
| Autolink|A Tool for Automatic Test Generation from SDL Speci�cationsBeat Koch, Jens Grabowski, Dieter Hogrefe and Michael SchmittInstitute for Telematics, University of L�ubeckRatzeburger Allee 160, D-23538 L�ubeck, GermanyeMail: fbkoch, jens, schmitt, hogrefeg@itm.mu-luebeck.deAbstractDue to an increasing interest in SDL, MSC and TTCN based tools for validation andtest generation, Telelogic AB, Malm�o, and the Institute for Telematics of the Universityof L�ubeck are cooperating in a research and development project aiming at bringing newtest generation facilities to the Tau tool set. For that purpose, a software componenthas been developed which supports the automatic generation of TTCN test suites basedon SDL and MSC speci�cations. The project follows a pragmatic approach and is drivenby practical experience. Autolink has been used by the European TelecommunicationsStandards Institute (ETSI) to develop a test suite for Core INAP CS{2.1 INTRODUCTIONThe standardized Speci�cation and Description Language (SDL) [1], Message Sequence Chart(MSC) [3] and the Tree and Tabular Combined Notation (TTCN) [5] are three of the mostpopular standardized languages for system speci�cations and test descriptions. They havebeen used successfully in industrial projects and for standardization purposes [6, 7, 8, 9, 10].Tau from Telelogic AB is one of the major commercial SDL, MSC and TTCN tool sets. Itprovides a complete environment for the development of SDL speci�cations, MSC descriptionsand TTCN test suites. Tau includes graphical editors, various browsers, analyzers, simulationtools and code generators. The combination of SDL with the Abstract Syntax Notation One(ASN.1) as recommended by ITU-T in [2] is also supported.Currently, TTCN test suites are created manually by test development specialists. Graph-ical tools exist which allow to �ll out TTCN tables and check the syntactical correctness of atest suite. But transforming test purpose descriptions into semantically consistent test casesis not supported e�ciently by any tool. Therefore, the development of a test suite is a time-consuming and expensive task. Moreover, experience has shown that due to their complexity,the quality of manually written test suites is often insu�cient.Autolink is a research and development project of the University of L�ubeck and TelelogicAB. The goal of the Autolink tool is to simplify the test generation process in order to get1

Validator /
Autolink

Simulator

SDL Editor SDL system

MSC EditorMSCs

TTCN Link

TTCN TTCN Editor

Figure 1: Tau tools used for automatic test generationerror-free test suites in less time. This is accomplished by the following main features:� MSC diagrams are used to describe the interaction between the System Under Test(SUT) and the test equipment which is required to pass a test.� Autolink generates TTCN code which requires little manual post-processing. There-fore, the potential of inserting bugs into the test suite is reduced signi�cantly.Autolink is available commercially as part of Tau version 3.2 since October 1997.The paper is organized in the following manner. In Section 2, an overview of the Tau toolsis given. The Validator in particular is introduced in Section 3. Autolink is described inSection 4. In Section 5, practical experience of using Autolink to generate a test suite forCore INAP CS{2 is presented. Future plans for Autolink are listed in Section 6. Finally, asummary is given.2 The Tau tool setTelelogic's Tau package contains two tool sets: SDT on the one hand consists of SDL-relatedapplications; ITEX on the other hand is used to work with TTCN test suites. The TTCN Linktool builds a bridge between SDT and ITEX. Figure 1 shows the tools which are important forautomatic test generation, and the formal description languages which they use and support.Tau contains graphical editors for SDL, MSC and TTCN. For all languages, the lateststandards are implemented: The object-oriented features of SDL'92 are supported as well asMSC'96 with its high-level MSCs.The Simulator for SDL speci�cations is equivalent to a debugger for a programming lan-guage. The user can stimulate the system by sending signals. The Simulator then allows toinspect the control
ow, the exchange of signals between processes and the values of variables.Simulated paths through the SDL speci�cation can be saved as MSCs. Such MSCs may beused as input for Autolink.The initial purpose of the TTCN Link tool has been the semi-automatic test generation.Within the TTCN editor of ITEX, the user can choose a send event which is appropriate for2

the test purpose. Using a state space exploration, TTCN Link computes the correspondingreceive events and adds them to the test case description. Then the user has to select the nextsend event.Autolink o�ers improved test generation functionality and is now used to generate thedynamic behavior and constraint tables of a test suite. However currently, TTCN Link isstill needed to generate the declaration part. The following declaration tables are generatedautomatically:� Abstract Service Primitives (ASP) type de�nitions. All SDL signals appearing on chan-nels to the environment are translated into ASN.1 ASP de�nitions.� Points of Control and Observation (PCO) declarations. All channels of an SDL speci�-cation to the system environment are considered to be PCOs.� Structured SDL data de�nitions are translated into ASN.1 type de�nitions.3 ValidatorOne of the main purposes of the Validator is to provide an automated fault detection mech-anism which is able to detect dynamic and logical errors in an SDL system. Some of thepotential problems are deadlocks, implicit signal consumptions and other dynamic errors likethe sending of signals to non-existing processes.The SDT Validator is based on state space exploration techniques (e.g. [12]). The statespace of an SDL system is built up in form of a directed graph, called reachability graph. Thereachability graph represents the behavior of the SDL system. Its nodes correspond to globalsystem states, the edges represent the transitions between global system states.Global SDL system states contain information about active process instances, variable val-ues of all active processes, the SDL control
ow state of all active processes, active procedures(with local variables), signals in the system's queues, active timers etc.The edges of the reachability graph are annotated with SDL events. Depending on thecon�guration of the state space exploration, an edge may be annotated with a single SDLstatement like a task, an input or an output, or with a list of SDL statements which maycorrespond to complete state transitions of SDL processes.During validation, the reachability graph is analyzed. For example, a deadlock is found ifa node in the graph does not have any outgoing edges.MSC veri�cationVeri�cation of a system against its requirements is another main purpose of the Validator [11].The requirements can be expressed in form of MSC diagrams (see Figure 6 for an exampleof an MSC diagram). The Validator explores the state space and searches for a path in thereachability graph complying to the MSC which is checked. The MSC is \veri�ed" if such apath exists. 3

;
SIGNALSET ;

Process Type TG_Cov 1(1)

dcl
 exec integer,
 str charstring;

/*#CODE
#BODY
static int TG_Cov_MaxExec = 0;
*/

S

depth(0) > 50

GetExec
(exec)

exec >
#CODE(’TG_Cov_MaxExec’)

Check if some
new symbols
have been
executed

’’
Store the new number
of executed symbols
in the c variable
TC_Cov_MaxExec

/*#CODE
TG_Cov_MaxExec = #SDL(exec);
*/

int2str
(exec,str)

Report
(’Cov = ’ // str)

-

false

true

Figure 2: Observer process exampleObserver processesObserver processes allow to check more complex requirements on systems than can be expressedby MSCs. An observer process is a special kind of SDL process which is included in the SDLsystem. An observer process is able to inspect the SDL system without interfering with it.Several mechanisms are built into the Validator to accomplish this:� The execution mode is changed if observer processes are de�ned: First, the SDL systemexecutes one transition. Then all observer processes execute one transition during whichthey check the new system state.� Through a special Access abstract data type, observer processes can examine the internalstates of other processes in the system. Variable values, contents of queues etc. can bechecked without any need to modify the observed processes.During state space exploration, observer processes may generate reports. Reports contain atextual description and the path from the start state of the exploration to the state where thereport was generated. This path can be stored as an MSC and used as input for Autolink.A simple observer process type is shown in Figure 2. Each time a path with length 50 isfound in the state space which covers an additional SDL symbol, a new report is generated.As shown in the example, some of the internal variables and functions of the Validator can be4

accessed. That way, information about the current status of the state space exploration canbe retrieved.4 AutolinkThe objective of Autolink is to provide an easy-to-use yet powerful tool to generate TTCNtest suites from an SDL speci�cation. Potential users are engineers who have a good under-standing of the system they have built, but who cannot easily generate test cases because theyhave no detailed knowledge of TTCN.Specialized test suite designers will also bene�t from using Autolink. They can concen-trate on the correct description of test purposes while leaving the error-prone task of writingTTCN code to the tool.4.1 Automatic test generationAutolink is part of the SDT Validator. It uses the state space exploration techniques andthe MSC veri�cation mechanism provided by the Validator.The generation of a TTCN test case is based on a path. In the Autolink context, a pathis de�ned as a sequence of events which have to be performed in order to go from a start to anend state in the state space of the SDL speci�cation. The externally visible events of a pathdescribe the test sequence to which a TTCN PASS verdict is assigned.Paths are stored as system level MSCs. A system level MSC shows the desired interactionbetween the System Under Test (SUT) and its environment during the execution of a testcase. It consists of one instance for the SUT and one instance for every PCO, where everychannel to the environment is considered to be a PCO. Using system level MSCs correspondsto the black box testing method, where the internals of the SUT are not known.Autolink uses a modi�ed version of the MSC veri�cation algorithm to compute all relevanttransitions in the state space. Each transition is analyzed: Events which are visible at theenvironment are added to a special data structure (referred to as Autolink tree). If an eventsatis�es the MSC, it is added as a PASS event; if it violates the MSC, it is added as anINCONCLUSIVE event. Additionally, a constraint is created for every visible event. TheAutolink algorithm is divided into three distinct parts. These are:1. Initialization of data structures: A new test case record is generated, the MSC is loadedetc.2. State space exploration: The Autolink tree is built and a list of constraints is con-structed.3. Post-processing: In some cases, the resulting Autolink tree needs to be modi�ed afterthe completion of the state space exploration. Furthermore, identical constraints aremerged. 5

4.2 Constraint handlingBasically, a constraint with generic name is created automatically for every send and receiveevent in all test cases. From the point of readability of a test suite, this is far from optimal.Therefore, some special constraint handling mechanisms have been included in Autolink.Constraint mergingWhen processing several test cases consecutively, a lot of constraints are created. Duringpost-processing of the test cases, each new constraint is compared with all previously createdconstraints. If there is a match, then the new constraint is removed and all references in thetest case are updated. Usually, the number of constraints is reduced signi�cantly throughconstraint merging.Constraint description languageEarly tests with Autolink have shown that the assignment of generic names to constraintsis not acceptable because the resulting test suite is hard to read.Autolink provides commands to rename constraints manually. But if a test suite has tobe regenerated because of a change in the SDL speci�cation, then the whole manual work islost. Additionally, the number of similar constraints in a test suite can be quite large. Throughconstraint parameterization, this number can be reduced.Autolink includes a special constraint description language. By de�ning rules in a con-�guration �le, the test designer can control the naming and parameterization of constraints.A typical constraint description rule may look like this:TRANSLATEFROM CONreqTO "C_ConnectionRequest"PARAMETERS $1="Call_ID"ENDAutolink translates from signals to constraints. The example above instructs Autolinkto assign the name C ConnectionRequest to constraints which describe CONreq signals.Additionally, the �rst parameter of signal CONreq is used as a parameter of constraintC ConnectionRequest.The name of a constraint may depend on the textual description of signal parameters.In the following example, the generated constraint is called C EndReq Normal if the secondparameter of signal EndReq is norm. It is called C EndReq Exception if the parameter equalsexcp. 6

TRANSLATEFROM EndReqIF $2 == "norm"TO "C_" + $0 + "Normal"IF $2 == "excp"TO "C_" + $0 + "Exception"ENDOften, abbreviations are used for signal parameters. These abbreviations can be translated intomore descriptive texts as shown in the example above. The constraint description languagehas been kept deliberately simple. Therefore, even an unexperienced user should be able tode�ne rules quickly.4.3 Direct MSC to TTCN translationIn order to use a state space exploration to generate test cases from MSCs, a complete SDLspeci�cation is required. However in the real world, only partial speci�cations exist for mostsystems; often there is no SDL speci�cation at all. Standardized protocols like Core INAP CS{2 (see Section 5) cannot be speci�ed completely, e.g. error handling has to remain unspeci�ed.Nonetheless, to guarantee a uniform test suite development process, all test purposes shouldbe formalized as MSCs.Autolink provides a function to translate MSCs directly into TTCN. Although it doesnot perform a state space exploration, Autolink still needs information about the interfacebetween the system and its environment. Therefore, a minimal SDL speci�cation has to bewritten which de�nes at least the channels to the environment and the signals which are sentvia these channels.Obviously, there are some disadvantages if a direct MSC to TTCN translation is used.First, there is no guarantee that an MSC and the generated test case describe valid tracesof the speci�cation or the implementation respectively. Furthermore, events which lead to anINCONCLUSIVE test verdict cannot be computed.Still, using the MSC to TTCN translation is much better than writing TTCN test casesmanually:� If several receive events are expected at di�erent PCOs before the next send event, thenalternative branches have to be written in TTCN for all permutations of these receiveevents.� MSC to TTCN translated test cases are stored in the same intermediate format as testcases generated by a state space exploration. Therefore, constraint merging which isapplied during post-processing (see Section 4.1) works identical for both kinds of testcases.The resulting test suite is less likely to be incorrect, and it contains fewer constraints.7

Modify
constraints

Define paths

MSCs

Define
configuration

Autolink
configuration

Autolink

Generate TTCN
dynamic and

constraints part

Compute test
cases

Translate MSCs
into test cases

Test case
representations

Constraints

TTCN MP
file

Specify system

ITEX

TTCN Link

Generate TTCN
declarations part

TTCN
declarations

Complete TTCN
test suite

Merge declarations,
dynamic and

constraints parts

Generate test
suite overview

User

SDL system

Generate
executables

Figure 3: The test generation process4.4 The test generation processIn this section, all steps are described which are necessary to create a TTCN test suite withthe Tau tools. Figure 3 presents an overview of the test generation process.SDL system speci�cationThe starting point for automatic test generation is, of course, an SDL speci�cation. When thespeci�cation is syntactically correct and also correct with respect to the static semantics, it canbe converted into C code. This code in turn can be compiled and linked with separate kernel8

libraries in order to generate a Validator/Autolink and a TTCN Link executable respectively.Whenever the SDL speci�cation is changed, the executables have to be regenerated.Path de�nitionA path describes the test purpose; it is stored as a system level MSC (see Section 4.1). Thereare several possibilities to de�ne such an MSC:� The path which results from a simulation run can be stored as an MSC. This is the moste�ective way to specify a path containing a given test purpose.� A large number of MSCs can be generated automatically by using the Validator's randomwalk state space exploration in combination with observer processes (see Section 3). Thismethod is used if a high coverage of system states is to be tested.� With the Validator's navigation function, the state space can be explored manually. Theresulting path can be saved as an MSC.� An MSC can be drawn manually with the MSC editor.The MSCs should be veri�ed against the SDL system with the Validator before they are usedas input for Autolink.Con�gurationTest case generation is in
uenced by several options which have to be set before the processingis started. This can be done either by using the Validator graphical user interface or by writingan Autolink con�guration �le. This con�guration �le may consist of up to three parts.A problem which appears inevitably for complex, real-world SDL systems is the explosionof the state space. Autolink provides a set of options which allow to reduce the state spaceduring exploration:� Maximum search depth: This should be restricted only if the SDL system can executea large or unlimited sequence of internal events.� Channel queues: Disabling internal channel queues strongly reduces the state space.� Priorities for classes of SDL events: Autolink distinguishes �ve classes of SDLevents: Internal events, input from the environment, timeouts, channel outputs andspontaneous transitions. By assigning a higher priority to input events, the complexityof the state space can be reduced.� Process scheduling: In every system state there is a queue of all processes ready toexecute next. The process scheduling option de�nes if only the �rst or all processes in thequeue are allowed to execute. Choosing the former results in the most e�ective reductionof the state space. 9

State space exploration options may be set in the �rst part of the Autolink con�guration�le. The de�nition of constraint parameterization and naming conventions (see Section 4.2)may be provided in the second part. In a third part, the user may set options which controlthe format of the test suite:� Constraints can be saved either as ASN.1 Protocol Data Unit (PDU) constraints or asASN.1 ASP constraints.� TTCN test steps can be stored either globally in the test steps library, as local trees inthe test case dynamic behavior table, or they can be inserted directly into the test case(inline format).Test case generationWhen the SDL system, the MSCs describing the test purposes and the con�guration �le arecreated, then the test case generation can start. An MSC can either be used as input for testgeneration by state space exploration, or MSC to TTCN translation. No matter which methodis chosen, the processed test cases are stored in a list of Autolink trees. This list can bemanipulated: More test cases can be added with subsequent test case generations; unwantedtest cases can be removed. Autolink trees can be previewed, saved in a �le and reloaded.The save and load functionality can be used to distribute test case processing on more thanone computer: A simple shell script running on all machines determines the next unprocessedMSC. It then starts an Autolink process with this MSC as input. The resulting test case issaved; all test cases can later be merged into a single test suite.Constraint modi�cationDuring test case generation, a list of constraints is built automatically. Constraints can beadded manually or removed if they are not referenced in a test case. Constraints can berenamed, stored in a �le and loaded back.Experience has shown that only little manipulation of constraints is necessary if constraintparameterization and naming rules are de�ned in the Autolink con�guration �le.TTCN generationUsing the information stored in the Autolink tree and constraints lists, the dynamic behaviortables and the constraint tables of a test suite can be stored in a TTCN MP �le. If desired, thesaving of the test suite can be repeated with di�erent formats for test steps and constraints.Test suite completionThe TTCN MP �le with the dynamic behavior and constraint parts can be imported in theITEX tool. With a call of the TTCN link executable, the declarations part can be added.Finally, the test suite overview can be generated automatically.10

TCAP
(Transport)

Service Switching Function
(IUT)

INAP

MTC

PTC1

PTC2Figure 4: Core INAP CS{2 test architecture5 Practical experienceThe Autolink approach and the Autolink tool have proven to be usable for industrial ap-plications by their extensive use within the European Telecommunications Standards Institute(ETSI) for the production of the conformance test suite for Core INAP CS{21[15]. The SDLspeci�cation of Core INAP CS{2, attached as annex A to [15], gives the normative require-ments of the protocol behavior; it uses the ASN.1 de�nitions of the INAP PDUs. Therefore,it provides a complete speci�cation of the protocol which is suitable for the application ofAutolink.5.1 INAP, test architecture and interfacesINAP enables communication between a Service Control Function (SCF) and a Service Switch-ing Function (SSF) in a public network. 2 A test suite is provided only for the SSF, wherethe Implementation Under Test (IUT) is either a local exchange or a transit exchange. INAPis implemented on top of the Transaction Capabilty Application Part (TCAP) in SignallingSystem No. 7 (SS7) [13]. Therefore according to ISO/IEC 9646 [4], the remote test methodis used with a Main Test Component (MTC) serving the normative interface as depicted inFigure 4.The SDL speci�caton contains both TCAP and the SSF. The protocol operations of INAPstate normative requirements on what the SSF should do in terms of signalling, e.g. establishinga call to a third party, releasing a call etc. Therefore in most cases, the PASS verdicts in thetest suite must be based on the signalling events. However, INAP is de�ned independently ofthe particular signalling system (e.g., national variants of the ISDN User Part (ISUP) can beused). Therefore it is not possible to provide the de�nitions for the Parallel Test Components(PTC) PTC1 (incoming signalling) and PTC2 (outgoing signalling) in the test suite. Instead,the coordination messages between the PTCs and the MTC are provided, which are generatedfrom the SDL speci�cation of INAP.5.2 Test purposesThe test purposes for the Core INAP CS{2 test suite are speci�ed informally by using a textualdescription and formally with MSCs. Therefore, the development of the test purposes was done1The abbreviation Core INAP CS{2 refers to the ETSI standard of the Intelligent Network ApplicationProtocol (INAP) Capability Set 2 (CS{2) [15].2For an introduction to intelligent networks and its architecture see, e. g., [14].11

IN2 A BASIC AT BV 01Purpose: Test of ActivityTest in WaitForInstructions stateRequirement refPreamble: O OSSelection Cond.Test description ActivityTest invoke sent by SCF to SSF with TCAP DialogueIdof dialogue identical to the one used in the preamblePass criteria ActivityTest result sent by SSF to SCF related to the existingdialoguePostamble: SigConA Release .Figure 5: Informal test purpose descriptionin the following two steps:1. Based on the protocol requirements, the test purposes were identi�ed manually anddocumented in tables which structure the informal text. As shown in Figure 5, the tableentries may refer to pre- and postambles, describe the pass criteria and may providefurther information.2. By simulation of the Core INAP CS{2 SDL speci�cation, MSCs were generated for alltest purposes. The generated MSCs provided the input for the Autolink tool and werealso included in the test purpose document [16]. They give a more formal de�nitionof the test purposes. The inclusion of the MSCs was a requirement from organisationswhich do not use TTCN for testing, but which still need a formal description of eachtest purpose.Figure 6 shows an MSC test purpose example which formalizes the test purpose of Figure 5.The MSC refers to the preamble O OS and the postamble SigConA Release, which are also de-scribed by MSCs. The name of the test purpose MSC, IN2 A BASIC AT BV 01, correspondsto the test case name; the names of pre- and postamble MSCs correspond to test step names.An advantage of creating test purpose MSCs by simulation is that the consistency betweenthe informally developed test purposes and the protocol is guaranteed. A number of errors inthe manually developed test purposes were detected with this method.5.3 Detailed description of the development of MSC test purposesIn this section, a more detailed view of the development of the MSC test purposes is presented.The development comprised some preparatory work and the MSC generation process.Preparatory workThe MSC test purposes were generated by means of simulation. In order to facilitate theirgeneration, the user interface of the SDT Simulator was adapted to the speci�c needs of theMSC test purpose generation for the Core INAP CS{2 protocol.12

MSC IN2_A_BASIC_AT_BV_01

SCF CS2_SSF SigCon_A SigCon_B

O_OS

TC_InvokeReq

1, 51, 3, AT, short, aTArg : Null

TC_ContinueReq

51, oSCF

TC_ContinueInd

51, oSSF, TRUE

TC_ReturnResultInd

1, 51, TRUE, AT_R, aTRArg : Null

SigConA_Release

Figure 6: Formal MSC test purpose descriptionDuring the development of the MSC test purposes, the SDL speci�cation of Core INAPCS{2 and the test purposes were also validated. For the validation, a more detailed view onthe protocol behavior was needed than for the test purpose development itself. Easy switchingbetween the di�erent views was enabled by assigning the setting of corresponding Simulatoroptions to a set of buttons.Pre- and postambles were reused in several test cases. In order to ease their execution, thenecessary actions were stored as command scripts and attached to a button. By pressing thebutton, the Simulator was forced to perform the actions to execute the corresponding pre- orpostamble.Before test generation started, the naming conventions and the parameterization of thePDU and coordination message constraints was de�ned in an Autolink con�guration �le.For each message, a rule to determine the constraints name and a resonable set of messagecomponents to be parameterized in the constraints was identi�ed.MSC generation processThe generation of the MSC test purposes was a two phase process. It comprised a validationphase and a development phase. In the �rst phase, an MSC test purpose to be produced wasexecuted, i.e. simulated, in order to validate the test purpose and the SDL speci�cation. If13

the expected behavior did not match with the validation run, then the test purpose, the SDLspeci�cation or both had to be changed or corrected. The validation step was repeated untilthe test purpose and the SDL model were in accordance.In the second phase the test purpose was simulated again by performing the following steps:1. Start the Simulator.2. Set the Simulator options according to the needs of the MSC test purpose generation.This was done by using the appropriate prede�ned button.3. If a preamble is required, execute it by using a prede�ned button.4. Start the MSC trace. As a result, the rest of the simulation is displayed and recorded asan MSC.5. If a preamble was performed, insert an MSC reference referring to a preamble MSC intothe displayed MSC trace. This was done manually.6. Simulate the test purpose.7. If necessary, append an MSC reference referring to a postamble MSC to the displayedMSC trace. This was done manually.8. Rename the MSC trace to the test case name.9. Store the MSC trace.The MSCs describing the pre- and postambles of the test cases (steps 5 and 7) weregenerated like normal MSC test purposes. But this was done only once for the whole testsuite. The postambles only needed to be referred to, but not to be executed. During testcase generation, their correct execution would be checked by the Autolink tool. With somepractice, it took the test developer only a few seconds to perform the actions 1{5 and 7{9. Step6 took a little longer. Although the development phase of the MSC test purpose generationprocess appears to be more complicated, experience has shown that it takes less time than thevalidation phase.5.4 Ensuring consistency between MSC test purposes and the SDL modelDuring the validation phase of the MSC test purpose generation process, the SDL speci�ca-tion had to be corrected and modi�ed several times. This changed the behavior of the SDLspeci�cation and the already developed MSC test purposes became invalid. In order to detectinvalid MSCs after each change of the SDL model, the MSC test purposes were revalidatedagainst the SDL model. This was done automatically during night or weekends by using aUNIX script. For each MSC test purpose, the script started the Tau Validator in the com-mand mode (without graphical user interface) and started an MSC veri�cation. Due to thecomplexity of the SDL model, the validation of all MSCs took some time. To reduce it, MSCtest purposes were validated in parallel on several computers.14

5.5 Manual MSC test purposesThe SDL speci�cation of the Core INAP CS{2 protocol does not include error handling anddue to standardization politics, some of the protocol functions are only speci�ed rudimentary.The MSC test purposes related to these protocol aspects were speci�ed manually in order toapply the direct MSC to TTCN translation feature of Autolink. These manual MSC testpurposes look like the ones generated by state space exploration; they were also included inthe test purpose document [16].For these manual MSC test purposes, Autolink could not validate the correct order of theexchanged PDUs and coordination messages. But it did check if their format and parametervalues corresponded to the interface de�nition of the SDL speci�cation.5.6 TTCN test casesState space exploration was used by Autolink to generate TTCN test cases for the MSC testpurposes created with simulation. The manual MSC test purposes were translated directlyinto TTCN code. Apart from the fact that the test cases related to the manual MSC testpurposes do not include event sequences leading to an INCONCLUSIVE verdict, all test caseslook very similar. Many constraints are shared by several test cases, because the merging ofidentical constraint de�nitions for di�erent test cases was done automatically.By using the MSC in Figure 6 as input, Autolink generated the TTCN test case shownin Figure 7. A constraint for the SetupReq coordination message is shown in Figure 8.5.7 Postprocessing of TTCN test casesThe postprocessing of the TTCN test cases involved replacing some values of the constraintparameters with Protocol Implementation eXtra Information for Testing (PIXIT) parametersand the addition of the timer tSSF. Both tasks were performed automatically with a UNIXscript operating on the TTCN �le; a test case after post-processing is shown in Figure 9. Theresult was manually inspected for consistency, especially concerning the timer handling, andnecessary modi�cations were performed.5.8 Remarks and expensesThis was the �rst time that ETSI used a test generation tool like Autolink for the productionof a normative conformance test suite. Therefore in the beginning, considerable resources werespent to install and re�ne the tools, the scripts and the methodology. Time was also spent toupdate the Core INAP CS{2 SDL speci�cation and the already developed test purposes dueto changes to the protocol made by the responsible ETSI technical body SPS3. It has to benoted that the development of the test suite started before the protocol was completed. Thisallowed the detection of errors during the test purpose development which could be correctedin the protocol before its approval.At the time of writing this paper, the ETSI experts have developed 263 test purposes andgenerated the corresponding TTCN test cases. 188 test purposes were generated by simulation,15

Test Case Dynamic Behaviour

Test Case Name : IN2_A_BASIC_AT_BV_01

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +O_OS_2

2 SCF ! TC_InvokeReq CIR_ActivityTest_002(1 , 51

)

3 SCF ! TC_ContinueReq C_TC_ContinueReq_001(

51)

4 SCF ? TC_ContinueInd C_TC_ContinueInd_001(51

)

5 SCF ? TC_ReturnResultInd CRR_ActivityTestResult(1 ,

51)

(PASS)

6 +SigConA_Release_2

7 SigCon_B ? SetupReq C_SetupReq({ callRef 2,

calledPartyNumber ’2000’H,

callingPartyNumber ’1000’H }

)

INCONC

8 SCF ? TC_AbortInd C_TC_AbortInd(51) INCONC

9 SigCon_B ? SetupReq C_SetupReq({ callRef 2,

calledPartyNumber ’2000’H,

callingPartyNumber ’1000’H }

)

INCONC

Detailed Comments : Figure 7: Test case created by Autolink
ASN.1 ASP Constraint Declaration

Constraint Name : C_SetupReq(callRef : SetupIRType)

ASP Type : SetupReq

Derivation Path :

Comments :

Constraint Value

{ setupIRType1 callRef }

Detailed Comments : Figure 8: Constraint created by Autolink
75 test purposes were developed manually. The test purpose and test case production forseveral Core INAP CS{2 protocol functions is not yet �nished.ETSI estimated an overall reduction of the expenses for the tool-assisted development ofthe �rst Core INAP CS{2 test suite of 20 % compared to manual test suite development [18].This �rst test suite was delivered in April 1998 [17].16

Test Case Dynamic Behaviour

Test Case Name : IN2_A_BASIC_AT_BV_01

Group :

Purpose :

Configuration : CS1_CONFIG

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +O_OS

2 SCF ! TC_InvokeReq CIR_ActivityTest_002(

PIX_InvokeId1 ,

Tsv_DialogId1)

3 SCF ! TC_ContinueReq C_TC_ContinueReq_001(

Tsv_DialogId1)

4 SCF ? TC_ContinueInd C_TC_ContinueInd_001(

Tsv_DialogId1)

5 SCF ? TC_ReturnResultInd CRR_ActivityTestResult(

PIX_InvokeId1 ,

Tsv_DialogId1)

(PASS)

6 +SigConA_Release_2({ callRef 2,

calledPartyNumber

PIX_CalledPartyNumber1_SetupInd

, callingPartyNumber

PIX_CallingPartyNumber1 })

7 SigCon_B ? SetupReq C_SetupReq({ callRef 2,

calledPartyNumber

PIX_CalledPartyNumber1_S

etupInd, callingPartyNumber

PIX_CallingPartyNumber1 }

)

INCONC

8 SCF ? TC_AbortInd C_TC_AbortInd(

Tsv_DialogId1)

INCONC

9 SigCon_B ? SetupReq C_SetupReq({ callRef 2,

calledPartyNumber

PIX_CalledPartyNumber1_S

etupInd, callingPartyNumber

PIX_CallingPartyNumber1 }

)

INCONC

Detailed Comments : Figure 9: Test case after post-processing6 Future plansFuture enhancements of Autolink will focus primarily on the readability of the generatedTTCN test suites. The goal is to reduce the amount of time needed for manual post-processing.The following problems will be addressed:� Support of concurrent TTCN: A testing environment may consist of a number ofParallel Test Components (PTCs) which are controlled by a Main Test Component(MTC). In this case, test case dynamic behavior descriptions have to be split into separatedescriptions for each PTC. Additionally, the test components have to be synchronized.Autolink will allow to generate concurrent TTCN automatically. The user will haveto provide only the information which cannot be derived from the SDL speci�cation,e. g. the relation of PTCs to PCOs. Coordination messages which have to be exchangedbetween the test components may be computed by Autolink using prede�ned rules,17

but may also be de�ned explicitly in the MSCs.� Parameterization of test steps: If a postamble is used in several test cases, it mayresult in a series of basically identical TTCN test steps di�ering only in the constraintsof some receive events. Similar to constraints, test steps may be parameterized. Thisresults in a reduced number of test steps. Possible parameters for test steps includesignals, signal parameters and PCOs.� SDL-based test generation: Normally, test cases start and end in a stable testing statewhere the system has to wait for a stimulus before it can continue. In a future version,Autolink will assist the user in �nding stable testing states and in de�ning preamblesand postambles. It will also allow to produce MSC test case descriptions automaticallybased on the symbol coverage criterion.� Test suite structure: Test cases are typically combined in a hierarchy of test groups.Each test group focuses on a speci�c aspect of the speci�cation or the implementationrespectively. Currently, the test suite structure has to be speci�ed manually after testgeneration. However, the test suite structure may already be re
ected in the names ofthe given MSCs. Therefore a mechanism will be implemented which groups test casesbased on the names of their MSC descriptions.� Optimization of constraint parameterization: In order to minimize the number ofconstraints and the size of the test suite, a mechanism to �nd the optimal constraintparameterization will be implemented. Since an automatic parameterization may notnecessarily result in better readability, Autolink may only make suggestions for con-straint parameterization which have to be approved by the user.� PICS/PIXIT parameterization: SDL does not support the use of symbolic param-eters; during test generation, actual values have to be used for signal parameters. Au-tolink will include a function which replaces concrete values with PICS/PIXIT param-eters during post-processing. The user will be able to specify PICS/PIXIT parametersin the con�guration �le.� Support of timers: There are three ways to use timers in a test case. First, a timermay be set at the beginning of a test case. It checks whether the complete test case canbe executed within a given amount of time. Timers may also be set before each receiveevent in order to restrict the time allowed for a single signal. In both cases timers canbe written automatically in a TTCN test suite. A more selective method is to de�netimers explicitly at the environment axes in the MSCs and to translate them into TTCNtimers.� Measurement of complexity: States space exploration options have a major impacton the computation time of test cases. In fact, complex SDL speci�cations can only beexplored reasonably with certain restrictions. Currently, there is no help for the user tochoose the optimal set of options.The complexity of a particular SDL speci�cation can be measured by a number of sim-18

ulations with di�erent option settings. An automatic comparison of the results providesinformation about a reasonable choice of exploration options.7 SummaryAutolink is a tool for the automatic generation of TTCN test cases from an SDL speci�cationand MSC test purpose de�nitions. It follows a pragmatic approach to test generation. Thanksto enhanced functions for the naming of constraints, the generated test suites require littlemanual post-processing. Autolink has been used at ETSI to create a test suite for the INAPCS{2 protocol, where it has proven its e�ciency. Feedback from practical experience andtheoretical research are the basis for future development of Autolink.AcknowledgmentsThe authors like to thank Stefan Heymer for proof-reading.References[1] ITU-T Rec. Z.100 (1996). Speci�cation and Description Language (SDL). Geneva, 1996.[2] ITU-T Rec. Z.105 (1995). Speci�cation and Description Language (SDL) combined withAbstract Syntax Notation One (ASN.1). Geneva, 1995.[3] ITU-T Rec. Z.120 (1996). Message Sequence Chart (MSC). Geneva, 1996.[4] ISO/IEC. Information Technology { OSI { Conformance Testing Methodology and Frame-work. International ISO/IEC multipart standard No. 9646, 1994.[5] ISO/IEC. Information Technology { OSI { Conformance Testing Methodology and Frame-work { Part 3: The Tree and Tabular Combined Notation (TTCN). ISO/IEC IS 9646-3,1996.[6] O. F�rgemand, M. M. Marques (editors). SDL'89: The Language at work. North-Holland,1989.[7] O. F�rgemand, R. Reed (editors). SDL'91: Evolving Methods. North-Holland, 1991.[8] O. F�rgemand, A. Sarma (editors). SDL'93: Using Objects. North-Holland, 1993.[9] R. Br�k, A. Sarma (editors). SDL'95 with MSC in CASE. North-Holland, 1995.[10] A. Cavalli, A. Sarma (editors). SDL'97 { Time for Testing { SDL, MSC and Trends.Elsevier, 1997.[11] A. Ek. Verifying Message Sequence Charts with the SDT validator. In [8].19

[12] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Interna-tional, Inc., 1991.[13] ITU-T Rec. Q.771-775 (1993). Signalling System No. 7 { Transaction Capabilities.Geneva, 1993.[14] J. Th�orner. Intelligen Networks. Artech House, 1994.[15] DEN 03038-1. ETSI Core INAP CS{2; Part 1: Protocol Speci�cation. European Telecom-munications Standards Institute, 1997.[16] DEN 03038-3. ETSI Core INAP CS{2; Part 3: Test Suite Structure and Test Purposesspeci�cation for Service Switching Function (SSF), Specialized Resource Function (SRF)and Service Control Function (SCF). European Telecommunications Standards Institute,1998.[17] DEN 03038-4. ETSI Core INAP CS{2; Part 4: Abstract Test Suite (ATS) for Ser-vice Switching Function (SSF), Specialized Resource Function (SRF) and Service ControlFunction (SCF). European Telecommunications Standards Institute, 1998.[18] ETSI TC MTS STF 99. CATG Handbook. DTR/MTS-00030-3. Temporary document forthe ETSI TC MTS meeting in Sophia-Antipolis (France), March 1998, to be published asEuropean Guide in 1998.

20

