
A Model for Usage-based Testing
of Event-driven Software

Steffen Herbold, Jens Grabowski, Stephan Waack
Georg-August-Universität Göttingen

Intitute of Computer Science
Göttingen, Germany

Email: {herbold, grabowski, waack}@cs.uni-goettingen.de

Abstract—Event-driven software is very diverse, e.g., in form of
Graphical User Interfaces (GUIs), Web applications, or embedded
software. Regardless of the application, the challenges for testing
event-driven software are similar. Most event-driven systems
allow a huge number of possible event sequences, which makes
exhaustive testing infeasible. As a possible solution, usage-based
testing has been proposed for several types of event-driven
software. However, previous work has always focused on one
type of event-driven software. In this paper, we propose a
usage-based testing model for event-driven software in general.
The model is divided into three layers to provide a maximum
of platform independence while allowing interoperability with
existing platform dependent solutions.

I. INTRODUCTION

Event-driven software plays an important role in todays
software systems. For example, most end-user software has
a Graphical User Interface (GUI) that communicates with
the user via events, e.g., mouse events. Another example
is the Service Oriented Architecture (SOA), where service
providers and service consumers communicate with each other
using events. Other types of event-driven software include
Web applications in general, network protocols, and embed-
ded software. These software types are very diverse and
are, therefore, seldom considered together when it comes to
quality assurance. From a quality assurance point of view,
these systems are quite similar. Therefore, event-driven testing
methodologies can be applied to all of them.

One obstacle for the quality assurance of event-driven
software is that the event space is often huge and the number of
possible event sequences even larger, which makes exhaustive
testing infeasible. The number of event sequences is often
exponential in the number of possible events. One approach
to resolve this scalability problem is usage-based testing, a
goal oriented testing methodology that prioritizes testing effort
based on how often which functionality of the system is
used. The system’s usage is described by probabilistic usage
profiles, e.g., Markov chains that describe the probability of
the next event. To obtain these profiles, usage mining is used,
i.e., analyzing logged executions of the system’s usage. Usage-
based testing and usage mining for event-driven software
are no new ideas, since a lot of research has already been
performed, e.g., on web usage mining [1], [2], [3], usage-based
testing of web applications [4], [5], [6], and usage-based based
GUI testing [7], [8], [9].

The contribution of this paper is a usage-based testing
model for event-driven software in general, i.e., independent
of the type of event-driven software. To achieve a maximum of
platform independence, but also interoperatbility with existing
platform dependent solutions, the model is divided into three
layers: the platform layer, the translation layer, and the event
layer.

The platform layer represents the parts of the model, that
depend on the platform on which the System Under Test
(SUT) is implemented, i.e., the GUI, Web service, or other
event-driven platform of the system. The platform itself has
platform specific event types and targets, e.g., “mouse clicks
on GUI objects” or “file transfer request to an Internet
Protocol (IP) adress”. The translation layer translates the
platform specific events into abstract events that only consist
of string representation of both the event type and event target.
Furthermore, the platform specific events may be to fine-
grained for usage modeling, e.g., events for both pressing the
mouse button and releasing it instead of one event for the
click. The translation layer allows the integration of already
existing platform dependent solutions into our model. The
event layer is platform independent. It works on abstract events
and provides functionality for the training of probabilistic
usage profiles, analysis of these profiles, and testing task, like
test case generation.

In addition to the testing model, we summarize the most
important stochastic models used for the definition of probabil-
isitic usage profiles. The usage profiles are at the center of the
model and therefore require special attentation. We compare
these models and describe their strengths and weaknesses.

The remainder of this paper is structured as follows. In
Section II, we define the structure of the testing model.
Afterwards, the layers of the models are discussed in detail.
In Section III the platform layer and its main components are
described. In Section IV, the translation layer and its task as a
mediator between the other two layers are described. The event
layer is defined in Section V. In Section VI, stochastic models
that are commonly used to define probabilistic usage profiles
are described and compared . In Section VII, we outline the
future research of this work. Finally, the paper is concluded
in Section VIII.

Usage Analyzer

Model Builder

Recorder

Event Layer

Translation Layer

Platform Layer

Event Parser

A B C A B DA D E C

D E

BA C

Replay
Generator

Player

Session Generator

A B D E

Fig. 1. Model Overview

II. MODEL OUTLINE

The testing model for event-driven software (Figure 1) we
propose has three layers: the platform layer, the translation
layer, and the event layer. In the following, the tasks and
responsibilities of each layer are presented.

The lowest layer is the platform layer. It contains the
platform specific parts of the model, i.e., a recorder to monitor
the SUT and log its execution and a player that can send
stimuli to the SUT to replay event patterns. Above the platform
layer is the translation layer, whose main task is to mediate
between the platform layer and the platform independent event
layer. To accomplish this, the translation layer provides an
event parser to convert the logs produced by the recorder
into event traces and a replay regenerator to generate input
for the player from event traces. The event layer is platform
independent and works on the abstract concept of events.

Definition 1. An event e is an observable action of a system
that is characterized by its type and its target, i.e., e =
{type(e), target(e)}.

The possible event types depend on the platform and the
targets depend on the SUT. While the events themselves are
therefore platform dependent, the abstract notion of events that
consist of a type and a target is platform independent. An ex-
ample for a GUI event is {type : LeftMouseClick, target :
Button.OK} for a click on an OK button. The event layer
provides a model builder that generates probabilistic usage
models from event traces. The usage analyzer examines these
models and provides statistical information about the SUTs
usage. A session generator generates new event sequences
from the usage models. These sequences can be used as test
cases.

Figure 1 shows the interaction between the layers and their
main components. The logs produced by the recorder are
translated into event sequences by the event parser. These
sequences are then utilized by the event layer components. The
session generator of the event layer produces event sequences
that are translated by the replay generator into a format that
can be used by the player. The player can then execute the
generated sessions on the SUT.

III. PLATFORM LAYER

The platform layer is the lowest of the three layers and
responsible for the platform specific parts of the model. A
platform is “a set of subsystems and technologies that provide
a coherent set of functionality through interfaces and specified
usage patterns, which any application supported by that
platform can use without concern for the details of how the
functionality provided by the platform is implemented” [10].
Some examples for platforms are the Java EE Platform1 for
network applications, the Eclipse Rich Client Platform (RCP)2,
and the Microsoft Foundation Classes (MFC)3 framework for
Windows application development. The two main components
of the platform layer are the recorder and the player.

The recorder monitors and logs the usage of the SUT. For
example, in the context of GUI usage, this means the monitor-
ing of mouse clicks and keyboard input. For Web applications,
the communication between service providers and costumers
needs to be monitored. The recorder can either be internal,
i.e., integrated into the SUT or external, i.e., as a seperate tool.
The advantage of internal recorders is that they can easily be

1http://www.oracle.com/technetwork/java/javaee/overview/index.html
2http://www.eclipse.org/home/categories/rcp.php
3http://msdn.microsoft.com/en-us/library/d06h2x6e.aspx

<msg type="1">

 <param name="window.hwnd" value="66770"/>

 <param name="window.name" value="OK"/>

 <param name="window.parent.hwnd" value="66762"/>

 <param name="window.class" value="Button"/>

</msg>

...

<msg type="513">

 <param name="window.hwnd" value="66770"/>

</msg>

<msg type="514">

 <param name="window.hwnd" value="66770"/>

</msg>

Button “OK” with handle
“66770” created

Left mouse pressed down
object with handle “66770”

Left mouse released on
object with handle “66770”

WM_CREATE

WM_LBUTTONDOWN

WM_LBUTTONUP

Fig. 2. Examplary log exerpt produces by a GUI recorder

shipped to costumers as part of the software, whereas external
recorders require seperate deployment, may need different
licencing, or cannot be shipped at all. In a previous work, we
presented an internal recorder for the monitoring of Windows
applications built on top of MFC framework [11]. The recorder
produces a log that contains platform specific events. In case of
using Windows as a platform, these events are messages, e.g.,
WM_LBUTTONDOWN and WM_LBUTTONUP for pressing the
left mouse button down and releasing it. The platform-specific
events are not the same as the events used for usage modelling.
Often, the usage events are defined by several platform specific
events. For example, in MFC applications, usage events of type
LeftMouseClick consist of the two platform specific events
WM_LBUTTONDOWN and WM_LBUTTONUP.

The player is the counterpart of the recorder. It has to
execute the SUT by sending stimuli. On most platforms,
the stimuli are closely related to platform specific events
monitored by the recorder. In case of GUI platforms, these
stimuli are mouse and keyboard inputs. We suggest such a
player for the Windows MFC platform in a previous work [11].
The concept of a recorder and a player for the monitoring and
replaying of executions is widely adapted for the testing of
event-driven software by capture/replay tools. The recorders
of these applications are always external. Implementations are
available for many platforms, e.g., jRapture for Java [12],
or IBM Rational Robot4 which supports many platforms,
including Java, .NET, and Web applications.

IV. TRANSLATION LAYER

The translation layer provides a bridge between the platform
layer and the event layer, and bundles all interdependencies
between the two layers, which has many advantages. Foremost,
it completly decouples the platform layer from the event layer.
Given existing platform and event layer implementations, only
an appropriate translation layer implementation is required for
the two to work together. Neither the platform, nor the event
layer themselves need to be adapted. This is of particular im-

4http://www-01.ibm.com/software/awdtools/tester/robot/

portance, as it provides interoperability with already existing
solutions, e.g., capture/replay tools.

The platform specific events are often not the events that
are important for usage modelling. Figure 2 shows a short
log excerpt generated by an internal recorder for Windows
MFC applications [11]. The first message signifies that an
“OK” button with handle 66770 has been created. The han-
dle can be considered as unique ID of the button and can
therefore be used to identify it. The following two messages
signify that the left mouse button has been pressed down
and released upon a GUI object with handle 66770, i.e., the
“OK” button. For usage modeling, these messages separately
hold no interest, as none of them describe an event by
themselves. However, in combination they describe the event
{type : LeftClickButton, target : Button.OK}.

The first task of the translation layer is to convert logs
that are monitored by recorders and convert platform specific
events into abstract usage events. For this purpose, the trans-
lation layer provides an event parser. In case the platform
specific events are the same as the abstract usage events, the
event parser does nothing and simply forwards the events as
they are. However, in cases as exemplified in Figure 2, the
events have to be infered from the log. A set of rules that
describes the structure of events is required for this task. An
example for such a rule defined in XML is shown in Figure
3. This rule can be applied to the messages in Figure 2 and
it means that an event of type LeftClickButton consists of the
two messages WM_LBUTTONUP and WM_LBUTTONDOWN on
a GUI object that is a “Button”. As a result, the event parser
produces sessions of events.

Definition 2. A session s is an ordered sequence of events s =
(e1, e2, . . . , em) with e1, . . . , em ∈ E. The set SU contains all
user sessions, i.e., all sessions s observed for the users U .

The second task of the translation layer is to convert the
abstract events back into a representation that can be used by
platform level players. This can be thought of as the inverse
operation of the event parser and it is performed by a replay
generator.

<rule name="LeftClickButton">

 <msg type="&WM_LBUTTONDOWN;">

 <store var="clicked"/>

 </msg>

 <msg type="&WM_LBUTTONUP;">

 <equals>

 <winInfoValue obj="this" winParam="class"/>

 <constValue value="Button"/>

 </equals>

 <equals>

 <varValue obj="clicked" param="window.hwnd"/>

 <varValue obj="this" param="window.hwnd"/>

 </equals>

 </msg>

</rule>

Message is send
to a button

Both messages are send
to the same GUI object

Type of the event

Fig. 3. An event parser rule

V. EVENT LAYER

The event layer is responsible for the training of usage
profiles and their exploitation. This includes various tasks from
statistical analysis to test case generation. The event layer is
built on top of the abstract notion of events (Definition 1). The
possible events of the system are defining the event space.

Definition 3. The event space E is the set of all theoretically
possible events e of a system. The observed event space EU ⊆
E is the set of all events, that were observed during sessions
SU of the users U .

The size of the event space is an important property both
for testing and model analysis. It can be used as an estimator
for the required test suite size or as a normalization factor for
analysis results. However, the size of the event space E has to
be determined externally. It cannot be determined by simply
logging user actions, as there is no guarantee that the users
utilize all functionality offered by the system. The observed
event space EU is a lower bound for the size of E and can
be used to estimate its size. The quality of this estimation
depends on the versatility the software and the number of its
functions that are actually used. The estimation of the event
space size is out of the scope of this work. A way to infer
the event space for GUI applications is outlined in [13]. We
assume that the event space E is available or that EU is a
sufficiently good estimator.

In the following, we define probabilisitic usage profiles
and outline how they are trained based on the event sessions
provided by the event parser. Furthermore, we present a
method for the extraction of statistical information about the
usage of the software from the usage profiles and show how
these information can be utilized. Afterwards, we show how
these profiles can be exploited to randomly generate sessions
that can be used as basis for new test cases.

A. Probabilistic Usage Profiles

Usage profiles are a means for the modelling of how a
system is used by its users. In the literature, the terms usage
profile and user profile are sometimes mixed up. A user profile
does not describe how the software is used, but rather attributes
of the users themselves, e.g., the age or the gender. There are
two types of usage profiles: those that take the internal state
of the system into account and those that only consider the
events themselves. In this work, we refer to the second type,
i.e., the underlying models make no assumptions about the
internal state of the system.

In case the behavior of the users is modelled using prob-
abilities, i.e., “after event e, the next event will be e′ with
probability 0.2”, we speak of probabilistic usage profiles.
These types of profiles are discrete stochastic processes over
the event space.

Definition 4. A discrete stochastic process is an
indexed sequence of random variables X1, X2, . . .
and is characterized by the joint probability mass
function Pr{(X1, X2, . . . , Xn) = (x1, x2, . . . , xn)} =
p(x1, x2, . . . , xn) with (x1, x2, . . . , xn) ∈ Hn for n ∈ N.

Definition 5. A probabilistic usage profile is a discrete
stochastic process over the event space as alphabet H = E.

To implement the event layer, a concrete type of stochastic
process has to be chosen. In Section VI, some of the often
used types are described and compared. The usage profiles
themselves are infered by the model builder. How this training
works, depends solely on the underlying stochastic process
used. The training data are the observed user sessions SU .

B. Usage Analysis

There are several ways to analyze the usage of a system
based on user sessions and probabilistic usage profiles. We will
now outline how usage data can be used to answer the question
which features of a system are used most often. This analysis

is important for almost everyone in a project, as development,
testing, and marketing should focus on these popular features.

One way to estimate how often an event occurs is to obtain
its empirical likelyhood based on the logged usage data. The
empirical likelyhood of an event e ∈ E given the usage
data SU is

∑
s∈SU

count(e,s)∑
s∈SU

|s| , where count(e, s) is number of
occurences of the event e in the session s. Another way to
obtain this information is to analyze the stochastic process
underlying the probabilistic usage profile. To obtain a measure
for the probability of an event based on the process, the
stationary distribution can be used.

Definition 6. A stochastic process X1, X2, . . . is called sta-
tionary if its joint distribution is invariant to timeshifts, i.e.,

Pr{X1 = x1, X2 = x2, . . . , Xn = xn}
= Pr{X1+l = xl, X2+l = x2, . . . , Xn+l = Xn}.

(1)

Stationary processes have a stationary distribution µ, such that
µ(x) = limt→∞ p(Xt = x) for all x ∈ H.

The stationary distribution describes the asymptotical prob-
ability that an event occurs. Therefore, the stationary dis-
tribution describes for each event e the probability µ(e) of
its occurence in the process, i.e., the probability that a user
triggers the event. Not every stochastic process is stationary
and it has to be guaranteed that the process is indeed stationary
before this method can be applied.

The raw probabilites themselves are hard to interpret, as
they tend to be very small, especially with large state spaces.
To mitigate this, the state space size |E| has to be used as a
normalization factor to identify how often features are used in
relation to the number of features in total. In general, |E| is
an important normalization factor for usage analysis.

These are only two examples for the analysis of usage.
Further tasks may include the estimation of the usage entropy
[14], i.e., how random the usage of the system is. Another way
to exploit analysis results is to prioritize test cases based on
the obtained information. Additionally, all analysis can also
focus on the event types or targets. For example, has the user
rather used the mouse or the keyboard, or which buttons were
clicked most often.

C. Randomized Session Generation

An important way to exploit probailistic usage profiles is
randomized session generation, i.e., the generation of event
sequences from the profile. This can be done by randomly
walking the through the stochastic process. The random walk
is the process of succesively drawing events one after another
according to the probabilitiy distribution of the stochastic
process. The result is then a randomly drawn user session.
Formally, let sn

1 = (e1, . . . , en) the randomly drawn session
so far. Note, that n is zero and the session empty at the start
of the procedure. The next event e is then drawn according to
the probability distribution Pr{e|sn

1}.5 The generated sessions

5The notation Pr(e|sn
1) is an abbreaviation for Pr(Xn+1 = e|Xn =

en, . . . , X1 = e1).

A

B

C0.5

0.5

0.5

0.5START END

0.5

0.5

1

Fig. 4. A simple first-order Markov model

can then be used as a basis for new test cases by adding
appropriate assertions, i.e., checks values and states of the
SUT are as expected. The current model is not able to do this
automatically. To be able to generate test cases automatically,
the usage profile needs to be enriched with information about
the systems state.

VI. STOCHASTIC MODELS

In this section, we summarize the most important stochastic
models used to define probabilisitc usage profiles. All of the
stochastic models introduced are of the same type, i.e., they
have a memory of the previous events.

A. First-order Markov Models

The most popular choice for usage profiles are first-order
Markov Models (MMs), also known as Markov chains used
by, e.g., [6], [7]. MMs are stochastic processes that fulfill the
Markov property.

Definition 7. A discrete stochastic process X1, X2, . . . is said
to possess the Markov property if Pr{Xn = xn|Xn−1 =
xn−1, . . . , X1 = x1} = Pr(Xn = xn|Xn−1 = xn−1} for
all n ∈ N.

In other words, such models are memoryless. Only the last
event influences the probability of the next event. The size
of the models is in O(|E|2), as for all events e ∈ E the
probability of the next event p(e′|e) for all events e′ ∈ E has
to be known.

The drawback of first-order MMs is that there is no guar-
antee that all sequences that can be generated by randomly
walking through the MM are valid, as the internal state of
the SUT is not taken into account. Consider the case with
three events A,B, and C, where both A and B are precursors
for C, however, the order of A and B is not specified. Then
s1 = (A,B,C) and s2 = (B,A,C) are valid sessions,
however, sinvalid = (A,C) not. A first-order MM trained
using s1 and s2 is depicted in Figure 4. In addition the events
A, B, and C the model depicted in Figure 4 has global START
and END states. The existence of the START state is based
on the assumption that the SUT is in the same state at the
beginning of each user session. The END state is implicitly
added to the end of all user sessions and can be used as a
means to determine the end of a random walk.

A B A C E

A C D E

common subsequence follower

Fig. 5. Common Subsequences

Because the model is memoryless, it is not possible to know
whether B already took place, when A was the last event.
Therefore, there is a 50% chance that the next event is C, as
this was the case in 50% of the cases in the training data.
Therefore, there is a possiblity that sinvalid is the result of a
random walk through the model.

B. High-order Markov Models

A remedy for this problem is to use models with a memory,
i.e., where the next event does not solely depend on the
previous event but on the previous k events. To allow such a
memory, the Markov property can be generalized as follows.

Definition 8. A discrete stochastic process X1, X2, . . . is said
to possess the the k-th order Markov property if Pr{Xn =
xn|Xn−1 = xn−1, . . . , X1 = x1} = Pr(Xn = xn|Xn−1 =
xn−1, . . . , Xn−k = xn−k} for all n ∈ N.

Note, that this definition is equivalent to Definition 7 for
k = 1. A stochastic process is called a k-th order MM if it
fulfills the k-th order Markov property. Examples for research
based on high order MMs are [15], [16]. The size of a k-th
order MM is in O(|E|k+1), as for each combination of events
e1, . . . , ek ∈ E the probability p(e′|ek, ek−1, . . . , e1) has to
be known.

While using long memories helps to prevent the generation
of invalid sessions when randomly walking through the model,
there are some major drawbacks. The first is that the size
grows exponentially with k. Even under assumption that
many probabilities are zero and the model can be stored
sparsely6, the size eventually gets out of hand with larger event
spaces and longer memories. Therefore, k has to be choosen
reasonably low, as the model does not scale otherwise.

The second drawback of long histories is that the models
become static instead of probabilistic. Consider the extreme
case, where the length of the memory is the same as the length
of the training sequences. In this case, the model is simply a
collection of all training sequences, without any generalization
at all. This phenomenom, where the model is specifically
tailored to the training data is called overfitting. While this
may be an extreme case, it shows the danger of long histories.
In order to produce randomness in the model, the memory
must not be longer than the length of the longest common
subsequence of the training data. Consider the two sequences
shown in Figure 5. The longest common subsequence is A,C.

6Only non-zero values are stored. In case nothing is stored for a given
combination, the value is zero.

The following symbol is different in both sequences, E in
the first one and D in the second one. Therefore, given a
memory length of k = 2, there is a random element in the
model, i.e., “what comes after A,C”. For k ≥ 3, the model
simply learns the two sequences and degenerate into a non-
probabilistic collection of sequences.

In conclusion, high-order MM with a fixed memory length
can solve the problems if there are several preconditions with-
out a fixed order for an event to occur. However, using long
memories do not scale well and may remove the randomness
from the model so that it degenerates into a collection of
sequences.

C. Variable-order Markov Models

The first-order and high-order MMs both have drawbacks
due to their fixed history length. A possible solution to this
problem is to use Variable-order Markov Models (VMMs).
VMMs also fulfill the k-th order Markov property, but k is
not fixed, i.e., at different times, different memory lengths
are allowed. VMMs used in research are, e.g., all k-th order
Markov Models [17], [18] and Prediction by Partial Matchs
(PPMs) [19], [20]. These models combine the ability to include
long-term memories with the advantages of the increased
randomness of models with only short-term memories. The
size of the models varies, however, it is asymptotically usually
not worse than high-order MMs.

To exemplify how VMMs introduce further randomness
into long-memory models, we outline the PPM [21], [22]
approach. In principle, PPM can be considered as a k-th order
MM, that is extended by an escape mechanism. The escape
mechanism offers the model the possibility to “opt-out” of the
underlying k-th order MM and instead use shorter memories.
This is done by allocating a probability P̂k(escape|s) for all
events e that were not observed after the (sub)sequence s.
The remainder of the probability mass is distributed among
the observed symbols, according to the training of the model.
Due to the non-zero proability of unobserved events, the
escape mechanism allows PPM models to generate previously
unobserved event combinations. The probability of the next
event being e ∈ E given that the current memory is the
subsequence sn

n−k = (en−k, . . . , en) is recursively defined as

Prk(e|sn
n−k)

=

{
P̂rk(e|sn

n−k) if sn
n−k ∈ SU

P̂rk(escape|sn
n−k) · Prk−1(e|sn

n−(k−1)) otherwise
(2)

with SU being the user sessions used to train the PPM. How
P̂rk is calculated depends on the PPM variant used, as there
are several implementations of the escape mechanism.

The strength of the escape mechanism is also its drawback,
as it allows the generation of event combinations that are not
part of the training data and were, therefore, not observed.
This can lead to invalid generated sequences. Therefore, the
escape mechanism needs to be implemented in a way that
minimizes the possiblity of generating invalid traces. However,

given an appropriate escape implementation, PPM has all the
advantages of high-order MMs without one major drawback,
i.e., their inflexibility.

VII. FUTURE WORK

The future work on this topic will focus in two directions.
On one hand, we plan to further improve the testing model
presented in this paper. To this aim, we will investigate how
further testing tasks can be integrated into the event layer, e.g.,
test case prioritization. Furthermore, we will try to adapt the
model in such a way that it is possible to integrate information
about the SUT’s state. This is an important step towards the
automatic generation of not only sessions, but whole test cases.

On the other hand, we will work on the implementation
of the model. This includes platform layer implementations
for one or more platforms, according translation layer imple-
mentations and the implementation of the event layer features
depicted. Furthermore, we will investigate the effect of the
stochastic model used for the probabilistic usage profiles,
especially different VMM variants. Using this implementation,
case studies will be conducted to validate the feasability of the
approach and the applicability of the testing approach to real-
world software systems.

VIII. CONCLUSION

In this paper, we presented a model for usage-based testing
of event-driven software systems. The model is designed to
be independent of a specific platform. For this purpose, three
layers are used to seperate the platform dependent parts of
the model from the platform independent ones. The platform
layer contains the platform-specific implementations for mon-
itoring and replaying of events, the translation layer provides
functionality to describe the collected data in an abstract and
platform independent way. The abstract data is then used in the
event layer for various tasks, e.g., the training of probabilistic
usage profiles, the analysis of the SUT’s usage, or usage-
based session generation. Furthermore, we have presented the
most important stochastic models used to define probabilistic
usage profiles and compared their strengths and weaknesses.
In future work, we will further extend and implement the
approach, as we believe it has much potential.

REFERENCES

[1] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Discovery and
Evaluation of Aggregate Usage Profiles for Web Personalization,” Data
Min. Knowl. Discov., vol. 6, no. 1, pp. 61–82, 2002.

[2] R. Cooley, “The use of web structure and content to identify subjectively
interesting web usage patterns,” ACM Trans. Internet Technol., vol. 3,
no. 2, pp. 93–116, 2003.

[3] M. Eirinaki and M. Vazirgiannis, “Web mining for web personalization,”
ACM Trans. Internet Technol., vol. 3, no. 1, pp. 1–27, 2003.

[4] S. Schechter, M. Krishnan, and M. D. Smith, “Using path profiles to
predict HTTP requests,” Comput. Netw. ISDN Syst., vol. 30, no. 1-7, pp.
457–467, 1998.

[5] C. Kallepalli and J. Tian, “Measuring and Modeling Usage and Reli-
ability for Statistical Web Testing,” IEEE Trans. Softw. Eng., vol. 27,
no. 11, pp. 1023–1036, 2001.

[6] P. Tonella and F. Ricca, “Statistical testing of web applications,” J. Softw.
Maint. Evol., vol. 16, no. 1-2, pp. 103–127, 2004.

[7] J. A. Whittaker and M. G. Thomason, “A Markov Chain Model for
Statistical Software Testing,” IEEE Trans. Softw. Eng., vol. 20, no. 10,
pp. 812–824, 1994.

[8] I. Alsmadi, “The Utilization of User Sessions in Testing,” in ICIS ’08:
Proceedings of the Seventh IEEE/ACIS International Conference on
Computer and Information Science (icis 2008). Washington, DC, USA:
IEEE Computer Society, 2008, pp. 581–585.

[9] P. A. Brooks and A. M. Memon, “Automated gui testing guided by usage
profiles,” in ASE ’07: Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering. New
York, NY, USA: ACM, 2007, pp. 333–342.

[10] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2003.

[11] S. Herbold, U. Bünting, J. Grabowski, and S. Waack, “Improved Bug Re-
porting and Reproduction trough Non-intrusive GUI Usage Monitoring
and Automated Replaying,” in Third International Workshop on Testing
Techniques & Experimentation Benchmarks for Event-Driven Software
(TESTBEDS 2011). IEEE Computer Society, 2011.

[12] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “jRapture: A
Capture/Replay tool for observation-based testing,” SIGSOFT Software
Engineering Notes, vol. 25, no. 5, pp. 158–167, 2000.

[13] A. M. Memon, “An event-flow model of GUI-based applications for test-
ing: Research Articles,” Software Teststing, Verification and Reliability,
vol. 17, no. 3, pp. 137–157, 2007.

[14] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
John Wiley & Sons, Inc., 2006.

[15] P. L. T. Pirolli and J. E. Pitkow, “Distributions of surfers’ paths through
the World Wide Web: Empirical characterizations,” World Wide Web,
vol. 2, no. 1-2, pp. 29–45, 1999.

[16] T. Takagi and Z. Furukawa, “Construction Method of a High-Order
Markov Chain Usage Model,” in APSEC ’07: Proceedings of the 14th
Asia-Pacific Software Engineering Conference. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 120–126.

[17] J. Pitkow and P. Pirolli, “Mining longest repeating subsequences to
predict world wide web surfing,” in USITS’99: Proceedings of the
2nd conference on USENIX Symposium on Internet Technologies and
Systems. Berkeley, CA, USA: USENIX Association, 1999, pp. 13–13.

[18] M. Deshpande and G. Karypis, “Selective Markov models for predicting
Web page accesses,” ACM Trans. Internet Technol., vol. 4, no. 2, pp.
163–184, 2004.

[19] X. Chen and X. Zhang, “Popularity-Based PPM: An Effective Web
Prefetching Technique for High Accuracy and Low Storage,” in ICPP
’02: Proceedings of the 2002 International Conference on Parallel
Processing. Washington, DC, USA: IEEE Computer Society, 2002,
p. 296.

[20] Z. Ban, Z. Gu, and Y. Jin, “A PPM Prediction Model Based on Stochastic
Gradient Descent for Web Prefetching,” in AINA ’08: Proceedings of the
22nd International Conference on Advanced Information Networking
and Applications. Washington, DC, USA: IEEE Computer Society,
2008, pp. 166–173.

[21] J. Cleary and I. Witten, “Data Compression Using Adaptive Coding and
Partial String Matching,” IEEE Trans. Commun., vol. 32, no. 4, pp. 396
– 402, 1984.

[22] R. Begleiter, R. El-Yaniv, and G. Yona, “On prediction using variable
order Markov models,” J. Artif. Int. Res., vol. 22, pp. 385–421, December
2004.

