
CrossPare: A Tool for Benchmarking Cross-Project
Defect Predictions

Steffen Herbold
Institute of Computer Science

Georg-August-Universität Göttingen, Germany
Email: herbold@cs.uni-goettingen.de

Abstract—During the last decade, many papers on defect
prediction were published. One still for the most part unresolved
issue are cross-project defect predictions. Here, the aim is to
predict the defects of a project, with data from other projects.
Many approaches were suggested and evaluated in recent years.
However, due to the usage of different implementations and data
sets, the comparison between the work is a hard task. Within
this paper, we present the tool CrossPare. CrossPare is designed
to facilitate benchmarks for cross-project defect predictions.
The tool already implements many techniques proposed within
the current state of the art of cross-project defect predictions.
Moreover, the tool is able to load different data sets that are
commonly used for the evaluation of techniques and supports
all major performance metrics. Through the usage of CrossPare
other reseachers can improve the comparability of their results
and possibly also reduce their implementation efforts for new
cross-project defect prediction techniques by reusing features
already offered by CrossPare.

I. INTRODUCTION

Due to its potential for the support of software quality
assurance, defect prediction has been under investigation for
a long time. However, due to the hardness of the problem,
parts are still unresolved. Especially the prediction of defects
in a cross-project context, i.e., with data that is not from the
project for which the prediction is being made. In a study
by Zimmermann et al. [1], the authors determined that only
3.4% of their cross-project predictions achieved more than
0.75 recall, precision, and F-measure. While this exact value is
influenced by the data of the case study and may be too low in
general, it demonstrates how hard the problem of cross-project
defect predictions is.

Over the years, researchers have proposed many ap-
proaches for the improvement of the performance of cross-
project predictions. Most approaches apply the concept of
transfer learning, i.e., the usage of information from the
target product to either process the training data, select a
subset of training data, or manipulate the defect prediction
model directly in some other way with this knowledge. The
approaches suggested were quite diverse. Turhan et al. [2]
suggested a k nearest neighbor approach where only the closest
entites to the target project are selected, Watanabe et al. [3] and
Nam et al. [4] suggest approaches for the normalization of data,
Ma et al. [5] suggest to use data weighting, and [6] suggest
data transformation. Some other approaches focus rather on
the selection of appropriate projects from a pool of candidates.
Zimmerman et al. [1] themselves already suggest a decision
tree based on context factors (e.g., programming languages
and technologies used). Herbold [7] instead suggest to use the

distribution of the data to select projects. He et al.[8] propose
to use the separatebility between projects to select data.

While this is only a selection of the work produced on
cross-project defect prediction, all of the above share one
problem: they are all implemented independent of each other
and use different data and performance measures for the
evaluation of the performance. Some papers perform some
baseline comparisons, e.g., to the cross-validation performance
or to the k-nearest neighbor by Turhan et al. [2]. However, an
overall comparison between the suggested approaches is still
almost impossible which makes it difficult for researchers to
compare their results among each other.

Within this paper, we want to present CrossPare, a tool
created for the benchmarking of cross-project defect prediction
techniques. CrossPare is developed as open-source project
(https://crosspare.informatik.uni-goettingen.de/) and can be re-
used by other researchers who want to compare their tech-
niques or contribute their techniques to CrossPare. The key
features that CrossPare provides are the following.

• Support for multiple public defect prediction data sets
that can be used for the comparison of techniques.

• Implementation of many cross-project defect predic-
tion techniques proposed within the state of the art.

• Evaluation of the results with all commonly used
performance metrics.

• Easily configurable benchmarks for the detailed eval-
uation of techniques.

• Extensibility with new loaders for data formats, defect
prediction techniques, and performance measures.

With CrossPare, we provide researchers with a powerful tool
they can use to benchmark their defect prediction techniques
and compare their results with others. CrossPare removes
the need to re-implement the state of the art over and over
again in order to provide comparisons. Moreover, by extending
CrossPare with their new techniques, researchers can make
sure that others are able to compare their suggested techniques
properly to better disseminate their results.

The remainder of this paper is structured as follows. First,
we discuss the key aspects of the architecture and implemen-
tation of CrossPare in Section II. We introduce the interfaces
of CrossPare against which defect prediction techniques are
implemented. Then we show how the benchmark workflow
of CrossPare works and explain how users can define their

own benchmark configurations. Afterwards, we give a detailed
overview of the features of CrossPare, including a list of the
already supported cross-project defect prediction techqniues in
Section III. Finally, we conclude our paper and give an outlook
on future work in Section IV.

II. ARCHITECTURE AND IMPLEMENTATION

CrossPare is implemented as a stand-alone Java application
that is called via command line. Currently, CrossPare requires
at least Java version 7. In this section, we consider three key
aspects of the architecture and implementation: 1) the usage
of WEKA [9] as machine learning core; 2) strict program-
ming against interfaces in order to allow the components of
CrossPare and by extension the defect prediction approaches
to be interchangable; and 3) easy configuration of benchmark
experiments.

A. Machine Learning

The first aspect of CrossPare is the usage of WEKA as
machine learning core. WEKA provides many state of the
art machine learning algorithms, as well as many powerful
data processors which can be useful for the implementation
of techniques for cross-project predictions. WEKA can either
be used as a stand-alone Java application or as a library.
Since CrossPare is implemented in Java, we decided on the
latter, i.e., to use WEKA as a library and call its functionality
directly within CrossPare. This way, we can communicate with
WEKA directly using only the main memory without having
to store information to the hard disk, which would degrade
performance greatly.

In order to simplify the communication with the WEKA li-
brary, we decided to re-use the data model of WEKA internally
in CrossPare. The data representation within WEKA consists
of basic parts: Instance objects which are basically an array
of doubles and represent values of the data and Instances
objects which are a complete data set. CrossPare loads all data
into WEKA Instances and can, therefore, easily call any
functionality provided by WEKA from within CrossPare.

B. Interfaces

The second key aspect of CrossPare is that the architec-
ture prescribes a set of interfaces, depicted in Figure 1. All
functionality of CrossPare is hidden behind these interfaces.
The core of CrossPare is programmed strictly against these
interfaces. Thereby, any class that implements the interface,
can be directly used within CrossPare. The interfaces are the
following.

• IVersionLoader: import of data into CrossPare,
e.g., for the defect prediction data set curated by
Jureczko and Madeyski [10].

• IVersionFilter: responsible for removing soft-
ware versions from the loaded projects that do not
meet certain minimal criteria, e.g., regarding their size.

• IProcessingStrategy: applies a processor to
the test and training data, e.g., normalization. The test
and the training data are passed seperately, such that
they can be treated differently.

Fig. 1: Interfaces provided by CrossPare.

• ISetWiseProcessingStrategy: same as
IProcessingStrategy, except that if training
data from multiple projects is available, they are each
passed separatly in a set which facilitates different
treatment of the data in each project.

• IPointWiseDataselectionStrategy: creates
a subset of the training data. The test data is usually
used as the foundation for this, e.g., in the k-nearest
neighbor approach by Turhan et al. [2].

• ISetWiseDataselectionStrategy: reduces
the training data by deleting complete projects from
the training data. The test data is usually used as
the foundation for this, e.g., in the strategy based
on the distribution of the test and training data by
Herbold [7].

• ITrainer: parent interface for all training
algorithms for the actual defect prediction.
Is not implemented directly, instead the
child interfaces ITrainingStrategy and
ISetWiseTrainingStrategy are implemented.

• ITrainingStrategy: interfaces the training of all
defect prediction models, where the training data is
taken as a single set. This is the usual case.

• ISetWiseTrainingStrategy: interface the
training of ensemble models for defect prediction,
where a separate prediction model is trained for each
project from which training data is available. An
example for this is the bagging strategy proposed by
He et al. [8].

• IEvaluationStrategy: takes the test data and a
list of defect prediction models that was previously
trained and evaluates the performance of the models
on the test data.

C. Benchmark Workflows

The third key part of CrossPare is the definition of work-
flows for the benchmarking. The main part of a workflow

Listing 1: Benchmark workflow for cross-project defect predictions in CrossPare

p u b l i c vo id run () {
f i n a l L i s t <S o f t w a r e V e r s i o n> v e r s i o n s = new L i n k e d L i s t <>();
f o r (I V e r s i o n L o a d e r l o a d e r : c o n f i g . g e t L o a d e r s ()) {

v e r s i o n s . a dd Al l (l o a d e r . l o a d ()) ;
}
f o r (I V e r s i o n F i l t e r f i l t e r : c o n f i g . g e t V e r s i o n F i l t e r s ()) {

f i l t e r . a p p l y (v e r s i o n s) ;
}
f o r (S o f t w a r e V e r s i o n t e s t V e r s i o n : v e r s i o n s) {

/ / S e t u p t e s t d a t a and t r a i n i n g da ta
I n s t a n c e s t e s t d a t a = t e s t V e r s i o n . g e t I n s t a n c e s () ;
Set<I n s t a n c e s > t r a i n d a t a S e t = s e t C a n d i d a t e T r a i n i n g D a t a () ;

f o r (I S e t W i s e P r o c e s s i n g S t r a t e g y p r o c e s s o r : c o n f i g . g e t S e t W i s e P r e p r o c e s s o r s ()) {
p r o c e s s o r . a p p l y (t e s t d a t a , t r a i n d a t a S e t) ;

}
f o r (I S e t W i s e D a t a s e l e c t i o n S t r a t e g y d a t a s e l e c t o r : c o n f i g . g e t S e t W i s e S e l e c t o r s ()) {

d a t a s e l e c t o r . a p p l y (t e s t d a t a , t r a i n d a t a S e t) ;
}
f o r (I S e t W i s e P r o c e s s i n g S t r a t e g y p r o c e s s o r : c o n f i g . g e t S e t W i s e P o s t p r o c e s s o r s ()) {

p r o c e s s o r . a p p l y (t e s t d a t a , t r a i n d a t a S e t) ;
}
f o r (I S e t W i s e T r a i n i n g S t r a t e g y s e t w i s e T r a i n e r : c o n f i g . g e t S e t W i s e T r a i n e r s ()) {

s e t w i s e T r a i n e r . a p p l y (t r a i n d a t a S e t) ;
}
I n s t a n c e s t r a i n d a t a = m a k e S i n g l e T r a i n i n g S e t (t r a i n d a t a S e t) ;
f o r (I P r o c e s s e s i n g S t r a t e g y p r o c e s s o r : c o n f i g . g e t P r e P r o c e s s o r s ()) {

p r o c e s s o r . a p p l y (t e s t d a t a , t r a i n d a t a) ;
}
f o r (I P o i n t W i s e D a t a s e l e c t i o n S t r a t e g y d a t a s e l e c t o r : c o n f i g . g e t P o i n t W i s e S e l e c t o r s ()) {

t r a i n d a t a = d a t a s e l e c t o r . a p p l y (t e s t d a t a , t r a i n d a t a) ;
}
f o r (I P r o c e s s e s i n g S t r a t e g y p r o c e s s o r : c o n f i g . g e t P o s t P r o c e s s o r s ()) {

p r o c e s s o r . a p p l y (t e s t d a t a , t r a i n d a t a) ;
}
f o r (I T r a i n i n g S t r a t e g y t r a i n e r : c o n f i g . g e t T r a i n e r s ()) {

t r a i n e r . a p p l y (t r a i n d a t a) ;
}
f o r (I E v a l u a t i o n S t r a t e g y e v a l u a t o r : c o n f i g . g e t E v a l u a t o r s ()) {

L i s t <I T r a i n e r > a l l T r a i n e r s = new L i n k e d L i s t <>();
f o r (I S e t W i s e T r a i n i n g S t r a t e g y s e t w i s e T r a i n e r : c o n f i g . g e t S e t W i s e T r a i n e r s ()) {

a l l T r a i n e r s . add (s e t w i s e T r a i n e r) ;
}
f o r (I T r a i n i n g S t r a t e g y t r a i n e r : c o n f i g . g e t T r a i n e r s ()) {

a l l T r a i n e r s . add (t r a i n e r) ;
}
e v a l u a t o r . a p p l y (t e s t d a t a , t r a i n d a t a , a l l T r a i n e r s , w r i t e H e a d e r) ;

}
}

}

definition is the selection of CrossPare functions to be exe-
cuted. The (simplified) Java code for the workflow execution
is shown in Listing 1. First, the data is loaded by calling
instances of IVersionLoader, then the data is filtered with
IVersionFilter instances. Afterwards, the cross-project
prediction for each data set that was loaded is performed.
The other data serves as candidate training data.1 Subse-
quently, we apply training-set-wise pre-processors that im-
plement the ISetWiseProcessingStrategy interface,
then apply all training-set-wise data selectors that implement
the ISetWiseDataselectionStrategy interface, and,
finally, we apply all training-set-wise post-processors that im-
plement the ISetWiseProcessingStrategy. The seper-
ation in pre- and post-processors allows us to manipulate the
data before and/or after we perform data selection. Once all
set-wise data manipulations are performed, we call set-wise
training algorithms, i.e., essemble learners like bagging [8].
Then, we join the data of all training candidate projects into a
single data set. Analogous to the set-wise approach, we then
perform pre-processing, data selection, and post-processing,
but this time only for the single set. Then, we train the defetect
prediction models. Finally, we call the evaluators in order to
determine the benchmark results.

As the source code of the benchmark algorithm shows,
CrossPare iterates over lists of instances of each interface.
These lists can be empty. In that case, no instance of the
related interface is called during a benchmark. To create the
lists of data loaders, processors, selectors, trainers, etc., we use
an XML configuration file. The concrete CrossPare functions
are selected by the name of the implementing class. To
instantiate the classes, we use the Java’s Reflection mechanism
to dynamically create the instances at runtime. Within the
XML file, the element names represent the type of interface
that is implemented by a class. The concrete structure of the
configuration files is best explained using an example.

Listing 2 shows a CrossPare workflow configuration file.
In line three of the example, we define how the data
is loaded. CSVFolderLoader implements the interface
IVersionLoader and can handle data from the data set by
Jureczko and Madeyski [10]. The data is located in the relative
subfolder experiment/data. In line four, we define a
version filter called MinClassNumberFilter that imple-
ments the interface IVersionFilter with a parameter
value of 5. The parameter construct can be used with all of
the above interfaces and it allows the passing of a string to
the implementing classes. How the parameters are handled
depends solely on the class. In this case, the value of 5 means
that there must be at least five defect prone and five non-
defect-prone instances in a project, in order to be part of the
experiments. In line five of the example, the data is normalized
per project, i.e., the values are transformed to the interval [0,1]
by calling the Normalization class which implements
the ISetWiseProcessor. Then, in line six the k-nearest
neighbor stragety from Turhan et al. [2] is selected for data
selection. In line seven, we define that undersampling should
be applied as a postprocessor after the data selection. In lines

1In the complete source code of the workflow, a filter is implemented such
that only projects with a different name than the current target project are
selected for the training data. This is to ensure that we are actually in a cross-
project setting and to exclude all data from the same context.

eight to eleven, we define that two defect prediction models
shall be trained. The parameter passed to the WekaTrainer
is the same as a command line call of WEKA itself. We,
thereby, support to train any model that is supported by
WEKA. Within a workflow, an arbitrary number of trainers can
be selected and trained. The trainers are independet of each
other. The usage of multiple trainers at once saves runtime
in case of expensive processing of the data and, moreover,
facilitates comparisons between different machines learning
algorithms. Finally, in lines twelve and thirteen, we define how
the model is evaluated. The location of the results is defined in
line twelve. In line thirteen, we define that a normal evaluator
for models trained with Weka is used. The performance metrics
that are evaluated here are listed in Section III.

All parts of the above configurations are interchangable
and can be combined freely. The only restriction is that some
techniques themselves might not be compatible with each
other. For example, two data weighting techniques cannot be
used together, because the second technique will overwrite the
weigths of the first technique.

III. SUPPORTED FEATURES

With CrossPare, we already support a wide array of tech-
niques, data sets, and performance measures.

A. Cross-project Techniques

Most of the techniques for CrossProject defect prediction
proposed in the literature are implemented within CrossPare.
Only techniques based on the project context are missing,
e.g., Zimmermanns et al.’s [1] decision tree technique or
the approach for universal predictors by Zhang et al. [11].
Concretely, we implemented the approaches proposed in the
following papers.

• The k-nearest neighbor data selection by Turhan et
al. [2].

• The data selection, attribute selection, and bagging
approach proposed by He et al. [8].

• The project-wise data selection approaches proposed
by Herbold [7], including the data weighting scheme
to handle prediction bias.

• The gravity-based approach for data weighting by Ma
et al. [5].

• The local predictors proposed by Menzies et al. [12].
We only support the detection of local areas with
WHERE clustering with CrossPare. The WHICH al-
gorithm for the creation of rules is not supported.

• The standardization methods proposed by Watanabe
et al. [3]

• The power transformation and median-based standard-
ization proposed by Camargo Cruz and Ochimizu [6].

• The normalization techniques based on min/max and
Z-score standardization proposed by Nam et al. [4].

• Undersampling, oversampling, and resampling to treat
bias in the training data.

Listing 2: Example of a CrossPare configuration file.

1 <? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =”UTF−8” ?>
2 <c o n f i g>
3 < l o a d e r name=” CSVFolderLoader ” d a t a l o c a t i o n =” e x p e r i m e n t / d a t a ” />
4 <v e r s i o n f i l t e r name=” M i n C l a s s N u m b e r F i l t e r ” param=” 5 ” />
5 <s e t w i s e p r e p r o c e s s o r name=” N o r m a l i z a t i o n ” param=” ” />
6 <p o i n t w i s e s e l e c t o r name=” T u r h a n F i l t e r ” param=” 10 ” />
7 <p o s t p r o c e s s o r name=” Undersampl ing ” param=” ” />
8 < t r a i n e r name=” WekaTra in ing ”
9 param=” RandomForest weka . c l a s s i f i e r s . t r e e s . RandomForest −CVPARAM I 5 25 5 ” />

10 < t r a i n e r name=” WekaTra in ing ”
11 param=”C4.5−DTree weka . c l a s s i f i e r s . t r e e s . J48 −CVPARAM C 0 . 1 0 . 3 5 ” />
12 < r e s u l t s p a t h p a t h =” e x p e r i m e n t / r e s u l t s ” />
13 <e v a l name=” NormalWekaEvaluat ion ” param=” ” />
14 < / c o n f i g>

B. Data Sets

Currently, we can import data from the following data sets
into CrossPare.

• The Java defect prediction data donated by Jureczko
and Madeyski [10], hosted in the tera-PROMISE
repository [13].

• The preprocessed version of the NASA MDP data set
provided by [14] also hosted in the tera-PROMISE
repository.

• The automotive data set collected at Audi [15].

• The Eclipse metric set donated by D’Ambros et
al. [16].

• The defect prediction data set based on the data mined
by Mockus [17] prepared for defect prediction by
Zhang et al. [11].

• Defect data mined with the DECENT model-based
software mining approach [18].

Note, that we currently cannot recommend to use data from
multiple sets within the same benchmark. This is due to the
difference in the metric sets used.

C. Performance Measures

CrossPare supports a wide array of performance measures
that are already used in the defect prediction literature: error,
precision, recall, F-measure, G-measure, true positive rate, true
negative rate, AUC, AUCEC according to [19]. Additionally,
CrossPare reports the confusion matrix, i.e., true positives, true
negatives, false positives, and false negatives.

D. Additional Features

Another notable feature of CrossPare is that the bench-
marking workflow itself can be changed, i.e., other work-
flows then the one presented in Listing 1 are possible. The
benchmarking workflow itself is from CrossPare’s perspective
also hidden behind an interface, the IExecutionStrategy
interface. By default, the workflow we described above is
choosen. However, through an additional class that implements

the IExecutionStrategy and an appropriate entry to the
configuartion file, other workflows are also possible.

Moreover, CrossPare also supports within-project predic-
tion with 10x10 cross validation. To this aim, CrossPare
provides a separate evaluator, the CVWekaEvaluation. We
evaluate the same performance metrics as for the cross-project
defect predictions.

Furthermore, we provide filtering mechanisms for projects
that are allowed within a case study. This way, a complete
data set can be loaded, but only a subset that meets certain
criteria is included in the actual benchmark. We currently
support filtering based on the number of instances available
for a project, the number of instances per class (i.e., defect-
prone and non-defect-prone), and the bias of the data. With
the latter, we allow, e.g., the exclusion of projects, where less
than 5% of the instances are defect prone.

Additionally, CrossPare provides some rudimentary support
for the parallel execution of tasks. Each experiment config-
uration is executed in its own thread. This way, multiple
benchmarks can be performed at the same time to fully utilize
the computational power of a machine.

IV. CONCLUSION

Within this paper, we present our tool CrossPare for the
benchmarking of cross-project defect predictions. CrossPare
provides a flexible and extensible framework within which
cross-project defect prediction approaches can be implemented
and compared to each other. A standard benchmarking work-
flow is already implemented and can be used by the definition
of XML configuration files with the information which tech-
niques shall be executed and evaluated. Furthermore, Cross-
Pare supports a large array of machine learning algorithms for
the creation of the defect prediction models by using WEKA
as machine learning core. Moreover, many different data sets
can already be imported into CrossPare.

Due to its nature as open source software, other researchers
can extend CrossPare on their own or contact us to give them
access to the main development trunk of CrossPare to integrate
their contributions.

In the future, we plan to work on the execution backend
of CrossPare in order to allow massive parrallelization of

experiments in cloud infrastructures. We already tested a
simple Map/Reduce approach to distribute tasks to the cloud
to scale the execution of experiments [20]. We plan to build
on this foundation in order to allow large-scale benchmarks in
a short amount of time. Moreover, we are always interested in
adding new techniques for cross-project defect prediction, as
well as support for more data sets to CrossPare.

REFERENCES

[1] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy,
“Cross-project defect prediction: a large scale experiment on data vs.
domain vs. process,” in Proc. the 7th Joint Meeting European Softw.
Eng. Conf. (ESEC) and the ACM SIGSOFT Symp. on the Foundations
of Softw. Eng. (FSE), 2009.

[2] B. Turhan, T. Menzies, A. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Softw. Eng., vol. 14, pp. 540–578, 2009.

[3] S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault prediction
model to allow inter language reuse,” in Proc. 4th Int. Workshop on
Predictor Models in Softw. Eng. (PROMISE). ACM, 2008.

[4] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc. 35th
Int. Conf. on Softw. Eng. (ICSE), 2013.

[5] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-
company software defect prediction,” Inf. Softw. Technology, vol. 54,
no. 3, pp. 248 – 256, 2012.

[6] A. E. Camargo Cruz and K. Ochimizu, “Towards logistic regression
models for predicting fault-prone code across software projects,” in
Proc. 3rd Int. Symp. on Empirical Softw. Eng. and Measurement
(ESEM). IEEE Computer Society, 2009.

[7] S. Herbold, “Training data selection for cross-project defect prediction,”
in Proc. 9th Int. Conf. on Predictive Models in Softw. Eng. (PROMISE).
ACM, 2013.

[8] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source
projects: An empirical study on defect prediction,” in Proc. 7th Int.
Symp. on Empirical Softw. Eng. and Measurement (ESEM), 2013.

[9] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA data mining software: an update,” ACM SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[10] M. Jureczko and L. Madeyski, “Towards identifying software project
clusters with regard to defect prediction,” in Proc. 6th Int. Conf. on
Predictive Models in Softw. Eng. (PROMISE). ACM, 2010.

[11] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building
a universal defect prediction model,” in Proc. 11th Working Conf. on
Mining Softw. Repositories (MSR), 2014.

[12] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus Global Lessons for De-
fect Prediction and Effort Estimation,” IEEE Transactions on Software
Engineering, vol. 39, no. 6, pp. 822–834, June 2013.

[13] T. Menzies, C. Pape, and C. Steele, “tera-promise,” http://openscience.
us/repo/, 2014.

[14] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data Quality: Some
Comments on the NASA Software Defect Datasets,” IEEE Transactions
on Software Engineering, vol. 39, no. 9, pp. 1208–1215, 2013.

[15] H. Altinger, S. Siegl, Y. Dajsuren, and F. Wotawa, “A novel industry
grade dataset for fault prediction based on model-driven developed
automotive embedded software,” in Proc. 12th Working Conf. on Mining
Softw. Repositories (MSR). Florence, Italy: IEEE, 2015.

[16] M. D’Ambros, M. Lanza, and R. Robbes, “An Extensive Comparison of
Bug Prediction Approaches,” in Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories (MSR). IEEE Computer
Society, 2010.

[17] A. Mockus, “Amassing and indexing a large sample of version
control systems: Towards the census of public source code history,” in
Proceedings of the 2009 6th IEEE International Working Conference
on Mining Software Repositories, ser. MSR ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 11–20. [Online]. Available:
http://dx.doi.org/10.1109/MSR.2009.5069476

[18] P. Makedonski, F. Sudau, and J. Grabowski, “Towards a model-
based software mining infrastructure,” SIGSOFT Softw. Eng. Notes,
vol. 40, no. 1, pp. 1–8, Feb. 2015. [Online]. Available: http:
//doi.acm.org/10.1145/2693208.2693224

[19] F. Rahman, D. Posnett, and P. Devanbu, “Recalling the “imprecision”
of cross-project defect prediction,” in Proceedings of the ACM SIG-
SOFT 20th International Symposium on the Foundations of Software
Engineering (FSE). ACM, 2012.

[20] M. Göttsche, F. Glaser, S. Herbold, and J. Grabowski, “Automated
Deployment and Parallel Execution of Legacy Applications in Cloud
Environments,” in The 8th IEEE International Conference on Service

Oriented Computing & Applications (SOCA), 2015.

