
Autolink - Putting formal testmethods into practiceMichael Schmitt, Beat Koch, Jens Grabowski, Dieter HogrefeMedical University of L�ubeckInstitute for TelematicsRatzeburger Allee 160, 23538 L�ubeck, GermanyTel.: +49 451 500 3721, Fax: +49 451 500 3722email: autolink@itm.mu-luebeck.de
AbstractAutolink is a tool for automatic test generation. It allows to generate TTCNtest suites based on a given SDL speci�cation and MSC requirements. The�rst big challenge for Autolink has been the creation of a test suite for theIntelligent Network Application Protocol at ETSI. In this paper we discuss ourexperience in applyingAutolink to a real-life protocol and the improvementsof Autolinkwhich were developed during this project. We also present futureenhancements which will further ease the work of test suite developers.KeywordsAutolink, SDL, MSC, TTCN, SDT, ITEX, Test generation1 INTRODUCTIONIn recent years, several formal methods have been developed for automatictest generation. However, when putting these methods into practice, manytest generation tools fail due to implementation-speci�c restrictions. Only afew promising reports are presented in literature for real-life protocols, seee. g. [10, 5, 6, 14].Autolink is a research and development project which aims at tacklingthis problem. It has been started in 1996 by the Institute for Telematics,L�ubeck, and Telelogic AB, Malm�o. The Autolink tool is part of Telelogic'sTau development environment. Tau provides tools for the design, analysisand compilation of systems and protocols speci�ed in the ITU-T Speci�ca-tion and Description Language (SDL) [2, 8]. Besides SDL, Tau supports thespeci�cation languages MSC [3] and TTCN [13].Since Autolink is integrated within the Tau tools, it provides extensivesupport for SDL'92. It also allows to use SDL combined with Abstract SyntaxNotation One (ASN.1) as de�ned in ITU-T Recommendation Z.105 [1].One SDL speci�cation which makes use of both the object oriented featuresc
IFIP 1996. Published by Chapman & Hall

2 Autolink | Putting formal test methods into practiceof SDL'92 and ASN.1 data descriptions was developed for the Intelligent Net-work Application Protocol (INAP). Based on the SDL speci�cation and byusing Autolink, a TTCN test suite has been created by a project teamat the European Telecommunications Standards Institute (ETSI). Due to itscomplexity, INAP has been a good example to demonstrate and verify theapplicability of Autolink to real-life systems. Feedback from the project hasalso directly in
uenced the development of Autolink.The rest of this paper is structured as follows: In Section 2 a short intro-duction is given to the general concepts of Autolink and its embedding inthe Tau tool environment. Section 3 to 5 describe some aspects of Autolinkthat have been of particular relevance for the construction of the INAP testsuite. Section 3 discusses the in
uence of state space exploration heuristics ontest case generation. A direct translation from MSC to TTCN which does notperform a state space search is motivated in Section 4. Section 5 introduces alanguage which allows to describe constraint naming conventions and param-eterization. INAP and some preliminary results are presented in Section 6.Finally, a summary and outlook is given in Section 7.2 THE AUTOLINK TOOLAutolink is a tool which supports the automatic generation of TTCN testsuites based on SDL speci�cations. Its basic concepts have already been doc-umented in [15] and [7].Autolink has largely been in
uenced by the SaMsTaG method and tool[9, 16]. SaMsTaG was an experimental system, developed at the Universityof Berne together with Swisscom. It was applied successfully to large scaleprotocols, e. g. [10].In this section we give a short overview of Autolink.2.1 Integration into the Tau tool setAutolink is tightly integrated within the Tau tool family which comprisesthe well-known SDT and ITEX tools. Autolink is a component of the SDTValidator. The Validator is based on state space exploration techniques andcan be used to �nd errors and inconsistencies in SDL speci�cations. Addi-tionally, it allows to verify an SDL system against requirements describedby MSCs. Autolink makes use of the core functionalities provided by theValidator and extends it with respect to test generation facilities.Besides Autolink, some other Tau tools are involved in the generation ofa complete TTCN test suite. Figure 1 shows the connection between all toolsand information involved in the test generation process.Based on an SDL system which is speci�ed by the user (task 1 in Figure 1)

THE AUTOLINK TOOL 3the code generator generates both an Autolink/Validator and a TTCN Linkapplication (tasks 5 and 8).Using Autolink, a TTCN test suite can be generated which contains con-straint and dynamic behavior tables (task 9). This test suite can be completedand re�ned in ITEX, a development environment for test suites speci�ed inTTCN. The TTCN Link application derived from the SDL speci�cation isable to generate all static TTCN declarations (task 10). These declarationscan be merged with the Autolink test suite (task 11). Finally, the test suiteoverview can be added automatically by ITEX (task 12).
Modify

constraintsDefine paths Define
configuration

Specify system

MSCs
Autolink

configurationSDL system

User

ITEX

Complete TTCN
test suite

Merge declarations,
dynamic and

constraints parts

Generate test
suite overview

Code
generator

Generate
Validator/Autolink

application

Generate TTCN
Link executable

Autolink

Generate TTCN
dynamic and

constraints part

Compute test
cases

Translate MSCs
into test cases

Test case
representations

Constraints

TTCN MP
file

TTCN Link

Generate TTCN
declarations part

TTCN
declarations

1

5

8

2 3

6 7

4

9

10

11 12Figure 1 Autolink and its integration into the Tau tool family

4 Autolink | Putting formal test methods into practice2.2 Developing a test suite with AutolinkThe generation of a TTCN test suite with Autolink involves several stepswhich are described below:De�ne paths Autolink derives test cases from paths which have to beprovided by the user (task 4). A path is a sequence of SDL events which drivethe system from a start state to an end state in the state space of the SDLsystem.The SDT Validator provides several possibilities to de�ne paths. For exam-ple, a path may be generated automatically by using observer processes. Anobserver process is a special kind of SDL process which is able to monitor theSDL system and guide a state space exploration. Observer processes can beused to de�ne large sets of tests. Alternatively, the user may want to manuallynavigate in the state space and select single paths.A path is stored as a Message Sequence Chart (MSC). Typically, an MSCused by Autolink only shows the externally observable interaction of theSDL system with its environment. It consists of one instance axis for the SDLsystem and one instance axis for each channel linked to the environment.TTCN test cases can be logically structured into test steps, e. g. a preamble,a test body and a postamble. Autolink represents test steps in MSCs byMSC references. A typical MSC for INAP is shown in Figure 2. It contains apreamble named O OS and a postamble named ReleaseCallAB Cause 00.De�ne con�guration A test suite produced by Autolink depends on anumber of options and settings. For example, the user may choose betweenseveral output formats for test steps. They can be stored globally in the teststep library, as local trees attached to a test case or inline.In order to collect all relevant settings in one place, a test con�guration �lemay be written (task 3). Currently, a con�guration �le may contain informa-tion about the following items:� The output format for test steps,� Search heuristics (see Section 3),� Constraint naming and parameterization (see Section 5).There is more information which will be taken into account in future versionsof Autolink. This information will refer to PICS/PIXIT parameterization,test steps parameterization, test suite structure and concurrent TTCN.Test case processing Based on the MSCs and the con�guration �le pro-vided by the user, Autolink computes an internal representation for eachsingle test case. These representations contain all sequences of send and re-ceive events that lead to a pass verdict. Additionally, it keeps track of the testcase structure.There are two di�erent approaches to generate test cases from MSCs. Nor-

THE STATE SPACE EXPLORATION 5mally, a state space exploration is started which simulates both a given MSCand the SDL system (task 6). In this case, alternative receive events whichviolate the MSC but are valid according to the SDL speci�cation are addedto the test case representation with a TTCN inconclusive verdict. If a statespace exploration is not applicable, MSCs have to be translated directly intotest cases (task 7; see Section 4).Each send and receive event in a test case is associated with a constraintcodifying the signal parameters. Since constraints can be shared among severalevents in di�erent test cases, they are stored separately from the test caserepresentations. Autolink merges identical constraints automatically andresolves existing naming con
icts. In addition, the user is allowed to de�nenew constraints or rename, merge and remove existing constraints (task 4).However, Section 5 describes a mechanism which makes post-processing ofconstraints unnecessary.Generate TTCN test suite Based on the internal test case representa-tions and the list of constraints, a TTCN test suite in MP format can begenerated (task 9). The appearance of the dynamic behavior and constrainttables can be controlled by various options set in the con�guration �le. Forexample, constraints can either be stored as ASN.1 PDU or as ASN.1 ASPconstraints. Before writing a test suite in a �le, Autolink checks the consis-tency of the test cases. For example, a postamble which was introduced by anMSC reference and which was used for more than one test case descriptiondoes not necessarily result in identical test steps. In this case, Autolink hasto distinguish the test steps by renaming them.With respect to the Framework of Formal Methods in Conformance Testing[4] Autolink uses trace equivalence for relating an SDL speci�cation to aTTCN test suite. This means that in best caseAutolink produces all possibletraces from a speci�cation and transforms them into test cases in TTCN.However, this is only an ideal scenario. In practice, the number of possibletraces is much too large to be seriously considered. The MSCs are used toconstrain the test cases to those which are considered relevant for testing themost important functions and to those which exhibit most likely an error.3 THE STATE SPACE EXPLORATIONFor test case generation, Autolink performs a state space exploration basedon the well-known bit-state algorithm [12]. Therefore it also has to cope withthe state space explosion problem. In [11], Grabowski et al. list several heuris-tics to deal with the complexity of state space exploration algorithms. Heuris-tics make assumptions about the system which have to be satis�ed. They avoidthe analysis of system traces which do not comply to these assumptions.The SDT Validator { and hence Autolink { allows to set several statespace exploration options which correspond to particular heuristics. However,

6 Autolink | Putting formal test methods into practicethere are some options which de�nitely preventAutolink from generating allsequences of test events which lead to a pass verdict. Therefore some optionsare �xed, while others may be changed.Some relevant options/heuristics are listed below:� Maximum search depthNormally, the search depth during test generation is automatically re-stricted by the investigated MSC. Therefore it can be set to an arbitrarylarge number. Only if the SDL system can execute an unlimited or largesequence of internal events, it might be necessary to restrict the state spaceexploration to a given maximum depth.� Channel queuesChannel queues drastically contribute to the state space explosion. There-fore, deviating from the SDL standard, the SDT Validator and Autolinkallow to disable channel queues. However, Autolink requires queues to beactivated for all channels linked with the environment of the SDL system.Otherwise, some possible sequences of test events could get lost.� Priorities of classes of SDL eventsAutolink allows to de�ne priorities for �ve classes of SDL events: Internalevents, input from the system environment, timeouts, channel outputs andspontaneous transitions.In the context of conformance testing, we assume that the tester is fasterthan the System Under Test (SUT). Therefore, when simulating the SDLsystem, input from environment has highest priority. With reference to[11] this heuristic could be best described as "Strong non-reasonable envi-ronment". Since the number of inputs from environment is limited by theMSC, this heuristic indeed reduces the complexity.The heuristic Strong reasonable timer can be activated by assigning a lowpriority to timeout events. Usually, timers are used for exception handling.Therefore timeouts are responsible for the majority of test events leadingto an inconclusive verdict.� Process schedulingIn each system state, either all process instances in the ready queue areallowed to execute or only the �rst process instance. Using this First come,�rst served heuristic is a strong restriction. However, timeouts may stilloccur.Several other heuristics exist, for example maximum length of channelqueues or indivisible SDL state transitions.However, our experience with INAP has shown that it is essential to usethe restricted process scheduling for complex SDL speci�cations. Additionally,internal channel queues should be disabled.

TRANSLATING MSCS INTO TTCN TEST CASES 74 TRANSLATING MSCS INTO TTCN TEST CASESIf a test purpose covers certain aspects of a protocol speci�cation which arenot represented in the SDL model, it is obviously not possible to generate atest case by starting a state space exploration. However, for a uniform testsuite development process, it is desirable to formalize all test purposes asMSCs. Those MSCs which cannot be handled by a state space explorationshould be converted automatically into TTCN test cases.Autolink provides a function which performs a direct translation fromMSC into TTCN. Figure 2 shows an MSC which has been constructed forINAP. The resulting TTCN test case generated by Autolink is presented inFigure 3.
MSC IN2m_A_BASIC_RN_CA_01

SCF CS2_INAP SigCon_A SigCon2_A Management_A SigCon_B SigCon2_B Management_B

O_OS

TC_InvokeReq

1, 51, 2, RNC, short, rNCArg : { { eventTypeCharging ’AAAA’H, monitorMode interrupted } }

TC_InvokeReq

2, 51, 4, CUE, medium, cUEArg : Null

TC_ContinueReq

51, oSCF

SetupReq

{ callRef 2, calledPartyNumber ’2000’H, callingPartyNumber ’1000’H }

SetupConf

{ callRef 2 }

SetupResp

{ callRef 1 }

ChargingEventInd

{callRef 2, eventTypeCharging ’AAAA’H}

TC_ContinueInd

51

TC_InvokeInd

102, 51, ENC, TRUE, eNCArg : { eventTypeCharging ’AAAA’H, monitorMode interrupted }

ReleaseCallAB_cause_00

Figure 2 MSC IN2m A BASIC RN CA 01 is translated . . .Although Autolink does not need to perform a state space exploration, itrequires some information about the interface of the speci�cation. Thereforean SDL system has to be provided which at least de�nes the channels to thesystem environment and the signals sent via these channels. Using this SDLsystem, Autolink can �nd out which MSC instances represent PCOs. Addi-tionally, it can check whether the MSC is syntactically correct with regard tosignals and signal parameters.

8 Autolink | Putting formal test methods into practice
Test Case Dynamic Behaviour

Test Case Name: IN2m_A_BASIC_RN_CA_01

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +O_OS_1

2 SCF ! TC_InvokeReq CIR_RequestNotificationCha

rging_002(1 , 51)

3 SCF ! TC_InvokeReq CIR_Continue_004(2 , 51)

4 SCF ! TC_ContinueReq C_TC_ContinueReq_001(

51)

5 SigCon_B ? SetupReq C_SetupReq({ callRef 2,

calledPartyNumber ’2000’H,

callingPartyNumber ’1000’H }

)

6 SigCon_B ! SetupConf C_SetupConf({ callRef 2 })

7 SigCon_B ! ChargingEventInd C_ChargingEventInd_002

8 SCF ? TC_ContinueInd C_TC_ContinueInd_003(51

)

9 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001(102 , 51)

10 SigCon_A ? SetupResp C_SetupResp({ callRef 1 }) (PASS)

11 +ReleaseCallAB_cause_00

12 SigCon_A ? SetupResp C_SetupResp({ callRef 1 })

13 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001(102 , 51)

(PASS)

14 +ReleaseCallAB_cause_00

15 SigCon_A ? SetupResp C_SetupResp({ callRef 1 })

16 SCF ? TC_ContinueInd C_TC_ContinueInd_003(51

)

17 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001(102 , 51)

(PASS)

18 +ReleaseCallAB_cause_00

Detailed Comments:Figure 3 . . . into a TTCN test case.Direct translation of MSCs into TTCN test cases has to be applied with cau-tion. There is no guarantee that the MSCs and hence the test cases describevalid traces of the speci�cation or the implementation, respectively. Further-more, is is not possible to compute test events which lead to an inconclusiveverdict.On the other hand, there are good reasons to use MSCs instead of directlywriting TTCN test cases. First, test cases typically span trees with severaltree leaves because of the partial order of test events. For example, the testcase in Figure 3 contains three valid sequences of test events. In MSCs thepartial order is expressed inherently due to the semantics of MSC. While itis arduous for a test suite developer to write down a complete TTCN testcase, Autolink automatically computes all valid permutations of test eventsfor a given MSC. Second, since Autolink always translates MSCs into anintermediate internal test case representation, test cases generated by a MSC-TTCN translation can be merged with test cases generated by state space

CONSTRAINT DESCRIPTIONS 9exploration. This leads to uniform and compact test suites with a reducednumber of constraints.5 CONSTRAINT DESCRIPTIONSEarly tests with Autolink have shown that the readability of automaticallygenerated TTCN test suites is not very good. One particular problem is thenaming of constraints. Due to the lack of information about the meaning ofconstraints, their names have to be created generically. For instance, a con-straint may be named after its signal or the test case in which it is used. If thereare di�erent constraints with the same name, they might be distinguished byappending a sequence number.In practice this naming scheme is not acceptable, even though Autolinkprovides functions for the subsequent manipulation of constraints. Especially,if a test suite has to be regenerated due to a modi�cation of the underlyingSDL speci�cation, a lot of manual work has to be repeated in order to assignmeaningful constraint names.Another important aspect is the parameterization of constraints. Withoutparameterization, a vast number of similar constraints is generated. This alsomakes the naming problem worse, since all these constraints have to get uniquenames.For these reasons, Autolink allows the user to specify rules which tellthe tool how to map SDL signals onto TTCN constraints during the testgeneration process. Both the names of constraints and their parameterizationcan be controlled by these rules. The rules have to be provided in advance,i. e. before the test generation starts, as part of the con�guration �le.A typical constraint description rule looks like this:Example 1TRANSLATEFROM TC_ContinueReqTO "C_TC_ContinueReq"PARAMETERS $1="Dialog_ID"ENDConstraint rules can be considered as mapping rules: Autolink trans-lates from signals to constraints. Example 1 instructs Autolink to mapTC ContinueReq signals onto constraints whose name is C TC ContinueReq.If more than one constraint is built, all constraints are distinguished by a se-quence number. Additionally, the �rst parameter of each concrete signal (re-ferred to by $1) becomes a parameter of the resulting constraint. The nameof the formal parameter used in the constraint declaration table is Dialog ID.Constraint names may not only be composed of plain texts, they can also

10 Autolink | Putting formal test methods into practicedepend on signal parameters. However, in some cases it is not desirable to takethe textual representation of a parameter value directly as part of a constraintname. E. g., a protocol engineer might use abbreviations as signal parametervalues. But for the TTCN test suite, these abbreviations are intended to bemapped onto extended names.In Example 2 the fourth parameter of signal TC InvokeReq is taken asinput for function OpName. Depending on its value, the function returnsa text which forms the second half of the constraint name. As a conse-quence, TC InvokeReq signals with di�erent fourth parameter are automati-cally mapped onto constraints with di�erent names.Example 2TRANSLATEFROM TC_InvokeReqTO "CIR_" + OpName($4)PARAMETERS $1="Invoke_ID", $2="Dialog_ID"ENDFUNCTION OpName$1 == "ASF" : "ActivateServiceFiltering"...| $1 == "RC" : "ReleaseCall"...| $1 == "SL_R" : "SplitLegResult"| TRUE : "OperatorTypeNameUndefined"ENDA possible constraint declaration table for a TC InvokeReq signal is shownin Figure 4.
ASN.1 ASP Constraint Declaration

Constraint Name: CIR_ReleaseCall(Invoke_ID : InvokeIDtype; Dialog_ID : DialogIDtype)

ASP Type : TC_InvokeReq

Derivation Path:

Comments :

Constraint Value

{ invokeIDtype1 Invoke_ID, dialogIDtype2 Dialog_ID, opClassType3 4, opCodeType4 RC, timeoutValType5 short,

argType6 rCArg : initialCallSegment : ’00’H }

Detailed Comments: Figure 4 A parameterized constraintBesides the constructs outlined above, Autolink's constraint descriptionlanguage allows to de�ne conditional rules. By using conditions in a TRANSLATE

THE INAP EXAMPLE 11statement, constraints can be customized to speci�c requirements. For exam-ple, constraint parameterization can be guided by signal parameters.One goal for the design of the constraint description language was sim-plicity. Even an unexperienced user should be able to understand and de�neconstraint rules. The syntax is not very strict in the sense that, for example,function parameters do not have to be declared. Instead, potential inconsis-tencies are checked and resolved at run-time.The only data type used in the constraint description language is text. Anyreference to a signal parameter returns its value as text. The same is truefor function calls. Conditions are also evaluated on a textual basis. Despiteits simplicity, the description language has proven to be su�ciently powerful.Nevertheless, it can be easily extended by additional built-in functions.Currently, all signals are uniformly mapped either onto ASP or PDU con-straints. The constraint description language could also be easily extendedto determine this mapping for each signal individually. One restriction of thecurrent implementation is that Autolink can only refer to top-level signalparameters, i. e. it is not possible to address nested parameters. We plan toremove this limitation in a future release.6 THE INAP EXAMPLEThe Intelligent Network Application Protocol is the �rst protocol de�ned byETSI for which a machine-processable SDL model is available.The SDL model was developed by ETSI Sub-Technical Committee SPS3with support of the Protocol Expert Group (PEX) and the Technical Com-mittee 'Methods for Testing and Speci�cation' (TC MTS).INAP Capability Set 2 (CS{2) makes use of the object-oriented features ofSDL'92 by inheriting CS{1. Data types are de�ned in ASN.1.The SDL speci�cation of ETSI's INAP CS{2 is voluminous. It comprisesmore than 450 pages in printed form. The phrase representation is about 1.6MByte large (approximately 570 KByte without comments). When translat-ing the speci�cation into C with SDT's code generator, about 350000 lines or13.6 MByte of source code are generated.6.1 Test suite generationIn 1997, work started on the development of a TTCN test suite by the ETSISpecialists Task Force STF 100. This test suite is intended to cover the basiccapability set, i. e. the CS{1 operations with CS{2 additions.First, the test purposes were de�ned with textual descriptions and roughMSCs. Next, these test purposes were formalized as detailed MSCs using theSDT Simulator. In total, 126 MSCs were created. For 67 test purposes a state

12 Autolink | Putting formal test methods into practicespace search could be started in order to produce the corresponding test cases.The remaining 59 test purposes had to be translated directly into TTCN dueto unspeci�ed parts in the SDL model.The test suite resulted from a repetition of SDL/MSC re�nements andmodi�cations, MSC veri�cation and test generation runs. Whenever a mod-i�cation of the SDL model was made, all MSCs were veri�ed with the SDTValidator. If errors emerged, the SDL model or the MSCs were modi�ed againuntil all MSCs passed the veri�cation. Only then a test generation run wasstarted.6.2 StatisticsBoth the MSC veri�cation and the test generation runs were executed atthe Institute for Telematics in L�ubeck. The test results discussed below wereobtained on SUN ULTRA 2 workstations with 300 MHz processors.Figure 5 shows the computation time for both the MSC veri�cation andthe test generation with Autolink. The time needed for the veri�cation ofan MSC ranges from 1min 24 sec to 2 h 15min. It took between 6min 44 secand 51h 49min (= 3109 min) to generate a test case.The larger amount of time needed for test generation is not surprising:During MSC veri�cation, a path in the state space graph is truncated as soonas a transition con
icts with the MSC. Test generation on the other handneeds to proceed until an observable event happens.Interestingly, there is no general correlation between the computation timefor MSC veri�cation and test generation. For example, MSC no. 57 in Figure 5can be veri�ed comparably fast, whereas its test case generation takes about5 hours.Due to the large number of data used in the SDL system, on average only22 states per minute could be explored by Autolink. Much time was spentfor the computation of the hash values of each state needed for the bit-statealgorithm.6.3 Distributed test case processingVeri�cation of all MSCs on a single machine would have taken about a day;generation of all test cases would have used about a week. Therefore, theprocessing of test purposes was distributed among up to �fteen workstations.As described in Section 2, Autolink does not directly write a generatedtest case into a TTCN MP �le. Instead, it stores each test case in an in-ternal representation in memory. This representation and the correspondingconstraints can be saved on disk and reloaded later. This feature was usedto compute each test case separately. After the computation �nished, all test

THE INAP EXAMPLE 13
Test case generation

0
120
240
360
480
600
720
840
960

1080
1200
1320
1440

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

MSCs

T
im

e
(m

in
)

3109

MSC verification

0

20

40

60

80

100

120

140
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

MSCs

T
im

e
(m

in
)

Figure 5 Computation time for MSC veri�cations and test generationscases were reloaded to be combined into a single test suite. Identical con-straints were merged automatically during this process.With the help of shell scripts, test generation runs were executed in batchmode, so no manual intervention was needed to start the generation of eachsingle test case. This way, test cases could be generated overnight. In addi-tion, information about previous test generation runs could be used in orderto minimize computation time by placing time-intensive test cases on fastmachines �rst.MSC veri�cation was distributed with a similar procedure.6.4 Test suite post-processingEven though Autolink (in combination with TTCN link) produced a com-plete, readable test suite, some manual steps were still needed to enhance theresult:1. Preambles which were generated during direct translation from MSC intoTTCN were replaced by the ones generated with state space exploration.2. Using test step parameterization, the number of postambles was reducedsigni�cantly.3. PIXIT information was added.

14 Autolink | Putting formal test methods into practice4. Test group information was added.5. The test suite was converted to concurrent TTCN.7 SUMMARY AND OUTLOOKAutolink makes it much easier to generate a TTCN test suites based onan SDL speci�cation. In particular, constraint descriptions save a lot of time.Additionally, the integration of MSCs for which no state space search can beperformed allows a uniform development process.Autolink has been used by project STF 100 at ETSI which goal is thedevelopment of a test suite for INAP CS{2.Due to the complexity of modern protocol speci�cations, it seems to bealmost impossible to create correct test suites by hand. Autolink allows tocheck several properties of the test suite which would otherwise have beenoverlooked. For instance, Autolink checks whether a test step can be sharedamong several test cases.The time needed for test generation depends both on the complexity ofthe SDL model, the size of the MSCs describing the test purposes and theheuristics for the state space search. While the �rst two factors cannot bealtered, the state space options have to be chosen carefully in order to �nd agood compromise between computation time and the chance to �nd all eventswith inconclusive verdict. More tool assistance is needed by the user to chooseappropriate options.With regard to the whole development process, the time e�ort for the actualtest generation is not relevant (if some restrictions of the state space areaccepted). Most time is spent for re�nements of the SDL speci�cation andthe test purposes.However, experience has shown that the amount of time spent for manualpost-processing of a generated test suite can be further decreased. Therefore,improvements of Autolink will focus on the readability of the generatedTTCN code. In particular, we plan to implement the following extensions:� Support of concurrent TTCNIn order to generate concurrent TTCN, Autolink needs further informa-tion that cannot be automatically retrieved from the SDL speci�cation.E. g. information is needed about the assignment of PCOs to channels andthe relation between PTCs and PCOs. Therefore the user will have to pro-vide this information as part of the con�guration �le. Several strategies forthe coordination of PTCs will be implemented, e. g. a strict synchronizationor synchronization only when indicated in the MSC.� Parameterization of test stepsMSC references can be used in test purpose descriptions to refer to teststeps. If an MSC test step is used in several test cases, it may lead to severaltest steps which only di�er in a few signal parameters. Parameterization

SUMMARY AND OUTLOOK 15of test steps can be handled similarly to constraint parameterization andshould include parameterization of signals, PCOs and signal parameters.� Support of timer eventsTTCN timers could be created automatically either once for a completetest case or for each event separately. There should also be a possibilityto explicitly specify timers in the MSCs which are transformed to TTCNtimer events.� Test suite structureA test suite is typically structured into test groups, i. e. sets of test caseswhich test a speci�c aspect of the speci�cation. Since the test suite structureis often re
ected in the names of the test purposes, a mechanism will beimplemented that groups test cases based on their names.� PICS/PIXIT parameterizationSince SDL does not allow the use of symbolic values, PICS/PIXIT parame-ters have to be encoded as concrete values for test generation and replacedby symbolic values in a post-processing step. This time-consuming task canbe automatized.� Automatic constraint parameterizationAutomatic constraint parameterization is a way to minimize the numberof constraints. However, it is not yet clear whether it will also enhance thereadability of a test suite.REFERENCES[1] ITU Telecommunication Standards Sector SG 10. ITU-T Recommenda-tion Z.105: Speci�cation and Description Language (SDL) combinedwith Abstract Syntax Notation One (asn.1). ITU, Geneva, 1995.[2] ITU Telecommunication Standards Sector SG 10. ITU-T Recommen-dation Z.100: Speci�cation and Description Language (SDL). ITU,Geneva, 1996.[3] ITU Telecommunication Standards Sector SG 10. ITU-T Recommenda-tion Z.120: Message Sequence Chart (MSC). ITU, Geneva, 1996.[4] ITU Telecommunication Standards Sector SG 10. ITU-T Recommen-dation Z.500: Framework of Formal Methods in Conformance Testing.ITU, Geneva, 1998.[5] R. Anido, A. Cavalli, T. Macavei, L. P. Lima, M. Clatin, and M. Phalip-pou. Testing a real protocol with the aid of veri�cation techniques. InXXII SEMISH, pages 237{248, Brazil, August 1996.[6] A. Cavalli, B. Lee, and T. Macavei. Test generation for the SSCOP-ATMnetworks protocol. In SDL Forum '97, Evry, France, September 1997.[7] A. Ek, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch, and M. Schmitt.Towards the industrial use of validation techniques and automatictest generation methods for SDL speci�cations. In Proceedings of theEighth SDL Forum, 1997.

16 Autolink | Putting formal test methods into practice[8] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL { Formal Object-orientedLanguage for Communicating Systems. Prentice Hall, 1997.[9] J. Grabowski, D. Hogrefe, and Nahm. R. Test Case Generation withTest Purpose Speci�cation by MSCs. In SDL Forum '93, Darmstadt,1993. North-Holland.[10] J. Grabowski, D. Hogrefe, R. Scheurer, and Z. Dai. Applying SAM-STAG to the B-ISDN Protocol SSCOP - Technical Description andTTCN Testsuite. In Proceedings of the 10th International Workshopon Testing of Communicating Systems (IWTCS'97), Cheju Islands,Korea, September 1997.[11] J. Grabowski, R. Scheurer, D. Toggweiler, and D. Hogrefe. Dealing withthe Complexity of State Space Exploration Algorithms. In Proceed-ings of the 6th GI/ITG technical meeting on 'Formal Description Tech-niques for Distributed Systems', University of Erlangen, June 1996.[12] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall International, Inc., 1991.[13] ISO/IEC JTC 1/SC21. Information Technology - Open Systems Inter-connection - Conformance Testing Methodology and Framework - Part3: The Tree and Tabular Combined Notation. International Standard9646-3, ISO/IEC, 1992.[14] E Perez, E. Algaba, and M. Monedero. A pragmatic approach to test gen-eration. In Proceedings of the 10th International Workshop on Test-ing of Communicating Systems (IWTCS'97), Cheju Islands, Korea,September 1997.[15] M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. Autolink - a toolfor the automatic and semi-automatic test generation. In Proceed-ings of the Seventh GI/ITG Technical Meeting on Formal DescriptionTechniques for Distributed Systems, Berlin, June 1997.[16] D. Toggweiler, J. Grabowski, and D. Hogrefe. Partial order simulationof SDL speci�cations. In R. Braek and A. Sarma, editors, Proceedingsof the 7th SDL Forum, Oslo, 1995. Elsevier.Publications concerning Autolink can be downloaded fromhttp://www.itm.mu-luebeck.de/research/autolink/8 BIOGRAPHYMichael Schmitt studied computer science with focus on computational lin-guistics at the University of Koblenz, Germany, where he graduated with adiploma degree in September 1996. Since October 1996 Michael Schmitt is aresearch assistant at the Institute for Telematics at the Medical University ofL�ubeck, Germany.Beat Koch studied computer science at the University of Bern, Switzerland.

BIOGRAPHY 17After his graduation in 1994, he worked in the industry for two years. Since1996, he is a research assistant at the Institute for Telematics.Jens Grabowski studied computer science and chemistry at the Universityof Hamburg, Germany, where he graduated with a diploma degree. From 1990to October 1995 he was a research scientist at the University of Berne, Switzer-land, where he received his Ph.D. degree in 1994. Since October 1995 JensGrabowski is researcher and lecturer at the Institute for Telematics.Dieter Hogrefe studied computer science and mathematics at the Universityof Hannover, Germany, where he graduated with a diploma degree and laterreceived his PhD. From 1983 to 1995 he worked at various positions in theindustry and at universities. Since 1996 he is director of the Institute forTelematics and full professor at the Medical University of L�ubeck.

