Re-Usability in Testing

. S

Helmut Neukirchen

Software Engineering
for Distributed Systems Group

Prof. Jens Grabowski
University of Gottingen
Germany

Outline

= Motivation
= Re-Use in Software Development

= Support for Re-Use by Language Concepts and Techniques
= Re-Usable Elements

= Re-Use in Test Development
= Support for Re-Use by Language Concepts and Techniques
= Re-Usable Elements

= Conclusions

i Motivation

= Re-use of prefabricated elements is proven
for decades in classical engineering.

s Re-use of software elements is a mature
approach for developing software.

= Tests are just a special type of software:

—Apply re-use techniques also for
test development!

‘_L Success Stories

= NEC:
= 6.7 times higher productivity,
= 2.8 times better quality through 17% re-use.

= DEC:
= 25% increase in productivity through 50%—-80% re-use.

= HP:
= 24%—-76% defect reduction,
= 40%—-50% increase in productivity,
= 43% reduction in time to market with up to 70% re-use.

n AT&T:

= 50% decrease in time-to-market for 40-90% re-use.
Source: [Leach97, Lim98, Poulin97, Putnam03]

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

‘L Benefits of Re-Use

= Faster development of software from re-usable
elements,

= Less costs for development & maintenance,
= Higher quality when re-using well tested elements,

= Preservation of knowledge of experienced developers.

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

No Silver-Bullet:
i Risks of Re-Use

= Development of re-usable software difficult.

= Understanding re-usable software difficult.
= Not-invented-here syndrome.

= Suitable software development processes.

Requirements on
i Re-Usable Software

= Organisation,

= Documentation,
= Reliability/Trust,
= Stable interfaces,

= Self-containedness / Independence from
other software elements,

= Customisability.

‘L Overview

Language
concepts <
supporting
re-use

-

Programming
techniques {

supporting
re-use

Re-useable <
elements

Concepts:

Software Development:

Test Development:

Modules

?

Object-
Orientation

?

Aspect-
Orientation

Refactoring

Applications

Components

Libraries

Frameworks

Patterns

Modular Languages

= Reminder: requirements on re-usable software:
= Organisation”,
= "Stable interfaces”,

= Self-containedness/Independence from other software
elements”.

= Addressed by the notion of module:
= Structuring,
« Information hiding.

II'

= Allows re-use, but lacks requirement “Customisability

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

‘L Object-Oriented Languages

= Object-oriented concepts
= Class, Abstract Class, Interface,
« Inheritance, Polymorphism & Dynamic binding,
= Generic types,
« Meta programming/Reflection

allow to develop software which is closed,
but still open for changes/extensions.

= But: Does not support separation of crosscutting
concerns which restricts full re-use.

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

10

‘L Crosscutting Concerns

= Operations often contain several crosscutting concerns at the same time:
= Logging, monitoring, performance optimisation, error checking, error handling.
= Scattered to several operations.
= “Pollute” core concern of these operations.

= Logging in org.apache. tomcat: -
= Red shows lines of code that are related to logging.

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing 11

Languages for Aspect-
i Oriented Programming (AOP)

= Separation of crosscutting concerns can be achieved
using the aspect-oriented paradigm [Kiczales97].

= Aspect-oriented languages allow to separate scattered
concerns as advice and to weave them back again on
well-defined join points.
= Aspect:=advice+selected join point.

= Aspects support better re-usability and customisation.

12

‘L Overview

Concepts: Software Development: | Test Development:

Modules v

Object-
Orientation v

Aspect-
Orientation

Refactoring ?

Applications

Components

Libraries

Frameworks

Patterns
TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

Before:

Extract
Method

After:

i Refactoring

Systematically improving the internal structure of source code, without
altering its external behaviour [Fowler99]. (Unit tests are used as safety
net to get confidence that behaviour was not altered.)

= Goal: Make existing software re-usable, instead of re-writing it from scratch.

= Example: Refactoring Extract Method (for Java code):

void printOwing() {
printBanner () ;

//print details
System.out.println ("name: " + theName);
System.out.println ("amount:" + theAmount) ;
" wvoid printOwing() { 7
printBanner () ;
printDetails() ;

Extract Method:
Extract code & put it into

} a separate method.

void printDetails () {
System.out.println ("name: " + theName);
System.out.println ("amount:" + theAmount) ;

14

‘L Overview

Concepts: Software Development: | Test Development:

Modules v
Object-

Orientation v
Aspect- v
Orientation

Refactoring v
Applications ?
Components ?
Libraries ?
Frameworks ?
Patterns ?

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

i Applications

= Re-use of complete applications:

= Inclusion of existing application into
larger application.

= Example: Embedding Microsoft Excel
spreadsheet into Microsoft Word document.

= Software product lines: Vary prefabricated
application around a set of commonalities.
= Example: SAP R/3

16

i Components

= Re-use of “software building blocks™:

« Examples: SUN’s JavaBeans,
OMG’s CORBA Component Model.

= Services are similar to components:
= In addition usually distributed.
=« Example: Web Services.

17

‘_L Libraries

= ,Classical” procedural libraries:
= Re-use of functions.
« Example: C standard lib.

m Class libraries:
= Re-use of a set of classes.
« Example: C++ Standard Template Library

18

Object-Oriented
‘L Frameworks

= Frameworks [Lewis95] are like libraries,
but the other way around:

_ n O _ O Library

Framework

_ U U _ O Own Code

= Re-use based on object-oriented concepts.

= Example:

« Java AWT/Swing: framework for graphical user interfaces.
TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

19

Patterns

= Idea of patterns [Alexander79]:

= Proven solutions for problems arising again
and again in a certain context.

» Patterns provide abstract solutions:
need to be instantiated.

= Example: Design Patterns [Gamma95]:
= Re-use proven micro architectures.

20

‘L Overview

Concepts: Software Development: | Test Development:

Modules v ?
Object-

Orientation v ?
Aspect- v

Orientation

Refactoring v

Applications v

Components v

Libraries v

Frameworks v

Patterns v

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

i Test Development

= Languages and technologies used
for test development:

= Testing and Test Control Notation
version 3 (TTCN-3) [ETSIO5],

= UML Testing Profile [OMG04],
= JUNnIt [Gamma02].

22

‘_L TTCN-3

= Language concepts supporting re-use:
= Modules with parameters,

=« Import of
= TTCN-3 modules (data & behaviour),
= ASN.1, IDL, XML data descriptions.

» Refinable test data templates,
= [ype parameterisation,
« Compatibility rules for re-using component types.

= Intensively used in existing test suites.

= These concepts are a subset of OO concepts.

» Further research concerning impact of missing OO concepts
on re-use!

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

i UML Testing Profile

= All OO concepts for re-use available.

= No experience which OO concepts for
re-use are actually applied in test suites
specified using UML Testing Profile.

24

i JUnit

= All OO concepts for re-use available.

= Re-use concepts applied in JUnit test cases:

= Abstract test case classes containing tests for
abstract Java classes under test.

= Re-use of pre-/postambles (fixtures).
= Re-usable test case classes (mock objects).

25

‘L Overview

Concepts: Software Development: | Test Development:

Modules v v
Object-

Orientation v v
Aspect- v 2
Orientation

Refactoring v ?
Applications v

Components v

Libraries v

Frameworks v

Patterns v

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

i Aspect-Oriented Testing?

= Separate different concerns contained
In test cases into aspects.

s Re-use test cases which contain
core concerns.

= Weave aspects as required into
test cases.

27

Aspect-Oriented Testing?

= First thought:
= Test cases contain by definition only a single concern:
the test purpose.
= Further thinking:

= Even test cases are polluted by logging statements, handling
of supervision timers, etc.

= Non-functional test cases are usually functional test cases
extended by aspects required for real-time, load, and
performance testing.

— Aspect-oriented testing reasonable!

28

Aspect-Oriented
i Test Languages?

= AO for JUnit:

= Java AOP extensions can be applied to JUnit test
cases as well.

= AO for UML Testing Profile:
= AO extensions/profiles for UML not existing, yet.

s AO for TTCN-3:

= No AO extension for TTCN-3, but:

= Existing concept of defaults for alternatives can be
considered as AO.

= Existing non-functional tests would benefit from AO.
29

‘L Test Refactoring?

s Systematically improving the internal
structure of a test case/test suite,
without altering the behaviour of the
test.

= Industrial test suites are large and suffer
from “aging” just like ordinary software.

= Maintenance of standardised test suites
requires huge efforts.

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing 30

Test Refactoring?

= When refactoring implementations, tests are used as
safety net to have confidence that behaviour has not
changed.

= As many paths covered as are executed by tests.

= What are safety nets for test cases?

= Running refactored test against tested implementation is not
sufficient, since only one path of the test case is executed!

— Two possible solutions:

= Bi-simulation of manually refactored and original test case.

= Tool supported application of formally proven transformation
steps.

31

Refactoring Support
i for Test Languages?

= Refactoring for JUnit:

= Refactoring of JUnit tests well established
and supported by tools.

= Refactoring for UML Testing Profile:

= Refactoring of UML models is known [Sunyé01]
and supported by tools.

= Refactoring for TTCN-3:
= Not studied.

32

‘L Overview

Concepts: Software Development: | Test Development:

Modules v v
Object-

Orientation v v
gsrreenctgtion v Y
Refactoring v v
Applications v ?
Components v ?
Libraries v ?
Frameworks v ?
Patterns v ?

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing 33

i Test Product Lines?

= Test product lines might be build around a
common (TTCN-3) compiler and run-time
platform.

= As part of a test development process,
commonalities of test suites may be re-used:

= Conformance tests may be re-used for regression
testing and non-functional testing.

34

i Test Components?

= No component-based test development like in development with
software components available.

= TTCN-3 module control part allows to compose test campaigns
from pre-defined test cases.

= In distributed testing, “test components” execute the distributed
behaviour of a test case. Such “test components” may be
re-used:

= Test components which dynamically create a complex performance
test architecture.

= Test components which are a hub for synchronisation of other test
components.

35

Test Libraries?

= Standardised abstract test suites can be regarded
as libraries.

= Still need to be adapted to concrete
implementation under test.

= [TCN-3:

= Test libraries for certain domains/protocols.

= UML Testing Profile:
=« Data pools and packages of test data and behaviour.

x JUNIL:
« Libraries of mock objects.

36

i Test Frameworks?

JUnit itself is a re-usable OO framework for unit testing.
TTCN-3 can be regarded as framework for black box testing.

TTCN-2 [ISO97] is a framework and part of a methodology for
OSI conformance testing.

TTCN-3 skeletons are used to enforce a common test case
structure [STF176].

=« May be regarded as framework, but missing parts are not plugged
in using OO-like concepts — instead, they are copied & modified.

JUnit and UML Testing Profile test case frameworks are not
known.

37

i Test Patterns?

= Technology independent test patterns:
= Test Design Patterns for testing OO systems [Binder99],
= Code Review Patterns [CunninghamO3].

= Unit test patterns (JUnit & friends):
= Mock Objects [Mackinnon01],
= C# Unit Test Patterns [Clifton2003],
« Patterns of Unit Test Automation [Meszaros04].

= MSC & TimedTTCN-3 based real-time test patterns:

= Real-Time Communication Patterns [Neukirchen04].

38

Example: Latency Real-Time
Communication-Pattern

Context:]

Context: T SUT
[TWO BCOS msc LatencyPattern

involved stem

decompose

Context: I Abstractlon

First event: Decomposed

stimulus /\& instance
ZS _\ml

Abstract on:
furtherEvents] Referenlce

}
R —— _\ Context:]

Last event:
response

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing 39

RelatingTimedTTCN-3 to
Real-Time Communication-Pattern

msc LatencyPattern

pco1l |, Y™ pcoo
decomposed

(t1, t2) furtherEvents |

] —_ ml

V|- T

e — e y——
— T

— Library S
module EvaluationFunctionModule {
function evallatencyOnline

}

}

\\\\\§__‘ 4____~,//

import from EvaluationFunctionModule
all;

var float timeA, timeB;

timeA:=self.now;

PCOl .send (ml) :

furtherEvents () ;

PCO2 .receive (ml) ;

timeB:=self.now;

setverdict (evallatencyOnline
(timeA,timeB,tl,t2)):

40

‘L Overview

Concepts:

Software Development:

Test Development:

Modules

v

v

Object-
Orientation

v

v

Aspect-
Orientation

AN

AN

Refactoring

Applications

Components

Libraries

Frameworks

Patterns

DN N N I N NI AN

SIS SN NS

41

Conclusions

= Transfer of re-use concepts from software
development may leverage re-use in test development.

= Support for re-use must be part of
development process:

= Testing of re-usable software,
= Re-use of tests:

= Extreme Programming [Beck2004] where unit tests are
refactored together with implementation code.

= Conformance tests re-used for regression tests, load tests,
performance tests.

= Re-usable test architectures:
= Generic Web Services test architecture [Dssouli05]
42

ETSI Work Item "Patterns in
‘L Test Development” (PTD)

= Produce guidelines to support test developers in
= applying test patterns,
» identifying test patterns (“pattern mining”).

= Work on

classification of test patterns,

test specific pattern template,

methodological aspects,

example test patterns.

= Active contributors:

= University of Goéttingen (Software Engineering for Distributed
Systems Group), Fraunhofer FOKUS, Nokia Research Center.

= Supporters:
= Ericsson, mmO2. Web page: [PTDO5]

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

43

‘L End of Presentation

= Thank you for your attention!

= Any questions?

TAROT Summer School 2005 Helmut Neukirchen: Re-Usability in Testing

44

References (1/3)

[Alexander79] Alexander, Ishikawa, Silverstein: “A Pattern Language: Towns, Buildings,
Construction”, Oxford University Press, 1977.

[Beck04] Beck, Andres: , Extreme Programming Explained”, Second Edition, Addison-Wesley,
2004

[Binder99] Binder: “Testing Object-Oriented Systems: Models, Patterns, and Tools”,
Addison-Wesley, 1999.

[Boehm94] Boehm: “Megaprogramming”, Video tape by University Video Communications,
Stanford, 1994.

[Clifton2003] Clifton: “Advanced Unit Test, Part V — Unit Test Patterns”,
http://www.codeproject.com/gen/design/autp5.asp, 2003..

[CunninghamO03] Cunningham, Cunningham: “Code Review Patterns”, WikiWikiWeb
http://c2.com/cgi/wiki?CodeReviewPatterns, 2003.

[Dssouli05] Benharref, Glitho, Dssouli: "A Web Service Based-Architecture for Detecting Faults
in Web Services”, In: 9t IFIP/IEEE International Symposium on Integrated Network
Management, 2005

[ETSIOS] European Telecommunications Standards Institute (ETSI): “The Testing and Test
Control Notation version 3”, ETSI European Standard (ES) 201 873-1 V3.0.0
(2005-03), 2005.

45

References (2/3)

[Fowler99]
[Gamma95]
[Gamma02]
[ISO97]

[Leach97]
[Lewis95]
[Lim98]
[Kiczales97]

Fowler: “Refactoring”, Addison-Wesley, 2000.
Gamma, Helm, Johnson, Vlissides: “Design Patterns”, Addison Wesley, 1995.
Gamma, Beck: JUnit, http://junit.sourceforge.net/, 2002.

ISO/IEC: “Information Technology — Open Systems Interconnection — Conformance
testing methodology and framework”, International ISO/IEC multipart standard
No. 9646, 1994-1997.

Leach: “Software Reuse: Methods, Models and Costs”, McGraw-Hill, 1997.
Lewis (Ed.): “Object Oriented Application Frameworks”, Manning Publications, 1995.
Lim: “Managing Software Reuse”, Prentice Hall, 1998.

Kiczales, Lamping, Menhdhekar, Maeda, Lopes, Loingtier, Irwin: “Aspect-Oriented
Programming”, Proceedings European Conference on Object-Oriented Programming,
1997.

[Mackinnon01] Mackinnon, Freeman, Craig: “EndoTesting: Unit Testing with Mock Objects”, In:

[Meyer97]

Succi, Marchesi (Eds.): “"Extreme Programming Examined”, Addison-Wesley, 2001.
Meyer: “Object-Oriented Software Construction”, Prentice Hall, 1997.

[Meszaros04] Meszaros: “Patterns of XUnit Test Automation”,

http://www.testautomationpatterns.com, 2004.

46

References (3/3)

[Neukirchen04] Neukirchen: “Languages, Tools and Patterns for the Specification of Distributed

[OMGO04]

[Poulin97]
[PTDO5]
[PutnamO03]

Real-Time Tests”, Ph.D. thesis, University of Goéttingen, 2004.

Object Management Group (OMG): “"UML 2.0 Testing Profile Specification”,
(ptc/04-04-02), 2004.

Poulin: “Measuring Software Reuse”, Addison Wesley, 1997.
http://webapp.etsi.org/WorkProgram/Report_WorkItem.asp?WKI_ID=19260, 2005.

Putnam, Myers: “Five Core Metrics: The Intelligence Behind Successful Software
Management”, Dorset House, 2003.

[Sommerville04] Sommerville: “Software Engineering”, Addison Wesley, 2004.

[Sunyé01]

[STF276]

Sunyé, Pollet, Le Traon, Jézéquel: “Refactoring UML models”, In: “Proceedings of
UML 2001", Volume 2185 of LNCS, Springer, 2001.

ETSI Specialist Task Force (STF) 276 “IPv6 testing”,
http://portal.etsi.org/docbox/MTS/MTS/07-Drafts/IPT001-IPv6-Fwk/, 2005.

47

