
1Towards the Industrial Use of Validation Techniques andAutomatic Test Generation Methods for SDL Speci�cationsAnders Eka, Jens Grabowskib, Dieter Hogrefeb, Richard Jeromec, Beat Kochb, andMichael SchmittbaTelelogic AB, P.O. Box 4128, S-20312 Malmo, Sweden, eMail: anders.ek@telelogic.sebInstitute for Telematics, University of L�ubeck, Ratzeburger Allee 160, D-23538 L�ubeck,Germany, eMail: fjens,hogrefe,bkoch,schmittg@itm.mu-luebeck.decEricsson Limited, Public Systems Division, Ericsson Way, Charles Avenue, BurgessHill, West Sussex RH15 9UB, England, eMail: etlrdje@etlxdmx.ericsson.seDue to increasing demands from companies and standardisation bodies, Telelogic AB andthe University of L�ubeck started a research and development project in October 1996which aims at improving the validation and, especially, the automatic test generationfacilities of the SDT/ITEX tool set. The project is driven by practical experiences andpractical needs, but also takes care of research results. In this paper, we present two shortexperience reports and describe the project.1. INTRODUCTIONThe ITU-T Speci�cation and Description Language (SDL) [16] is worldwide the mostsuccessful standardized formal description technique. SDL has been used successfully inindustrial projects and for standardization purposes. Lots of SDL success stories can befound in the proceedings of the past SDL Forum conferences [1,6{8].The SDT/ITEX tools from Telelogic AB are one of the most successful commercial SDLtool sets. They provide a complete environment for the development of SDL speci�cations,SDL based implementations and TTCN based test suites. For this, they include graphicaleditors, analysers, simulation tools, various browsers, application code generators adaptedto di�erent real time kernels and further support tools.1 Besides SDL, SDT/ITEX supportthe speci�cation languages MSC [17] and TTCN [14].One tool of SDT/ITEX is the Validator [4]. The Validator is aimed at providingengineers with the possibility to increase the quality of their work and to automate time-consuming tasks. More speci�cally, the tool is designed to help engineers in three situa-tions:1. During an incremental design, by providing an automated fault detection mecha-nism that �nds inconsistencies and problems in an early stage of development.1An overall view of SDT/ITEX can be found in Section 'XII Demonstrations' of [1].

2 2. When verifying the system against requirements, by providing an option for auto-matic MSC veri�cation.3. When developing test cases, by providing options for automatic test generation.The items 1 and 2 are referred to by the term validation, whereas item 3 is referred to byautomatic test generation. Validation and automatic test generation are closely related,because basically the same techniques can be used for both.The Validator is based on the state space exploration technique (e.g., [12]), which isa well known technique for the automatic analysis of distributed systems. Using thistechnique a system property is validated by building up and examining the system's statespace. Examples for properties which can be veri�ed are freedom of deadlocks or theful�lment of an MSC.In general, for automatic test generation we are also interested in �nding a property.Furthermore, we need to �nd a trace which can be used for testing the property in a systemimplementation. In this context a property is referred to by test purpose. Automatic testgeneration becomes a little bit more complex, because we also have to follow testingmethodologies [13] and to transform the resulting test sequences into the TTCN format.Validation and automatic test generation both have to deal with complexity. Due to thestate space explosion problem it is often impossible to perform an exhaustive validationor to generate test cases automatically even for small systems.Currently, we observe an increasing demand for advanced validation techniques andautomatic test generation methods from SDT/ITEX customers. Research and case studieshave shown that automatic test generation becomes feasible [2,9,10].Therefore Telelogic AB and the University of L�ubeck have set up a research and devel-opment project called Autolink. Autolink improves the validation and especially thetest generation facilities of SDT/ITEX. The project is driven by practical experiences,but it also considers research results.The paper continues as follows. In Section 2 the Validator is sketched. SDL valida-tion experiences from Ericsson are presented in Section 3. The need for automatic testgeneration methods will be explained by an ETSI experience report in Section 4. TheAutolink project, its current status and the future plans are described in Section 5.Finally, the conclusion and outlook are given.2. THE SDT VALIDATORThe Validator is based on the state space exploration technique (e.g., [12]). In the SDLcontext this means that the state space of an SDL system is built up, stored in a directedgraph and examined. The directed graph is referred to by reachability graph and representsthe behaviour of the SDL system. The nodes of the reachability graph represent globalSDL system states. The edges describe SDL events that can take the SDL system fromone global system state to the next global system state. A global SDL system state, i.e.,a node in the reachability graph, is characterized by:- the active process instances,- the variable values of all active processes,- the SDL control
ow state of all active process instances,- the active procedures (with local variables),

3- the signals (with parameters) that are present in the queues of the system,- the active timers,- etc.The edges in a reachability graph de�ne the atomic events of the SDL system. Thesecan be SDL statements like tasks, inputs, outputs etc., but also complete SDL transitionsdepending on how the state space exploration is con�gured.During validation the reachability graph is analysed. Properties of the reachabilitygraph describe properties of the system behaviour. For example, a system is free ofdeadlocks if all nodes in the reachability graph have at least one outgoing edge.2.1. MSC veri�cationThe Validator provides two options to check an SDL speci�cation against system require-ments. The requirements have to be expressed in form of observer processes (see Section2.2) or MSC diagrams. State space exploration techniques are used for both options. Foran MSC requirement, the Validator explores the state space, i.e., it simulates the SDLspeci�cation, and searches for a path in the reachability graph which includes the MSC.If such a path exists the SDL system has the MSC property, i.e., the MSC is veri�ed.2.2. Observer processesAn observer process allows to check more complex requirements on systems than can beexpressed by MSCs. The notion is to use a special kind of SDL processes, called observerprocesses, to describe the requirements that are to be checked. Then the observer processesare included in the SDL system. Typical application areas for observer processes are testcase generation, feature interaction analysis, or the analysis of safety-critical systems.To be useful, observer processes must be able to inspect the SDL system without inter-fering with it, and also to generate reports that convey the success or failure of whateverthey are checking. To accomplish this, three features are included in the Validator:1. The observer process mechanism. By de�ning processes to be observer processes, theValidator starts to execute in a two-step fashion. First, the rest of the SDL systemexecutes one transition, and then all observer processes execute one transition andcheck the new system state.2. The assertion mechanism. The assertion mechanism enables the observer processesto generate reports during state space exploration. These reports will show up inthe list of generated reports in a special report viewer.3. The Access abstract data type. The purpose of the Access abstract data type isto give the observer processes a possibility to examine the internal states of otherprocesses in the system. Using the Access ADT it is possible to check variablevalues, contents of queues, etc., without any need to modify the observed processes.There are two main characteristics of observer processes:1. Continuous signals are used which check the internal state of other processes usingthe Access operator.2. Assertions are used to report the result of the test.

4
;
SIGNALSET ;

Process Type TG_Cov 1(1)

dcl
 exec integer,
 str charstring;

/*#CODE
#BODY
static int TG_Cov_MaxExec = 0;
*/

S

depth(0) > 50

GetExec
(exec)

exec >
#CODE(’TG_Cov_MaxExec’)

Check if some
new symbols
have been
executed

’’
Store the new number
of executed symbols
in the c variable
TC_Cov_MaxExec

/*#CODE
TG_Cov_MaxExec = #SDL(exec);
*/

int2str
(exec,str)

Report
(’Cov = ’ // str)

-

false

true

Figure 1. A simple observer processA simple observer process type is shown in Figure 1. TG Cov realizes a symbol coveragebased strategy for the generation of reports. Each time a trace with length 50 is found thatcovers an additional SDL symbol, a new report is generated. SDT provides a mechanismfor accessing variables and functions of the Validator's C Code in an SDL statement. Thisallows to retrieve information about the current status of the state space exploration.The observer process and its application for test generation will be described in detail inSection 5.2.2.3. Using the Link tool for semi-automatic test generationSDT/ITEX o�ers the option to link SDL speci�cations and TTCN descriptions by meansof the Link tool. For this a .link �le is generated from the SDL speci�cation. This �leis an executable program which in combination with ITEX supports the semi-automatic

5
A BX+Y(a) Existing system A BX+Y+Z

C(b) Required systemFigure 2. Existing and required systemconstruction of TTCN test suites. The Link tool allows to generate the following parts ofa test suite:� ASP (Abstract Service Primitive) de�nitions are generated automatically. All SDLsignals appearing on channels to the environment are translated to ASN.1 ASPs.� PCOs (Points of Control and Observation) are generated automatically. All channelsto the environment are considered to be PCOs.� If the SDL signals are structured, then these structures are translated to ASN.1type de�nitions.� The test case behaviour can be constructed semi-automatically. The user chooses asend event appropriate for the test purpose, and the Link tool adds the followingcorrect receive events to the test case description. Then the user has to select thenext send event.� A single default behaviour description for the test suite is generated.� There is a limited generation of constraint de�nitions.3. ERICSSON EXPERIENCESEricsson is a global telecommunications company that supplies a vast range of hard- andsoftware solutions to network operators all around the world. For one of the currentprojects in the UK, Ericsson has used SDT/ITEX to design new application software forEricsson AXE10 telephone exchanges. These exchanges are already in use and form anintegral part of the UK switching network.Customer requirements for such projects are normally provided in form of lengthytextual descriptions. These can prove imprecise when, for example, describing signallingsystems or protocols. For the project in the UK there was an agreement to express therequirements in form of an SDL speci�cation. Furthermore SDL was used for the systemdesign.3.1. The SDL requirements modelThe project required to introduce a new signalling system into the existing network. Asshown in Figure 2a, the existing system consists of the two in- and outputs A and B,with associated functionality X and Y, respectively. The required system (Figure 2b)consists of the three in- and outputs A, B and C, with associated functionality X, Y andZ, respectively.

6
C

A BX o Z i YFigure 3. Design modelThe system in Figure 2b can be seen as a black box model for the functional require-ments to be ful�lled by the existing and the new functionality. The system has beendescribed in SDL and served as functional requirements model (FRM) for validation pur-poses.3.2. The SDL design modelThe interfaces between the signalling in- and outputs A, B and C, and the functionality ofX, Y and Z are clearly understood. The new components of the required system, i.e., thesignalling system C with functionality Z already existed. Thus, single SDL speci�cationsfor A/X, B/Y and C/Z were developed.For the required system design (Figure 3), the new functionality C/Z was incorporatedin and interfaced with the existing system functionality by means of the additional soft-ware blocks o and i.2 SDL models for o and i were produced and the (functional) SDLdesign model (FDM) completed. The FDM can be seen as a protocol conversion exercise,with o and i as conversion blocks.3.3. ValidationThe problem of software development is to detect faults as early as possible. For theEricsson project, a small inter-work fault at FDM level might take an hour to �x, butit could take hundreds of hours if it is not found until the software starts to work onan AXE10 telephone exchange. Thus, the sooner the FDM can be validated against theFRM, the better.The SDT Validator was used for the validation of FRM and FDM. Early thoughts werethat this could just be used to ensure that the FDM did not have any inherent errors likedeadlocks or in�nite loops; that it described some kind of reliable and stable system. Butas a result of the design process two SDL speci�cations FRM and FDM were developedwhich had identical external interfaces A, B and C. Therefore the Validator could be usedto check if the FDM met the requirements provided by the FRM.The validation was done in a two step procedure. In a �rst step all relevant executiontraces of the FRM were generated. In a second step each trace was transformed into anMSC and loaded into the FDM. By using the MSC veri�cation feature of SDT/ITEX thetraces of the FRM were shown to exist in the FDM.2It should be noted that this design includes abstraction and simpli�cation. Depending on the call type,the system may have two instances of i and none of o. Furthermore, the system may be instantiated morethan once. During operation a telephone exchange may maintain up to 64000 instances of the system.

7Step 1: Recording FRM tracesStep 1 was performed by adding an observer process (Section 2.2) to the FRM. Theobserver process was used to control the exploration of the FRM state space. It recordedthe path from the idle state to prede�ned global system states and determined the state-space coverage at these states. If the actual path increased the coverage, it was saved. Ifnot, exploration continued. Further improvement of the result of step 1 was achieved bydoing some �ne tuning, e.g., considering only signi�cant signal parameter values, i.e., theone causing branches in SDL processes.After several days of execution, �200 usable paths had been generated. The paths hada length of �100 transitions and provided about 70% coverage of the system. Further 20%of coverage were achieved by manually navigating to the roots of unexplored branches inthe state space and by implementing a rule which prevented to return to the idle stateduring the exploration.Step 2: MSC veri�cationIn step 2, the paths generated in step 1 were transformed into MSCs. Then each MSC wasloaded into the FDM validator and, if possible, veri�ed. An unveri�ed MSC correspondedto an error in either of the models. Errors in the FDM model are easily recti�ed, butfaults in the FRM cause a repetition of step 1, because MSCs generated from an erroneousspeci�cation may re
ect the errors. In the AXE10 project the MSCs had to be regeneratedonly twice.3.4. Results and discussionIt took three weeks for two people to (re)generate the MSCs and work through the faults.About 80 discrepancies between the FRM and FDM were detected and corrected. Themajority of these were inter-working errors, usually the hardest of all errors to �nd. Allerrors were removed and the SDL speci�cations of FRM and FDM were corrected untilall 260 MSCs were veri�ed. It has been estimated that the 260 veri�ed MSCs coveredmore than 60% of the FDM and approximately 90% of the FRM.Quantifying the bene�t of the Validator in this project is hard. Certainly withoutthe validation process, errors would have slipped through to subsequent design phases.Inter-work errors are notoriously hard to �nd, and they cause large problems in softwareprojects. It may be enough to say that the software has progressed from the SDT/ITEXenvironment through testing on AXE10 emulators and onto real AXE10 exchanges withno major di�culty. Normally projects of this magnitude prove rather more troublesome.Subsequent demonstrations to the customer made a good impression. Test cases run-ning on the SDT Simulator and on Ericsson's AXE10 emulators showed the requiredsignalling interaction, which matched precisely in both environments. Without doubt,the SDT Validator will be used again. Additional options for automatic test case gener-ation would be most useful, although most of the generated MSCs do not translate wellinto real-life test cases.4. ETSI EXPERIENCESWithin Project Team 65 ETSI started an e�ort to experiment with test case generationmethods [3]. Three di�erent protocols were selected for experimentation: INRES [11],

8INAP CS2 [5] and B-ISDN [15]. The protocols were speci�ed with SDL. For each protocolone or two test purposes were speci�ed as an example. Then the tools SDT Link fromTelelogic and TTCgeN from Verilog were taken to generate test cases. For detailed results,see [3].Some general observations can be derived from these experiments.The automatic generation of the static declarations (PCOs, ASP types, : : :) is veryuseful. The test case developer is freed from a time consuming task, all provided that theSDL speci�cation already exists and is correct.The dynamic test case generation is semi-automatic and performed in a step-by-stepmanner. In the case of SDT Link, a test purpose is performed by sending an appropriatesignal to the SDL speci�cation together with the constraint. The tool then generates allpossible responses together with their constraints automatically. This is repeated untilthe test case is de�ned. The approach of TTCgeN is slightly di�erent on �rst sight. Ittakes a complete MSC as input and then generates the TTCN in one go. The MSC hasto be developed in a step-by-step manner with simulation. Therefore in e�ect the toolsfollow approximately the same strategy.Most of the time is spent with de�ning the constraints. The �rst constraint has to beentered manually. Then SDT Link generates the outputs together with their constraints.In TTCgeN this is done on the MSC basis. Usually these automatically generated con-straints can then be used, maybe in a slightly modi�ed form, to serve as constraints forfurther inputs. Due to the tool support the user can speed up the constraint developmentconsiderably by reusing automatically generated constraints.The use of the tools normally tempts into making rather large test cases compared tothe single state transition test cases which are typically developed by hand. The resultingtest suite then consists of a smaller number of large test cases compared to the traditionallarge number of small test cases. The reason for this is the fact that the SDL modelallows to very easily perform a complete scenario in a simulative way. This has certainadvantages and disadvantages over the state-by-state approach, which for some test casedevelopers tends to be rather boring. The advantage is that the complete scenarios canbe used as acceptance tests for a tested product. The test is performed from a user'sperspective. The disadvantage is that the coverage may not be as complete as if everysingle state transition was tested.The tool-supported test generation seems to be of particular bene�t for those protocolswhich de�ne a lot of states and transitions instead of data. These state oriented protocolscan very naturally be de�ned in SDL (and they usually are nowadays). Therefore the e�ortto produce an SDL speci�cation suitable for test case generation is acceptable. This wasthe case for INRES and INAP CS2. For data oriented protocols an SDL speci�cationmay not be so natural. Most of the protocol is de�ned in terms of parameter variationsinstead of dynamic behaviour. The e�ort of producing an SDL speci�cation suitable fortest case generation is considerable. This was the case for B-ISDN.To sum up, the experience made by ETSI within PT65 was promising enough to con-tinue one of the experiments in a follow-up project. A project team has been set upto generate a test suite for INAP CS2 from the SDL speci�cation using software tools.The results from this �rst tool-supported test case generation with the aim of creating acomplete test suite within ETSI will be available in early 1998.

9
SDT ITEX

Link Executable

TTCN MP file
(Constraints Part &

Dynamic Part)

Link Tool

Validator
(Autolink)

Complete
ITEX Test Suite

Declarations Part

SDL
Specification

Test Suite
Overview

Figure 4. System overview5. THE AUTOLINK PROJECTThe main objective of the Autolink project is the development and implementationof an SDT component which supports the automatic and semi-automatic generation ofTTCN test suites based on SDL speci�cations.While SDT allows the user to construct an SDL speci�cation and test it with the Valida-tor, ITEX on the other hand supports the user in the development of TTCN tests suites.So far only the Link tool has served as a bridge between SDT and ITEX (Section 2.3).With the Autolink component the connection between SDT and ITEX becomes eventighter (Figure 4). Now, the user can specify the test cases within the SDT Validatorand let the system generate a TTCN test suite with constraints and dynamic behaviourtables. This test suite can then be completed in ITEX with the declarations provided bythe Link tool.5.1. The �rst step: path based test generationThe generation of a TTCN test suite with the �rst Autolink version proceeds in severalsteps. These are outlined in Figure 5. Most of them can be executed repeatedly asindicated by the loops. In the following we describe each step in more detail.De�ne pathsThe basis for the generation of a TTCN test case is a path. A path is meant to be asequence of events that have to be performed in order to go from a start state to an endstate. The Validator provides several mechanisms for selecting such a path in the statespace of an SDL speci�cation. They are sketched in Section 5.2. For Autolink, theexternally visible events of a path describe the test sequence to which a pass verdict isassigned.All de�ned paths are transformed into and stored as system level MSCs. By doing this,we omit all internal events of the speci�cation. A system level MSC shows the externalinteraction that is supposed to take place between an implementation and the test systemwhen executing the test case.

10
Define paths

System Level
MSCs

Process
test cases Define constraints

Internal test case
representations List of constraints

Save test suite

TTCN test suite
in MP format

Modify constraints

Figure 5. Test Suite GenerationProcess test casesDuring the processing of a test case, a sequence of send and receive events leading to aTTCN pass verdict is created. In addition, all alternative receive events are looked upand added to the test case with a TTCN inconclusive verdict.The processing of test cases consists of three distinctive parts. After some preparatorywork, a state space exploration algorithm is used to build up the internal data struc-ture which represents a test case. Finally, post-processing of the internal test case datastructure is needed.A modi�ed version of the Validator's bit-state exploration algorithm is used to buildup the internal data structure which represents the current test case. The data structurebasically is a tree. Each node of that tree represents an event on a path to a TTCN passverdict. It contains information about the current event, a list of the event nodes withpass verdict on the next level, and a list of events with TTCN inconclusive verdict on thenext level. Here is a short description of the exploration algorithm. Figure 6 shows thedata structures involved in the exploration. The state space is represented as a graph.Let us assume that we are in state 4 on level n and p2 is the current node in the Autolinkevent tree. Now state 5 on level n+ 1 is computed. This produces a list of events.Event e1 of the list is checked against the system level MSC. The test shows that e1 isnot relevant to the MSC, so e2 has to be checked next.e2 is an observable event and it satis�es the MSC. Therefore it is appended as passevent p3 to the current node in the Autolink event tree. p3 also becomes the new currentnode in the Autolink event tree.e3 is not an observable event, therefore it can be ignored. It is also the last event inthe list. This means that the transition is completed and state 5 in the state space graph

11
State space graph

Level

n-1

n

n+1

List of events Autolink event tree

2

1

3 4

5 6 7

e1: Process X starts

e2: Env sends C

e3: Reset of timer T

p2

p1

p3

i1? B

! C

? D

! A

Figure 6. Test case processing algorithmhas been reached. To continue the exploration, the �rst state following state 5 on leveln+ 2 has to be computed.An inconclusive node is appended to the Autolink event tree if an event e in the list ofevents is observable but does not satisfy the MSC. To continue the exploration, the nextstate on the same level has to be computed. If we had such an event in the transitionfrom state 1 to state 2 in Figure 6, e.g., then the transition from state 1 to state 3 wouldbe computed next.For every level n the current node p(n) in the Autolink event tree is saved. If there isno next state on level n, then the next state on level n � 1 is computed and the savedp(n� 1) becomes the current node in the Autolink event tree. The exploration ends if nomore states are found below the start state.Post-processing removes unwanted events from the Autolink event tree. First, it isassumed that the environment always sends signals to the system as soon as possible,whereas receive events occur with an unde�ned delay. Therefore, alternative receive eventsto a send from the environment are removed from the Autolink event tree. Second,incomplete pass paths may have been generated during the state space exploration. The�rst event in a branch which does not end with a pass verdict is reassigned as an eventwith inconclusive verdict, and the rest of the branch is discarded.De�ne and modify constraintsConstraints are automatically created during test case processing. Additionally, the usercan de�ne and remove signal constraints at any time. It is also possible to assign morereasonable names to constraints generated by Autolink and to merge two constraintde�nitions. This is useful if the constraints have the same meaning or if a signal parameterwith di�erent values in the two constraints is irrelevant.Save test suiteThe TTCN test suite generated by Autolink is written in MP format. It mainly consistsof two sections { the constraints part and the dynamic behaviour part.

12Constraints are saved in ASN.1 format. Thereby a problem has to be solved that iscaused by the di�erent notation for data structures in SDL and ASN.1. Parameters ofSDL signals have types, but no names, whereas ASN.1 always demands a name for the�elds of a data structure. In order to generate a TTCN test suite that is well-formed, themissing names are formed by the corresponding data type and the parameter number.For example, a constraint for an SDL signal with three integer parameters (55, 0, -55)will be mapped onto SEQUENCE f integer1 -55, integer2 0, integer3 55 g.Dynamic behaviour tables can be created in a straight-forward fashion by recursivelytraversing the internal representation for each test case. By using the depth �rst searchstrategy, it is possible to output a dynamic behaviour table in one pass.The TTCN format is a general purpose test description format that can be used inmany testing situations; both when testing an implementation on a target platform andwhen testing SDL systems in a simulated environment. In SDT the support for targettesting is given by the ITEX TTCN environment and SDL level testing is provided by a co-simulation possibility between the SDL and TTCN simulators available in the SDT/ITEXtool set.5.2. State space navigationThe SDT Validator o�ers several di�erent ways to specify paths (and thus test cases),including both selective and brute force strategies. Some examples are:� Manual navigation/simulation in the state space� Using MSCs as input� Using observer processes for a brute force strategyAll three methods to de�ne a path can also be combined.Manual navigationThe SDT Validator provides a special window called the Navigator (Figure 7) that allowsusers to manually explore the state space and thereby to de�ne paths in an e�cient way.MSC veri�cationMSCs provide another way to de�ne paths. In this case the idea is to create an MSC,either manually or by using, for example, the SDT Simulator, and then make the Validatorsearch for a path that satis�es the MSC. This path is then used as the test purpose.Observer processesObserver processes are sophisticated constructs that allow a completely automatic de�ni-tion of a large set of tests for an SDL system.The general idea when using observer processes for test generation is to encode a high-level test purpose in an observer process. Each time a path is found by the Validatorwhich satis�es the condition de�ned in the observer process, a report is generated. At theend of the state space exploration, the reports can be converted into MSC test cases.To simplify things for users a special SDL package called the TestGen package has beendeveloped. This package includes a number of utilities including two observer processtypes that can directly be used in test generation applications:

13
Figure 7. The SDT Navigator� A process type for random test generation.� A process type for test generation based on process graph coverage.Both process types are delivered in source code and can be modi�ed by users to suit theneeds of special applications.The random test generator process simply encodes the following rule:Whenever a path is found that contains more than a given number of transi-tions, a test is generated.This observer process is intended to be used together with the random walk algorithm inthe Validator. If it is included in an SDL system and a random walk through the statespace is executed with a certain number of repetitions, one test case will be generated foreach path that contains the given number of transitions.The observer process is mainly included in the package in order to let users modify itwith application speci�c test purpose conditions. If it is used as is, it will generate manyequivalent test cases.The second observer process is a very useful modi�cation of the �rst one. It encodesthe following test purpose condition:Whenever a path is found which contains more than a given number of transi-tions, and this particular path includes SDL process graph symbols that havenot been covered by previously generated tests, then a test is to be generated.This observer process is also intended to be used in combination with the random walkalgorithm in the Validator. If it is included in an SDL system and a repeated random walkthrough the state space is executed with a certain number of repetitions, the followinghappens:

14 � The �rst random walk will generate a test case when the indicated depth is reached.� All subsequent random walks will generate new test cases for all paths that covernew parts of the SDL process graph in the system.Practical experiments have shown that this test generation strategy is a very e�cientmeans to generate a large number of test cases automatically. Taken together, these twomethods for test generation give a fairly good code coverage of the SDL system.5.3. Future plansThe next version of Autolink will provide more sophisticated mechanisms for the de�-nition of test cases. At the moment the user has to provide complete SDL paths leadingto a TTCN pass verdict. Via system level MSCs, these paths are transformed into TTCNnotation. Additionally, all responses leading to an inconclusive verdict are computed. Inthe next version of Autolink it will also be allowed to specify a test case by providingonly a part of a trace leading to a pass verdict. Such parts are often referred to by the termtest purpose. Autolink will search for adequate completions, and pre- and postamblesfor a given test purpose. A test purpose may be given in form of an MSC, an observerprocess, or a piece of an SDL diagram which has to be executed during the test.From research we know that the main problem of �nding completions, pre- and postam-bles is the explosion of the state space during its exploration. Therefore our work willfocus on developing strategies and mechanisms for dealing with this problem. Especially,we will start to implement tools for a static and a dynamic pre-investigation of SDLspeci�cations and for performing measurements of the test generation capabilities.Static pre-investigation of an SDL speci�cation. A static pre-investigation may be basedon a data
ow analysis. It will provide information about all message parametersthat in
uence the behaviour of the SDL speci�cation. This information helps tomanually de�ne concrete parameter values, which have to be provided by the testequipment during the test run.Dynamic pre-investigation of an SDL speci�cation. A dynamic pre-investigation may bebased on a symbolic execution of the SDL speci�cation. It allows to calculate the'optimal input data' automatically and to propose stable testing states.Measurement of the test generation capabilities. While the number of states which can beexamined by test case generators in a certain amount of time is almost constant,the complexity of the search within the state space of an SDL speci�cation dependson the options and search heuristic chosen by the user. The complexity and thusthe capabilities of a test case generator for a particular SDL speci�cation can bemeasured by a number of simulation runs. An automatic comparison of the resultswill provide information for a reasonable choice of options and heuristics.With test suite validation we recognized another important problem. Due to the di�erentnature of TTCN and SDL it is nearly impossible to generate complete TTCN test de-scriptions from SDL speci�cations only. Therefore a generated test suite has to be re�nedmanually. This on the other hand may introduce new errors or ambiguities into the testsuite. Our work will also focus on providing tools for performing test suite validationagainst an SDL speci�cation.

156. SUMMARY AND OUTLOOKWe have shown the current possibilities for tool assisted test case generation using the SDTValidator and ITEX. Practical use of these methods has indicated that an improvementof the test case generation facilities is needed and possible. Therefore, the Autolinkproject has been set up. The �rst, basic version of the Autolink tool has been describedin this paper. In the future, Autolink will be enhanced to include a pre-investigationof the SDL speci�cations, the measurement of the test case generation capabilities andadditional test case generation mechanisms.REFERENCES1. R. Br�k, A. Sarma (editors). SDL'95 with MSC in CASE. North-Holland, 1995.2. L. Doldi, V. Encontre, J.-C. Fernandez, T. J�eron, S. Le Briquir, N. Texier, M. Phalip-pou. Assesment of Automatic Generation of Conformance Test Suites in an IndustrialContext. In 'Testing of Communicating Systems' (B. Baumgarten, H.-J. Burkhardt,A. Giessler, editors). Chapman & Hall, 1996.3. ETSI MTS 10/96 TD42. Report on Automatic Generation of TTCN from SDL. ETSI,1996.4. A. Ek. Verifying Message Sequence Charts with the SDT validator. In [8].5. ETSI STC SPS 3. Intelligent Network (IN); IN Capability Set 2 (CS2); Scoping ofIntelligent Network Application Protocol (INAP). DTR/SPS-03043, ETSI, 1996.6. O. F�rgemand, M. M. Marques (editors). SDL'89: The Language at work. North-Holland, 1989.7. O. F�rgemand, R. Reed (editors). SDL'91: Evolving Methods. North-Holland, 1991.8. O. F�rgemand, A. Sarma (editors). SDL'93 - Using Objects. North-Holland, 1993.9. J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Speci-�cation by MSCs. In [8].10. J. Grabowski, R. Scheurer, D. Hogrefe. Applying SAMSTAG to the B-ISDN ProtocolSSCOP. Technical Report A-97-01, Medizinische Universit�at zu L�ubeck, Schriften-reihe der Institute f�ur Mathematik/Informatik, L�ubeck, January 1997.11. D. Hogrefe. OSI Formal Speci�cation Case Study: The Inres Protocol and Service(revised). Technical Report IAM-91-012, University of Bern, Institute for ComputerScience, May 1991, Update May 1992.12. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-national, Inc., 1991.13. ISO/IEC. Information Technology - OSI - Conformance Testing Methodology andFramework. International ISO/IEC multipart standard No. 9646, 1994.14. ISO/IEC. Information Technology - OSI - Conformance Testing Methodology andFramework - Part 3: The Tree and Tabular Combined Notation (TTCN). ISO/IECIS 9646-3, 1996.15. ITU-T Rec. Q.2931. Broadband Integrated Services Digital Network (B-ISDN) - DigitalSubscriber Signalling System No. two (DSS2) protocol. Geneva, 1995.16. ITU-T Rec. Z.100 (1996). Speci�cation and Description Language (SDL). Geneva,1996.17. ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC). Geneva, 1996.

