step (line 18) push e onto the top element of LF

e Backward step (line 20)
— undo the changes in C'M caused by the execution of the event stored in the
top element of T'R
— pop the top element from the LE stack
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Figure 8. Applying the CLS algorithm to the example system

By applying the CLS algorithm to our example four traces are explored. The correspond-
ing behavior tree is presented in Figure 8.

The CLS algorithm has been explained by means of a static and finite system which
permits only traces of finite length. For the treatment of infinite SDL systems we general-
ized the CLS algorithm. The generalization has to cope with dynamic condition matrices.

The details can be found in [8].

6. Experiments

The presented algorithms ILS, IPS, and CLS are implemented. We compared their capa-
bilities by using them to simulate a test architecture of the Inres protocol [3]. Here we
present the results of three experiments which have been carried out on a Sun Sparc 5
workstation.

Speed of the algorithms. We measured the number of states generated per second. The
exact values of this experiment are shown in Figure 9. Astonishingly the ILS algorithm
is slower then IPS and CLS. The reason for this is that, in general the ILS algorithm has
to store more alternatively enabled events for each state.

Exploring a complete behavior tree up to a given depth. The results of this test
are shown in Figure 10. The depth of the tree is described on the horizontal axis. The
number of generated nodes is presented in logarithmic scale along the vertical axis. The
experiments show that the partial order simulation algorithms allow to explore behavior
trees up to a bigger depth than the interleaving simulation.

Generation of test cases. The algorithms have been implemented in the SAMSTAG
test case generator [2,7]. We generated a test case for the Inres protocol. We used
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Algorithm || Maximal Speed Minimal Speed
states per second | states per second

ILS 1111 909
IPS 1111 1000
CLS 1111 1000

Figure 9. The speed of the algorithms
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Figure 10. Exploring complete behavior trees
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Figure 11. Using ILS, IPS, and CLS for test case generation

a test purpose which checks the data transfer with an acknowledgement after the first
transmission of the data package. The results of this experiment are shown in Figure 11.
They emphazise the power of partial order simulation methods for test case generation.

7. Summary and outlook

We presented two algorithms which adapt the ideas of partial order simulation methods
to SDL specifications. The algorithms are implemented and their power for the automatic
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generation of test cases has been proven by some experiments.

However, the first version of the SAMSTAG tool uses interleaving simulation for test
case generation. In order to reduce the complexity of the generation process we imple-
mented additional heuristics like reasonable environment or strong reasonable timers [7].
These heuristics have proven to be useful for interleaving simulation. Consequently, we
started to investigate whether these heuristics also improve the test case generation based
on partial order simulation methods.
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