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i Motivation

= Re-use of prefabricated elements is proven
for decades in classical engineering.

s Re-use of software elements is a mature
approach for developing software.

= Tests are just a special type of software:

—Apply re-use techniques also for
test development!



‘_L Success Stories

= NEC:
= 6.7 times higher productivity,
= 2.8 times better quality through 17% re-use.

= DEC:
= 25% increase in productivity through 50%—-80% re-use.

= HP:
= 24%—-76% defect reduction,
= 40%—-50% increase in productivity,
= 43% reduction in time to market with up to 70% re-use.

n AT&T:

= 50% decrease in time-to-market for 40-90% re-use.
Source: [Leach97, Lim98, Poulin97, Putnam03]
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‘L Benefits of Re-Use

= Faster development of software from re-usable
elements,

= Less costs for development & maintenance,
= Higher quality when re-using well tested elements,

= Preservation of knowledge of experienced developers.
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No Silver-Bullet:
i Risks of Re-Use

= Development of re-usable software difficult.

= Understanding re-usable software difficult.
= Not-invented-here syndrome.

= Suitable software development processes.



Requirements on
i Re-Usable Software

= Organisation,

= Documentation,
= Reliability/Trust,
= Stable interfaces,

= Self-containedness / Independence from
other software elements,

= Customisability.
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Modular Languages

= Reminder: requirements on re-usable software:
= Organisation”,
= "Stable interfaces”,

= Self-containedness/Independence from other software
elements”.

= Addressed by the notion of module:
= Structuring,
« Information hiding.

II'

= Allows re-use, but lacks requirement “Customisability
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‘L Object-Oriented Languages

= Object-oriented concepts
= Class, Abstract Class, Interface,
« Inheritance, Polymorphism & Dynamic binding,
= Generic types,
« Meta programming/Reflection

allow to develop software which is closed,
but still open for changes/extensions.

= But: Does not support separation of crosscutting
concerns which restricts full re-use.
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‘L Crosscutting Concerns

= Operations often contain several crosscutting concerns at the same time:
= Logging, monitoring, performance optimisation, error checking, error handling.
= Scattered to several operations.
= “Pollute” core concern of these operations.

= Logging in org.apache. tomcat: -
= Red shows lines of code that are related to logging.
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Languages for Aspect-
i Oriented Programming (AOP)

= Separation of crosscutting concerns can be achieved
using the aspect-oriented paradigm [Kiczales97].

= Aspect-oriented languages allow to separate scattered
concerns as advice and to weave them back again on
well-defined join points.
= Aspect:=advice+selected join point.

= Aspects support better re-usability and customisation.
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Before:

Extract
Method

After:

i Refactoring

Systematically improving the internal structure of source code, without
altering its external behaviour [Fowler99]. (Unit tests are used as safety
net to get confidence that behaviour was not altered.)

= Goal: Make existing software re-usable, instead of re-writing it from scratch.

= Example: Refactoring Extract Method (for Java code):

void printOwing() {
printBanner () ;

//print details
System.out.println ("name: " + theName);
System.out.println ("amount:" + theAmount) ;
" wvoid printOwing() { 7
printBanner () ;
printDetails() ;

Extract Method:
Extract code & put it into

} a separate method.

void printDetails () {
System.out.println ("name: " + theName);
System.out.println ("amount:" + theAmount) ;
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i Applications

= Re-use of complete applications:

= Inclusion of existing application into
larger application.

= Example: Embedding Microsoft Excel
spreadsheet into Microsoft Word document.

= Software product lines: Vary prefabricated
application around a set of commonalities.
= Example: SAP R/3
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i Components

= Re-use of “software building blocks™:

« Examples: SUN’s JavaBeans,
OMG’s CORBA Component Model.

= Services are similar to components:
= In addition usually distributed.
=« Example: Web Services.
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‘_L Libraries

= ,Classical” procedural libraries:
= Re-use of functions.
« Example: C standard lib.

m Class libraries:
= Re-use of a set of classes.
« Example: C++ Standard Template Library
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Object-Oriented
‘L Frameworks

= Frameworks [Lewis95] are like libraries,
but the other way around:

_ n O _ O Library

Framework

_ U U _ O Own Code

= Re-use based on object-oriented concepts.

= Example:

« Java AWT/Swing: framework for graphical user interfaces.
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Patterns

= Idea of patterns [Alexander79]:

= Proven solutions for problems arising again
and again in a certain context.

» Patterns provide abstract solutions:
need to be instantiated.

= Example: Design Patterns [Gamma95]:
= Re-use proven micro architectures.
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i Test Development

= Languages and technologies used
for test development:

= Testing and Test Control Notation
version 3 (TTCN-3) [ETSIO5],

= UML Testing Profile [OMG04],
= JUNnIt [Gamma02].

22



‘_L TTCN-3

= Language concepts supporting re-use:
= Modules with parameters,

=« Import of
= TTCN-3 modules (data & behaviour),
= ASN.1, IDL, XML data descriptions.

» Refinable test data templates,
= [ype parameterisation,
« Compatibility rules for re-using component types.

= Intensively used in existing test suites.

= These concepts are a subset of OO concepts.

» Further research concerning impact of missing OO concepts
on re-use!
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i UML Testing Profile

= All OO concepts for re-use available.

= No experience which OO concepts for
re-use are actually applied in test suites
specified using UML Testing Profile.
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i JUnit

= All OO concepts for re-use available.

= Re-use concepts applied in JUnit test cases:

= Abstract test case classes containing tests for
abstract Java classes under test.

= Re-use of pre-/postambles (fixtures).
= Re-usable test case classes (mock objects).
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i Aspect-Oriented Testing?

= Separate different concerns contained
In test cases into aspects.

s Re-use test cases which contain
core concerns.

= Weave aspects as required into
test cases.
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Aspect-Oriented Testing?

= First thought:
= Test cases contain by definition only a single concern:
the test purpose.
= Further thinking:

= Even test cases are polluted by logging statements, handling
of supervision timers, etc.

= Non-functional test cases are usually functional test cases
extended by aspects required for real-time, load, and
performance testing.

— Aspect-oriented testing reasonable!
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Aspect-Oriented
i Test Languages?

= AO for JUnit:

= Java AOP extensions can be applied to JUnit test
cases as well.

= AO for UML Testing Profile:
= AO extensions/profiles for UML not existing, yet.

s AO for TTCN-3:

= No AO extension for TTCN-3, but:

= Existing concept of defaults for alternatives can be
considered as AO.

= Existing non-functional tests would benefit from AO.
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‘L Test Refactoring?

s Systematically improving the internal
structure of a test case/test suite,
without altering the behaviour of the
test.

= Industrial test suites are large and suffer
from “aging” just like ordinary software.

= Maintenance of standardised test suites
requires huge efforts.
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Test Refactoring?

= When refactoring implementations, tests are used as
safety net to have confidence that behaviour has not
changed.

= As many paths covered as are executed by tests.

= What are safety nets for test cases?

= Running refactored test against tested implementation is not
sufficient, since only one path of the test case is executed!

— Two possible solutions:

= Bi-simulation of manually refactored and original test case.

= Tool supported application of formally proven transformation
steps.
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Refactoring Support
i for Test Languages?

= Refactoring for JUnit:

= Refactoring of JUnit tests well established
and supported by tools.

= Refactoring for UML Testing Profile:

= Refactoring of UML models is known [Sunyé01]
and supported by tools.

= Refactoring for TTCN-3:
= Not studied.
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i Test Product Lines?

= Test product lines might be build around a
common (TTCN-3) compiler and run-time
platform.

= As part of a test development process,
commonalities of test suites may be re-used:

= Conformance tests may be re-used for regression
testing and non-functional testing.
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i Test Components?

= No component-based test development like in development with
software components available.

= TTCN-3 module control part allows to compose test campaigns
from pre-defined test cases.

= In distributed testing, “test components” execute the distributed
behaviour of a test case. Such “test components” may be
re-used:

= Test components which dynamically create a complex performance
test architecture.

= Test components which are a hub for synchronisation of other test
components.
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Test Libraries?

= Standardised abstract test suites can be regarded
as libraries.

= Still need to be adapted to concrete
implementation under test.

= [TCN-3:

= Test libraries for certain domains/protocols.

= UML Testing Profile:
=« Data pools and packages of test data and behaviour.

x JUNIL:
« Libraries of mock objects.
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i Test Frameworks?

JUnit itself is a re-usable OO framework for unit testing.
TTCN-3 can be regarded as framework for black box testing.

TTCN-2 [ISO97] is a framework and part of a methodology for
OSI conformance testing.

TTCN-3 skeletons are used to enforce a common test case
structure [STF176].

=« May be regarded as framework, but missing parts are not plugged
in using OO-like concepts — instead, they are copied & modified.

JUnit and UML Testing Profile test case frameworks are not
known.
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i Test Patterns?

= Technology independent test patterns:
= Test Design Patterns for testing OO systems [Binder99],
= Code Review Patterns [CunninghamO3].

= Unit test patterns (JUnit & friends):
= Mock Objects [Mackinnon01],
= C# Unit Test Patterns [Clifton2003],
« Patterns of Unit Test Automation [Meszaros04].

= MSC & TimedTTCN-3 based real-time test patterns:

= Real-Time Communication Patterns [Neukirchen04].
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Example: Latency Real-Time
Communication-Pattern

Context: ]

Context: T SUT
[TWO BCOS msc LatencyPattern

involved stem

decompose

Context: I Abstractlon

First event: Decomposed

stimulus /\& instance
ZS _\ml

Abstract on:
furtherEvents ] Referenlce

}
R —— _\ Context: ]

Last event:
response
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RelatingTimedTTCN-3 to
Real-Time Communication-Pattern

msc LatencyPattern

pco1l |, Y™ pcoo
decomposed

(t1, t2) furtherEvents |

] —_ ml

V|- T

e — e y——
— T

— Library S
module EvaluationFunctionModule {
function evallatencyOnline

}

}

\\\\\§__‘ 4____~,//

import from EvaluationFunctionModule
all;

var float timeA, timeB;

timeA:=self.now;

PCOl .send (ml) :

furtherEvents () ;

PCO2 .receive (ml) ;

timeB:=self.now;

setverdict (evallatencyOnline
(timeA,timeB,tl,t2)):
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Conclusions

= Transfer of re-use concepts from software
development may leverage re-use in test development.

= Support for re-use must be part of
development process:

= Testing of re-usable software,
= Re-use of tests:

= Extreme Programming [Beck2004] where unit tests are
refactored together with implementation code.

= Conformance tests re-used for regression tests, load tests,
performance tests.

= Re-usable test architectures:
= Generic Web Services test architecture [Dssouli05]
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ETSI Work Item "Patterns in
‘L Test Development” (PTD)

= Produce guidelines to support test developers in
= applying test patterns,
» identifying test patterns (“pattern mining”).

= Work on

classification of test patterns,

test specific pattern template,

methodological aspects,

example test patterns.

= Active contributors:

= University of Goéttingen (Software Engineering for Distributed
Systems Group), Fraunhofer FOKUS, Nokia Research Center.

= Supporters:
= Ericsson, mmO2. Web page: [PTDO5]
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‘L End of Presentation

= Thank you for your attention!

= Any questions?
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