Towards the Industrial Use of Validation Techniques and
Automatic Test Generation Methods for SDL Specifications

Anders Ek®, Jens Grabowski®, Dieter Hogrefe’, Richard Jerome®, Beat Koch®, and
Michael Schmitt?

“Telelogic AB, P.O. Box 4128, 5-20312 Malmo, Sweden, eMail: anders.ek@telelogic.se

*Institute for Telematics, University of Liibeck, Ratzeburger Allee 160, D-23538 Liibeck,
Germany, eMail: {jens,hogrefe,bkoch,schmitt}@itm.mu-luebeck.de

“Ericsson Limited, Public Systems Division, Ericsson Way, Charles Avenue, Burgess

Hill, West Sussex RH15 9UB, England, eMail: etlrdje@etlxdmx.ericsson.se

Due to increasing demands from companies and standardisation bodies, Telelogic AB and
the University of Liubeck started a research and development project in October 1996
which aims at improving the validation and, especially, the automatic test generation
facilities of the SDT/ITEX tool set. The project is driven by practical experiences and
practical needs, but also takes care of research results. In this paper, we present two short
experience reports and describe the project.

1. INTRODUCTION

The ITU-T Specification and Description Language (SDL) [16] is worldwide the most
successful standardized formal description technique. SDL has been used successfully in
industrial projects and for standardization purposes. Lots of SDL success stories can be
found in the proceedings of the past SDL Forum conferences [1,6-8].

The SDT/ITEX tools from Telelogic AB are one of the most successful commercial SDL
tool sets. They provide a complete environment for the development of SDL specifications,
SDL based implementations and TTCN based test suites. For this, they include graphical
editors, analysers, simulation tools, various browsers, application code generators adapted
to different real time kernels and further support tools.! Besides SDL, SDT/ITEX support
the specification languages MSC [17] and TTCN [14].

One tool of SDT/ITEX is the Validator [4]. The Validator is aimed at providing
engineers with the possibility to increase the quality of their work and to automate time-
consuming tasks. More specifically, the tool is designed to help engineers in three situa-
tions:

1. During an incremental design, by providing an automated fault detection mecha-
nism that finds inconsistencies and problems in an early stage of development.

LAn overall view of SDT/ITEX can be found in Section 'XII Demonstrations’ of [1].

2. When verifying the system against requirements, by providing an option for auto-
matic MSC verification.
3. When developing test cases, by providing options for automatic test generation.

The items 1 and 2 are referred to by the term validation, whereas item 3 is referred to by
automatic test generation. Validation and automatic test generation are closely related,
because basically the same techniques can be used for both.

The Validator is based on the state space exploration technique (e.g., [12]), which is
a well known technique for the automatic analysis of distributed systems. Using this
technique a system property is validated by building up and examining the system’s state
space. Examples for properties which can be verified are freedom of deadlocks or the
fulfilment of an MSC.

In general, for automatic test generation we are also interested in finding a property.
Furthermore, we need to find a trace which can be used for testing the property in a system
implementation. In this context a property is referred to by test purpose. Automatic test
generation becomes a little bit more complex, because we also have to follow testing
methodologies [13] and to transform the resulting test sequences into the TTCN format.

Validation and automatic test generation both have to deal with complexity. Due to the
state space explosion problem it is often impossible to perform an exhaustive validation
or to generate test cases automatically even for small systems.

Currently, we observe an increasing demand for advanced validation techniques and
automatic test generation methods from SDT/ITEX customers. Research and case studies
have shown that automatic test generation becomes feasible [2,9,10].

Therefore Telelogic AB and the University of Liibeck have set up a research and devel-
opment project called AUTOLINK. AUTOLINK improves the validation and especially the
test generation facilities of SDT/ITEX. The project is driven by practical experiences,
but it also considers research results.

The paper continues as follows. In Section 2 the Validator is sketched. SDL valida-
tion experiences from Ericsson are presented in Section 3. The need for automatic test
generation methods will be explained by an ETSI experience report in Section 4. The
AUTOLINK project, its current status and the future plans are described in Section 5.
Finally, the conclusion and outlook are given.

2. THE SDT VALIDATOR

The Validator is based on the state space exploration technique (e.g., [12]). In the SDL
context this means that the state space of an SDL system is built up, stored in a directed
graph and examined. The directed graph is referred to by reachability graph and represents
the behaviour of the SDL system. The nodes of the reachability graph represent global
SDL system states. The edges describe SDL events that can take the SDL system from
one global system state to the next global system state. A global SDL system state, i.e.,
a node in the reachability graph, is characterized by:

- the active process instances,

- the variable values of all active processes,

- the SDL control flow state of all active process instances,
- the active procedures (with local variables),

- the signals (with parameters) that are present in the queues of the system,
- the active timers,
- etc.

The edges in a reachability graph define the atomic events of the SDL system. These
can be SDL statements like tasks, inputs, outputs etc., but also complete SDL transitions
depending on how the state space exploration is configured.

During validation the reachability graph is analysed. Properties of the reachability
graph describe properties of the system behaviour. For example, a system is free of
deadlocks if all nodes in the reachability graph have at least one outgoing edge.

2.1. MSC verification

The Validator provides two options to check an SDL specification against system require-
ments. The requirements have to be expressed in form of observer processes (see Section
2.2) or MSC diagrams. State space exploration techniques are used for both options. For
an MSC requirement, the Validator explores the state space, i.e., it simulates the SDL
specification, and searches for a path in the reachability graph which includes the MSC.
If such a path exists the SDL system has the MSC property, i.e., the MSC is verified.

2.2. Observer processes
An observer process allows to check more complex requirements on systems than can be
expressed by MSCs. The notion is to use a special kind of SDL processes, called observer
processes, to describe the requirements that are to be checked. Then the observer processes
are included in the SDL system. Typical application areas for observer processes are test
case generation, feature interaction analysis, or the analysis of safety-critical systems.
To be useful, observer processes must be able to inspect the SDL system without inter-
fering with it, and also to generate reports that convey the success or failure of whatever
they are checking. To accomplish this, three features are included in the Validator:

1. The observer process mechanism. By defining processes to be observer processes, the
Validator starts to execute in a two-step fashion. First, the rest of the SDL system
executes one transition, and then all observer processes execute one transition and
check the new system state.

2. The assertion mechanism. The assertion mechanism enables the observer processes
to generate reports during state space exploration. These reports will show up in
the list of generated reports in a special report viewer.

3. The Access abstract data type. The purpose of the Access abstract data type is
to give the observer processes a possibility to examine the internal states of other
processes in the system. Using the Access ADT it is possible to check variable
values, contents of queues, etc., without any need to modify the observed processes.

There are two main characteristics of observer processes:

1. Continuous signals are used which check the internal state of other processes using
the Access operator.

2. Assertions are used to report the result of the test.

Process Type TG_Cov 1(2)

| Y

1, \ dcl
ISIGNALSET } exec integer;
L ! str charstring;

[*#CODE
<<epth(0) > E> #BODY
static int TG_Cov_MaxExec = 0;
| *

GetExec
(exec)
‘Check if somei
exec >
new symbols f---------- ,
have been ! #COD _Cov_MaxExec’)
executed 1
——————————— - false
true
Store the new numberi /*#CODE
of executed symbols |- " ——TG_Cov_MaxExec = #SDL (exec);
in the c variable ' */
TC_Cov_MaxExec | |
int2str
(exec,str)
Report
'Cov ="/ st

Figure 1. A simple observer process

A simple observer process type is shown in Figure 1. TG_Cov realizes a symbol coverage
based strategy for the generation of reports. Each time a trace with length 50 is found that
covers an additional SDL symbol, a new report is generated. SDT provides a mechanism
for accessing variables and functions of the Validator’s C Code in an SDL statement. This
allows to retrieve information about the current status of the state space exploration.
The observer process and its application for test generation will be described in detail in
Section 5.2.

2.3. Using the Link tool for semi-automatic test generation

SDT/ITEX offers the option to link SDL specifications and TTCN descriptions by means
of the Link tool. For this a .link file is generated from the SDL specification. This file
is an executable program which in combination with I'TEX supports the semi-automatic

C
A ~— X+Y ~— B A~—— X+Y+Z ~—B
(a) Existing system (b) Required system

Figure 2. Existing and required system

construction of TTCN test suites. The Link tool allows to generate the following parts of
a test suite:

e ASP (Abstract Service Primitive) definitions are generated automatically. All SDL
signals appearing on channels to the environment are translated to ASN.1 ASPs.

e PCOs (Points of Control and Observation) are generated automatically. All channels
to the environment are considered to be PCOs.

o If the SDL signals are structured, then these structures are translated to ASN.1
type definitions.

e The test case behaviour can be constructed semi-automatically. The user chooses a
send event appropriate for the test purpose, and the Link tool adds the following
correct receive events to the test case description. Then the user has to select the
next send event.

o A single default behaviour description for the test suite is generated.

o There is a limited generation of constraint definitions.

3. ERICSSON EXPERIENCES

Ericsson is a global telecommunications company that supplies a vast range of hard- and
software solutions to network operators all around the world. For one of the current
projects in the UK, Ericsson has used SDT/ITEX to design new application software for
Ericsson AXE10 telephone exchanges. These exchanges are already in use and form an
integral part of the UK switching network.

Customer requirements for such projects are normally provided in form of lengthy
textual descriptions. These can prove imprecise when, for example, describing signalling
systems or protocols. For the project in the UK there was an agreement to express the
requirements in form of an SDL specification. Furthermore SDL was used for the system
design.

3.1. The SDL requirements model

The project required to introduce a new signalling system into the existing network. As
shown in Figure 2a, the existing system consists of the two in- and outputs A and B,
with associated functionality X and Y, respectively. The required system (Figure 2b)
consists of the three in- and outputs A, B and (| with associated functionality X, Y and
7, respectively.

Figure 3. Design model

The system in Figure 2b can be seen as a black box model for the functional require-
ments to be fulfilled by the existing and the new functionality. The system has been
described in SDL and served as functional requirements model (FRM) for validation pur-
poses.

3.2. The SDL design model

The interfaces between the signalling in- and outputs A, B and (. and the functionality of
X, Y and Z are clearly understood. The new components of the required system, i.e., the
signalling system C' with functionality Z already existed. Thus, single SDL specifications
for A/X, B/Y and C/Z were developed.

For the required system design (Figure 3), the new functionality C/Z was incorporated
in and interfaced with the existing system functionality by means of the additional soft-
ware blocks o and i.? SDL models for o and ¢ were produced and the (functional) SDL
design model (FDM) completed. The FDM can be seen as a protocol conversion exercise,
with o and ¢ as conversion blocks.

3.3. Validation
The problem of software development is to detect faults as early as possible. For the
Ericsson project, a small inter-work fault at FDM level might take an hour to fix, but
it could take hundreds of hours if it is not found until the software starts to work on
an AXE10 telephone exchange. Thus, the sooner the FDM can be validated against the
FRM, the better.

The SDT Validator was used for the validation of FRM and FDM. Early thoughts were
that this could just be used to ensure that the FDM did not have any inherent errors like
deadlocks or infinite loops; that it described some kind of reliable and stable system. But
as a result of the design process two SDL specifications FRM and FDM were developed
which had identical external interfaces A, B and (. Therefore the Validator could be used
to check if the FDM met the requirements provided by the FRM.

The validation was done in a two step procedure. In a first step all relevant execution
traces of the FRM were generated. In a second step each trace was transformed into an
MSC and loaded into the FDM. By using the MSC verification feature of SDT/ITEX the
traces of the FRM were shown to exist in the FDM.

2Tt should be noted that this design includes abstraction and simplification. Depending on the call type,
the system may have two instances of ¢ and none of 0. Furthermore, the system may be instantiated more
than once. During operation a telephone exchange may maintain up to 64000 instances of the system.

Step 1: Recording FRM traces
Step 1 was performed by adding an observer process (Section 2.2) to the FRM. The
observer process was used to control the exploration of the FRM state space. It recorded
the path from the idle state to predefined global system states and determined the state-
space coverage at these states. If the actual path increased the coverage, it was saved. If
not, exploration continued. Further improvement of the result of step 1 was achieved by
doing some fine tuning, e.g., considering only significant signal parameter values, i.e., the
one causing branches in SDL processes.

After several days of execution, ~200 usable paths had been generated. The paths had
a length of ~100 transitions and provided about 70% coverage of the system. Further 20%
of coverage were achieved by manually navigating to the roots of unexplored branches in
the state space and by implementing a rule which prevented to return to the idle state
during the exploration.

Step 2: MSC verification

In step 2, the paths generated in step 1 were transformed into MSCs. Then each MSC was
loaded into the FDM validator and, if possible, verified. An unverified MSC corresponded
to an error in either of the models. Errors in the FDM model are easily rectified, but
faults in the FRM cause a repetition of step 1, because MSCs generated from an erroneous
specification may reflect the errors. In the AXE10 project the MSCs had to be regenerated
only twice.

3.4. Results and discussion

It took three weeks for two people to (re)generate the MSCs and work through the faults.
About 80 discrepancies between the FRM and FDM were detected and corrected. The
majority of these were inter-working errors, usually the hardest of all errors to find. All
errors were removed and the SDL specifications of FRM and FDM were corrected until
all 260 MSCs were verified. It has been estimated that the 260 verified MSCs covered
more than 60% of the FDM and approximately 90% of the FRM.

Quantifying the benefit of the Validator in this project is hard. Certainly without
the validation process, errors would have slipped through to subsequent design phases.
Inter-work errors are notoriously hard to find, and they cause large problems in software
projects. It may be enough to say that the software has progressed from the SDT/ITEX
environment through testing on AXE10 emulators and onto real AXE10 exchanges with
no major difficulty. Normally projects of this magnitude prove rather more troublesome.

Subsequent demonstrations to the customer made a good impression. Test cases run-
ning on the SDT Simulator and on Ericsson’s AXE10 emulators showed the required
signalling interaction, which matched precisely in both environments. Without doubt,
the SDT Validator will be used again. Additional options for automatic test case gener-
ation would be most useful, although most of the generated MSCs do not translate well
into real-life test cases.

4. ETSI EXPERIENCES

Within Project Team 65 ETSI started an effort to experiment with test case generation
methods [3]. Three different protocols were selected for experimentation: INRES [11],

INAP CS2 [5] and B-ISDN [15]. The protocols were specified with SDL. For each protocol
one or two test purposes were specified as an example. Then the tools SDT Link from
Telelogic and TTCgeN from Verilog were taken to generate test cases. For detailed results,
see [3].

Some general observations can be derived from these experiments.

The automatic generation of the static declarations (PCOs, ASP types, ...) is very
useful. The test case developer is freed from a time consuming task, all provided that the
SDL specification already exists and is correct.

The dynamic test case generation is semi-automatic and performed in a step-by-step
manner. In the case of SDT Link, a test purpose is performed by sending an appropriate
signal to the SDL specification together with the constraint. The tool then generates all
possible responses together with their constraints automatically. This is repeated until
the test case is defined. The approach of TTCgeN is slightly different on first sight. It
takes a complete MSC as input and then generates the TTCN in one go. The MSC has
to be developed in a step-by-step manner with simulation. Therefore in effect the tools
follow approximately the same strategy.

Most of the time is spent with defining the constraints. The first constraint has to be
entered manually. Then SDT Link generates the outputs together with their constraints.
In TTCgeN this is done on the MSC basis. Usually these automatically generated con-
straints can then be used, maybe in a slightly modified form, to serve as constraints for
further inputs. Due to the tool support the user can speed up the constraint development
considerably by reusing automatically generated constraints.

The use of the tools normally tempts into making rather large test cases compared to
the single state transition test cases which are typically developed by hand. The resulting
test suite then consists of a smaller number of large test cases compared to the traditional
large number of small test cases. The reason for this is the fact that the SDL model
allows to very easily perform a complete scenario in a simulative way. This has certain
advantages and disadvantages over the state-by-state approach, which for some test case
developers tends to be rather boring. The advantage is that the complete scenarios can
be used as acceptance tests for a tested product. The test is performed from a user’s
perspective. The disadvantage is that the coverage may not be as complete as if every
single state transition was tested.

The tool-supported test generation seems to be of particular benefit for those protocols
which define a lot of states and transitions instead of data. These state oriented protocols
can very naturally be defined in SDL (and they usually are nowadays). Therefore the effort
to produce an SDL specification suitable for test case generation is acceptable. This was
the case for INRES and INAP CS2. For data oriented protocols an SDL specification
may not be so natural. Most of the protocol is defined in terms of parameter variations
instead of dynamic behaviour. The effort of producing an SDL specification suitable for
test case generation is considerable. This was the case for B-ISDN.

To sum up, the experience made by ETSI within PT65 was promising enough to con-
tinue one of the experiments in a follow-up project. A project team has been set up
to generate a test suite for INAP C52 from the SDL specification using software tools.
The results from this first tool-supported test case generation with the aim of creating a
complete test suite within ETSI will be available in early 1998.

SDT ITEX

. Test Suite

Link Tool —»{ Link Executable Declarations Part Overview

SDL
Specification
; TCN MPfile
Validator] Complete
: (Constraints Part & ;
(Autolink) Dynamic Part ITEX Test Suite

Figure 4. System overview

5. THE AUTOLINK PROJECT

The main objective of the AUTOLINK project is the development and implementation
of an SDT component which supports the automatic and semi-automatic generation of
TTCN test suites based on SDL specifications.

While SDT allows the user to construct an SDL specification and test it with the Valida-
tor, ITEX on the other hand supports the user in the development of TTCN tests suites.
So far only the Link tool has served as a bridge between SDT and ITEX (Section 2.3).

With the AUTOLINK component the connection between SDT and ITEX becomes even
tighter (Figure 4). Now, the user can specify the test cases within the SDT Validator
and let the system generate a TTCN test suite with constraints and dynamic behaviour
tables. This test suite can then be completed in ITEX with the declarations provided by
the Link tool.

5.1. The first step: path based test generation

The generation of a TTCN test suite with the first AUTOLINK version proceeds in several
steps. These are outlined in Figure 5. Most of them can be executed repeatedly as
indicated by the loops. In the following we describe each step in more detail.

Define paths

The basis for the generation of a TTCN test case is a path. A path is meant to be a
sequence of events that have to be performed in order to go from a start state to an end
state. The Validator provides several mechanisms for selecting such a path in the state
space of an SDL specification. They are sketched in Section 5.2. For AUTOLINK, the
externally visible events of a path describe the test sequence to which a pass verdict is
assigned.

All defined paths are transformed into and stored as system level MSCs. By doing this,
we omit all internal events of the specification. A system level MSC shows the external
interaction that is supposed to take place between an implementation and the test system
when executing the test case.

10

o)

System Level
MSCs

Process . . ; .
Define constraints

' !

Internal test case . ;) .
representations List of constraints A—[M odify constra@
Savetest suite [————

TTCN test suite
in MP format

Figure 5. Test Suite Generation

Process test cases

During the processing of a test case, a sequence of send and receive events leading to a
TTCN pass verdict is created. In addition, all alternative receive events are looked up
and added to the test case with a TTCN inconclusive verdict.

The processing of test cases consists of three distinctive parts. After some preparatory
work, a state space exploration algorithm is used to build up the internal data struc-
ture which represents a test case. Finally, post-processing of the internal test case data
structure is needed.

A modified version of the Validator’s bit-state exploration algorithm is used to build
up the internal data structure which represents the current test case. The data structure
basically is a tree. Each node of that tree represents an event on a path to a TTCN pass
verdict. It contains information about the current event, a list of the event nodes with
pass verdict on the next level, and a list of events with TTCN inconclusive verdict on the
next level. Here is a short description of the exploration algorithm. Figure 6 shows the
data structures involved in the exploration. The state space is represented as a graph.
Let us assume that we are in state 4 on level n and p2 is the current node in the Autolink
event tree. Now state 5 on level n + 1 is computed. This produces a list of events.

Event el of the list is checked against the system level MSC. The test shows that el is
not relevant to the MSC, so €2 has to be checked next.

€2 is an observable event and it satisfies the MSC. Therefore it is appended as pass
event p3 to the current node in the Autolink event tree. p3 also becomes the new current
node in the Autolink event tree.

e3 is not an observable event, therefore it can be ignored. It is also the last event in
the list. This means that the transition is completed and state 5 in the state space graph

11

State space graph List of events Autolink event tree
Level
n-1
| el: Process X starts | 0 pl
n /,—->|e2:EnvsindsC | @ p2 i1
| e3: Reset of timer T |) N
p3
n+1

Figure 6. Test case processing algorithm

has been reached. To continue the exploration, the first state following state 5 on level
n + 2 has to be computed.

An inconclusive node is appended to the Autolink event tree if an event e in the list of
events is observable but does not satisfy the MSC. To continue the exploration, the next
state on the same level has to be computed. If we had such an event in the transition
from state 1 to state 2 in Figure 6, e.g., then the transition from state 1 to state 3 would
be computed next.

For every level n the current node p(n) in the Autolink event tree is saved. If there is
no next state on level n, then the next state on level n — 1 is computed and the saved
p(n — 1) becomes the current node in the Autolink event tree. The exploration ends if no
more states are found below the start state.

Post-processing removes unwanted events from the Autolink event tree. First, it is
assumed that the environment always sends signals to the system as soon as possible,
whereas receive events occur with an undefined delay. Therefore, alternative receive events
to a send from the environment are removed from the Autolink event tree. Second,
incomplete pass paths may have been generated during the state space exploration. The
first event in a branch which does not end with a pass verdict is reassigned as an event
with inconclusive verdict, and the rest of the branch is discarded.

Define and modify constraints

Constraints are automatically created during test case processing. Additionally, the user
can define and remove signal constraints at any time. It is also possible to assign more
reasonable names to constraints generated by AUTOLINK and to merge two constraint
definitions. This is useful if the constraints have the same meaning or if a signal parameter
with different values in the two constraints is irrelevant.

Save test suite
The TTCN test suite generated by AUTOLINK is written in MP format. It mainly consists
of two sections — the constraints part and the dynamic behaviour part.

12

Constraints are saved in ASN.1 format. Thereby a problem has to be solved that is
caused by the different notation for data structures in SDL and ASN.1. Parameters of
SDL signals have types, but no names, whereas ASN.1 always demands a name for the
fields of a data structure. In order to generate a TTCN test suite that is well-formed, the
missing names are formed by the corresponding data type and the parameter number.
For example, a constraint for an SDL signal with three integer parameters (55, 0, -55)
will be mapped onto SEQUENCE { integerl -55, integer2 0, integer3 55 }.

Dynamic behaviour tables can be created in a straight-forward fashion by recursively
traversing the internal representation for each test case. By using the depth first search
strategy, it is possible to output a dynamic behaviour table in one pass.

The TTCN format is a general purpose test description format that can be used in
many testing situations; both when testing an implementation on a target platform and
when testing SDL systems in a simulated environment. In SDT the support for target
testing is given by the ITEX TTCN environment and SDL level testing is provided by a co-
simulation possibility between the SDL and TTCN simulators available in the SDT /ITEX

tool set.

5.2. State space navigation
The SDT Validator offers several different ways to specify paths (and thus test cases),
including both selective and brute force strategies. Some examples are:

e Manual navigation/simulation in the state space

e Using MSCs as input

e Using observer processes for a brute force strategy
All three methods to define a path can also be combined.

Manual navigation
The SDT Validator provides a special window called the Navigator (Figure 7) that allows
users to manually explore the state space and thereby to define paths in an efficient way.

MSC verification

MSCs provide another way to define paths. In this case the idea is to create an MSC,
either manually or by using, for example, the SDT Simulator, and then make the Validator
search for a path that satisfies the MSC. This path is then used as the test purpose.

Observer processes
Observer processes are sophisticated constructs that allow a completely automatic defini-
tion of a large set of tests for an SDL system.

The general idea when using observer processes for test generation is to encode a high-
level test purpose in an observer process. Each time a path is found by the Validator
which satisfies the condition defined in the observer process, a report is generated. At the
end of the state space exploration, the reports can be converted into MSC test cases.

To simplify things for users a special SDL package called the TestGen package has been
developed. This package includes a number of utilities including two observer process
types that can directly be used in test generation applications:

13

= Navigator =]
X 22
Upl: A
TIMER signal sent
Timer :T
Recelver : [nitlator:]
I
I T T 1
¥ Next 1: Next 2: Next 3: Next 4:
Transition START Transition START Transition START Transition START
Pld : MSAP_Manager2:1 Pld : MSAP Managerl:1 Pld :Coder_Ini:l Pld : Initiator:1
State :idle State :idle State :idle State : Wailt
Input : MDATreq Input : MDATreq Input : CR Input : T
Sender : env Sender : Coder_Ini:1 Sender : Initiator:1 Sender : Initiator:]
Parameter(s) :(. CR, zero, Parameter(s) :(. CR, zero,
-55.) -55.)
¥
Et |

Figure 7. The SDT Navigator

e A process type for random test generation.
o A process type for test generation based on process graph coverage.

Both process types are delivered in source code and can be modified by users to suit the
needs of special applications.
The random test generator process simply encodes the following rule:

Whenever a path is found that contains more than a given number of transi-
tions, a test is generated.

This observer process is intended to be used together with the random walk algorithm in
the Validator. If it is included in an SDL system and a random walk through the state
space 1s executed with a certain number of repetitions, one test case will be generated for
each path that contains the given number of transitions.

The observer process is mainly included in the package in order to let users modify it
with application specific test purpose conditions. If it is used as is, it will generate many
equivalent test cases.

The second observer process is a very useful modification of the first one. It encodes
the following test purpose condition:

Whenever a path is found which contains more than a given number of transi-
tions, and this particular path includes SDL process graph symbols that have
not been covered by previously generated tests, then a test is to be generated.

This observer process is also intended to be used in combination with the random walk
algorithm in the Validator. If it is included in an SDL system and a repeated random walk
through the state space is executed with a certain number of repetitions, the following
happens:

14

o The first random walk will generate a test case when the indicated depth is reached.

o All subsequent random walks will generate new test cases for all paths that cover
new parts of the SDL process graph in the system.

Practical experiments have shown that this test generation strategy is a very efficient
means to generate a large number of test cases automatically. Taken together, these two
methods for test generation give a fairly good code coverage of the SDL system.

5.3. Future plans

The next version of AUTOLINK will provide more sophisticated mechanisms for the defi-
nition of test cases. At the moment the user has to provide complete SDL paths leading
to a TTCN pass verdict. Via system level MSCs, these paths are transformed into TTCN
notation. Additionally, all responses leading to an inconclusive verdict are computed. In
the next version of AUTOLINK it will also be allowed to specify a test case by providing
only a part of a trace leading to a pass verdict. Such parts are often referred to by the term
test purpose. AUTOLINK will search for adequate completions, and pre- and postambles
for a given test purpose. A test purpose may be given in form of an MSC, an observer
process, or a piece of an SDL diagram which has to be executed during the test.

From research we know that the main problem of finding completions, pre- and postam-
bles is the explosion of the state space during its exploration. Therefore our work will
focus on developing strategies and mechanisms for dealing with this problem. Especially,
we will start to implement tools for a static and a dynamic pre-investigation of SDL
specifications and for performing measurements of the test generation capabilities.

Static pre-investigation of an SDL specification. A static pre-investigation may be based
on a data flow analysis. It will provide information about all message parameters
that influence the behaviour of the SDL specification. This information helps to
manually define concrete parameter values, which have to be provided by the test
equipment during the test run.

Dynamic pre-investigation of an SDL specification. A dynamic pre-investigation may be
based on a symbolic execution of the SDL specification. It allows to calculate the
‘optimal input data’ automatically and to propose stable testing states.

Measurement of the test generation capabilities. While the number of states which can be
examined by test case generators in a certain amount of time is almost constant,
the complexity of the search within the state space of an SDL specification depends
on the options and search heuristic chosen by the user. The complexity and thus
the capabilities of a test case generator for a particular SDL specification can be
measured by a number of simulation runs. An automatic comparison of the results
will provide information for a reasonable choice of options and heuristics.

With test suite validation we recognized another important problem. Due to the different
nature of TTCN and SDL it is nearly impossible to generate complete TTCN test de-
scriptions from SDL specifications only. Therefore a generated test suite has to be refined
manually. This on the other hand may introduce new errors or ambiguities into the test
suite. Our work will also focus on providing tools for performing test suite validation
against an SDL specification.

15

6. SUMMARY AND OUTLOOK

We have shown the current possibilities for tool assisted test case generation using the SD'T
Validator and ITEX. Practical use of these methods has indicated that an improvement
of the test case generation facilities is needed and possible. Therefore, the AUTOLINK
project has been set up. The first, basic version of the AUTOLINK tool has been described
in this paper. In the future, AUTOLINK will be enhanced to include a pre-investigation

of the SDL specifications, the measurement of the test case generation capabilities and
additional test case generation mechanisms.

REFERENCES

1. R. Brak, A. Sarma (editors). SDL’95 with MSC in CASE. North-Holland, 1995.

2. L. Doldi, V. Encontre, J.-C. Fernandez, T. Jéron, S. Le Briquir, N. Texier, M. Phalip-
pou. Assesment of Automatic Generation of Conformance Test Suites in an Industrial
Conteat. In "Testing of Communicating Systems’ (B. Baumgarten, H.-J. Burkhardst,
A. Giessler, editors). Chapman & Hall, 1996.

3. ETSIMTS 10/96 TD42. Report on Automatic Generation of TTCN from SDL. ETSI,
1996.

4. A. Ek. Verifying Message Sequence Charts with the SDT validator. In [§].

5. ETSI STC SPS 3. Intelligent Network (IN); IN Capability Set 2 (CS2); Scoping of
Intelligent Network Application Protocol (INAP). DTR/SPS-03043, ETSI, 1996.

6. O. Fergemand, M. M. Marques (editors). SDL’89: The Language at work. North-
Holland, 1989.

7. O. Fergemand, R. Reed (editors). SDL’91: FEvolving Methods. North-Holland, 1991.

8. O. Fergemand, A. Sarma (editors). SDL’93 - Using Objects. North-Holland, 1993.

9. J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Speci-
fication by MSCs. In [8].

10. J. Grabowski, R. Scheurer, D. Hogrefe. Applying SAMSTAG to the B-ISDN Protocol
SSCOP. Technical Report A-97-01, Medizinische Universitat zu Libeck, Schriften-
reihe der Institute fiir Mathematik/Informatik, Liibeck, January 1997.

11. D. Hogrefe. OSI Formal Specification Case Study: The Inres Protocol and Service
(revised). Technical Report IAM-91-012, University of Bern, Institute for Computer
Science, May 1991, Update May 1992.

12. G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-
national, Inc., 1991.

13. ISO/IEC. Information Technology - OSI - Conformance Testing Methodology and
Framework. International ISO/IEC multipart standard No. 9646, 1994.

14. ISO/IEC. Information Technology - OSI - Conformance Testing Methodology and
Framework - Part 3: The Tree and Tabular Combined Notation (TTCN). ISO/IEC
I5 9646-3, 1996.

15. ITU-T Rec. Q.2931. Broadband Integrated Services Digital Network (B-1SDN) - Digital
Subscriber Signalling System No. two (DSS2) protocol. Geneva, 1995.

16. ITU-T Rec. 7.100 (1996). Specification and Description Language (SDL). Geneva,
1996.

17. ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC'). Geneva, 1996.

