Towards an SDL-Design-Methodology
Using Sequence Chart Segments

Ekkart Rudolph, Peter Graubmann
Siemens AG Miinchen, ZFE IS SOF
Otto-Hahn-Ring 6
D-W8000 Miinchen 83
rudolph @ztivax.uucp / gr @ ztivax.uucp

Jens Grabowski
Universitdt Bern
Léinggassstrasse 51
CH-3012 Bern
grabowsk @iam.unibe.ch

Abstract: Composition mechanisms for Sequence Charts are investigated
aiming at a comprehensive system description. Within a systematic com-
position method standard basic building blocks for Sequence Charts, called
Sequence Chart segments, are defined analogously to (Petri net) process
segments. The usefulness of SC-segments for SDL-requirement engineer-
ing, system construction, analysis, simulation, and test case generation is
pointed out.

1 Introduction

At the last SDL-Forum Lisbon 1989 signal flow diagrams with SDL-specific extensions have
been introduced called Extended Sequence Charts (ESCs) [GraRu 89]. Within this contribu-
tion in particular the role of ESCs in the software development process has been exhibited. In
this paper now an idea is worked out how to put SDL-requirement engineering using
Sequence Charts (SCs) into a more formal framework. Some advantages of such a methodol-
ogy are described in chapter 3.

The main importance of Sequence Charts lies in the stage of requirement definition. However
in practice only relevant, representative, exemplary traces can be specified by means of SCs
without composition mechanisms. For a complete behaviour description an enormous amount

This work was partially performed within the ESPRIT projects ATMOSPHERE (No. 2565) and REX (No. 2080).

of SCs would be needed. Within the SDL Methodology Guidelines [Bel 91] therefore
LOTOS was suggested as an alternative for the specification of interfaces between blocks.

Consequently, composition operators analogous to LOTOS have been suggested for the ex-
tension of SCs [ESC 90].

By means of global conditions (initial, intermediate, or final) another possibility for the com-
position of SCs has been suggested within the Message Sequence Chart standardization. A
final or intermediate condition determines the possible continuations by other SCs. Each con-
tinuation is determined by identification of final and initial conditions. The composition by
global conditions still is rather restrictive. Therefore, it has been suggested to introduce local
conditions [MSC 91].

Several investigations concerning the relationship between SDL and Petri nets already exist
[Grab 90]. Within these investigations the analogy between SDL-systems and Petri net sys-
tems on the one hand, and the analogy beween Sequence Charts and Petri net processes on the
other hand has been pointed out. A composition method using local conditions already has
been suggested for Petri net processes by means of process segments [Chong 85]1. Process
segments are basic behaviour structures of Petri net processes from which all possible Petri
net processes can be composed. It suggests itself to carry over this idea to Sequence Charts.
We call the basic behaviour structures of SCs Sequence Chart segments (SC-segments).

In chapter 2 an informal motivation for SC-segments is presented. In chapter 3 the role of
SCs and SC-segments within the software development process is discussed. A formal defini-
tion of process segments within Petri net theory is presented in chapter 4. In chapter 5 an
analogous definition for SC-segments is provided. Finally in chapter 6 an example is worked
out.

2 Informal description of Sequence Chart segments

2.1 The idea of Sequence Chart segments

All possible behaviours of an SDL-system can be described by traces. Regarding the set of all
possible traces of a finite system one observes that in general it turns out to be infinite and
that a single trace may be arbitrarily long. This fact is mainly due to cyclic system behaviour.

It is characteristic for systems containing cycles that the complete behaviour may be com-
posed from partial behaviour descriptions. A certain behaviour pattern may occur in different
traces or several times within one trace. Such partial behaviour descriptions, which are in fact
segments of traces, shall be used as building blocks from which the entire set of traces may be
constructed.

Of course all traces (presented in form of Sequence Charts) may be composed from the state
transitions of activated system processes. However, such a composition procedure is not rea-
sonable since coherence of behaviour patterns is lost and the system structure is no longer
visible for the designer.

10riginally in [Chong 85] process period is used instead of process segment. We choose segment to avoid mis-
understandings we observed occasionally.

Larger building blocks are demanded. We aim at a definition of inseparable trace segments
which are "as long as possible" (the meaning of which will be defined below) and from which
the system behaviour can be composed. Inseparable in this context means that these trace
segments are never split by others. The set of these building blocks has to be maximal in the
sense that all possible traces can be constructed out of its elements and minimal in the sense
that no element of the set can be composed from others in this set.

The building blocks we aim at can be characterised in the following way: they are (a)
(inseparable) sequential trace segments, (b) (inseparable) cyclic trace segments and (c) sec-
tions of sequential and (d) cyclic trace segments in which other trace segments are embedded.
This is illustrated in figure 2.1 where the reachability graph of a system is indicated sche-
matically (the numbered circles refer to global system states). In this example, parallelism is
hidden in global state transitions.

A simple comparison of the trace segments in figure 2.1 with the reachability graph shows
that all possible traces can be composed from the presented segments. This construction pro-
cedure can be represented in form of a graph (figure 2.2).

We would like to point out that the figures 2.1 and 2.2 merely serve as an illustration of our
ideas. For nontrivial systems the situation is not that simple. Furthermore, the starting point of
our considerations is not a case where the reachability graph for the generation of charac-
teristic trace segments is given. On the contrary, the system requirements are defined by
means of the specified characteristic trace segments.

(Extended) Sequence Charts are particularly suitable for the description of traces in SDL-
systems. They offer an appropriate graphical representation of traces which also presents the
time (causal) ordering of events in an intuitive manner. SCs also suit for the description of the
characteristic trace segments of an SDL-system. Such an SC represents a period of time
within the possible traces of an SDL-system. In order to exhibit this particularity, we use the
notation Sequence Chart segments for those SCs.

2) 3) Gy 03 i8)e (1)

)

@

® ® ®
® @ ®
@
@ o ﬁ‘)
®
5 ®» ® ©
reachability graph (a) characteristic {b) characteristic (¢) two sections of a (d) two sections of
inseparable inseparable sequential trace a cyclic trace
sequenctial cyclic trace segment in which segment in which
trace segment segment (2), (3), (6), and (7) (3) is embedded
are embedded

Figure 2.1: Reachability graph with 7 characteristic trace segments

Figure 2.2: A graph describing the composition of all possible traces from the trace segments -
of figure 2.1

Before we introduce a formal definition of process segments and Sequence Chart segments
(chapter 4 and 5), we want to point out the difference between Petri net processes and
Sequence Charts on the one hand and between process segments and Sequence Chart seg-
ments on the other hand.

2.2 Differences between Sequence Charts and Petri net processes

A Petri net process (PN-process) describes the behaviour of a Petri net system (PN-system) as
a trace in form of a so-called occurrence net which is itself a specialized Petri net. The rela-
tion between both is set up by a mapping from the PN-process to the underlying PN-system.
This mapping is defined in such a manner that the structure of PN-process and underlying
PN-system are consistent. Furthermore, it is assumed that the initial state and all subsequent
states of the process are mapped onto reachable states of the underlying PN-system (cf.
chapter 4). :

Sequence Charts and PN-processes are conceptually analogous but differ by the fact that the
mapping between a SC and the underlying SDL-system is set up only partially. This is due to
the fact that in early stages of design the knowledge about the system is not yet complete,
since the SDL-system has first to be constructed from the given set of SCs.

From this point of view the development of an SDL-specification from a set of SCs consists
in the construction of a suitable mapping from the given SCs to the SDL-system. One poss-
ible approach towards the definition of such a mapping has been described in [GraRu 89] by
means of a stepwise enhancement of SCs by SDL-symbols.

Additional information, however, is needed about the set of traces from which the complete
system behaviour has to be (re)constructed. On the Petri net side this is provided in form of a
set of process segments. In order to handle this problem also for SDL-systems and SCs we

define Sequence Chart segments. The automatic generation of SC-segments from incomplete
sets of SCs in addition allows to analyse the behaviour of the system specified up to this
stage.

2.3 Differences between Sequence Chart segments and process segments

Process segments are introduced within Petri net theory exclusively employing local condi-
tions. By that, they describe global and local (partial) system traces. Contrary to that, SC-
segments use both local and global conditions. All initiated (SDL-) processes are involved in
a global system trace. Correspondingly, within a local system trace only a partial set of all
initiated (SDL-) processes contributes.

The global conditions in Sequence Charts correspond to special sets of places in occurrence
nets, so-called B-cuts. The initial states for (local and global) process segments are such B-
cuts (or rather certain sub-sets of them).

The strategy pursued in our approach is to describe global system runs by means of global
conditions and to use local conditions for a later insertion of local traces. The exclusive use of
local conditions would force system designers to work in early stages of design already on a
low level of abstraction, i.e. with fine-grained refinements. On later stages, however, it may
be necessary to identify local conditions within global conditions or to split global conditions
into local conditions. We cannot go further into these problems within this paper.

In figure 2.3 (a) a (global) trace of the Inres service [Hog 91] is described. This trace contains
local and global conditions. Figure 2.3 (c) shows how the (local) cycle described in 2.3 (b)
can be inserted within this global trace. Finally, it should be noted that the formal description
of the construction procedure for a graph as shown in figure 2.2 from local traces may
become very complex. Therefore we restrict ourselves to a precise definition of SC-segments.

2.4 Related descriptions and analysis methods

The ideas pursued in this paper originate from Petri net theory in which the system (re)con-
struction from a given behaviour description has been investigated already in some detail.
Because of the well established analogies between Petri nets and SDL-specifications on the
one hand, and between Petri net processes and Sequence Charts on the other hand the concept
of (Petri net) process segments is carried over to the SDL-world by introducing SC-segments.

The relationship between SDL and Petri nets has been investigated mainly because analysis
methods from Petri net theory can be utilized for SDL-specifications. In particular, reachabil-
ity analysis and the calculus of invariants has been carried over to the SDL-world. The
reachability graph in principle describes the complete system behaviour in form of system
states and state transitions. In practice, its exploitation often fails due to state explosion. The
same holds for the Asynchronous Communication Tree (ACT) [Hog 88].

Petri net invariants, particularly transition invariants, have been employed successfully for the
analysis of SDL-specifications [GrauRu 85]. Transition invariants prove to be useful for the
analysis of cyclic system behaviour. By means of realization of minimal support invariants
the elementary (nonreducible) cyclic system traces may be constructed.

Petri net processes describe the causal structure of nets as Sequence Charts do for SDL-
systems. Thus, we envisage an improvement of analytical power by combining reachability
analysis, transition invariants, and analysis techniques used for process segments.

As indicated in figure 2.2, the system behaviour can be described by means of the set of seg-
ments analogously to the reachability graph. Trace cycles obtained from minimal support
invariants are closely related to process segments. The clear representation of causality within
Petri net processes and Sequence Charts is carried over to segments since they describe frag-
ments of them. The relations pointed out in this chapter are illustrated in figure 2.4 .

ENVIRONMENT_1 INITIATOR RECEIVER ENVIRONMENT_2 INITIATOR ENVIRONMENT_1
* * F—— B

INRES_CONNECTED

IDISreq

<
10IS 3

1DISind IDISreq

} INRES_DISCONNECTED

(a) Global trace of the Inres example with (b) Local cycle of the Inres ex-
global and local conditions ample with local conditions

ENVIRONMENT_1 INITIATOR RECEIVER ENVIRONMENT_2
Ry =
|

INRES_CONNECTED

IDISreq

<
1D1S X

1DISind

A

Dis—
connec
led

1DISreq

INRES_DISCONNECTED
e e

(c) Possible combination of (a) and (b)

Figure 2.3: The combination of local and global trace segments of the Inres example

map onto composition

Petri net system < Petri nel processes <——— Process segments

total behaviour
is described by
are represented in
Reachab:lny graph
Asynchronous Communication Tree
total behaviour
is described by

represented in

Sili-sysioln . « wpamie Sequence Charls «-cemeesition 5C—gseaments

Figure 2.4: Relations between SDL and Petri nets

3 Sequence Chart segments and their role in system engineering

3.1 The role of SCs and SC-segments in system specification

Sequence Charts are widely used in practice for the specification of the system behaviour
within requirement engineering. Compared with other trace languages SCs have the advan-
tage of a clear graphical layout and structuring. The shortcomings, namely the lack of com-
position operations and the consequent limitations, have been discussed several times in lit-
erature. In particular, LOTOS has been proposed as an alternative for the specification of
block-interfaces [Bel 91].

In order to overcome these limitations the proposal for the Message Sequence Chart standard-
ization has been enhanced by the introduction of global and local conditions [MSC 91]. Glo-
bal and local conditions admit the composition of comprehensive SCs from SC-building
blocks. The choice of such SC building blocks is left to the system designer. No unnecessary
restrictions shall be prescribed. The only restriction consists in the mandatory specification of
local or global conditions defining the composition rules. However, specxal building blocks,
namely SC-segments, may be singled out.

The 1dea is to generate the SC-segments automatically which should be possible at each stage
of system specification. Thus, SC-segments represent standard building blocks which may be
carried separately and in parallel with the specified SC fragments.

The set of generated SC-segments represent the desired system behaviour. Beyond that, the
computer aided composition of SC-segments offers the possibility of an immediate simulation
of the specified behaviour. Viewing segments as the smallest units admits the abstraction
from details of communication and the analysis of the essential behaviour structures of the
system.

3.2 Sequence Charts, Sequence Chart segments and SDL

The introduction of local conditions within the standardization of Message Sequence Charts
(MSCs) was demanded also in order to make a systematic construction of SDL-specifications
from MSCs feasible [KDD 90]. As it was pointed out in this contribution, local connectors
define the relationship between MSCs and SDL process diagrams.

The definition of SC-segments is not limited to MSCs. The same composition and decom-
position method by means of SC-segments as basic units may be carried over to Extended
Sequence Charts (ESCs). In particular SC-segments may be defined for the special variants of
ESCs, the State-form and the State Input-form, as defined in [GraRu 89]. Thus, the stepwise
refinement of SC-fragments, especially of SC-segments, by means of SDL-Symbols can be
used to generate (more or less) complete SDL process diagrams as described in [GraRu 89].

3.3 The use of Sequence Chart segments in test case generation

Recently Sequence Charts have been proposed for a support of test case generation [Hog 90].
In this approach, SCs have been used for a selection of test cases. Automatic test case gener-
ation from state machines suffers from the enormous amount of resulting test cases. SCs are
suggested as a means for reduction of generated test cases to the inferesting and critical ones.
Because of the complexity of the Asynchronous Communication Tree (ACT) which is used
for the generation of test cases - the complexity is known for the reachability graph of Petri
nets - SCs can provide an interesting alternative representation in trace form. By means of
SCs the time (causal) ordering of events is presented in an intuitive compact graphical man-
ner which has obvious advantages compared with the interleaving representation within the
ACT. At least SCs may be used as a supplement. In any case, the mentioned shortcoming of
SCs should be overcome by SC-segments in the direction of a comprehensive description.

4 Definition of process segments based on Petri nets

4.1 Petri net processes and the properties of their building blocks

The idea of Sequence Chart segments (SC-segments) as a tool for compact behaviour defini-
tion can be traced back to the notion of process segments of Petri nets which first were intro-
duced operationally in [Chong 85] in which they are defined as the results of a certain
(unfortunately slightly incorrect) algorithm. We provide here a formal definition of process
segments based on their desired properties and the behaviour semantics of Petri nets. Thus,
we gain insight into the structure of process segments. This information about their nature is
exploited for the formal definition of SC-segments in the next chapter.

The behaviour of a Petri net system is given as a set of Petri net processes (PN-processes)
each of which can be interpreted as the history of an actual run of the system. A PN-process
thus reflects one of the possible system behaviours and, consequently, conflicts are already
resolved. An orthogonal cut through a PN-process resembles a snapshot of the PN-system's
behaviour: it shows which system transitions (system actions) and which system states co-
exist or happen concurrently. A longitudinal section through a PN-process informs about

what actions and system states are performed respectively produced in sequence. Altogether,
a PN-process describes the partial ordering of the various occurrences of PN-system actions
and PN-system states. They are denoted by so called occurrence nets with an additional
labelling function into places and transitions of the underlying Petri net system, thus estab-
lishing the behaviour semantics of the net. Thereby, occurrence nets are defined to be cycle-
free Petri nets that never branch at places.

PN-processes can be of arbitrary length due to a cyclic system behaviour. Furthermore, con-
currency of Petri net systems forces the description of mutually independent parts of its be-
haviour into one process, blurring thus a natural distinctive feature of system analysis. Pro-
cess segments now shall serve as a means to clarify the system structure in terms of behaviour
(or PN-process) building blocks.

PN-processes can be constructed systematically out of Petri net systems, but process segments
are gained from the set of PN-processes. In the sequel we give a definition of process seg-
ments based on PN-processes; an algorithm for the determination of process segments how-
ever computes them out of the underlying Petri net system.

(1) Process segments are fragments of PN-processes, i.e. each process segment
can be identified in at least one PN-process.

(2) Process segments are connected, i.e. they do not split into two (or more) parts
without arcs crossing from one part to the other.

(3) No prefix of a process segment is a process segment itself. (A prefix denotes
- in terms of behaviour history - the same past though the observation was
stopped earlier.)

(4) Process segments may be cyclic, but they do not contain proper sub-cycles.

(5) Process segments are linked structures. This property is the crucial one in our
context and will be discussed in the next paragraphs.

Requiring process segments to be linked structures shall provide - intuitively spoken - that
there is no system behaviour (i.e. no PN-process) in which one can identify a process segment
broken into two parts which occur separated by a cyclic behaviour sequence. This gives the
gist of the definition, however, it is but a first intuitive approximation which excludes too
many cases. Hence in greater detail now:

A PN-process fragment is called /inked, iff no matter how it is cut into two pieces
along concurrent system states, these two pieces are inseparable in all fragments
of PN-processes.

Two such pieces q; and q, are called inseparable in a PN-process fragment p, iff
the following holds:

if there is a possibility to cut the PN-process fragment p into three pieces along
concurrent system states such that

- g occurs at the end of the first piece,

- gp occurs as a prefix of the last, and

- both q; and g, do not occur in the cyclic middle part r,

then this middle part » does not really separate q; and qp, i.e. q; concatenated
with qp (in sign: q; @ qp) is either prefix or end piece of the PN-process fragment
q ©r®qs.

The above list of five properties provides the basic selection criteria for process segments. A
twofold selection process will eventually produce them. The first step is to determine the so-
called pre-segments.

4.2 Selection of pre-segments

A closer investigation into linked structures shows that prefixes of linked structures are also
linked. Thus the criterion (3) helps to establish the desired maximality of process segments.
Yet under certain circumstances, it may happen that arbitrary iterations of cyclic linked
structures are still linked. Hence, criterion (4) helps to restrict process segments to finite
fragments of PN-processes. Both examples show that we have to establish a sophisticated se-
lection process which distinguishes between too long and too short PN-process fragments.

We therefore define a set of PN-process fragments which shall be called pre-segments, be-
cause we will later choose the process segments among them. To determine the pre-segments
is in itself again a three-step process:

(a) Let us at first collect all PN-process fragments which are connected as well as
linked structures and for which additionally holds that they contain at most one
sub-cycle which in any case must be placed at the end of the fragment.

This first selection step looks rather involved but mirrors exactly a simple construction pro-
cedure to gain those PN-process fragments. The request for the final sub-cycle translates for
this algorithm into a mere termination condition. One hardly can do better: During a local
construction process a cycle can be detected not earlier until one realizes that the cycle is
closed. In a next step,

(b) let us discard all PN-process fragments WhJCh are prefixes of other PN-process
fragments in this set.

By this step, we particularly get rid of PN-process fragments with uncompleted final sub-
cycles. But by now, we have eliminated certain PN-process fragments we still need. Yet, dur-
ing the following step we get them back again:

(c) Letus prune off all final sub-cycles in the remaining PN-process fragments.

With these three steps we get the set of pre-segments as a basis for the selection of process
segments. An algorithm for the calculation of pre-segments clearly would perform these three
steps intertwined. It also would perform the selection of process segments out of pre-seg-
ments interleaved with the above steps. But here are now the criteria for this selection
process:

4.3 The determination of process segments

The set of pre-segments is in accordance with the above formulated list of five properties for
process segments, but it is still too large. It would allow to construct not only the set of PN-
processes for the given Petri net system but rather the set of PN-processes starting with an
arbitrary marking provided that this marking is reachable from the given initial marking for
which the pre-segments have been calculated. This is an advantage for system analysis, how-
ever, it makes it still necessary to select the appropriate minimal number of process segments
which are sufficient to construct all possible PN-processes. This selection process is driven
only by comparing and matching the pre-segments' initial and final places (i.e. places without
incoming respectively outgoing arcs) and it comprises two rules:

(*) A pre-segment with its initial places mapped wholly into the initial marking of the
respective Petri net system is a process segment.

(**) A pre-segment with its initial places mapped wholly into a union of the images of
final places of some process segments is a process segment itself.

This selection process preserves and produces respectively the required properties of process
segments: The set of pre-segments, and hence, the set of process segments are finite. Each
process segment itself is of finite length (because process segments do not contain sub-
cycles). Each process of the Petri net in question can be considered a composition of process
segments, where only at the end of the process a prefix of a process segment may be used.

5 Definition of Sequence Chart segments

The analogy between Sequence Charts (SCs) and PN-processes [Gra 90] admits translation of
the defining properties for (Petri net) process segments to Sequence Chart segments (SC-
segments). However, there are some subtle differences which have to be taken into account as
was pointed out already in chapter 2.3.

The definition of PN-processes assumes the existence of a mapping of occurrence nets onto
an underlying Petri net system. The starting point for the definition of SC-segments is some-
what different. We assume a given set of SCs containing global and local conditions which
admit SC-composition and decomposition according to the MSC-composition-rules [MSC
91]. Since the definition of SC-segments should be possible at each stage of the system de-
velopment we do not assume an underlying SDL-system to which the SCs refer.

In fact, the given set of SCs from which the SC-segments shall be constructed may be rather
rudimentary. Thus, SCs may be interpreted immediately as occurrence nets, the labelling of
its elements (reflecting the mapping), however, is less straightforward. In order to employ the
methods from PN-processes nevertheless, we abstract from a mapping onto an underlying
system and interprete the labelling as an identification of certain elements.

It turns out that only global or local conditions in SCs admit such an identification according
to their semantics definition [MSC 91]. Message names cannot be related precisely to the
labelling of occurrence nets since they do not refer to events in the sense of Petri nets (which
have to be named differently in different states) but to a higher level of abstraction (actions).

As a consequence the following definition of SC-segments is based exclusively on global and
local conditions within the prescribed set S of SCs and the corresponding (de)compositions.

We define a set S’ of Sequence Chart fragments which corresponds to the set of process
fragments of chapter 4 and from which SC-segments can be derived analogously to process
segments from process fragments:

S’ contains all possible SC-sections which can be obtained from .S by composition and de-
composition of SCs. According to [MSC 91] initial, intermediate, and final conditions may be
attached to SCs. Sequence Charts may be decomposed at intermediate conditions. SCs with-
out intermediate conditions cannot be decomposed further. In this sense they provide the
atoms of §'. Contrary to process fragments (cf. chapter 4) these SC-atoms are no more split.
SC-segments are built out of these SC-atoms and form a distinguished kind of SC-molecules.

Keeping in mind that composition and decomposition of SC's refers to these afoms the defi-
nitions from chapter 4 can be adapted. SC-composition is denoted by .

(1) SC-segments are elements of S,

(2) SC-segments are connected.

(3) No prefix of a SC-segment is a SC-segment.

(4) SC-segments may be cyclic but they do not contain proper subcycles.
(5) SC-segments are linked.

A Sequence Chart SC of §" is linked iff for all possible decompositions of SC in SC; and SC,
both parts appear to be inseparable:
SC; and SC,, are inseparable in SC, iff the following holds:
If SC can be decomposed into three pieces SC; , SC,, , and SC5 such that
-SC=SC1®SCm@SC2 Y
- SC, neither contains SC; nor SC,, whereby
-SC; =SC; ® SC; (SC; may be empty)
then SC;,, does not really separate SC; and SC,
but is either concurrent to SC; or SC, , i.e.:
SC; ® SC1 ®SC,,, ® SCy =SC; & SC; & SC, & SC,,
or
SC; @ SC; @ SC,,, @ SC, =SC; & SC,,, ® SC; & SCy

By means of these five properties SC-segments can be selected analogously to chapter 4.2.
The explicit definition of an initial state corresponding to an initial marking is not necessary.
There is also no further selection corresponding to PN-segments from pre-segments.

6. An example (Inres service)

As has been pointed out in chapter 3.1 the specification process shall not be restricted by the
concept of SC-segments. At each stage of design the SC-segments may be generated auto-
matically from the specified SC-traces. The idea is that the system designer initially specifies
the essential traces, i.e. the traces which define the main purpose of the system. In figure 6.1
this is described for the Inres service [Hog 91]. The possible connection points between SC-
segments are represented by global and local conditions. Exceptional or error cases are added
afterwards. Cf. figure 6.2 and 6.3 which show the possible disconnection cases in different
global states and figure 6.4 where the rejection of a connection request is displayed.

At each stage of design the already defined SC-segments may be composed to obtain the cur-
rent total system behaviour. This is demonstrated in figure 6.5 with respect to the SC-seg-
ments defined in figure 6.1 - 6.4. Note, that the global state INRES_WAIT_FOR _resp indi-
cates neither the beginning nor the end of an SC-segment. The enhancement of segments by
means of SDL-symbols (figure 6.6) admits the generation of SDL-process diagrams showing
the behaviour prescribed by these segments.

ENVIRONMENT_1 INITIATOR RECEIVER ENVIRONMENT_2

INRES_DISCONNECTED

Dis~
connec
led

ICONreq
Ed

SET

1

ICON

ICONind

connection set-up

INRES_WAIT_FOR_resp

ICONresp

-
e o A

Esm <

ICONcon{

[INRES_CONNECTED : |

1DATreq(d

108T(6) data phase

{DATind(d)

| INRES_CONNECTED |

IDISreq

<
== oIS -~

disconnection phase 1
1DISind

] INRES_DISCONNECTED

Figure 6.1: Global Inres trace with 3 indicated Sequence Chart segments
(named: connection set-up, data phase and disconnection phase 1)

ENVIRONMENT INITIATOR RECEIVER ENVIRONMENT_2
J INRES_DISCONNECTED |
R IDISreq
IDSing € i - disconnection phase 2
! INRES_DISCONNECTED |

**

Figure 6.2: Global Inres trace with disconnection in an INRES_DISCONNECTED-state, one
SC-segment is indicated (named: disconnection phase 2)

ENVIRONMENT.1 INITIATOR RECEIVER ENVIRONMENT_Z
INRES_DISCONNECTED
ICONreq |
SET 1
ICON

ICONind

INRES_WAIT_FOR_resp disconnection phase 3

IDISreq

-2 1DIS S
1DISind s
]
INRES_DISCONNECTED
I *

Figure 6.3: Global Inres trace with disconnection in an INRES_WAIT_FOR_resp-state, one
new SC-segment is indicated (named: disconnection phase 3)

ENVIRONMENT_1 INITIATOR
[PRRARTETE
Dis—
connec
ted
ICONreq
reject connection
B IDISind
Dis—
connec:
ted

Figure 6.4: Local Inres trace with rejection of a connection request, one SC-segment
with local conditions is indicated (named: reject connection)

47

conneclion set-up

disconnection phase 2

dala phase y

Figure 6.5: Composition rules for the SC-segments indicated in figure 6.1 - 6.4

disconnection phase 1

(inscribed cycles describe SC-segments)

ENVIRONMENT_1

INITIATOR

ICONcenf

RECEIVER

DISCONNECTED

ENVIRONMENT_2

3

ICONInd

ICONresp

(a) Enhancement of SC-segment connection set-up with SDL state symbols
(global system states are left out)

ENVIRONMENT.1

INITIATOR

C_CONNECTEDD

IDATreq(d

IDAT(d)

RECEIVER

CONNECTED

!

ENVIRONMENT_2

(b) Enhancement of SC-segment data phase with SDL state symbols
(global system states are left out)

Figure 6.6: Enhancement of Sequence Chart segments with SDL state symbols

Literature
[Bel 91]

[Chong 85]

[ESC 90]

[Gra 90]

[GraRu 89]

[GrauRu 85]

[Hog 88]
[Hog 90]

[Hog 91]

[KDD 90]

[MSC 91]

[Rei 85]

Belina, F.: SDL Methodology Guidelines
CCITT- meeting Geneva 1991

Chong-Yi, Y.: Process Periods and System Reconstruction
Lecture Notes in Computer Science 222, Advances in Petri nets 1985,
Edited by G. Rozenberg, Springer Verlag 1986

Rudolph, E.: Proposal for the Standardization of Extended Sequence Charts
CCITT experts meeting Copenhagen 1990

Grabowski, J.: Statische und dynamische Analysen fiir SDL-Prozess-
diagramme auf der Basis von Petri-Netzen und Sequence Charts
University of Hamburg, Diploma thesis, April 1990

Grabowski, J.; Rudolph, E.: Putting Extended Sequence Charts to Practice
SDL '89 The Language at Work - O. Faergemand and M. M. Marques
(Editors), North-Holland 1989

Graubmann, P.; Rudolph, E.: A Method and a Tool for the Validation of
SDL-Diagrams
Second SDL Users and Implementers Forum, Helsinki 1985

Hogrefe, D.: Automatic Generation of Test Cases from SDL Specifications
CCITT SDL Newsletter 12, 1988

Hogrefe, D.: Conformance Testing Based on Formal Methods
Invited presentation, Forte'90, Madrid, 1990

Hogrefe, D.: OSI Formal Specification Case Study: the Inres Protocol
and Service
Technical report, University of Berne, April 1991

KDD contribution to WP X/3:
The Importance of State Descriptions in Sequence Charts
CCITT experts meeting, Turin 1990

Rudolph, E. : Message Sequence Chart
CCITT-meeting Geneva 1991

Reisig W.: Petri Nets
EATC Monographs on Theoretical Computer Sciences, Vol.4,
Springer 1985

