— AUTOLINK—

A Tool for Automatic Test Generation from SDL Specifications

Beat Koch, Jens Grabowski, Dieter Hogrefe and Michael Schmitt

Institute for Telematics, University of Liibeck
Ratzeburger Allee 160, D-23538 Liibeck, Germany
eMail: {bkoch, jens, schmitt, hogrefe}@itm.mu-luebeck.de

Abstract

Due to an increasing interest in SDL, MSC and TTCN based tools for validation and
test generation, Telelogic AB, Malmd, and the Institute for Telematics of the University
of Liibeck are cooperating in a research and development project aiming at bringing new
test generation facilities to the TAU tool set. For that purpose, a software component
has been developed which supports the automatic generation of TTCN test suites based
on SDL and MSC specifications. The project follows a pragmatic approach and is driven
by practical experience. AUTOLINK has been used by the European Telecommunications
Standards Institute (ETSI) to develop a test suite for Core INAP CS-2.

1 INTRODUCTION

The standardized Specification and Description Language (SDL) [1], Message Sequence Chart
(MSC) [3] and the Tree and Tabular Combined Notation (TTCN) [5] are three of the most
popular standardized languages for system specifications and test descriptions. They have
been used successfully in industrial projects and for standardization purposes [6, 7, 8, 9, 10].

TAU from Telelogic AB is one of the major commercial SDL, MSC and TTCN tool sets. It
provides a complete environment for the development of SDL specifications, MSC descriptions
and TTCN test suites. TAU includes graphical editors, various browsers, analyzers, simulation
tools and code generators. The combination of SDL with the Abstract Syntaz Notation One
(ASN.1) as recommended by ITU-T in [2] is also supported.

Currently, TTCN test suites are created manually by test development specialists. Graph-
ical tools exist which allow to fill out TTCN tables and check the syntactical correctness of a
test suite. But transforming test purpose descriptions into semantically consistent test cases
is not supported efficiently by any tool. Therefore, the development of a test suite is a time-
consuming and expensive task. Moreover, experience has shown that due to their complexity,
the quality of manually written test suites is often insufficient.

AUTOLINK is a research and development project of the University of Liibeck and Telelogic
AB. The goal of the AUTOLINK tool is to simplify the test generation process in order to get

)

Simulator
)
~_
MSC Editor
~—_
Validator /
SDL Editor .
)
— TTCN Editor
. ~—_
TTCN Link
U

Figure 1: TAU tools used for automatic test generation

error-free test suites in less time. This is accomplished by the following main features:

e MSC diagrams are used to describe the interaction between the System Under Test

(SUT) and the test equipment which is required to pass a test.

e AUTOLINK generates TTCN code which requires little manual post-processing. There-

fore, the potential of inserting bugs into the test suite is reduced significantly.

AUTOLINK is available commercially as part of TAU version 3.2 since October 1997.

The paper is organized in the following manner. In Section 2, an overview of the TAU tools
is given. The Validator in particular is introduced in Section 3. AUTOLINK is described in
Section 4. In Section 5, practical experience of using AUTOLINK to generate a test suite for
Core INAP CS-2 is presented. Future plans for AUTOLINK are listed in Section 6. Finally, a

summary is given.

2 The TAU tool set

Telelogic’s TAU package contains two tool sets: SDT on the one hand consists of SDL-related
applications; ITEX on the other hand is used to work with TTCN test suites. The TTCN Link
tool builds a bridge between SDT and ITEX. Figure 1 shows the tools which are important for
automatic test generation, and the formal description languages which they use and support.

TAU contains graphical editors for SDL, MSC and TTCN. For all languages, the latest
standards are implemented: The object-oriented features of SDL’92 are supported as well as
MSC’96 with its high-level MSCs.

The Simulator for SDL specifications is equivalent to a debugger for a programming lan-
guage. The user can stimulate the system by sending signals. The Simulator then allows to
inspect the control flow, the exchange of signals between processes and the values of variables.
Simulated paths through the SDL specification can be saved as MSCs. Such MSCs may be
used as input for AUTOLINK.

The initial purpose of the TTCN Link tool has been the semi-automatic test generation.

Within the TTCN editor of ITEX, the user can choose a send event which is appropriate for

the test purpose. Using a state space exploration, TTCN Link computes the corresponding
receive events and adds them to the test case description. Then the user has to select the next
send event.

AUTOLINK offers improved test generation functionality and is now used to generate the
dynamic behavior and constraint tables of a test suite. However currently, TTCN Link is
still needed to generate the declaration part. The following declaration tables are generated

automatically:

e Abstract Service Primitives (ASP) type definitions. All SDL signals appearing on chan-

nels to the environment are translated into ASN.1 ASP definitions.

e Points of Control and Observation (PCO) declarations. All channels of an SDL specifi-

cation to the system environment are considered to be PCOs.

e Structured SDL data definitions are translated into ASN.1 type definitions.

3 Validator

One of the main purposes of the Validator is to provide an automated fault detection mech-
anism which is able to detect dynamic and logical errors in an SDL system. Some of the
potential problems are deadlocks, implicit signal consumptions and other dynamic errors like
the sending of signals to non-existing processes.

The SDT Validator is based on state space exploration techniques (e.g. [12]). The state
space of an SDL system is built up in form of a directed graph, called reachability graph. The
reachability graph represents the behavior of the SDL system. Its nodes correspond to global
system states, the edges represent the transitions between global system states.

Global SDL system states contain information about active process instances, variable val-
ues of all active processes, the SDL control flow state of all active processes, active procedures
(with local variables), signals in the system’s queues, active timers etc.

The edges of the reachability graph are annotated with SDL events. Depending on the
configuration of the state space exploration, an edge may be annotated with a single SDL
statement like a task, an input or an output, or with a list of SDL statements which may
correspond to complete state transitions of SDL processes.

During validation, the reachability graph is analyzed. For example, a deadlock is found if

a node in the graph does not have any outgoing edges.

MSC verification

Verification of a system against its requirements is another main purpose of the Validator [11].
The requirements can be expressed in form of MSC diagrams (see Figure 6 for an example
of an MSC diagram). The Validator explores the state space and searches for a path in the
reachability graph complying to the MSC which is checked. The MSC is “verified” if such a
path exists.

Process Type TG_Cov 1(1)

[o------- -
i N acl

{SIGNALSET ; exec integer,
[1 str charstring;

/*#CODE

(epth(o) > 5> #BODY
s/tatic int TG_Cov_MaxExec = 0;
x

GetExec
(exec)

‘Check if somei

exec >
new symbols |---------- .
have been ! #COD _Cov_M3xExec')

executed '
4

___________ false
true

_________________ -

Store the new number: *#CODE
of executed symbols {--| " —TG_Cov_MaxExec = #SDL(exec);
in the c variable ! i

TC_Cov_MaxExec i |

int2str
(exec,str)

Report
'Cov ="// sti

s

Figure 2: Observer process example

Observer processes

Observer processes allow to check more complex requirements on systems than can be expressed
by MSCs. An observer process is a special kind of SDL process which is included in the SDL
system. An observer process is able to inspect the SDL system without interfering with it.

Several mechanisms are built into the Validator to accomplish this:

e The execution mode is changed if observer processes are defined: First, the SDL system
executes one transition. Then all observer processes execute one transition during which

they check the new system state.

e Through a special Access abstract data type, observer processes can examine the internal
states of other processes in the system. Variable values, contents of queues etc. can be

checked without any need to modify the observed processes.

During state space exploration, observer processes may generate reports. Reports contain a
textual description and the path from the start state of the exploration to the state where the
report was generated. This path can be stored as an MSC and used as input for AUTOLINK.
A simple observer process type is shown in Figure 2. Each time a path with length 50 is
found in the state space which covers an additional SDL symbol, a new report is generated.

As shown in the example, some of the internal variables and functions of the Validator can be

accessed. That way, information about the current status of the state space exploration can

be retrieved.

4 AUTOLINK

The objective of AUTOLINK is to provide an easy-to-use yet powerful tool to generate TTCN
test suites from an SDL specification. Potential users are engineers who have a good under-
standing of the system they have built, but who cannot easily generate test cases because they
have no detailed knowledge of TTCN.

Specialized test suite designers will also benefit from using AUTOLINK. They can concen-
trate on the correct description of test purposes while leaving the error-prone task of writing
TTCN code to the tool.

4.1 Automatic test generation

AUTOLINK is part of the SDT Validator. It uses the state space exploration techniques and
the MSC verification mechanism provided by the Validator.

The generation of a TTCN test case is based on a path. In the AUTOLINK context, a path
is defined as a sequence of events which have to be performed in order to go from a start to an
end state in the state space of the SDL specification. The externally visible events of a path
describe the test sequence to which a TTCN PASS verdict is assigned.

Paths are stored as system level MSCs. A system level MSC shows the desired interaction
between the Systermn Under Test (SUT) and its environment during the execution of a test
case. It consists of one instance for the SUT and one instance for every PCO, where every
channel to the environment is considered to be a PCO. Using system level MSCs corresponds
to the black box testing method, where the internals of the SUT are not known.

AUTOLINK uses a modified version of the MSC verification algorithm to compute all relevant
transitions in the state space. Each transition is analyzed: Events which are visible at the
environment are added to a special data structure (referred to as Autolink tree). If an event
satisfies the MSC, it is added as a PASS event; if it violates the MSC, it is added as an
INCONCLUSIVE event. Additionally, a constraint is created for every visible event. The
AUTOLINK algorithm is divided into three distinct parts. These are:

1. Initialization of data structures: A new test case record is generated, the MSC is loaded

etc.

2. State space exploration: The AUTOLINK tree is built and a list of constraints is con-

structed.

3. Post-processing: In some cases, the resulting AUTOLINK tree needs to be modified after
the completion of the state space exploration. Furthermore, identical constraints are

merged.

4.2 Constraint handling

Basically, a constraint with generic name is created automatically for every send and receive
event in all test cases. From the point of readability of a test suite, this is far from optimal.

Therefore, some special constraint handling mechanisms have been included in AUTOLINK.

Constraint merging

When processing several test cases consecutively, a lot of constraints are created. During
post-processing of the test cases, each new constraint is compared with all previously created
constraints. If there is a match, then the new constraint is removed and all references in the
test case are updated. Usually, the number of constraints is reduced significantly through

constraint merging.

Constraint description language

Early tests with AUTOLINK have shown that the assignment of generic names to constraints
is not acceptable because the resulting test suite is hard to read.

AUTOLINK provides commands to rename constraints manually. But if a test suite has to
be regenerated because of a change in the SDL specification, then the whole manual work is
lost. Additionally, the number of similar constraints in a test suite can be quite large. Through
constraint parameterization, this number can be reduced.

AUTOLINK includes a special constraint description language. By defining rules in a con-
figuration file, the test designer can control the naming and parameterization of constraints.

A typical constraint description rule may look like this:

TRANSLATE
FROM CONreq
TO "C_ConnectionRequest"
PARAMETERS $1="Call_ID"

END

AUTOLINK translates from signals to constraints. The example above instructs AUTOLINK
to assign the name C_ConnectionRequest to constraints which describe CONreq signals.
Additionally, the first parameter of signal CONreq is used as a parameter of constraint
C_ConnectionRequest.

The name of a constraint may depend on the textual description of signal parameters.
In the following example, the generated constraint is called C_EndReq-Normal if the second
parameter of signal EndReq is norm. It is called C_EndReq_FException if the parameter equals

excp.

TRANSLATE

FROM EndReq

IF $2 == "norm"

TO "C_" + $0 + "Normal"

IF $2 == "excp"

TO "C_" + $0 + "Exception"
END

Often, abbreviations are used for signal parameters. These abbreviations can be translated into
more descriptive texts as shown in the example above. The constraint description language
has been kept deliberately simple. Therefore, even an unexperienced user should be able to

define rules quickly.

4.3 Direct MSC to TTCN translation

In order to use a state space exploration to generate test cases from MSCs, a complete SDL
specification is required. However in the real world, only partial specifications exist for most
systems; often there is no SDL specification at all. Standardized protocols like Core INAP CS—
2 (see Section 5) cannot be specified completely, e.g. error handling has to remain unspecified.
Nonetheless, to guarantee a uniform test suite development process, all test purposes should
be formalized as MSCs.

AUTOLINK provides a function to translate MSCs directly into TTCN. Although it does
not perform a state space exploration, AUTOLINK still needs information about the interface
between the system and its environment. Therefore, a minimal SDL specification has to be
written which defines at least the channels to the environment and the signals which are sent
via these channels.

Obviously, there are some disadvantages if a direct MSC to TTCN translation is used.
First, there is no guarantee that an MSC and the generated test case describe valid traces
of the specification or the implementation respectively. Furthermore, events which lead to an
INCONCLUSIVE test verdict cannot be computed.

Still, using the MSC to TTCN translation is much better than writing TTCN test cases

manually:

e [f several receive events are expected at different PCOs before the next send event, then
alternative branches have to be written in TTCN for all permutations of these receive

events.

e MSC to TTCN translated test cases are stored in the same intermediate format as test
cases generated by a state space exploration. Therefore, constraint merging which is
applied during post-processing (see Section 4.1) works identical for both kinds of test

cases.

The resulting test suite is less likely to be incorrect, and it contains fewer constraints.

a User I

.) Define Modify
Specify system Define paths configuration constraints
configuration j
Generate
executables
N\ Y Y Y Y
Compute test Translate MSCs
cases into test cases
> ' :

Constraints <

Test case
representations

Generate TTCN
> dynamic and
constraints part

Y TTCN MP
file
[TTCNLink)
Generate TTCN

declarations part

I TEX

Y
TTCN | Merge declarations, Complete TTCN Generate test
declarations i dynamic and test suite suite overview
L constraints parts

Figure 3: The test generation process

4.4 The test generation process

In this section, all steps are described which are necessary to create a TTCN test suite with

the TAU tools. Figure 3 presents an overview of the test generation process.

SDL system specification

The starting point for automatic test generation is, of course, an SDL specification. When the
specification is syntactically correct and also correct with respect to the static semantics, it can

be converted into C code. This code in turn can be compiled and linked with separate kernel

libraries in order to generate a Validator/Autolink and a TTCN Link executable respectively.

Whenever the SDL specification is changed, the executables have to be regenerated.

Path definition

A path describes the test purpose; it is stored as a system level MSC (see Section 4.1). There

are several possibilities to define such an MSC:

e The path which results from a simulation run can be stored as an MSC. This is the most

effective way to specify a path containing a given test purpose.

e A large number of MSCs can be generated automatically by using the Validator’s random
walk state space exploration in combination with observer processes (see Section 3). This

method is used if a high coverage of system states is to be tested.

e With the Validator’s navigation function, the state space can be explored manually. The

resulting path can be saved as an MSC.

e An MSC can be drawn manually with the MSC editor.

The MSCs should be verified against the SDL system with the Validator before they are used
as input for AUTOLINK.

Configuration

Test case generation is influenced by several options which have to be set before the processing
is started. This can be done either by using the Validator graphical user interface or by writing
an AUTOLINK configuration file. This configuration file may consist of up to three parts.

A problem which appears inevitably for complex, real-world SDL systems is the explosion
of the state space. AUTOLINK provides a set of options which allow to reduce the state space

during exploration:

e Maximum search depth: This should be restricted only if the SDL system can execute

a large or unlimited sequence of internal events.
e Channel queues: Disabling internal channel queues strongly reduces the state space.

e Priorities for classes of SDL events: AUTOLINK distinguishes five classes of SDL
events: Internal events, input from the environment, timeouts, channel outputs and
spontaneous transitions. By assigning a higher priority to input events, the complexity

of the state space can be reduced.

e Process scheduling: In every system state there is a queue of all processes ready to
execute next. The process scheduling option defines if only the first or all processes in the
queue are allowed to execute. Choosing the former results in the most effective reduction

of the state space.

State space exploration options may be set in the first part of the AUTOLINK configuration
file. The definition of constraint parameterization and naming conventions (see Section 4.2)
may be provided in the second part. In a third part, the user may set options which control

the format of the test suite:

e Constraints can be saved either as ASN.1 Protocol Data Unit (PDU) constraints or as
ASN.1 ASP constraints.

e TTCN test steps can be stored either globally in the test steps library, as local trees in
the test case dynamic behavior table, or they can be inserted directly into the test case

(inline format).

Test case generation

When the SDL system, the MSCs describing the test purposes and the configuration file are
created, then the test case generation can start. An MSC can either be used as input for test
generation by state space exploration, or MSC to TTCN translation. No matter which method
is chosen, the processed test cases are stored in a list of AUTOLINK trees. This list can be
manipulated: More test cases can be added with subsequent test case generations; unwanted
test cases can be removed. AUTOLINK trees can be previewed, saved in a file and reloaded.
The save and load functionality can be used to distribute test case processing on more than
one computer: A simple shell script running on all machines determines the next unprocessed
MSC. It then starts an AUTOLINK process with this MSC as input. The resulting test case is

saved; all test cases can later be merged into a single test suite.

Constraint modification

During test case generation, a list of constraints is built automatically. Constraints can be
added manually or removed if they are not referenced in a test case. Constraints can be
renamed, stored in a file and loaded back.

Experience has shown that only little manipulation of constraints is necessary if constraint

parameterization and naming rules are defined in the AUTOLINK configuration file.

TTCN generation

Using the information stored in the AUTOLINK tree and constraints lists, the dynamic behavior
tables and the constraint tables of a test suite can be stored in a TTCN MP file. If desired, the

saving of the test suite can be repeated with different formats for test steps and constraints.

Test suite completion

The TTCN MP file with the dynamic behavior and constraint parts can be imported in the
ITEX tool. With a call of the TTCN link executable, the declarations part can be added.

Finally, the test suite overview can be generated automatically.

10

PTC1

TCAP Service Switching Fi i —©°
o vice Switching Function
(Transport) (1UT)
MTC — ———o0
PTC2
INAP

Figure 4: Core INAP CS-2 test architecture

5 Practical experience

The AUTOLINK approach and the AUTOLINK tool have proven to be usable for industrial ap-
plications by their extensive use within the European Telecommunications Standards Institute
(ETSI) for the production of the conformance test suite for Core INAP CS-2![15]. The SDL
specification of Core INAP CS-2, attached as annex A to [15], gives the normative require-
ments of the protocol behavior; it uses the ASN.1 definitions of the INAP PDUs. Therefore,
it provides a complete specification of the protocol which is suitable for the application of

AUTOLINK.

5.1 INAP, test architecture and interfaces

INAP enables communication between a Service Control Function (SCF) and a Service Switch-
ing Function (SSF) in a public network. 2 A test suite is provided only for the SSF, where
the Implementation Under Test (IUT) is either a local exchange or a transit exchange. INAP
is implemented on top of the Transaction Capabilty Application Part (TCAP) in Signalling
System No. 7 (SS7) [13]. Therefore according to ISO/IEC 9646 [4], the remote test method
is used with a Main Test Component (MTC) serving the normative interface as depicted in
Figure 4.

The SDL specificaton contains both TCAP and the SSF. The protocol operations of INAP
state normative requirements on what the SSF should do in terms of signalling, e.g. establishing
a call to a third party, releasing a call etc. Therefore in most cases, the PASS verdicts in the
test suite must be based on the signalling events. However, INAP is defined independently of
the particular signalling system (e.g., national variants of the ISDN User Part (ISUP) can be
used). Therefore it is not possible to provide the definitions for the Parallel Test Components
(PTC) PTC1 (incoming signalling) and PTC2 (outgoing signalling) in the test suite. Instead,
the coordination messages between the PTCs and the M'TC are provided, which are generated
from the SDL specification of INAP.

5.2 Test purposes

The test purposes for the Core INAP CS-2 test suite are specified informally by using a textual

description and formally with MSCs. Therefore, the development of the test purposes was done

'The abbreviation Core INAP CS-2 refers to the ETSI standard of the Intelligent Network Application
Protocol (INAP) Capability Set 2 (CS-2) [15].
?For an introduction to intelligent networks and its architecture see, e.g., [14].

11

[IN2_A_BASIC_AT_BV_01 |

Purpose: Test of ActivityTest in WaitForlnstructions state
Requirement ref
Preamble: 0_.0S

Selection Cond.
Test description | ActivityTest invoke sent by SCF to SSF with TCAP Dialogueld
of dialogue identical to the one used in the preamble

Pass criteria ActivityTest result sent by SSF to SCF related to the existing
dialogue
Postamble: SigConA _Release .

Figure 5: Informal test purpose description

in the following two steps:

1. Based on the protocol requirements, the test purposes were identified manually and
documented in tables which structure the informal text. As shown in Figure 5, the table
entries may refer to pre- and postambles, describe the pass criteria and may provide

further information.

2. By simulation of the Core INAP CS—2 SDL specification, MSCs were generated for all
test purposes. The generated MSCs provided the input for the AUTOLINK tool and were
also included in the test purpose document [16]. They give a more formal definition
of the test purposes. The inclusion of the MSCs was a requirement from organisations
which do not use TTCN for testing, but which still need a formal description of each

test purpose.

Figure 6 shows an MSC test purpose example which formalizes the test purpose of Figure 5.
The MSC refers to the preamble O_OS and the postamble SigConA_Release, which are also de-
scribed by MSCs. The name of the test purpose MSC, IN2_A_BASIC_AT_BV_01, corresponds
to the test case name; the names of pre- and postamble MSCs correspond to test step names.

An advantage of creating test purpose MSCs by simulation is that the consistency between
the informally developed test purposes and the protocol is guaranteed. A number of errors in

the manually developed test purposes were detected with this method.

5.3 Detailed description of the development of MSC test purposes

In this section, a more detailed view of the development of the MSC test purposes is presented.
The development comprised some preparatory work and the MSC generation process.

Preparatory work

The MSC test purposes were generated by means of simulation. In order to facilitate their
generation, the user interface of the SDT Simulator was adapted to the specific needs of the
MSC test purpose generation for the Core INAP CS-2 protocol.

12

MSC IN2_A_BASIC_AT BV 01

[sck] [cs2ssF | [sigcon A | [sigconB |

[0_0s

TC_InvokeReq

51, 3, AT, shor}, aTArg : Null]
TC XontinueReq

, 0SClI

TC_Continuelnd

51, 0SSF, TRUE]
TC_ReturnResultind

[1, 51, TRUE,|AT_R, aTRArg : N ||]

SigConA_Release

{ J
SESSRS— T ———

Figure 6: Formal MSC test purpose description

During the development of the MSC test purposes, the SDL specification of Core INAP
CS-2 and the test purposes were also validated. For the validation, a more detailed view on
the protocol behavior was needed than for the test purpose development itself. Easy switching
between the different views was enabled by assigning the setting of corresponding Simulator
options to a set of buttons.

Pre- and postambles were reused in several test cases. In order to ease their execution, the
necessary actions were stored as command scripts and attached to a button. By pressing the
button, the Simulator was forced to perform the actions to execute the corresponding pre- or
postamble.

Before test generation started, the naming conventions and the parameterization of the
PDU and coordination message constraints was defined in an AUTOLINK configuration file.
For each message, a rule to determine the constraints name and a resonable set of message

components to be parameterized in the constraints was identified.

MSC generation process

The generation of the MSC test purposes was a two phase process. It comprised a validation
phase and a development phase. In the first phase, an MSC test purpose to be produced was

executed, i.e. simulated, in order to validate the test purpose and the SDL specification. If

13

the expected behavior did not match with the validation run, then the test purpose, the SDL
specification or both had to be changed or corrected. The validation step was repeated until
the test purpose and the SDL model were in accordance.

In the second phase the test purpose was simulated again by performing the following steps:

1. Start the Simulator.

2. Set the Simulator options according to the needs of the MSC test purpose generation.

This was done by using the appropriate predefined button.
3. If a preamble is required, execute it by using a predefined button.

4. Start the MSC trace. As a result, the rest of the simulation is displayed and recorded as
an MSC.

5. If a preamble was performed, insert an MSC reference referring to a preamble MSC into

the displayed MSC trace. This was done manually.
6. Simulate the test purpose.

7. If necessary, append an MSC reference referring to a postamble MSC to the displayed

MSC trace. This was done manually.
8. Rename the MSC trace to the test case name.

9. Store the MSC trace.

The MSCs describing the pre- and postambles of the test cases (steps b and 7) were
generated like normal MSC test purposes. But this was done only once for the whole test
suite. The postambles only needed to be referred to, but not to be executed. During test
case generation, their correct execution would be checked by the AUTOLINK tool. With some
practice, it took the test developer only a few seconds to perform the actions 1-5 and 7-9. Step
6 took a little longer. Although the development phase of the MSC test purpose generation
process appears to be more complicated, experience has shown that it takes less time than the

validation phase.

5.4 Ensuring consistency between MSC test purposes and the SDL model

During the validation phase of the MSC test purpose generation process, the SDL specifica-
tion had to be corrected and modified several times. This changed the behavior of the SDL
specification and the already developed MSC test purposes became invalid. In order to detect
invalid MSCs after each change of the SDL model, the MSC test purposes were revalidated
against the SDL model. This was done automatically during night or weekends by using a
UNIX script. For each MSC test purpose, the script started the TAU Validator in the com-
mand mode (without graphical user interface) and started an MSC verification. Due to the
complexity of the SDL model, the validation of all MSCs took some time. To reduce it, MSC

test purposes were validated in parallel on several computers.

14

5.5 Manual MSC test purposes

The SDL specification of the Core INAP CS—2 protocol does not include error handling and
due to standardization politics, some of the protocol functions are only specified rudimentary.
The MSC test purposes related to these protocol aspects were specified manually in order to
apply the direct MSC to TTCN translation feature of AUTOLINK. These manual MSC test
purposes look like the ones generated by state space exploration; they were also included in
the test purpose document [16].

For these manual MSC test purposes, AUTOLINK could not validate the correct order of the
exchanged PDUs and coordination messages. But it did check if their format and parameter

values corresponded to the interface definition of the SDL specification.

5.6 TTCN test cases

State space exploration was used by AUTOLINK to generate TTCN test cases for the MSC test
purposes created with simulation. The manual MSC test purposes were translated directly
into TTCN code. Apart from the fact that the test cases related to the manual MSC test
purposes do not include event sequences leading to an INCONCLUSIVE verdict, all test cases
look very similar. Many constraints are shared by several test cases, because the merging of
identical constraint definitions for different test cases was done automatically.

By using the MSC in Figure 6 as input, AUTOLINK generated the TTCN test case shown

in Figure 7. A constraint for the SetupReq coordination message is shown in Figure 8.

5.7 Postprocessing of TTCN test cases

The postprocessing of the TTCN test cases involved replacing some values of the constraint
parameters with Protocol Implementation eXtra Information for Testing (PIXIT) parameters
and the addition of the timer tSSF. Both tasks were performed automatically with a UNIX
script operating on the TTCN file; a test case after post-processing is shown in Figure 9. The
result was manually inspected for consistency, especially concerning the timer handling, and

necessary modifications were performed.

5.8 Remarks and expenses

This was the first time that ETSI used a test generation tool like AUTOLINK for the production
of a normative conformance test suite. Therefore in the beginning, considerable resources were
spent to install and refine the tools, the scripts and the methodology. Time was also spent to
update the Core INAP CS—2 SDL specification and the already developed test purposes due
to changes to the protocol made by the responsible ETSI technical body SPS3. It has to be
noted that the development of the test suite started before the protocol was completed. This
allowed the detection of errors during the test purpose development which could be corrected
in the protocol before its approval.

At the time of writing this paper, the ETSI experts have developed 263 test purposes and

generated the corresponding TTCN test cases. 188 test purposes were generated by simulation,

15

Test Case Dynamic Behaviour

Test Case Name : IN2_A_BASIC_AT_BV_01

Group

Purpose

Configuration

Default : OtherwiseFail

Comments

Nr | Label Behaviour Description Constraints Ref Verdict Comments

1 +0_0S_2

2 SCF ! TC_InvokeReq CIR_ActivityTest_002(1, 51
)

3 SCF ! TC_ContinueReq C_TC_ContinueReq_001(
51)

4 SCF ? TC_Continuelnd C_TC_Continuelnd_001(51
)

5 SCF ? TC_ReturnResultind CRR_ActivityTestResult(1, (PASS)
51)

6 +SigConA_Release_2

7 SigCon_B ? SetupReq C_SetupReq({ callRef 2, INCONC
calledPartyNumber '2000'H,
callingPartyNumber '1000'H }
)

8 SCF ? TC_Abortind C_TC_Abortind(51) INCONC

9 SigCon_B ? SetupReq C_SetupReq({ callRef 2, INCONC
calledPartyNumber '2000'H,
callingPartyNumber '1000'H }
)

Detailed Comments :

Figure 7: Test case created by AUTOLINK

ASN.1 ASP Constraint Declaration

Constraint Name : C_SetupReq(callRef : SetuplRType)
ASP Type : SetupReq
Derivation Path

Comments

Constraint Value

{ setupIRType1 callRef }

Detailed Comments :

Figure 8: Constraint created by AUTOLINK

75 test purposes were developed manually. The test purpose and test case production for

several Core INAP CS-2 protocol functions is not yet finished.
ETSI estimated an overall reduction of the expenses for the tool-assisted development of

the first Core INAP CS-2 test suite of 20 % compared to manual test suite development [18].
This first test suite was delivered in April 1998 [17].

16

Test Case Dynamic Behaviour

Test Case Name : IN2_A_BASIC_AT_BV_01
Group

Purpose

Configuration : CS1_CONFIG

Default : OtherwiseFail

Comments

Nr | Label Behaviour Description Constraints Ref Verdict Comments

1 +0_0S

2 SCF ! TC_InvokeReq CIR_ActivityTest_002(
PIX_Invokeldl ,
Tsv_Dialogldl)

3 SCF ! TC_ContinueReq C_TC_ContinueReq_001(
Tsv_Dialogldl)

4 SCF ? TC_Continuelnd C_TC_Continuelnd_001(
Tsv_Dialogldl)

5 SCF ? TC_ReturnResultind CRR_ActivityTestResult((PASS)
PIX_Invokeldl ,
Tsv_Dialogldl)

6 +SigConA_Release_2({ callRef 2,

calledPartyNumber
PIX_CalledPartyNumberl_Setupind
, callingPartyNumber
PIX_CallingPartyNumberl })

7 SigCon_B ? SetupReq C_SetupReq({ callRef 2, INCONC
calledPartyNumber

PIX_CalledPartyNumberl_S
etuplind, callingPartyNumber
PIX_CallingPartyNumber1 }
)
8 SCF ? TC_Abortind C_TC_Abortind(INCONC
Tsv_Dialogldl)
9 SigCon_B ? SetupReq C_SetupReq({ callRef 2, INCONC
calledPartyNumber

PIX_CalledPartyNumberl_S
etuplind, callingPartyNumber
PIX_CallingPartyNumber1 }
)

Detailed Comments :

Figure 9: Test case after post-processing

6 Future plans

Future enhancements of AUTOLINK will focus primarily on the readability of the generated
TTCN test suites. The goal is to reduce the amount of time needed for manual post-processing.

The following problems will be addressed:

e Support of concurrent TTCN: A testing environment may consist of a number of
Parallel Test Components (PTCs) which are controlled by a Main Test Component
(MTC). In this case, test case dynamic behavior descriptions have to be split into separate

descriptions for each PTC. Additionally, the test components have to be synchronized.

AuTOLINK will allow to generate concurrent TTCN automatically. The user will have
to provide only the information which cannot be derived from the SDL specification,
e. g. the relation of PTCs to PCOs. Coordination messages which have to be exchanged
between the test components may be computed by AUTOLINK using predefined rules,

17

but may also be defined explicitly in the MSCs.

Parameterization of test steps: If a postamble is used in several test cases, it may
result in a series of basically identical TTCN test steps differing only in the constraints
of some receive events. Similar to constraints, test steps may be parameterized. This
results in a reduced number of test steps. Possible parameters for test steps include

signals, signal parameters and PCOs.

SDL-based test generation: Normally, test cases start and end in a stable testing state
where the system has to wait for a stimulus before it can continue. In a future version,
AUTOLINK will assist the user in finding stable testing states and in defining preambles
and postambles. It will also allow to produce MSC test case descriptions automatically

based on the symbol coverage criterion.

Test suite structure: Test cases are typically combined in a hierarchy of fest groups.
Each test group focuses on a specific aspect of the specification or the implementation
respectively. Currently, the test suite structure has to be specified manually after test
generation. However, the test suite structure may already be reflected in the names of
the given MSCs. Therefore a mechanism will be implemented which groups test cases

based on the names of their MSC descriptions.

Optimization of constraint parameterization: In order to minimize the number of
constraints and the size of the test suite, a mechanism to find the optimal constraint
parameterization will be implemented. Since an automatic parameterization may not
necessarily result in better readability, AUTOLINK may only make suggestions for con-

straint parameterization which have to be approved by the user.

PICS/PIXIT parameterization: SDL does not support the use of symbolic param-
eters; during test generation, actual values have to be used for signal parameters. AU-
TOLINK will include a function which replaces concrete values with PICS/PIXIT param-
eters during post-processing. The user will be able to specify PICS/PIXIT parameters

in the configuration file.

Support of timers: There are three ways to use timers in a test case. First, a timer
may be set at the beginning of a test case. It checks whether the complete test case can
be executed within a given amount of time. Timers may also be set before each receive
event in order to restrict the time allowed for a single signal. In both cases timers can
be written automatically in a TTCN test suite. A more selective method is to define
timers explicitly at the environment axes in the MSCs and to translate them into TTCN

timers.

Measurement of complexity: States space exploration options have a major impact
on the computation time of test cases. In fact, complex SDL specifications can only be
explored reasonably with certain restrictions. Currently, there is no help for the user to

choose the optimal set of options.

The complexity of a particular SDL specification can be measured by a number of sim-

18

7

ulations with different option settings. An automatic comparison of the results provides

information about a reasonable choice of exploration options.

Summary

AUTOLINK is a tool for the automatic generation of TTCN test cases from an SDL specification

and MSC test purpose definitions. It follows a pragmatic approach to test generation. Thanks

to enhanced functions for the naming of constraints, the generated test suites require little

manual post-processing. AUTOLINK has been used at ETSI to create a test suite for the INAP

CS—-2 protocol, where it has proven its efficiency. Feedback from practical experience and

theoretical research are the basis for future development of AUTOLINK.

Acknowledgments

The authors like to thank Stefan Heymer for proof-reading.

References

[1]
2]

[11]

ITU-T Rec. Z.100 (1996). Specification and Description Language (SDL). Geneva, 1996.

ITU-T Rec. Z.105 (1995). Specification and Description Language (SDL) combined with
Abstract Syntaz Notation One (ASN.1). Geneva, 1995.

ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC). Geneva, 1996.

ISO/IEC. Information Technology — OSI — Conformance Testing Methodology and Frame-
work. International ISO/IEC multipart standard No. 9646, 1994.

ISO/IEC. Information Technology — OSI — Conformance Testing Methodology and Frame-
work — Part 3: The Tree and Tabular Combined Notation (TTCN). ISO/IEC IS 9646-3,
1996.

O. Feergemand, M. M. Marques (editors). SDL’89: The Language at work. North-Holland,
1989.

O. Faergemand, R. Reed (editors). SDL’91: Evolving Methods. North-Holland, 1991.
O. Faergemand, A. Sarma (editors). SDL’93: Using Objects. North-Holland, 1993.
R. Brak, A. Sarma (editors). SDL’95 with MSC in CASE. North-Holland, 1995.

A. Cavalli, A. Sarma (editors). SDL’97 — Time for Testing — SDL, MSC and Trends.
Elsevier, 1997.

A. Ek. Verifying Message Sequence Charts with the SDT wvalidator. In [8].

19

[12]

[13]

[14]

[15]

[16]

[17]

[18]

G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Interna-
tional, Inc., 1991.

ITU-T Rec. Q.771-775 (1993). Signalling System No. 7 — Transaction Capabilities.
Geneva, 1993.

J. Thorner. Intelligen Networks. Artech House, 1994.

DEN 03038-1. ETSI Core INAP CS-2; Part 1: Protocol Specification. European Telecom-

munications Standards Institute, 1997.

DEN 03038-3. ETSI Core INAP CS-2; Part 3: Test Suite Structure and Test Purposes
specification for Service Switching Function (SSF), Specialized Resource Function (SRF)
and Service Control Function (SCF'). European Telecommunications Standards Institute,
1998.

DEN 03038-4. ETSI Core INAP CS-2; Part 4: Abstract Test Suite (ATS) for Ser-
vice Switching Function (SSF), Specialized Resource Function (SRF) and Service Control

Function (SCF). European Telecommunications Standards Institute, 1998.

ETSI TC MTS STF 99. CATG Handbook. DTR/MTS-00030-3. Temporary document for
the ETST TC MTS meeting in Sophia-Antipolis (France), March 1998, to be published as
European Guide in 1998.

20

