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1 Introduction

The standard process of software engineering has four basic phases: analysis, de-
sign, implementation, and testing. In this classical model the testing of the imple-
mented system is based on the specifications developed in the first two phases.
However in practice there are several situations, in which the specification is not
up-to-date or even missing completely. For example the software engineering
method eXtreme Programming (XP) works without any specifications. This method
sees a specification as an ever changing and thus very time intensive and therefore
unnecessary phase for an effective development process. Another real-life exam-
ple is an attempt of the managers to keep the development costs as low as possible.
One measure of economy is to cut the budget for the first and second phases of
software engineering. This approach is heavily criticised for the reason of higher
error-rate of the software and often even higher costs for the development. Soft-
ware products developed in this way have either fragmentary specification or no
formal specification at all. (Somm 06)

Further, there is older software, which needs to be updated. Sometimes it had
no specification initially; in other cases it might be lost over the years. But even if
older software had a proper specification initially, it can differ significantly in case
the software was updated over the years without updates of the specification. The
test cases describe software for the most part better as this kind of specification.

The goal of this thesis is to create a formal specification of System Under Test
(SUT) from a test suite. For that purpose the learning algorithm of Dana Angluin
(Angl 87) will be modified in such a way that it is able to accept a test suite as
input. The expected result of the work of this algorithm is a finite automaton,
which describes the SUT and therefore is a formal specification of the SUT.

The results of the thesis can also be useful in a standard process of software
engineering as an indicator of the quality of the test suite. We could generate a
formal description of the system based on the test suite and then compare it with
an already existing specification. If the specifications are equivalent, the quality of
initial test suite is sufficient and does not need to be improved.

The thesis has four main parts, introduction and conclusion. The introduction
gives a short overview of the goals of this thesis and the current problems it may
help to solve. The Chapter 2 introduces some basic theoretical backgrounds in-
cluding the description of the learning algorithm and the Initiator- Responder (Inres)
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1 Introduction

protocol for the case study. The Chapter 3 is devoted to the modification of the al-
gorithm. The Chapter 4 focuses on the implementation. The Chapter 5 contains
our experiments and the results of the work. The Chapter 6 gives a short summary
of the results and an overview of opportunities for a further research.
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2 Foundations

This chapter describes the theoretical background of the thesis explaining the Inres
system, learning of finite automata using queries and the grounds of conformance
test of protocols.

2.1 Inres System

The following section describes the Inres system, which was developed by Dieter
Hogrefe (Hogr 89; Hogr 91). The fact that Inres contains many basic concepts of
the real life protocol for communication systems (Neuk 04), is easy to understand
and not too big, makes it very interesting for research and educational purposes.

Figure 2.1 illustrates the structure of the Inres system.

2.1.1 Inres Service

Every user who wants to communicate with another user by the means of this
service, has to make a connection in order to exchange data. The service is therefore
connection-oriented. To keep the system simple, the service is asymmetric. Only
Initiator-user can initiate a connection and send data. The Responder-user can either
accept or reject the connection. If he accepts the connection, he can receive data
from the Initiator-user.

The Inres service can be accessed on two Service Access Points (SAPs), ISAPini and
ISAPresp. Table 2.1 shows the Service Primitives (SPs) used for the communication
in Inres system.

The goal of an exchange of the first four SPs (ICONreq, ICONind, ICONresp and
ICONconf) is the connection establishment. The next two SPs (IDATreq , IDATind)
deal with data transmission and the last two SPs (IDISreq, IDISind) with connection
release.

During this process several problems may occur (see Figure 2.2): The loss of the
message can interrupt the connection establishment. That can happen, when Ini-
tiator sends the message CR (a) or when Responder acknowledges the connection
establishment with a message CC (b). In both cases the Initiator continues waiting
for an acknowledgment message from Responder. If the message is not received,
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Inres service

Medium Service

Initiator-
Entity

Responder-
Entity

Initiator-
user

Responder-
user

ICONconf
IDISind

ICONreq
IDATreq

ICONind
IDATind

IDISreq
ICONresp

CC,DR,AK CR,DT

MDATind MDATind

MDATreq MDATreq

ISAPinit

MSAP1 MSAP2

ISAPresp

Inres protocol

Figure 2.1: Inres System

SP Parameter Description
ICONreq Request of connection by Initiator-user
ICONind Indication of connection by provider
ICONresp Response to connection attempt by Responder-user
ICONconf Confirmation of connection by provider
IDATreq ISDU Data transfer from the Initiator-user to the provider,

ISDU is user data
IDATind ISDU Data transfer from the provider to the Responder-user,

ISDU is user data
IDISreq Request of disconnection by the Responder-user
IDISind Indication of disconnection by the provider

Table 2.1: Service Primitives of the Inres Protocol
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Figure 2.2: Unsuccessful Transmissions
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2 Foundations

the Initiator sends on expiry of timer an indicator IDISind. The parts (c) and (d) of the
Figure 2.2 illustrate possible errors in the data transmission phase. The errors can
happen during the data transmission from Initiator to Responder or while the Re-
sponder acknowledges correctly received data. On the analogy of cases (a) and (b)
the Initiatorsends an indicator IDISind on expiry of timer after waiting vainly for an
acknowledgment message. Furthermore the message can be lost, when Responder
disconnects (e). As the Responderdisconnects, the Initiator is still connected. The
Responder ignores the following data transmission. The Initiator does not get an
acknowledgment and goes on expiry of timer into a disconnected state.

2.1.2 Medium Service

The Medium service is symmetrical and not connection-oriented. The data trans-
mission is unreliable, which in this case means that the data can be lost and disor-
dered, but can’t be corrupted or duplicated. The Medium service can be accessed
at two SAPs: MSAP1 and MSAP2. The SPs MDATreq and MDATind are used for data
transmission from one SAP to another.

2.1.3 Inres Protocol

This connection-oriented protocol operates between two protocol entities Initiator
and Responder. The communication happens by exchange of the Protocol Data
Units (PDUs). Table 2.2 shows the specification of the respective PDUs.

PDU Parameter Description
CR Connection establishment
CC Connection confirmation
DT seq, ISDU Data transfer
AK seq, ISDU Acknowledgement
DR Disconnection

Table 2.2: Protocol Data Units of the Inres Protocol

The three communication phases are the connection establishment phase, the
data transmission phase and the disconnection phase. Each phase uses different
PDUs and SPs; unexpected PDUs and SPs are ignored by Initiator and Responder.

11



2 Foundations

2.1.3.1 Connection Establishment Phase

In the first phase the Initiator-user initiates a connection at the entity Initiator with
an ICONreq. Next, a CR is sent from the entity Initiator to the entity Responder. The
Medium service delivers it.

Three basic scenarios are possible:

• If Responder answers with CC, the Initiator issues an ICONconf to its user. That
means the data phase can be entered.

• If Responder answers with DR, the disconnection phase is entered.

• The third option is that the Responder does not answer at all. In this case
the Initiator waits for five minutes and sends CR again. After four attempts it
enters the disconnection phase.

After getting a CR, Responder issues an ICONind to the Responder-user. If the Re-
sponder-user accepts the connection, he will send ICONresp. The Responder sends
then a CC to Initiator and the data transmission phase is entered. Otherwise the
Responder-user sends the IDISreq and enters the disconnection phase.

2.1.3.2 Data Transmission Phase

In the data transmission phase the Initiator-user first issues an IDATreq. Then the
Initiator sends a DT to the Responder. After that the Initiator can receive another
IDATreq. IDATreq has as parameter an ISDU. ISDU is a Service Data Unit (SDU)
for the transmission of information to the peer user. The Initiator sends this user
data as a parameter of DT to the Responder. After waiting for 5 seconds for an
acknowledgment AK, he sends the DT again. There are four attempts possible.
Then the Initiator enters the disconnection phase.

Both DT and AK have a sequence number as a parameter (0 or 1). Initiator sends
a DT with a sequence number 1. The acknowledgment is correct, if the sequence
numbers of DT and AK are identical. Are the numbers different, the last DT is sent
again. The same happens, if AK does not arrive in 5 seconds. There are four at-
tempts possible, before the Initiator enters the disconnection phase. If Responder
receives a DT with the expected sequence number (here 1), he issues the ISDU as a
parameter of an IDATind to the Responder-user and sends an AK with the sequence
number to the Initiator. If the number is unexpected, the Responder sends an AK
with the number of the last correctly received DT. In this case the user data (ISDU)
must be ignored. The consequence of the receipt of a CR or an IDISreq is that the Re-
sponder enters the connection establishment or disconnection phase respectively.
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2.1.3.3 Disconnection Phase

After receiving IDISreq from the Responder-user, the Responder sends a DR to the
Initiator. The Initiator sends then IDISind to the Initiator-user. The participants are
disconnected; a new connection can be established (See Part 2.1.3.1).

2.2 Learning of Finite Automata Using Queries

The method of learning of finite automata using queries was developed by Dana
Angluin (Angl 87). The algorithm, also called the learner, uses a Minimal Adequate
Teacher (MAT), also called the oracle, for an effective learning of a target concept.

Throughout this thesis, the following notation is used: A Deterministic Finite Au-
tomaton (DFA) A is a tuple ( Q, Σ, δ, q0, F ), where

• Q is a finite non-empty set of states in the automaton A

• Σ is a binary input alphabet

• δ is a transition function, which maps Q× Σ into Q

• q0 ∈ Q is the initial state

• F ∈ Q is a set of accepting states

For any word w ∈ Σ∗, A[w] is the state attained by A when started in state q0
with w as input. The concatenation of two words w0, w1 can be written as w0 + w1.

Let T be the target automaton. The algorithm discovers in each phase new states
of T with two types of queries:

• Membership query mq(w) : The algorithm asks the oracle, whether a given
input word w is accepted by the target automaton T. The oracle answers with
yes or no.

• Equivalence query eq(H): The algorithm submits a hypothetical automaton
H to the oracle. If the hypothetical automaton is not equivalent to the target
automaton, then the oracle answers with a counterexample c. In case the
automata are equivalent, the counterexample is empty.

The counterexample allows the algorithm to discover a new state of A using
membership queries. The hypothetical automaton H = T is equivalent with au-
tomaton, when all states of T have been discovered.

In order to save the already learned information the algorithm uses a binary clas-
sification tree τ. Each node of the tree contains strings, which can be accessed by
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2 Foundations

the function n.label, where n is a node of the tree. The strings saved in leaves are
referred to as access strings and those saved in internal nodes are called distinguish-
ing strings. Each string s ∈ S a set of access strings leads from an initial state q0 to a
unique state of the automaton.

A string d ∈ D is distinguishing, when ∀(s0, s1) ∈ S|s0 6= s1 the following condi-
tion is true:

(A[s0 + d] ∈ F ⇔ A[s1 + d] /∈ F) ∨ (A[s0 + d] ∈ F ⇔ A[s1 + d] /∈ F)

The root of the classification tree is a node with an empty distinguishing string.
The tree has a recursive structure. Let d be a distinguishing string in a current
node. The access strings s is saved on the right part of the tree, if s + d leads to an
accepted state of the automaton. Otherwise s is saved on the left side of the tree.

If two strings s0 and s1 have the same path by sifting in a classification tree, then
the states of automaton q1 = T[s0] and q2 = H[s1] belong to the same equivalence
class. The Listing 2.1 describes the sifting function. This function sift(s) takes a
string s as a parameter and starts its work at the root of the classification tree. If
the current node n is an internal node, then the next step is a membership query
mq(s(n.label)). If the answer to the membership query is yes, the sifting continues
in the right subtree, otherwise in the left subtree. This is repeated until the leaf
is reached. The acess string stored in the leaf is a representative element for the
equivalence class. The partition of the target automaton in equivalence classes can
be saved in the classification tree. In each iteration of the algorithm one of the
equivalence classes splits until every equivalence class contains only one state.

S t r i n g S i f t ( S t r i n g s ) {
CurrentNode=treeRoot ;
S t r i n g d=" " ;
while ( ! CurrentNode . i sLea f ) {

i f (mq( s+d ) )
CurrentNode = CurrentNode . ge tR igh t ;

else
CurrentNode = CurrentNode . g e t L e f t ;

d = CurrentNode . Label ;
}
return CurrentNode . Label

}

Listing 2.1: Sifting the Classification Tree

The hypothetical automaton is constructed from the classification tree by means
of sifting as shown in Listing 2.2. Each known equivalence class of the target au-
tomaton corresponds to a state of the hypothetical automaton, which is marked

14



2 Foundations

with an acess string to a representative element of this equivalence class. The tran-
sitions of the hypothetical automaton lead from one equivalence class to another.
Then the sift(s + b)|b ∈ Σ returns a destination state of the δ transition out of the
state s.

Tentat ive_Hypothes is (H, C l a s s i f i c a t i o n T r e e ) {
H. c rear ( ) ;
t r e e I t e r a t o r = C l a s s i f i c a t i o n T r e e . ver texSet ( ) . i t e r a t o r ( ) ;
while ( t r e e I t e r a t o r . hasNext ( ) ) {

treeNode= t r e e I t e r a t o r . next ( ) ;
i f ( treeNode . i sLea f )

H. add ( treeNode ) ;
}

}

H I t e r a t o r = H. ver texSet ( ) . i t e r a t o r ( ) ;
while ( H I t e r a t o r . hasNext ( ) ) {

from= H I t e r a t o r . next ( ) ;
for ( i n t b=0;b<2;b++){

to= S i f t ( from . Label+b ) ;
G. addEdge ( from , to ) . setName ( b ) ;

}
}

}

Listing 2.2: Tentative Hypothesis

After the construction of the hypothetical automaton H the algorithm makes an
equivalence query eq(H). The query returns a counterexample c in case T 6= H, i.e.
the target automaton and the hypothetical automaton differ. This counterexample
is used in order to split one of the known equivalence states. For that purpose the
work of both automaton is simulated on the counterexample c.

The algorithm ensures that the root node of the tree is always labelled with an
empty acess string. That is why the automata have the same initial state and are
synchronised at the start. At the end of the processing of c the automata are in the
different equivalence classes. The reason for that is the fact that one of them accepts
the counterexample and the other rejects it.

The function updateTree(c) (see Listing 2.3) searches for the smallest prefix of the
counterexample c that leads the hypothetical automaton and the target automaton
to two different equivalence classes. At that point the transitions of the automata
must start from two different states of the same equivalence class. Therefore the
previous equivalence class can be split in two different equivalence classes. The
new equivalence class (leaf of the classification tree) is labelled with a previous

15



2 Foundations

prefix as acess string.

p r i v a t e void Update_Tree ( S t r i n g y ) {
for ( i =1; i <=y . leng th ; i ++){

y i =y . subs t r i ng (0 , i ) ;
s j = S i f t ( y i ) ;
smj = M[ y i ] . Label ;
i f ( s j != smj ) break ;

}

y i = y . subs t r i ng (0 , j −1);
s i = S i f t ( y i ) ;

replace_node = C l a s s i f i c a t i o n T r e e . getNodeWithAccessStr ing ( s i ) ;
d = F i n d D i s t i n g u i s h i n g S t r i n g ( s j , smj ) ;

C l a s s i f i c a t i o n T r e e . Add ( newVertex ) ;
newVertex . Label = y . subs t r i ng ( j −1, j )+d ;
C l a s s i f i c a t i o n T r e e . Add ( newLeaf ) ;
newLeaf . Label = y . subs t r i ng (0 , j −1);

/ / Connect new v e r t i c e s
C l a s s i f i c a t i o n T r e e . exchange ( replace_node , new_vertex ) ;
i f (mqu( newLeaf . Label+newVertex . Label ) ) {

T . addRightEdge ( newVertex , newLeaf ) ;
T . addLeftEdge ( newVertex , replace_node ) ;

} else {
T . addLeftEdge ( new_vertex , new_leaf ) ;
T . addRightEdge ( new_vertex , replace_node ) ;

}
}

Listing 2.3: Update the Classification Tree

2.3 Conformance Test of Protocols

A conformance test is performed in order to verify if the external behaviour of a
given implementation of a protocol is equivalent to its formal specification (Holz 91).
In case the specification has a design error, the implementation passes the test only
if it contains the same design error as its formal specification. It fails the test, if the
specification and implementation are not equivalent.

A black box approach is widely used for conformance testing. The black box is
provided with sequences of input signals. After that the output signals are com-
pared with those prescribed by the formal specification. If they match, the Im-
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plementation Under Test (IUT) passes the test. All the sequences of input signals
together make a conformance test suite.

It is difficult to find a generally applicable, efficient procedure for generating test
suites for the protocol implementation.

The first attempts to solve this problem aimed to establish that a given imple-
mentation realizes all functions of the specification over the full range of parameter
values, and can correctly reject invalid inputs in a way that is consistent with the
initial specification. But the problems with the complexity of conducting the tests
and their standartisation as well as an uncertainty of their value, made clear that
an alternative approach is needed.

The new goal is to establish that the control structure conforms to the specifica-
tion structure. These structures are conform if they model the same sets of states
and allow for the same state transitions.

The structural testing is focused on the control structure of the protocol; no
data or parameter values are considered. The following assumptions are made
(Holz 91):

1. The protocol represents a deterministic finite state machine; both input and
output signals and a maximum number of states are known.

2. The response time to an input signal is a known, finite amount of time

3. The states and transitions of the protocol form a strongly connected graph.

These assumptions are required for testing protocols. They are also essential for
this thesis since they allow to consider protocols as finite automata.

17



3 Adaptation of the Learning Algorithm

In this chapter the algorithm of Angluin is modified in order to answer the pur-
poses of the thesis. The membership and equivalence queries were redefined. The
automatic coding and decoding of the test suite was added.

3.1 Realisation of Queries

The algorithm of Angluin assumes the existence of an oracle that answers both
membership queries and equivalence queries. In this work the test suite under-
takes the functions of oracle.

First, the realisation of membership queries is described. Each proper test case t
contains:

1. t.input - inputs, which are needed to conduct the test,

2. and t.reaction - an expected reaction of the test object. t.reaction can be either
pass or fail. Pass is equivalent to an accepted state in the automaton theory
and fail is equivalent to a rejected state accordingly.

The parameter of the membership query - a sequence of incoming signals - cor-
responds to a first component of the test case. The answer to the query is a real
reaction of the automaton, which corresponds to the second component of the test
case.

Based on this information the membership query was implemented as follows:
Let assume that a parameter of the membership query is a sequence q. The answer
to the query membership query is t.reaction , if t.input= q. See Listing 3.1.

But what if the test case t is not contained in the test suite. This question can-
not be answered within this work and is a field for further research. The number
of accepted sequences in the real-life systems is lower than a number of rejected
sequences. Because of the higher probability of getting a rejected sequence an as-
sumption is made that the target automaton rejects those sequences of input sig-
nals.

The realisation of equivalence queries is comparatively simple. In the test suite
we look for a test case t, in which t.reaction 6= H[t.input], where H is a hypothesis
automaton learned until the moment, when the query is made. If we find such a

18



3 Adaptation of the Learning Algorithm

boolean membershipQuery ( query ) {
for ( i t e r a t o r = TestSu i te . i t e r a t o r ( ) ; i t e r a t o r . hasNext ( ) ; ) {

TestCase = i t e r a t o r . next ( ) ;
i f ( TestCase . i npu t == query ) {

return TestCase . reac t i on ;
}

}
return f a l s e ;

}

Listing 3.1: Membership Query

test case, then equivalence query returns t.input as a counterexample, otherwise we
assume that the target automaton and the hypothesis automaton are equivalent.
See Listing 3.2.

S t r i n g equivalenceQuery ( ) {
for ( i t e r a t o r = TestSu i te . i t e r a t o r ( ) ; i t e r a t o r . hasNext ( ) ; ) {

TestCase = i t e r a t o r . next ( ) ;
i f ( ! t race InHypothes is ( TestCase . i npu t ) == TestCase . reac t i on )

return TestCase . i npu t ;
}
return " Stop " ;

}

Listing 3.2: Equivalence Query

3.2 Coding

Kearns describes the algorithm of Angluin, which can only learn automata with
a binary input alphabet Σ. (Kear 94) The real systems use generally input alpha-
bets with a volume larger than this of the binary alphabet. In order to solve this
problem is the transformation of the target automaton T into an equivalent binary
automaton Tb needed. For that purpose the incoming signals of the target automa-
tion are coded binary. After that the number of states of the automaton increases.
The factor of increase depends on the selected code. In order to learn each new
state, the algorithm has to make a new iteration. That leads to an increased num-
ber of membership queries. Therefore a code that allows us to keep the number
of states low is the best choice for the task. The coding theory names this type of
code the entropy encoding. The main idea of the entropy encoding is that frequent
messages get a shorter code than the less frequent ones. For that purpose coding
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3 Adaptation of the Learning Algorithm

Figure 3.1: Sample Graph 1

algorithms use probabilities of messages pm, where m ∈ Σ.
In our case the target automaton is unknown. The only information available

are the test runs. Therefore, the next step is to try to determine the probabilities
pm based on the information from the test runs. An assumption is made that the
probability of getting a message m in the test run is the same as this in the target
automation.

Let A be a known automation, which accepts all sequences of messages starting
with an arbitrary amount of messages a and ending with a sequence of messages
bcd. Figure 3.2 depicts the automaton A. Then one of the possible test suites can be
as follows:

Test Case Expected result
ab accept
aac accept
aaaad accept

Table 3.1: One of the Possible Test Suites the Automaton A

The probabilities calculated on the base of this test suite are shown in Table 3.2

Message Probability
a 0.7
b 0.1
c 0.1
d 0.1

Table 3.2: Probabilities of the Messages for the Automaton A

There is an equal probability to get a message b, c or d. This probability is lower
than a probability to get a message a. Knowing the probabilities makes the ap-
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Figure 3.2: Sample Graph 1 Encodecd with Hufman Code

plication of one of the entropy coding techniques a method of Hufman (Huff 08)
possible. The results are shown in Table 3.3.

Message Code
a 0
b 10
c 110
d 111

Table 3.3: Hufman Code for the Messages of the Automaton A

After the coding is applied to the automation A, the number of all states in a
binary automaton Ab will be nine (see Figure 3.2).

Even so this code leads to a minimal length of test runs; the size of the binary au-
tomaton is not minimal. So the code shown in Table 3.4 leads to a binary automaton
with seven states (see Figure 3.3).

Message Code
a 00
b 01
c 10
d 11

Table 3.4: Simple Code for the Messages of the Automaton A

The reason for this result is the fact that a set of all messages a from the test runs
corresponds to just one self-looped transaction in the automaton A. Therefore this
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Figure 3.3: Sample Graph 1 Encoded with Simple Code

Figure 3.4: Sample Graph 2

approach does not work correctly, if the automation contains any loops.
Next, a performance of this coding in an average case could be explored. But

even if the results would be positive that is not the only problem of this approach.
Let the automaton A′ accept sequences of messages ab, ac, and ad. At the same
time these sequences are test cases of the automation. The automation is depicted
in Figure 3.4

Each test run has a mutual path in the automation (here the transition a). That is
why a set of all messages a from the test suite is represented in automation by just
one transition. The coding on the base of the test suite leads to the same code as in
the previous case. Therefore this type of coding is not suitable for cases, where a
structure of the automaton is unknown.

After these experiments the decision was made to use a simple binary coding
with a constant length l = log2(Σ) of the words to be coded. The automaton grows
in l times. The messages are enumerated with a binary numeral system, which
starts with null. A binary number of the message is its code. If a length of the
sequence can’t be divided by l, it can’t be decoded and consequently does not lead
to an accepted state. Therefore this type of coding allows us to answer most mem-
bership queries effectively.
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The learning algorithm was implemented in Java 5.0. This chapter describes the
technical details of the implementation, the file format and the choice of additional
Java libraries. Two different file formats are supported. One of them was devel-
oped for this application and another one is an eXtensible Markup Language (XML)
format used in the TTCN-3 Refactoring and Metrics Tool (TRex).

TRex is an open-source Eclipse plug-in, which provides Integrated Development
Environment (IDE) functionality for the Testing and Test Control Notation Version 3
(TTCN-3) core notation and supports the assessment and automatic restructuring
of TTCN-3 test suites by providing suitable metrics and refactoring (TRex 08). For
the XML Schema please see Appendix 7.1.

4.1 XML Overview

The language Java has a great variety of Application Programming Interfaces (APIs)
and parsers for the work with XML. Therefore the choice was not easy. There are
two basic types of APIs: Streaming and Tree-based APIs.

4.1.1 Streaming API

The XML are transmitted and parsed serially at an application runtime; often in
real time and from dynamic sources with contents unknown in advance. The
parsers are able to start the generation of output immediately and XML can be
discarded right after the use.

The main advantages of a streaming API are a smaller memory footprint, com-
paratively low processor requirements, and higher performance under certain cir-
cumstances.

The main disadvantage is a so called ‘cardboard tube’ view of a document, which
means that the state can be seen only at one location at a time in the document.
Therefore a streaming API is a good choice, if the application has strict memory
limitations, for example a cell phone running Java 2 Micro Edition (J2ME), or if it
needs to simultaneously process several requests.

There are two types of streaming APIs: pull and push streaming APIs.
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During a pull streaming a client application calls methods on an XML parsing
library, when it needs to interact with an XML. In other words the client application
only gets (pulls) XML data, if it directly asks for it. On the contrary in a push
streaming the XML parser sends (pushes) the XML data to the client as the parser
encounters elements in an XML, regardless whether or not the client is ready to
use the data at that particular time. A brief overview of the representatives of these
two types of streaming APIs follows.

The Streaming API for XML (StAX) is a representative of the pull streaming API.
StAX combines the two types of pull APIs. The first mode StAX Cursor stands for
pure streaming with fast cursor and the second one StAX Iterator for creating XML
event objects. It has two major advantages. StAX enables an XML-view of non-
XML data. StAX allows also to filter XML documents for information relevant to
the client.

A representative of the push streaming API is the Simple API for XML (SAX).
It models the parser and not the document itself. The parser uses a callback in-
terface in order to feed contents to the client application. Because of that, SAX is
very fast and memory efficient. That means that it does not need to store the entire
document in the memory and therefore can work efficiently with big XML docu-
ments. The developer of a SAX program uses additional data structures to keep
the contents and the document separate. This additional work needed can be a
disadvantage. Even so SAX is a good choice, if the information you process is close
together in the document and you process for instance one element at a time, it is
not suitable in case the access to the entire document at once is needed. For that
purpose are tree-based APIs a better choice.

4.1.2 Tree-based (Document Object Models)

APIs of this type create in-memory objects representing the XML document as a
tree. After that the trees can be navigated and parsed arbitrarily. This leads to
more flexibility in the work of developers on one side and to increased processor
and memory requirements on the other side.

4.1.2.1 DOM

The Document Object Model (DOM) is a representative of the tree-oriented APIs.
XML documents are represented as Document objects. The information is managed
by invoking methods on the Document object and other objects it contains. It is an
advantage, when a random access to widely separated parts of the original XML
document is needed. A high memory requirement is a price for this advantage.
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DOM is also a read-write API. That means it can not only parse XML documents,
but also create them. Well-formed documents are the result.

4.1.2.2 JDOM

Another representative of the tree-based APIs is the Java-native tree-based API
JDOM.

There are several similarities between JDOM and DOM, e.g. JDOM reads the
XML document into the memory before it starts working. They also have similar
program outlines.

However there are some differences in favour of JDOM. The reason for the com-
plexity of the DOM and difficulties in its use is the fact that it is not actually a Java
API. Instead it is defined in the Interface Definition Language (IDL) and then com-
piled to Java. Because of that DOM uses interfaces and factory methods instead of
classes and constructors.

On the contrary JDOM was designed just for Java. It uses some standard Java
coding methods, like equals() and hashCode(), and classes as List and String. All
of that makes JDOM more intuitive for Java developers and its code less tricky
compared to that of the DOM.

JDOM performs best on simple documents with no recursion, limited mixed con-
tent, and a well-known vocabulary. The XML side of the JDOM is not optimal. It
doesn’t have some important features like a common node interface or superclass
for navigation. That is why JDOM has some problems by processing arbitrary
XML.

The Table 4.1 shows the overview of APIs and their features.
The choice of APIs was based on the following criteria. In the current program

XML is used for both input and output of the data. The streaming APIs can only
generally read XML. Even though StAX has a feature of saving XML documents,
it does not provide an interface for creating nodes. Of course different APIs could
be used for saving and reading data, but this way is unnecessary complicated.
That is why the idea of using the streaming APIs was rejected. The advantage of
DOM is that it has more functions for working with XML documents as the other
APIs. The XML files used in the program have a relative simple structure. So that
the functions the JDOM provides are sufficient for our purposes. Using JDOM
instead of DOM brings additional advantages, such as intuitive development and
moderate resource requirements. Therefore JDOM was chosen as an XML API.
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Feature StAX SAX DOM JDOM
API Pull, Push, In memory In memory
Type streaming streaming tree tree
Ease of Use High Medium High Very High
XPath Capability Not supported Not supported Supported Supported
Efficiency Very Good Very Good Medium Good
Arbitrarily Not Not
Navigation supported supported Supported Supported
Read XML Supported Supported Supported Supported
Write XML Supported Not supported Supported Supported
Create, Update, Not Not
Delete Nodes supported supported Supported Supported

Table 4.1: XML API Feature Summary

4.2 Description of the XML Format

4.2.1 Input File Format

Test cases can be loaded into an application from an XML file, which is described by
the XML Schema Definition (XSD) Schema Labeled Transition System Markup Language
(LTSML). This format is pretty general and is designed to model labeled transition
systems. That is why just a part of all available tags of this format will be used.
Some restrictions were also made to the rules described in LTSML. The following
text describes the details.

Test cases can be presented in form of a graph Gt. The initial state of the graph
Gt is a starting point of each test case. Every transition is one test step of the test
case. The test case ends, when the final state of the graph Gt is reached. The LTSML
format does not allow to mark states as positive (accepted) or negative (rejected).
To solve this problem test cases are stgored in two Labeled Transition System (LTS)
structures. The positive test cases are stored in the first one and the second one
contains negative tests. Both LTS have a similar structure. The example of Inres is
used in order to describe this structure.

The tag action defines those input signals, which are used in test cases. The at-
tribute id is a unique name of the signal. Even so this XML file has to contain the
attribute type and the tag description, they are ignored during processing.

The states of the graph are used as connection points between two steps of the
test case. That is why they need to be defined. For that purpose the tag state is
used.
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Next, each test case is defined by means of tag transition as a sequence of test
steps. Every test case starts at a state marked with the tag startState. The end of a
test case is marked with the tag endStates. The application analyses the document
by searching for all paths between the start and the end state. It begins the search
from a startState and proceeds until it reaches a state, where no output transitions
are possible. Therefore it is important to develop an XML document without any
loops.

The structure of the negative tests is almost the same except that it doesn’t need
a definition of actions. The definitions made for the positive tests can be used here.

The class TrexTracesReader enables the reading of this file format. For details see
Figure 4.1.

4.2.2 Output File Format

A LTSML format is also used for saving the already learned automata. No restric-
tions described in Section 4.2.1 are necessary for saving of automata. First, the
states Q of automaton are saved in an XML file. The attribute id and the tag de-
scription are set to a corresponding acess string. Consequently a state with id = ""
(empty) is a startState and there are no endstates.

Every signal ∈ Σ is saved in a separate tag action. The transition function is
stored in a structure transitions. An attribute id of each transition is generated auto-
matically.

The class GraphToTrexExporter was implemented for export of the learned au-
tomaton into LTSML format For details see Figure 4.1.

4.3 Simple Traces Format

The implemented system also supports the Simple Traces Format. This is a kind of
a Comma Separated Values (CSV) format. Each line of the file contains one test case.
In the first column stands a plus sign for a positive test case and a minus sign for a
negative test case. The following columns contain input signals. The columns are
separated with commas.

In comparison with an XML format this format has two main advantages. The
files are more readable for the use and are also smaller as those in the XML format
described in Section 4.2.1. The main disadvantage is the fact that the use of this
format is possible only for this application. On the other hand one format can be
easily mapped into another format The class SimpleTracesReader, which is shown
in Figure 4.1, enables the support of the Simple Traces Format.
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Figure 4.1: Class Diagramm of Readers and Writer

4.4 Implementation of the Learning Algorithm

For the most part the implementation was done according to the description in
the Chapter 2 and in the Chapter 3. The class diagram of the learning algorithm
is shown in Figure 4.2. The exception was made for the implementation of the
membership query. An additional information from decoder is used to answer the
membership query.

A binary sequence can’t be decoded, if there is no match in the decoding table
between this sequence and one of the signals of the target automaton. That means
the membership query contains signals that don’t belong to a set of input signals
of the target automaton. In this case the oracle returns false as an answer. The final
structure of the membership query is depicted in Listing 4.1.

4.5 Coder and Decoder

As already mentioned in Section 3.2, the coding and decoding of signals is essen-
tial for a successful learning of protocols. For that purpose a class CoderDecoder
was created. The class is depicted in Unified Modeling Language (UML) notation in
Figure 4.3.
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Figure 4.2: Class Diagramm of the Learning Algorithm
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boolean membershipQuery ( query ) {
i f ( ! fCoder . canDecode ( query ) )

return f a l s e ;

for ( i t e r a t o r = TestSu i te . i t e r a t o r ( ) ; i t e r a t o r . hasNext ( ) ; ) {
TestCase = i t e r a t o r . next ( ) ;
i f ( TestCase . i npu t == query ) {

return TestCase . reac t i on ;
}

}
return f a l s e ;

}

Listing 4.1: Implementation of Membership Query

Figure 4.3: UML Notation of Coder Decoder
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The public procedure makeCode and the public function codeIt are responsible
for coding. First, a table is built to map a protocol signal with a corresponding
code word. A set of all signals is passed as a parameter to the function makeCode,
which iterates and numerates them. The binary representation of the number is a
code word. Finally, each test case is coded by means of function codeIt.

In the learning process the algorithm makes membership queries. But not all of
them can be decoded with CoderDecoder. They can not be decoded only, if a query
contains an unknown code word. This kind of query can never lead to an accepted
state of the automaton. That is why the function mq uses a function canDecode.
This function returns true, if the query can be decoded, otherwise it answers with
false.

After the algorithm has finished his work, the learned automaton needs to be
decoded. For that purpose the function decodeGraph is used. A high level descrip-
tion of the decoding process is shown in the Listing 4.2. The function manages two
lists:

decodedGraph decodeGraph ( whatG , graphRoot ) {
/ / i n i t i a l i z a t i o n
markedVert ices . empty ;
decodedGraph . empty ;
startQueue . empty ;

startQueue . add ( graphRoot ) ;

while ( startQueue . s ize ( ) != 0 ) {
s tar tFrom = startQueue . i t e r a t o r ( ) . next ( ) ;
startQueue . remove ( star tFrom ) ;
connect ionsLength = getCodeLength ( ) ;
f indConnect ion ( decodedGraph , star tFrom , star tFrom , 0 , " " , startQueue ) ;
markedVert ices . add ( s tar tFrom ) ;

}
return decodedG ;

}

Listing 4.2: Function decodeGraph

• A startQueue - a list of vertices, which need to be processed.

• A markedVertices - a list of already processed vertices

The function starts to work with an initial state as a currentVertex. The procedure
has to find all paths with a length codeLength starting at the currentVertex. If the
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vertex at the end of the path is not yet in the list markedVertices, it will be added to
the startQueue.

Next, the nodes currentVertex and the vertex at the end of the path are added
to the decodedGraph. After that the vertices are connected by the edge labeled
with a signal =CoderDecoder.decode(path). Finally, the currentVertex is added to
the markedVertices and startQueue.pop is assigned to a currentVertex. The decoding
continues until the startQueue is empty.

32



5 Experiments

In this chapter the development of a test suite and the learning process are dis-
cussed and the results of this practical work are revised and evaluated.

5.1 Adaptation of Inres Protocol

As described in Section 2.1 of this Master Thesis, Inres is a complex system. This
particular work is concentrated on the learning of the automaton I, which describes
the behavior of the Initiator.

• The Input Alphabet of I.

An input alphabet consists of all incoming messages on ISAPini and MSAP1
(see Figure 2.1) and a timeout message TIMER.

• Initial State

Although the protocol has neither initial nor final states, the algorithm re-
quires an initial state. That is why the disconnected state is set as an initial
state. Because of this all test cases will start in a disconnected state.

• Accepted and Rejected States

The requirements of the algorithm also include accepted and rejected states.
Let the disconnected state be the accepted state and the other states be re-
jected states. Any test case stopped in a disconnected state is positive and
any other test case is negative.

Before starting the experiments the Inres will be simplified. The goal of the mod-
ification is to make Inres automat in general and the encoded automat in particular
more practical without losing important properties of the protocol. The following
simplifications have been made:

In the Data transmission phase (see Section 2.1.3.2) the parameter ISDU is limited
to a one constant message. Because of the constant ISDU it is omitted in the follow-
ing work and for example IDATreq and DT is written instead of IDATreq(constMessage)
and DT(constMessage) accordingly . This modification does not restrict the com-
munication process between the Initiator-user and Responder-user in any significant
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Figure 5.1: Special Vertex

way. The following example illustrates that. The data transmission can be carried
out in blocks. Initiator opens a connection and sends n times DT to a Responder.
Thereby a binary representation n is equivalent to a binary representation of the
block. Responder counts the received messages and presents the results binary.
After that the connection stops and a new connection can be established in order
to transmit a new block of information. Therefore this simplification is congruent
with the goal, not to lose the important functions of the protocol.

Unexpected PDUs and SPs are not ignored by the Initiator, they lead to a special
vertex shown in Figure 5.1. The vertex itself has two outgoing edges, which are
self-looped. The vertex is in a set of rejecting states of automaton.

In case of a transmission error, the sending is not repeated.
A simplified automaton is depicted in Figure 5.2.

5.2 Test Suite

The algorithm learns from membership and equivalence queries. Both memory
and equivalence query are based on the test suite. Therefore the algorithm can
learn only information, which is contained in the test cases. That is why, the mini-
mal requirements of the test suite include:

1. All states of the automaton can be reached with the test suite.

2. Each transition of the automaton must be contained in the test suite at least
one time

According to these rules, the first test suite was developed. The Table 5.1 shows
this test suite.

If the algorithm runs on this test suite, it stops its work after the first equivalence
query. The algorithm has created a simple automaton with one state. This state
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Figure 5.2: Simplified Inres Automaton

Test Case Expected result
ICONreq, TIMER accept
ICONreq, DR accept
ICONreq, CC, DR accept
ICONreq, CC, IDATreq, DR accept
ICONreq, CC, IDATreq, TIMER accept
ICONreq, CC, IDATreq, AK(0) accept
ICONreq, CC, IDATreq, AK(1), DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, TIMER accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(1) accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), IDATreq, AK(0) accept

Table 5.1: Positive Test Cases for the Inres Protocol
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is an accepted state, which corresponds to an initial state of the target automaton.
The state has two self-looped transitions. Because of that, the equivalence query
can not find any difference between test cases and this automaton. Therefore our
entire test suite was accepted. Figure 5.3 shows the hypothesis automaton of the
first test suit.

Figure 5.3: Hypothesis Automaton of the First Test Suit

The first test has shown that the algorithm can not learn successfully without
negative tests. The next challenge is to determine, which negative test cases and
how many of them are needed.

In the next experiment a special version of membership and equivalence queries
was used. In this version the operator plays a role of oracle. The operator sees the
already learned binary hypothesis automation and can enter as counterexample
any sequence of binary signals. That means the operator can enter even a sequence
of binary signals, which can not be decoded into a sequence of incoming signals
of Inres. Such input is a counterexample, if it leads to an accepted state in the
hypothesis automaton. A signal, which can’t be decoded, is defined as an unknown
signal. With the negative tests shown in Table 5.2 the learning of the automaton
was successful. Figure 5.4 shows the binary coded learned graph.

Test Case Expected result
ICONreq, CC, IDATreq, AK(1), IDATreq, unknown signal reject
IDATreq, AK(1) reject
ICONreq, CC, IDATreq, CC, DR reject

Table 5.2: Negative Test Cases for the Inres Protocol

In the previous experiments test suites were in CSV format. In the following
experiments an XML format is used. The reason for this change is the compatibility
with TRex (details in Chapter 4). In this experiment the equivalence queries are
based on the test suite.

Now the coder gets the signals in a different order as in the previous experi-
ments. The algorithm gets other counterexamples as answers to the equivalence
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Figure 5.4: Binary Coded Inres Automaton
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queries. Because of that the algorithm makes membership quieries, which differ
from those in the previous experiments. This code leads to an increased number
of test cases compared to the test suites of the previous experiments. Those addi-
tional test cases are necessary in order to answer membership queries. The length
of the longest test case has also increased. It almost reaches the upper bound of
the theoretically sufficient maximum length of the test case. This upper bound is
less or equals 2n, where n is a number of states of the automaton. A parameter of
a membership query is a concatenation of a distinguishing string and acess string.
The length of each string is bounded in the number of states of the automaton.

During the next experiments the program ran on a variety of combinations of
the negative tests. A set of positive tests was constant. In this particular case one
negative test was sufficient for the learning.1 Each of the negative tests in Table 5.2
is suitable for this task. The best choice is a negative test with a minimal length,
since in that case, the cumulative length of the generated access and distinguishing
strings is smaller than this length in cases with a longer test case. That enables
us to keep the length of the membership query small. The final test suite, which
complies with all these rules, is shown in Table 5.3.

The result was an automaton equivalent to the reference automaton. Figure 5.5
shows the automaton before it is decoded.

During the tests we noticed one interesting feature of the algorithm: the machine
never forgets the information once learned. This fact has both negative and positive
effects for our work. On one side we must not search in learned test cases for a
counter example in order to answer an equivalence query. On the other side it is
not possible to correct the wrong answer. We have to start learning from scratch.

1The exact number of the tests should be determined in each case separately.
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Test Case Expected result
ICONreq, TIMER accept
ICONreq, DR accept
ICONreq, CC, DR accept
ICONreq, CC, IDATreq, DR accept
ICONreq, CC, IDATreq, TIMER accept
ICONreq, CC, IDATreq, AK(0) accept
ICONreq, CC, IDATreq, AK(1), DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, TIMER accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(1) accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), IDATreq,
AK(0), IDATreq, TIMER accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), IDATreq,
AK(0), IDATreq, DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), IDATreq,
AK(0), IDATreq, AK(0), DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), IDATreq,
AK(0), IDATreq, AK(0), IDATreq, DR accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), IDATreq,
AK(0), IDATreq, AK(0), IDATreq, TIMER accept
ICONreq, CC, IDATreq, AK(1), IDATreq, AK(0), IDATreq,
AK(0), IDATreq, AK(0), IDATreq, AK(1) accept
IDATreq, AK(1) reject

Table 5.3: Second Test Suite for the Inres Protocol
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Figure 5.5: Second Binary Coded Inres Automaton
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6 Conclusion

This thesis shows a method to create a formal specification from a test suite. The
experiments were made on example of the automaton, which represents the initia-
tor entity of a simplified Inres protocol. Both membership and equivalence queries
were modified, which allowed the algorithm to learn from a test suite. Addition-
ally the coding pre- and post processing were added to the algorithm so that the
algorithm can now learn any protocols from a qualified test suite. The qualified
test suite in terms of this thesis is a test suite, which contains unrolled test cases.
The loops need to be unrolled until the length of the paths reaches the upper limit
2n, where n is a number of states in the automaton.

In connection with this work several questions seem to be interesting areas for
further research. What to do, when the answer to the membership query is missing
in a test suite, is one of these questions. Throughout this thesis are the strategies
pursued, which guarantee that this situation does not occur. The consequence of
this is a big size of the required test suite. There are two possible solutions:

• Backtracking: The learning algorithm never forgets the already learned in-
formation. One wrong answer leads to contradictory results in the learning
process. In this case the algorithm has to go back to the decision point, correct
errors and continue learning with the right answer.

• Learning algorithm, which works with three types of answers (yes, no, I don’t
know) Both of these strategies are to be researched in regard of their ability
to decrease a test suite.

The sufficient number of negative test cases and an application of the results of
this work to an evaluation of the quality of the test suite by comparison of a formal
description to an existing specification can also be a subject of further research.
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7 Appendix

<?xml version=" 1.0 " ?>
<xs:schema xmlns:xs=" h t t p : / /www.w3 . org /2001/XMLSchema"

targetNamespace=" h t t p : / /www. t r e x . i n f o r m a t i k . uni−goet t ingen . de / l t s m l "
xmlns : lm l= " h t t p : / /www. t r e x . i n f o r m a t i k . uni−goet t ingen . de / l t s m l "

elementFormDefault= " q u a l i f i e d ">

<xs:complexType name=" State ">
< x s : a l l >

<xs:e lement name=" d e s c r i p t i o n " type=" x s : s t r i n g " / >
<xs:e lement name=" p ropos i t i ons " type=" l m l : P r o p o s i t i o n s " minOccurs=" 0 " / >

< / x s : a l l >
< x s : a t t r i b u t e name=" i d " type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name=" c o lo r " type=" x s : s t r i n g " use=" o p t i o n a l " / >
< / xs:complexType>

<xs:complexType name=" States ">
<xs:sequence>

<xs:e lement name=" s t a te " type=" l m l : S t a t e " maxOccurs=" unbounded " / >
< / xs:sequence>
< / xs:complexType>

<xs:complexType name=" Act ion ">
< x s : a l l >

<xs:e lement name=" d e s c r i p t i o n " type=" x s : s t r i n g " / >
<xs:e lement name=" lineNumber " type=" x s : p o s i t i v e I n t e g e r " minOccurs=" 0 " / >
<xs:e lement name=" changeVariable " type=" lml :ChangeVar iab le "

minOccurs=" 0 " / >
< / x s : a l l >
< x s : a t t r i b u t e name=" i d " type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name=" por tRef " type=" x s : s t r i n g " use=" o p t i o n a l " / >
< x s : a t t r i b u t e name=" type " use=" o p t i o n a l ">

<xs:s impleType>
< x s : r e s t r i c t i o n base=" x s : s t r i n g ">

<xs:enumerat ion value=" i npu t " / >
<xs:enumerat ion value=" output " / >
<xs:enumerat ion value=" tau " / >
<xs:enumerat ion value=" o ther " / >

< / x s : r e s t r i c t i o n >
< / xs:s impleType>

< / x s : a t t r i b u t e >
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< x s : a t t r i b u t e name=" co lo r " type=" x s : s t r i n g " use=" o p t i o n a l " / >
< / xs:complexType>

<xs:complexType name=" Act ions ">
<xs:sequence>

<xs:e lement name=" ac t i on " type=" l m l : A c t i o n " maxOccurs=" unbounded " / >
< / xs:sequence>
< / xs:complexType>

/ / fo rce c on t i nua t i on on next page \ clearpage
<xs:complexType name=" T r a n s i t i o n ">
< x s : a t t r i b u t e name=" i d " type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name=" act ionRef " type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name=" sourceRef " type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name=" ta rge tRe f " type=" x s : s t r i n g " use=" requ i red " / >
< / xs:complexType>

<xs:complexType name=" T r a n s i t i o n s ">
<xs:sequence>

<xs:e lement name=" t r a n s i t i o n " type=" l m l : T r a n s i t i o n " maxOccurs=" unbounded " / >
< / xs:sequence>
< / xs:complexType>

<xs:complexType name=" S t a r t S t a t e ">
< x s : a t t r i b u t e name=" s ta teRef " type=" x s : s t r i n g " use=" requ i red " / >
< / xs:complexType>

<xs:complexType name=" Lts ">
< x s : a l l >

<xs:e lement name=" v a r i a b l e s " type=" l m l : V a r i a b l e s " minOccurs=" 0 " / >
<xs:e lement name=" s ta tes " type=" l m l : S t a t e s " / >
<xs:e lement name=" ac t ions " type=" l m l : A c t i o n s " minOccurs=" 0 " / >
<xs:e lement name=" por t s " type=" l m l : P o r t s " minOccurs=" 0 " / >
<xs:e lement name=" t r a n s i t i o n s " type=" l m l : T r a n s i t i o n s " minOccurs=" 0 " / >
<xs:e lement name=" s t a r t S t a t e " type=" l m l : S t a r t S t a t e " / >
<xs:e lement name=" endStates " type=" lml :EndStates " minOccurs=" 0 " / >

< / x s : a l l >
< x s : a t t r i b u t e name=" i d " type=" x s : s t r i n g " use=" requ i red " / >
< / xs:complexType>

<xs:complexType name=" Ltsml ">
<xs:sequence>

<xs:e lement name=" l t s " type=" l m l : L t s " maxOccurs=" unbounded " / >
< / xs:sequence>
< / xs:complexType>

<xs:e lement name=" l t s m l " type=" l m l : L t s m l ">

<xs:key name=" StateKey ">
< x s : s e l e c t o r xpath=" . / / l m l : s t a t e " / >
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< x s : f i e l d xpath="@id" / >
< / xs:key>
< x s : k e y r e f name=" SourceKeyRef " r e f e r = " lm l :S ta teKey ">

< x s : s e l e c t o r xpath=" . / / l m l : t r a n s i t i o n " / >
< x s : f i e l d xpath=" @sourceRef " / >

< / x s : k e y r e f >
< x s : k e y r e f name=" TargetKeyRef " r e f e r = " lm l :S ta teKey ">

< x s : s e l e c t o r xpath=" . / / l m l : t r a n s i t i o n " / >
< x s : f i e l d xpath=" @targetRef " / >

< / x s : k e y r e f >
< x s : k e y r e f name=" Star tStateKeyRef " r e f e r = " lm l :S ta teKey ">

< x s : s e l e c t o r xpath=" . / / l m l : s t a r t S t a t e " / >
< x s : f i e l d xpath=" @stateRef " / >

< / x s : k e y r e f >
< x s : k e y r e f name=" EndStateKeyRef " r e f e r = " lm l :S ta teKey ">

< x s : s e l e c t o r xpath=" . / / lm l :endSta te " / >
< x s : f i e l d xpath=" @stateRef " / >

< / x s : k e y r e f >

<xs:key name=" ActionKey ">
< x s : s e l e c t o r xpath=" . / / l m l : a c t i o n " / >
< x s : f i e l d xpath="@id" / >

< / xs:key>
< x s : k e y r e f name=" ActionKeyRef " r e f e r = " lm l :Ac t ionKey ">

< x s : s e l e c t o r xpath=" . / / l m l : t r a n s i t i o n " / >
< x s : f i e l d xpath=" @actionRef " / >

< / x s : k e y r e f >

<xs:key name=" PortKey ">
< x s : s e l e c t o r xpath=" . / / l m l : p o r t ">< / x s : s e l e c t o r >
< x s : f i e l d xpath="@id">< / x s : f i e l d >

< / xs:key>
< x s : k e y r e f name=" PortKeyRef " r e f e r = " lm l :Por tKey ">

< x s : s e l e c t o r xpath=" . / / l m l : a c t i o n " / >
< x s : f i e l d xpath=" @portRef " / >

< / x s : k e y r e f >

<xs:key name=" VarKey ">
< x s : s e l e c t o r xpath=" . / / l m l : v a r i a b l e " / >
< x s : f i e l d xpath="@id" / >

< / xs:key>
< x s : k e y r e f r e f e r = " lml :VarKey " name=" VarKeyRef ">

< x s : s e l e c t o r xpath=" . / / lm l :changeVar iab le " / >
< x s : f i e l d xpath=" @varRef " / >

< / x s : k e y r e f >

< / xs:e lement>
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< !−− o p t i o n a l types / elements f o r Kr ipke s t r u c t u r e s −−>

<xs:complexType name=" Propos i t i on ">
<xs:s impleContent>

<xs :ex tens ion base=" xs:boolean ">
< x s : a t t r i b u t e name="name" type=" x s : s t r i n g " use=" requ i red " / >
< / xs :ex tens ion>

< / xs:s impleContent>
< / xs:complexType>

<xs:complexType name=" Propos i t i ons ">
<xs:sequence>

<xs:e lement name=" p r o p o s i t i o n " type=" l m l : P r o p o s i t i o n " maxOccurs=" unbounded " / >
< / xs:sequence>
< / xs:complexType>

<xs:complexType name=" EndState ">
< x s : a t t r i b u t e name=" s ta teRef " type=" x s : s t r i n g " use=" requ i red " / >
< / xs:complexType>

<xs:complexType name=" EndStates ">
<xs:sequence>

<xs:e lement name=" endState " type=" lml :EndSta te " maxOccurs=" unbounded " / >
< / xs:sequence>
< / xs:complexType>

<xs:complexType name=" Por t ">
<xs:sequence>

<xs:e lement name=" d e s c r i p t i o n " type=" x s : s t r i n g " / >
< / xs:sequence>
< x s : a t t r i b u t e name=" i d " type=" x s : s t r i n g " use=" requ i red " / >
< / xs:complexType>

<xs:complexType name=" Por ts ">
<xs:sequence>

<xs:e lement name=" po r t " type=" l m l : P o r t " maxOccurs=" unbounded " / >
< / xs:sequence>
< / xs:complexType>

<xs:complexType name=" Var iab le ">
< x s : a t t r i b u t e name=" i d " type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name="name" type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name=" i n i t " type=" xs:boolean " defaul t=" f a l s e " use=" o p t i o n a l " / >
< / xs:complexType>

<xs:complexType name=" Var iab les ">
<xs:sequence>

<xs:e lement name=" v a r i a b l e " type=" l m l : V a r i a b l e " maxOccurs=" unbounded " / >
< / xs:sequence>
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< / xs:complexType>

<xs:complexType name=" ChangeVariable ">
< x s : a t t r i b u t e name=" varRef " type=" x s : s t r i n g " use=" requ i red " / >
< x s : a t t r i b u t e name=" value " type=" xs:boolean " use=" requ i red " / >
< / xs:complexType>

< / xs:schema>

Listing 7.1: LTSML Shema
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