Test Generation with
AUTOLINK and TESTCOMPOSER

M. Schmitt, M. Ebner, J. Grabowski

Institute for Telematics, University of Liibeck,
Ratzeburger Allee 160, 23538 Liibeck, Germany,
{schmitt,ebner,grabowsk} Qitm.mu-luebeck.de

Abstract

Testing of telecommunication systems is a major concern in industry and standar-
dization. Therefore, the two major SDL tool vendors have integrated automatic
test generation tools into their software development suites. While Telelogic has
added AUTOLINK to the TAU tools, former Verilog has extended OBJECTGeode with
TESTCOMPOSER.

Even though both tools are based on the same concepts, many features are realized
differently and their focus is put onto different aspects of the test generation process.
This paper introduces the major principles of SDL-based test generation and provides
an overview of how both tools support test development.

Keywords: SDL, MSC, TTCN, Test generation, Autolink, TestComposer

1 Introduction

The complexity of modern telecommunication systems has increased significantly and the
need for thorough and systematic testing is undisputed nowadays. However, testing is
an extensive time-consuming task. Before concrete tests can be carried out on a system,
much effort has to be spent on specifying what and how to test and on getting the test
descriptions in a format that is accepted by the test equipment.

In many cases, a formal specification of the System Under Test (SUT) is given in the
Specification and Description Language (SDL) [7]. SDL not only allows to describe the
structure and behavior of a communicating system in a semi-graphical way; there also exist
tools for dynamic analysis of SDL specifications by means of simulation and validation.
Hence, a reasonable approach is to generate test cases automatically based on a given
SDL specification. In addition to an increased efficiency in terms of both time and cost,
automatic test generation ensures consistency between the formal specification and the
test cases applied to an implementation.

For that reason, the two major SDL tool vendors Telelogic and former Verilog have in-
tegrated automatic test generation tools into their software development environmentsﬂ

In December 1999, the two companies have merged. Nevertheless, their separate product lines are both
kept.

Telelogic complemented its TAU tool suite with AUTOLINK in 1997. AUTOLINK has been
developed at the Institute for Telematics in Liibeck [4] and is based on the former work
of the SAMSTAG project [2]. In 1998, Verilog extended OBJECTGeode with TESTCOM-
POSER. Similar to AUTOLINK, it has its root in the research area as it is based on TGV
and TVEDA which were developed at IRISA /Verimag and France Telecom/CNET [9].

Both tools share the same basic concepts. For example, they apply state space exploration
techniques to search for suitable test sequences. In addition, they support the second
edition of the standardized Tree and Tabular Combined Notation (TTCN) [6] as a common
output language. Nevertheless, many concepts are realized differently in TESTCOMPOSER
and AUTOLINK. Moreover, the two tools put their focus onto different steps of the test
generation process. The strengths of TESTCOMPOSER are in the flexible specification of
test purposes whereas AUTOLINK has its strong points when it comes to the customization
of the generated TTCN test suites.

TESTCOMPOSER and AUTOLINK have been described separately in detail in former pub-
lications [I}, 9L [10]. This paper is intended to give an overview of the general concepts and
how these are realized in either tool. It is structured as follows:

In Section [2] a short introduction to the overall process of test generation is given in order
to make the reader familiar with the general approach. Section [3| describes the mapping
of SDL concepts onto corresponding TTCN concepts and the required test architecture.
Section 4] presents several ways to specify test purposes. Different approaches to generate
test cases based on test purpose descriptions are described in Section [5| The customization
of TTCN test suites is discussed in Section [6] Finally, a summary is given in Section [7]

The use of TESTCOMPOSER and AUTOLINK is illustrated by examples based on a variant
of the Inres SDL specification [3]. Inres is a simple protocol that is not intended to provide
a profound evaluation of the tools. A complete case study with AUTOLINK can be found
in [12].

2 Overview

AUTOLINK and TESTCOMPOSER are tightly integrated into their corresponding develop-
ment environments. TESTCOMPOSER is built on top of the OBJECTGeode Simulator;
AUTOLINK is part of the TAU Validator. In this way, the tools can make use of the func-
tionalities of their underlying applications. The Simulator as well as the Validator are used
to find dynamic errors and inconsistencies in SDL specifications. They provide roughly the
same basic features with state space exploration as their fundamental concept.

Test generation with TESTCOMPOSER and AUTOLINK follows a three-stage process. An
overview is given in Figure [I| In the diagram, actions are represented by rounded boxes.
Data structures and files are depicted in rectangles. Finally, configuration scripts that
influence the test generation are indicated by hexagons.

In a first step, the user has to specify a set of test purposes. Each test purpose defines a
specific aspect of the behavior of the implementation that is intended to be tested. With
regard to TESTCOMPOSER and AUTOLINK, a test purpose is considered to be a sequence
of input and output events that are to be exchanged between the given SDL system and its
environment. Test purposes are developed either manually by using, e.g., an MSC editor,
interactively by stepwise simulation of the SDL system or fully automatically.

Test purpose specification

Test case generation

Test suite production

Figure 1: Test generation with TESTCOMPOSER and AUTOLINK

There are different representations for test purposes: AUTOLINK uses Message Sequence
Charts (MSCs) [§] as a uniform format. TESTCOMPOSER uses MSCs as well but also cre-
ates scripts in a proprietary format that can be handled more efficiently by OBJECTGeode
than MSCs. Both tools support observer processes which are similar to regular SDL pro-
cesses. They run in parallel with the actual SDL system and allow to inspect and control
its simulation.

Based on a set of test purposes, test case generation takes place. Normally, a generation
engine computes a test case based on state space exploration of the SDL system. By this,
it can determine additional valid interactions between the tester and the SUT which are
not already specified in the test purpose description. However, sometimes it is not possible
to simulate a test purpose. For these cases, AUTOLINK provides a way to translate test
purposes directly into test cases.

All test case descriptions along with their constraints, i.e. the definitions of the data values
exchanged between the tester and the SUT, are stored in an internal data structure.
AUTOLINK allows to save and reload generated test cases to disk such that the user can
suspend and continue the generation of a full test suite.

In a final step, AUTOLINK produces a test suite in second edition TTCN format. TEST-
COMPOSER provides a public Application Programming Interface (API) that allows cus-

System inres [ICONconf, IDISind] 1@
R N ISAP1
| “
| i)
ST ! [\CONreq, IDATreq, \DISreq] TMDAT'nd]
- MSAP2
Station_Ini
{ MDATind]
MSAPL [MDATreq]
'[MDATreq]
Medium

Figure 2: INRES system

tomers to adapt the tool to any arbitrary test specification language. In addition to the
internal test case representations, the API provides access to general information about
PCOs, timers, signal types etc. TESTCOMPOSER already includes a module that produces
test suites for second edition TTCN. In the following, only TTCN will be considered for
output as many features of the tools are related closely to this notation.

Test generation with AUTOLINK and TESTCOMPOSER is influenced by a number of con-
figuration settings. For example, when generating test purposes (semi-)automatically, the
developer has to provide the simulator with information on the test environment of the
system, i.e. reasonable input values. The look of the test suite can also be controlled by var-
ious options. In AUTOLINK, constraints can be named and parameterized by user-defined
rules. In addition, test cases can be combined in a hierarchy of test groups to express their
relationships. Last but not least, the test architecture has a great impact on the final test
descriptions. A test case that is executed on a monolithic tester will look differently from
a test case that is designed for a distributed test system.

3 Test architecture

For test generation, it is necessary to define a mapping from a given SDL specification to
the test architecture. AUTOLINK always considers a complete SDL system to be the SUT.
Each SDL channel that is connected to the system environment maps to a Point of Control
and Observation (PCO) in TTCN. When generating test cases for the Inres system shown
in Figure [2 the channels ISAPI and MSAP2 are considered to be the interfaces of the
test device. If only one block or process is supposed to be the SUT, this entity takes the
role of an SDL system and must be simulated in a stand-alone manner.

In contrast to AUTOLINK, TESTCOMPOSER also allows to specify an arbitrary block within
an SDL system to be the SUT. All channels connected to this block become PCOs regard-
less whether they link the block with the system environment or with another block.

For some test architectures, e.g. the remote test method of the Conformance Testing

MTC
: CP_ISAPL CP_MSAF2
PTC_ISAPL PTC_MSAP2
: ISAPL MSAP2
suT

Figure 3: Distributed test architecture for the Inres system

Methodology and Framework [5], the controllability and observability of the IUT is re-
stricted because some of its interfaces are not standardized or not accessible. For that
reason, TESTCOMPOSER allows to define for each PCO which signals are controllable and
observable. All signals that cannot be observed are suppressed in the test case output
whereas uncontrollable signals become implicit send events in TTCN.

In the same way as an SUT can be a distributed system, the tester itself may consist of
a number of test components. While TESTCOMPOSER only allows to generate tests for
monolithic testers, AUTOLINK also supports a generic architecture for distributed testers
where each single PCO is associated exclusively with a Parallel Test Component (PTC).
Coordination among PTCs is realized by exchanging Coordination Messages (CMs) via a
Main Test Component (MTC'). A distributed test architecture for Inres is presented in
Figure [3]

Coordination messages cannot be computed automatically [I]. Therefore, the user has to
state synchronization points explicitly in test purposes. In Figure [d an MSC condition
has been added in order to ensure that signal IDISreq is sent by PTC_ISAP1 only after
PTC_MSAP2 has received MDATind and responded with MDATreq. During test gener-
ation, the MSC condition is resolved by a number of coordination messages. An excerpt
of the corresponding TTCN test case including behavior descriptions for the MTC and
PTC_ISAPI1 can be found in Figure [10| and Figure

4 Test purpose specification

Test generation with AUTOLINK and TESTCOMPOSER. starts with specifying a set of test
purposes. Both tools provide several ways to define test purposes that differ in the degree
of automation.

4.1 Automatic computation

AUuTOLINK and TESTCOMPOSER allow to derive test purposes fully automatically from an
SDL specification. Based on a state space exploration, a set of test sequences is computed
whose execution shall result in a large structural coverage of the SDL specification. Each
time a part of the SDL system is entered that has not been covered by a previous test
purpose, a new one is generated. Sometimes, the test developer may only want to test

MSC SyncPTCs
| ISAP1 | | inres | | MSAP2 |
[ConnectionEstablishment J
IDATreq
(0) MDATind
((DT, one, 0))
MDATreq
((-AK, one, 0.)),
< Synchronization >
IDISreq
IDISind
MDATind
(DR, one, 0)) |

Figure 4: AUTOLINK test purpose with PTC synchronization

certain aspects of the system. Therefore, in TESTCOMPOSER transitions, processes or
even whole blocks can be marked as covered, i.e. they are ignored during test purpose
computation.

Basically, the two test generation tools have different notions of what a coverage unit is.
AUTOLINK defines coverage on the basis of a single SDL symbol; for TESTCOMPOSER, the
largest sequence of instructions that is not involved in branching is considered a unit. In
any way, the execution of a coverage unit may not be observable when it comes to black-
box testing, because it does not necessarily cause interaction of the SDL system with its
environment. Therefore, generating a separate test purpose for each coverage unit leads
to many identical test cases.

To circumvent the problem, both tools examine larger sequences of coverage units, called
observation s, that lead from one stable state to another. A stable state is a state where
the system waits silently for new input from its environment or the expiration of a timer.
Each automatically generated test purpose includes at least one observation step. In most
cases, an observation step includes a stimuli from the test environment and one or more
corresponding responses from the system.

Unfortunately, due to nondeterminism one observation step can correspond to several
different sequences of coverage units, i.e. an SUT may show the same external behavior
but execute other statements internally than the ones that were supposed to be tested. The
computation of Unique Input/Output (UIO) sequences such as, e.g., realized in SAMSTAG
[11] would solve the problem. However, in practice it is not necessary to prove that a test
includes an UIO sequences most of the time.

There is no universally applicable strategy to find paths through the reachability graph
which results in a high coverage. Both tools offer depth-first and supertrace search al-
gorithms to explore the state space; in addition, TESTCOMPOSER includes a breadth-
first search. However for large SDL systems, shallow exploration — as it is performed in
breadth-first and iterative depth-first mode — results in poor coverage. Many relevant
parts of a specification can only be covered after a long initialization sequence. For valida-
tion purposes, it is an adequate approach to explore the state space in a depth-first or even
random walk manner. However, test purposes generated this way tend to include sequences
of useless events which do not contribute to the primary test purpose. As a workaround
to this problem, the user may first manually simulate the initialization sequence and then
start an automatic exploration. Alternatively, AUTOLINK provides a deterministic algo-
rithm that makes repetitive local explorations with increasing depth at various places in
the state space. The search algorithm is based on the heuristic that in a region of the
reachability graph where an increase of coverage has been observed, it is more likely to
detect transitions that result in a yet higher coverage.

Ideally, it should be possible to run a test suite without having to reset the SUT after each
single test case. Under this premise, it is not sufficient to let a test purpose specification
stop at the end of an observation step in an arbitrary stable state. Instead, a final test
sequence, i.e. a postamble, must be computed that drives the system back into some idle
state. However, an automatic test generation tool is not able to know what distinguishes
an idle state. Therefore, TESTCOMPOSER allows the user to specify a boolean expression
that characterizes an idle state. It will then automatically search for a suitable postamble.

4.2 Interactive simulation

In order to produce test purposes automatically, the user has to define a set of reasonable
input signals. Whenever the SDL system is in a stable state, the test tools continue the
simulation with each possible input. For complex specifications, it may be difficult to
predict a set of inputs in advance that result in a high coverage. In addition, due to the
fact that each possible signal is tested in each stable state, the state space may grow
excessively. For one of the test suites for Core INAP CS/2 [12], the SDL system had to be
controlled by more than 130 different inputs! On the other hand, usually the user knows
exactly which signal has to be sent at which time. Therefore, she may want to produce
test purposes by a stepwise simulation. Both AUTOLINK and TESTCOMPOSER are build
on top of tools that allow the user to navigate manually through the state space of the
SDL specification.

4.3 Manual specification by observer processes

TESTCOMPOSER and AUTOLINK allow to use observer processes for test generation. An
observer process is a special kind of SDL process which is able to monitor the SDL system.
The representation of observer processes slightly differs in AUTOLINK and TESTCOMPOSER
but in principle they have the same properties.

An observer process has direct access to all internal elements of the specification such
as variables and timers. Moreover, it can also influence the simulator itself. An observer
process may prune a path in the state space or create some report if a specific condition
holds. For example, an observer process may check repetitively whether one of the SDL

inres_tp13
PCO_isapl inst_inres PCO_msap2

CHANNEL CHANNEL

finres/ SYSTEM finres linres/
isapl msap2
iconreq
mdatind((. cr,zero,0.))
*treg . cc,zero,0 .
iconconf
idatreq(2000) »
mdatind((. dt,one,2000 *

< End_of_preamble >
n

hdatreq((. ak,zero,0.))
mdatind((. dt,one,2000 .

<Begin_of_postamble >
J t

mdatind((. dt,one,2000 .
atreq((. ak,one,0.))

idisreq

¢ idisind

Figure 5: Test purpose generated automatically by TESTCOMPOSER

processes has entered a particular state or the coverage of the system has increased by the
last transition.

The test generation tools support observer processes at different stages: TESTCOMPOSER
can use an observer process directly as test purpose specification. On the other hand,
AUTOLINK uses observer processes for the gemeration of test purposes, i.e. an observer
process has to be transformed into a set of MSCs first. The reason for this is that an
observer process corresponds to an abstract test purpose. While TESTCOMPOSER can
handle such abstract specifications, AUTOLINK requires complete MSCs as test purposes
where all inputs and outputs of the SDL system are specified explicitly.

4.4 Structuring of test purposes

Test purposes can be structured into several parts, e.g. preamble, test body, and postam-
ble. In Figure 5] an MSC test purpose is shown that has been generated automatically by
TESTCOMPOSER. The end of the preamble and the start of the postamble are denoted by
MSC condition symbols. During test case generation, the information about the structur-
ing of the test purpose is preserved in order to produce a user-friendly output (see also

Section .

In contrast to TESTCOMPOSER, AUTOLINK does not structure test purposes automatically.
Instead, it allows the user to split a test purpose into several MSCs. Test steps such as
preambles and postambles can be stored as separate MSCs and reused for several test
purposes with the help of MSC references (see Figure[). In addition, AUTOLINK supports
High-level MSCs (HMSCs) and MSC expressions for stating the relation between distinct

MSC TestOverview 1(1)

A

[CunnecuonEstabhshment] [EstabhshmentNoConfiirmalion]

It

FaultyAcknowledgement

loop<2> DataTransfer

[Connec!ionReIeasej [NoAcknowledgmem]

Figure 6: HMSC describing a set of test purposes

test purpose&ﬂ In Figure @ a sample HMSC is given that defines a kind of roadmap for
testing the Inres protocol. For each possible path through the HMSC, AUTOLINK creates
a distinct test case.

5 Test case generation

After the specification of test purposes, test cases can be generated. There are two methods
to do this: State space exploration and direct MSC to TTCN translation.

5.1 State Space Exploration

To generate a test case, paths through the SDL system have to be found which correspond
to the test purpose. Both AUTOLINK and TESTCOMPOSER use state space exploration to
find these paths. If alternative paths are found which violate the test purpose but are valid
according to the SDL specification their externally visible events are added to the test case
with a TTCN inconclusive verdict.

TESTCOMPOSER supports abstract test purposes which lack a full description of the in-
teraction between the SDL system and its environment. Hence, missing events are added
to the test case when exploring the state space of the SDL system.

Two different generation engines are provided by TESTCOMPOSER. The default engine is
derived from the former TTCgeN tool. It computes the whole state space which corre-
sponds to the test purpose and works very fast when dealing with complete test purposes.

The other engine is an industrial version of the TGV prototype. Like the AUTOLINK engine,
it uses on the fly generation which is more efficient for incomplete test purposes [9, [13].
In addition, it allows TESTCOMPOSER to find postambles for paths leading to pass and
inconclusive verdicts (see also section [4.1)).

2HMSCs and MSC expressions can only be used for a direct MSC to TTCN translation as described in

Section @

ASN.1 ASP Constraint Declaration

Constraint Name : Data_Request(Data : ISDUType)
ASP Type : IDATreq

Derivation Path

Comments

Constraint Value

{iSDUTypel Data }

Detailed Comments :

Figure 7: TTCN constraint generated by AUTOLINK

5.2 Direct translation of MSCs

If a test purpose defined as MSC covers certain aspects of a protocol specification which are
not represented in the corresponding SDL model or if a SDL model is missing completely,
it is obviously not possible to generate a test case by state space exploration. To handle
these cases, AUTOLINK provides direct translation of MSCs into TTCN test cases with
consistency checks regarding the SDL system interface definitions. Hence, an SDL system
has to be provided which at least defines the channels to the system environment in order
to identify the PCOs and the signals sent via these channels.

Since AUTOLINK always translates MSCs into an intermediate internal test case represen-
tation, test cases generated by an MSC to TTCN translation can be merged with test
cases generated by state space exploration. This leads to uniform and compact test suites
with a reduced number of constraints.

5.3 Constraints

Send and receive events in a test case are associated with constraints which denote the
actual values of signal parameters. Since constraints can be shared among several events
in different test cases, they are stored separately from the test case representations. AU-
TOLINK supports special handling of constraints like naming and parameterization based
on user-defined rules. A typical constraint rule looks like this:

TRANSLATE "IDATreq"

CONSTRAINT NAME "Data_Request"
PARS $1="Data"

END

AUTOLINK translates signal names into constraint names. The example above instructs
AUTOLINK to assign the name Data_Request to constraints which are related to IDATreq
signals. Additionally, the first parameter of signal IDATreq becomes a parameter of con-
straint Data_Request. The corresponding TTCN constraint table can be found in Figure[7]

Test suite parameters and constants can be introduced by using the same configuration
language. Furthermore, AUTOLINK supports replacement of message parameters by wild-
cards for irrelevant parameter values.

Test Case Dynamic Behaviour

Test Case Name : inres_13
Group :
Purpose : from state idle of msap_manager2, receive mdatreq, send () and go to state idle

Configuration

Default : DEF_0
Comments : Generated by test oriented simulation of the test purpose .\inres_tp13.scn
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 +PR_5
2 msap2 !mdatreq START TAC mdatreq_1
3 msap2 ?mdatind CANCEL TAC mdatind_8 P)
4 +P0O_0

Detailed Comments :

Figure 8: TTCN test case produced by TESTCOMPOSER

6 Test suite production

A TTCN test suite contains four parts: The test suite overview, the declarations part, the
constraints parts and the dynamic behavior part. A TTCN test suite can be customized
by various options. In the following, a few features are presented that enhance readability
and reduce the need for manual post-processing.

6.1 Test grouping

Typically, a test suite contains a hierarchy of test groups that subsume a set of related
test cases. For example, all test cases that aim at testing the fundamental functionality of
an SUT may be placed in a test group called BasicCapability.

In AUTOLINK, test grouping is based on the test case names. The user can specify rules
incorporating regular expressions which tell AUTOLINK how to group test cases. TEST-
COMPOSER, arranges test cases according to the state in which the event occurred that
triggered the crucial observation step.

6.2 Test step format

When using TESTCOMPOSER, the user may choose between two output formats for test
steps. They are either printed directly in a test case or stored globally in the test step
library. AUTOLINK provides the same alternatives but, in addition, it allows to write test
steps as local trees within a test case dynamic behavior table.

In Figure[9 two dynamic behavior tables are presented for preamble PO_0 and postamble
PR_5. Both test steps are referenced by test case inres_13 shown in Figure

When generating test cases for distributed test architectures, AUTOLINK creates auto-
matically separate test steps for each PTC in the test step library (see second table in
Figure and one test case for the MTC (Figure [10)).

Test Step Dynamic Behaviour
Test Step Name : PO_O
Group :
Objective
Default : DEF_0
Comments : Postamble
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 ?TIMEOUT TEMPTY Timeout of timer
t of process
initiator
2 msap2 ?mdatind mdatind_6
3 msap2 !mdatreq mdatreq_4
4 isapl ?idisind P
Detailed Comments
Test Step Dynamic Behaviour
Test Step Name : PR_5
Group :
Objective
Default : DEF_O
Comments : Preamble
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 isapl liconreq START TAC
2 msap2 ?mdatind CANCEL TAC mdatind_6
3 msap2 !mdatreq START TAC mdatreq_3
4 isap1 ?iconconf CANCEL TAC
5 isapl lidatreq START TAC idatreq_7
6 msap2 ?mdatind CANCEL TAC mdatind_8 End of preamble
Detailed Comments

Figure 9: TTCN test steps produced by TESTCOMPOSER

6.3 Test purpose comments

Comments in test cases support readability and maintenance. TESTCOMPOSER automat-
ically inserts a comment in a test case describing its test purpose. A typical comment is
shown in the Purpose line of the Test Case Dynamic Behaviour Table in Figure[8] In case
the user prefers another format for comments, she can specify a pattern. This pattern may
involve pre-defined macros for test purpose related information such as the name of the
signal which was received at the beginning of the central observation step.

6.4 Mapping SDL signals onto ASPs and PDUs

According to OSI conformance methodology, the tester and the SUT exchange two types
of data: Abstract Service Primitives (ASPs) and Protocol Data Units (PDUs). In SDL,
there exists only the signal concept. AUTOLINK allows the user to specify for each signal
individually whether it shall be mapped onto an ASP or PDU in the test suite.

In contrast, TESTCOMPOSER allows to assign a role to each PCO. All signals that are
exchanged via a PCO with role Upper tester become ASPs in the test suite. Signals
corresponding to a Lower Tester are mapped onto PDUs.

Test Case Dynamic Behaviour
Test Case Name : SyncPTCs
Group :
Purpose :
Configuration : Default_Configuration
Default : OtherwiseFail
Comments
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 CREATE((PASS)
PTC_ISAP1:SyncPTCs_PTC_ISAP1)
2 CREATE(
PTC_MSAP2:SyncPTCs_PTC_MSAP2)
3 +Synchronization
4 ? DONE(PTC_ISAP1,PTC_MSAP2) R
Detailed Comments

Figure 10: TTCN test case produced by AUTOLINK for a distributed tester

6.5 Removal of signal definitions

One of the major drawbacks of SDL with regard to testing is the requirement that all
communication is realized by signal exchange. In TTCN, there exists no corresponding
concept. Instead the tester and the SUT are allowed to exchange values of arbitrary data
type. Hence, if a PDU is defined in an external ASN.1 module, it needs to be wrapped up in
a signal. Later, the test generation tools map each SDL signal onto an ASN.1 SEQUENCE
which includes the PDU as its only parameter. Since the additional embedding causes some
overhead and influences PDU encoding, AUTOLINK provides a command for stripping
redundant signal definitions when generating a TTCN suite.

6.6 Timer

TESTCOMPOSER automatically generates four kinds of test timers in order (a) to guard
expected SUT output events, (b) to check situations where no output is expected from the
SUT for a specified period of time, (c) to check the maximum time to execute an implicit
send and (d) to wait for the expiration of timers in the SUT.

In Figure [§] timer TAC is started after the sending of message mdatreq in order to check
that mdatind is sent by the SUT within a prescribed duration. Once the response is
received, TAC' is canceled.

7 Summary

Even though both test generation tools are based on the same principles, many details are
realized differently. The development of AUTOLINK and TESTCOMPOSER was driven by
concrete needs of their respective users. Therefore, the tools address different kinds of test
generation problems.

With regard to test purpose specification, a strong point for TESTCOMPOSER is its ability
to compute postambles automatically. On the other hand, AUTOLINK supports MSC’96
which improves the manual and semi-automatic specification of test purposes.

Test Step Dynamic Behaviour
Test Step Name : Synchronization
Group :
Objective
Default : OtherwiseFail
Comments
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 CP_ISAP1? CM Ready_Indication
2 CP_MSAP2 ? CM Ready_Indication
3 CP_ISAP1!CM Proceed_Indication
4 CP_MSAP2 ? CM Ready_Indication
5 CP_ISAP1? CM Ready_Indication
6 CP_ISAP1!CM Proceed_Indication
Detailed Comments
Test Step Dynamic Behaviour
Test Step Name : SyncPTCs_PTC_ISAP1
Group
Objective
Default : OtherwiseFail
Comments
Nr | Label Behaviour Description Constraints Ref Verdict Comments
1 +ConnectionEstablishment_PTC_ISAP1
2 ISAP1 ! IDATreq Data_Request(DataValue)
3 CP_ISAP1!CM Ready_Indication
4 CP_ISAP1 ? CM Proceed_Indication
5 ISAP1 ! IDISreq Disconnection_Request
6 ISAP1 ? IDISind Disconnection_Indication PASS
Detailed Comments

Figure 11: TTCN test steps produced by AUTOLINK for a distributed tester

When it comes to test case generation based on state space exploration, TESTCOMPOSER
is more flexible as it accepts incomplete test purpose descriptions. In addition, it takes
several types of timers into account. AUTOLINK supports direct translation from MSC to
TTCN which is useful if a given SDL specification is incomplete.

Finally, TESTCOMPOSER allows to save a test suite in any format by providing an API to its
database, whereas AUTOLINK supports the generation of TTCN test suites for distributed
test architectures.

In many cases, AUTOLINK and TESTCOMPOSER complement each other and a combination
of the best features of both tools would lift the practical usability of test generation tools
onto a new level.

References

[1] J. Grabowski, B. Koch, M. Schmitt, and D. Hogrefe. SDL and MSC Based Test
Generation for Distributed Test Architectures. In Dssouli R, G. v. Bochmann, and
Y. Lahav, editors, SDL 99 The next Millenium — Proceedings of the Nineth SDL
Forum, Montreal, Canada, June 1999. Elsevier.

[2] Jens Grabowski, Rudolf Scheurer, Zhen Ru Dai, and Dieter Hogrefe. Applying SAM-
STAG to the B-ISDN protocol SSCOP. Testing of Communicating Systems, 10, 1997.

3]

[10]

[11]

[12]

[13]

D. Hogrefe. Estelle, LOTOS und SDL. Standard-Spezifikationssprachen fiir verteilte
System. Springer-Verlag, 1989.

Institute for Telematics, University of Liibeck, Germany. http://www.itm.
mu-luebeck.de, 2000.

ISO/TEC. Information Technology - Open Systems Interconnection - Confor-
mance Testing Methodology and Framework. International multipart standard 9646,
ISO/IEC, 1994.

ISO/IEC. Information Technology - Open Systems Interconnection - Conformance
Testing Methodology and Framework - Part 3 (second edition): The Tree and Tabular
Combined Notation. International Standard 9646-3, ISO/IEC, 1997.

ITU Telecommunication Standards Sector SG 10. ITU-T Recommendation Z.100:
Specification and Description Language (SDL). ITU, Geneva, 1999.

ITU Telecommunication Standards Sector SG 10. ITU-T Recommendation Z.120:
Message Sequence Chart (MSC). ITU, Geneva, 1999.

A. Kerbrat, T. Jéron, and R. Groz. Automated test generation from SDL specifi-
cations. In R. Dssouli, G. v. Bochmann, and Y. Lahav, editors, SDL ’99 The Next
Millenium, Proceedings of the Ninth SDL Forum, Montréal, Québec, Canada, 21-25
Hune, 1999, pages 135-151. Elsevier, June 1999.

B. Koch, J. Grabowski, D. Hogrefe, and M. Schmitt. Autolink — A Tool for Automatic
Test Generation from SDL Specifications. In IEEFE International Workshop on In-
dustrial Strength Formal Specification Techniques (WIFT’98), Boca Raton, Florida,
October 1998.

R. Nahm. Conformance Testing based on Formal Description Techniques and Mes-
sage Sequence Charts. PhD thesis, University of Berne, Institute for Informatics and
Applied Mathematics, March 1995.

M. Schmitt, A. Ek, J. Grabowski, D. Hogrefe, and B. Koch. Autolink — Putting SDL-
based test generation into practice. In A. Petrenko and N. Yevtuschenko, editors,
Testing of Communicating Systems, volume 11, Tomsk, Russia, June 1998. Kluwer
Academic Publishers.

Verilog SA. OBJECT Geode — TESTCOMPOSER Reference Manual, 4.1 edition, 1999.

http://www.itm.mu-luebeck.de
http://www.itm.mu-luebeck.de

	1 Introduction
	2 Overview
	3 Test architecture
	4 Test purpose specification
	4.1 Automatic computation
	4.2 Interactive simulation
	4.3 Manual specification by observer processes
	4.4 Structuring of test purposes

	5 Test case generation
	5.1 State Space Exploration
	5.2 Direct translation of MSCs
	5.3 Constraints

	6 Test suite production
	6.1 Test grouping
	6.2 Test step format
	6.3 Test purpose comments
	6.4 Mapping SDL signals onto ASPs and PDUs
	6.5 Removal of signal definitions
	6.6 Timer

	7 Summary

