©02.06.89 RESE Spnre il TR Putting Extended Sequence Charts to Practice

Putting Extended Sequence Charts to Practice

(Final Version)

Jens Grabowski, Dr. Ekkart Rudolph
Siemens AG, ZFE F 2 SOF 1
Otto-Hahn-Ring 6

D-8000 Miinchen 83

Fed. Rep. of Germany

Introduction

Within the SDL-User-Guidelines [1] only a short section is devoted to Sequence Charts
(SC) as one of the auxiliary diagrams. However within an integrated tool set for the
design of real time systems, particularly telecommunication systems, SC’s may very well
play an important role. The power of SC’s shows up even more if the pure message form
(standard-form) is extended by some additional concepts, mainly coming from
SDL-process diagrams[4]. Eventually one trace in an SDL——system can be descrzbed
completely by an extended SC. g :
The main importance of SC’s, providing a graphically transparent descrlptlon of system
behaviour, lies in the stage of requirement definition. All later stages in system design
have to be shown to be consistent with the SC’s, set up for requirement definition. Thus
SC’s also provide a basis for test cases of the later implemented system. Beyond that,
the stepwise refinement of SC’s offers a realistic chance for a systematic computer aided
and user guided construction of SDL~process diagrams from SC'’s.

A discussion of the role of SC’s within the whole software lifecycle is presented in
chapter 1. In chapter 2 several variants of -SC’s are introduced providing a stepwise
refinement of the pure message form. Chapter 3 is devoted to the semantics of SC's
particularly to the (time)ordering of SC-events. Finally in chapter 4 the realization of the
presented methodology within an integrated set of tools for software design is elucidated.

1. Sequence Charts in System Engineering

- 1.1 Requirement Engineering

Static Aspects: System Partitioning by SDL-Block-Diagrams

The static or structural aspects of requirement definition show the functional partitioning
of the system. In practice the partitioning is influenced also by the hardware components
being involved. For the description of these static features SDL provides the hierarchical
concept of block interaction diagrams.

01



02.06.89%% si=% '..en S - .Pum'ng Extended Sequence Charts to Practice

L BYRRTILE 2

Dynamic Aspects

~ The dynamic aspects of requirement definition are concerned with the (correct) system
behaviour, i.e. the system reaction with respect to input signals. The required system
behaviour can be described by traces. If the structural properties of the system, i.e. the
- partitioning into blocks and processes is ‘clarified already, then (extended) SC’s offer an
appropriate graphical representation of such traces, which also presents the time
(causal) ordering of events in an intuitive manner (chapter 3).

If the system partitioning still has to be derived from the dynamic behaviour, before the
employment of SC’s other trace representations have to be chosen, e.g. Mazurkiewicz
traces [5].

1.2 Construction of SDL-Process Dlagrams Based on a Stepw;se Refinement of
Sequence-Charts

The construction approach we have in mind is highly interactive and is based on suffi-
ciently refined SC’s: we assume SC’s in the state- or state-input-form representing the
- 'correct’ system behaviour. On this stage of design it seems to be reasonable to support
- the combination of traces (more exactly the projections of traces onto instance axes) to
SDL-process diagrams (PD). The obtained PD’s have to be supplemented by non-stand-
ard behaviour.

1.3 Consistency Check between SDL-Process Diagrams and Sequence Charts

A consistency check between PD’s and SC’s is necessary, since an SDL-system construc-
tion from SC’s in practice is not fully automatic and the SDL-specification of a software
system often is enhanced afterwards due to further requests by the customer. '
Within such a consistency check essentially the symbol sequences along each instance
axis of the SC have to be found in the corresponding PD’s. That way also a reﬁnement
of existing SC s can be gamed

l 4 Sequence Chart Generahon from SDL—Process Dzagrams

To remain in agreement with a' possible enhancement of the SDL-system, for future
consistency checks (1.3) and test case generation (1.6) the set of representative SC’s has
to be updated by generating new SC’s from PD’s.

1.5 Documentatlon (SO

Although SDL-diagrams descnbe the dynamlc behaviour of the complete specified sys-
tem, for documentational purposes the representation is sufficiently transparent only
with respect to single processes. Even within each process the SDL-description in gen-
eral is very compact, such that other representations showing selected traces are desir-
able. For the documentation of process communication within a system configuration
which may be complicated by several instances of the same process type, auxiliary dia-
grams are indispensable. Extended SC’s with an optional degree of refinement combine
both, a description of individual traces within one process (along one instance axis), and
a description of process communication by message arrows.--

1.6 Test Case Representation

SC’s provide the basis for a black box test of the implemented system:
Signals coming from the environment provide input data.
Signals sent to the environment present the system reaction.

02




A

'02.06.89 = I ' Putting Extended Sequence Charts to Practice

Within a test edxtor the test cases have to be enhanced by internal data transported by

‘signals. :
SC’s in the state-input-form also admit the generanon of non standard test cases (3. 3)

Test cases for white box tests can be generated by the extraction of mternal 51gnals
Other representations of test cases have been provided in [7].

2. Different Variants of Sequence Charts

2.0 System Representation by SDL-Process Diagrams and Sequence Charts

SDL-process diagrams and SC’s can be looked at as two different kinds of system repre-
sentation which are complementary in many respects. SDL provides a comprehensive
description of system behaviour within one SDL-process (type), whereas the communi-
- cation between several: processes is represented in a fairly indirect manner (a more
formal description of process communication can be gained by means of equivalent Petri
Net representations [2]).

. A complete system configuration is built out of one or several instances of process types.

SDL-process diagrams provide the starting point for code generation.

Contrary to that, SC’s describe traces within a specific system configuration in form of
signal flow diagrams. Thus SC’s illustrate the process communication for special cases.
A refinement of SC’s is possible within the state- and state-input-form. In realistic
systems a large set of SC’s would be necessary for a complete description of system
behaviour (in practice one has to restrict oneself to a representative subset).

In the following, three variants of SC’s are introduced which refer to different stages of
system development. Apart from slight modifications the symbols of the standard-form

~ correspond to the SC’s described in the SDL-User-Guidelines [1].

2.1 Standard-Form

An SC in the standard-form (figure 2.1, 2.2) consists of process instances (obligatory),
environments (optional), messages (obligatory), dialogs (optional), end (obligatory) -
and interruption-symbols (optional). An SC may contain-one or several environments,
graphically distinguished from the process instance-symbol.- A dialog-symbol is a short-
hand notation for a message and a message answer between two process instances
whereby on an early stage of design the direction is left open. Thus the dialog symbol
‘connection’ in figure 2.2 (a) may be a substitute either for message ’seizure’ from
Subscriber_A to Subscriber_B and 'answer’ from Subscriber_B to Subscriber A (figure
2.2 b) or the same messages with exchanged sender/receiver (figure 2.2 c).

The end-symbol marks the end of a process instance axis. ;

A process instance axis may be interrupted by another process instance within the same
column, in order to get a compact and transparent graphical layout. The interruption
symbol marks the interruption of an instance axis (in figure 2.1 the instance axis of
Subsriber B is interrupted by Subscriber C).

2.2 State-Form

The state-form is meant to be a refinement of the standard-form. All symbols of the
standard- form are contained in the state-form apart from the dialog symbol which on
this stage of design should be refined by messages. Beyond that an SC in the state-form
(figure 2.3) consists of STATE’s (obligatory), START’s (optional), SC-decision_results

03



Ay

020580 . - Putting Extended Sequence Charts to Practice

(optional), TASK’s (optional), SC-creates (optional), COMMENT's (optional), STOP’s
(optional). Contrary to [4] the inclusion of TASK's (2.2, 2.3) seems to us to be meaning- .
ful since a fully refined SC should descrlbe a complete trace in an SDL-system for
documentation etc.

Apart from the SC-decision_result and the SC-create—symbol the addmonal elements
are identical with SDL-symbols. The SC-decision result is a DECISION-symbol with
one chosen result (figure 2.3). For simple cases (branchings do not contain message_out-
puts) the decision_result-symbol may be generalized to a construct showing more then
one results. The graphical layout for the SC-create-symbol (figure 2.4), combining an
CREATE-symbol and a message arrow, differs from [4].

Along each environment axis the syntax form is identical with the standard-form. Along
each process instance axis we use the following syntax rules (a message-input is denoted
by the arrowhead of a message, a message-output by the origin):

- In the- state-form each message-input has to be preceded by a: STATE—symbol. First

symbol on each instance axis has to be a STATE or a START. The START or the

- message-input is followed- by a. transition. consisting of TASK's,. COMMENT’s,

CREATE'’s, message-outputs, decision_results. Last symbol on a process instance axis
may be either a STATE or STOP, the latter denoting a process stop ;

emlronment Subscriber A SUbscrlber B :
— Subscriber_A Subscriber_B

- dlglte d‘glte | e
off_hook : : digite digite
dial _tone . connection
digit
seizure ) ' (a)
ackKizrd 3 LY 5 ;
~ Subscriber_C _ Subsr.:ribar A SubscLbar B
| off hook ~ digite ' diglte : digite
= selzure
dial_tone .
selzure ? e~ T
nack ' '
e
|_on_hook (b)
§ i;_'?r 5 - Subscriber_A Subscriber_B
ubscribe
v ——— digite digite
| off_hook digite F S
- —
XL ——. answer
|_on_hook
[ release : (c)
[, on_hook figure 2.2: Dialog-symbol (a)
o e i b i et substituting (b) or (c)

figure 2.1: Sequence Chart in the standard-form

2.3 State-Input-Form

Within the state-input-form the set of symbols used in the state-form is extended by an
INPUT-symbol. As is explained and justified in detail in 3.3 an INPUT-symbol is used
in addition to the message-symbol in order to distinguish between message reception
(i.e. entry into the message queue of the process instance) and message consumption. In
the SC-state-form a message-input is supposed to denote the message consumption
(there is no separate indication of the message reception) whereas in the state-input-
form a message-input denotes message reception and the INPUT-symbol denotes mes-

04




'0'2:(:96.89”-\ MERME S Putiiﬁg Extended Sequence Charts to Practice

sage consumptlon Thus the state trans;tlon in thc state»mput—form 1s initiated by an
INPUT-symbol which must be preceded by a correspondmg message-mput (figure 2.5).
The other way round normally a message-input should have a corresponding INPUT-
symbol as one of the successors. If this is not the case it would mdlcate the message
consumption without transition i.e. a null transition. o

environment  Suscriber_A  Suscriber_B master utask
SR
digite ] digite | -
( idie ) ( idle ) = (sTART
ff_hook - '
]o—"—'i’ "Eselzure CREATE
{ hot_line) ‘ START)
no : : :
dial tone : T
= figure 2.4: SC-create-symbol
diglt_
{receptaon )
3 ]digit ; ; ; ! : : :
: seizure N ; 5y 9“"’;’;’;’:‘9“" e process_1 - process 2
e
: read
~ ( request set_busy : : ready ] Be
ack process data
e | - =
wait_ selzure L start
answer internal’) g
off_hook
answer f
| 1k
) i =
_ e
on_hook o T & : ala
J......ﬂ._._._._._p
elbeie process data
walit : : ; e wait
on_h‘oop ; cay for_dat
L on_hook :
)

(@ ) (e ) . figure 2.5: Sequence Chart in state-input-form

figure 2.3: Sequence Chart in state-form

2.4 Further Extensions :

The described variants of SC’s admit further extensions or modifications in different
directions. On the one hand one may add further symbols and extend the syntax rules,
on the other hand a modularisation concept may be included.

Firstly we agree with the authors of [4] not to use the following SDL-symbols within an
SC: SAVE, PROCEDURE. The saving of a signal can be indicated within the state-in-
put-form by assigning an ordering to the INPUT-symbols which differs from the order-
ing of corresponding message inputs (i.e. the ordering of message reception differs from
the ordering of corresponding message consumption). The behaviour of PROCEDURE's
should be shown in an expanded manner [4] since they may contain signals. ENABLING
CONDITION and CONTINOUS SIGNAL might be included similarly to TASK’s in 2.2,
the latter leading to a transition without signal consumption.

05



02,0685 T o L il Putting Extended Sequence Charts to Practice

Beyond the extension by SDL—symbo]s we intend to include constructs for the generali-
zation of the t1me ordermg on an mstance axis and for modu]arlsatlon [4] (macro brack-
ish e 78

A further extension refers to the syntax rules. In practlce the syntax of the state- or
state-input-form may be too stringent.. Thereforc in a fourth form (mixed-form) also
the use of STATE's is left optlonal

3. Semantics of Sequence Charts

3.1 Standard-Form -~

In the standard-form the arrowhead of a message denotes the signal consumption and
the opposite end (message origin) denotes the sending of a signal. Thus each message
can be split into two events, e.g. the first message in figure 3.1 into T1 (send) and T2 -
(consumption).

No global time axis is assumed for one SC. Along each instance axis the time is running
from the top to the bottom, however we do not assume a true time scale. A total time
ordering of events is assumed along each instance axis; of course a signal first has to be
sent before it may be consumed. No other ordering is prescribed. An SC therefore im-
poses a partial ordering on the set of events being contained. For the SC of flgure 3.1a
we derive the following partial ordering:

T1 <127 13< T4 I5<T6:Ti<T8 12<1I3<15¢ T6 T4 < T7 and the transitive
closure. ,

The partial ordermg can be described in the minimal form by a conncctmty graph (fig-
ure 3.1 b) » _

environment proc_a proc_b proc_c
e e TmEERY R e

(& rom G
T3 T4 T1 »T2
| 15 T6
18 T7

(a)

figure 3.1: Partial event ordering of a Sequence Chart in the standard form
(Sequence Chart and corresponding connectivity graph)

3.2 State-Form

Within the state-form the message semantics of the standard-form is preserved. The
partial ordering is analogous to the standard-form: total ordering of SC-events together
with SDL-symbols along each axis, ordering between events on different axes merely via
messages.

3.3 State-Input-Form

Proceeding to the state-input-form the message semantics is enhanced. A message ar-
rowhead now denotes signal reception (the message origin again indicates the signal send-
ing). The INPUT-symbol denotes the message consumption. In this way it is possible to

06




e O 6.;99 DL 48 pu;;fng Extended Sequence Charts to Practice

describe situations where the order of signal consumption is inverse to the order of
signal reception which may be caused by signal saving, ENABLING CONDITION’s or
priority signals in services (a different illustration of priority signals is proposed in [1]).
In addition non-standard sm:at:ons of signal transfer may be descrlbed for test case
generation.

Signal sending, signal reception, signal consumpuon and the followmg state transition
are totally ordered. The reception of signals takes place in the order prescribed on each
axis. Thus in figure 2.5 the signal 'process data’ is received before ’start’. However the
signal ’start’ is consumed before the signal ’process data’, which is possible if signal
"process data’ for instance is saved in the corresponding SDL-process diagram.

In case where signals are consumed immediately after signal reception, the INPUT-sym-
bol can be omitted and one arrives back at the state-form.

3.4 - Extensions

- Macro constructs (macro brackets) can be looked at as a contraction of process instances
which are not yet specified on this stage of design. Macro constructs admit the descrip-
tion of the external behaviour. For a macro bracket at most a partial ordering of events
may be prescribed. : et
Independence brackets may be used for a comprehensive representatxon of situations
where the ordering of certain events along one instance axis is irrelevant.

4. Integrated Set of Tools

Graphic editors for SDL-block diagrams, SDL-process diagrams and Sequence Charts
are part of an integrated set of tools for SDL-system design which are used for the
specification of switching systems (HICOM), automation technology, and reverse engi-
neering [3],[6]. Corresponding tool components for static analysis (syntax check, static
consistency checks) are available.

In particular each of the variants of extended Sequence Charts (chapter 2) may be
checked syntactically.This includes an analysis of signal exchange and signal consump-
tion. Special features of the signal flow can be visualized, especially the signal process-
ing due to one selected message-input. Beyond that, the causal structure of SC-events
(successors, predecessors, concurrent events) can be analyzed and visualized. In that
way also inconsistencies, e.g. acausalities leading to deadlocks, are detected.

The tool set includes code generators for the generation of C- and CHILL-programs
from SDL-specifications.

Currently the development of tools for PD / SC-consistency check (1.3) and SC-genera-
tion from PD’s (1.4) is in progress. In addition the Sequence Chart editor is employed
for the visualization of program flow in the implemented system.

07



02.06.89 e '_ : Putting Extended Sequence Charts to Practice

Literature o
[1] CCITT Recommendation Z.100-Annex D
- SDL User Guidelines, 1988 _ iz oo

(2] Graubrﬁann, P.; Rudolph, E.: A method and a Tool for the Validation of
SDL-Diagrams, Second SDL Users and Implementers Forum, Helsinki, 1985

[3] KoBmann, H.: An Integrated Set of Tools for Software Design,
SDL ’87 State of the Art and Future Trends, (R. Saracco, P. A. J. Tilanus
eds.), North Holland, Amsterdam, 1987

[4] Tilanus, P.A.J.; Dijkerman, E.: On the Combination of SDL and Message
Sequence Charts, CCITT SDL Newsletter 12, 1988

[5]- - Graubmann, P.: The construction of EN systems from a given trace be-
haviour, Advances in Petri Nets 1988,(G. Rozenberg, ed.), Springer-Verlag,

o 1988 '

[6] Tempel, H.G.: A Set of Tools supporting the Software Design Based on SDL,

[7]

1st European Software Engineering Conference, Strasbourg 1987, Springer
Verlag, 1987 ' Sk

Hogrefe, D.: Automatic generation of test cases from SDL specifications,
CCITT SDL Newsletter 12, 1988

08



