Test Architectures for Distributed
Systems - State of the Art and Beyond

T. Walter

Computer Engineering and Networks Laboratory (TIK)
Swiss Federal Institute of Technology Zurich
Gloriastrasse 35, CH-8092 Ziirich, Switzerland
Phone: (+41 1) 632 7007, Fax: (+41 1) 632 1035
http://www.tik.ee.ethz.ch

1. Schieferdecker

GMD FOKUS

Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany
Phone: (+49 30) 3463 7241, Fax: (+49 30) 3463 8241
http://www.fokus.gmd.de/tip

J. Grabowski

Institute for Telematics (ITM)

Medical University of Liibeck

Ratzeburger Allee, D-23538 Liibeck, Germany

Phone: (+49 451) 500 3723, Fax: (+49 451) 500 3722
http://www.itm.mu-luebeck.de

Abstract

A generic test architecture for conformance, interoperability and performance testing
of distributed systems is presented. The generic test architecture extends current test
architectures with respect to the types of systems that can be tested. Whereas in the
conformance testing methodology and framework the focus is on testing protocol
implementations, the generic architecture focuses on testing real distributed systems
whose communication functions are implemented on different real systems and
whose correctness can only be assessed when tested as a whole. In support of the lat-
ter requirement, a test system itself is regarded as being a distributed system whose
behaviour is determined by the behaviour of components and their interaction using
a flexible and dynamic communication structure.

Keywords
CTMF, TTCN, test architecture, types of testing, advanced distributed systems

1 INTRODUCTION

A distributed processing system is a system which can exploit a physical architecture

consisting of multiple, autonomous processing elements that do not share memory

but cooperate by sending messages over a communications network (Blair et al,

1998). Distributed processing is information processing in which discrete compo-

nents may be located in different places, or where communication between compo-

nents may suffer delay or may fail.

Distributed systems offer several advantages in comparison to centralized sys-
tems such as the ability to share resources, to be dynamically extended with new ones
and to potentially increase availability and performance. Typically, distributed sys-
tems are heterogeneous in terms of interconnected networks, operating systems and
middleware platforms they are based on, as well as in terms of programming lan-
guages used to develop individual components.

The goal of open distributed systems is to enable access to components of a dis-
tributed system from anywhere in the distributed environment without concern of its
heterogeneity. Openness includes openness to various levels of the distributed sys-
tem architecture: communication network, middleware platform and application lev-
el. Openness requires the definition of interfaces to the components on the different
levels of distributed systems and a notion of compliance to these interfaces in order
to ensure compatibility, interoperability and portability.

The rapid growth of distributed processing systems has led to a need for coordi-
nation and for standardized frameworks:

e The ISO/ITU-T Reference Model for Open Distributed Systems (RM-ODP)
(ISO International Standard 10746, 1991), (Blair et al, 1998) provides a frame-
work by describing a generic object-oriented architecture that is based on five
different viewpoints. The viewpoints enable the description of distributed sys-
tems from various perspectives: enterprise, information, computation, engineer-

ing, and technology viewpoint. The framework also defines functions required
to support ODP systems and transparency prescriptions showing how to use the
ODP functions to achieve distribution transparency. The ODP framework is pro-
vided in terms of architectural concepts and terminology and is a rather general
and generic framework to enable concrete standards for open distributed sys-
tems to emerge.

e The OMG Common Object Request Broker Architecture (CORBA) Object
Management Group, 1995) provides an object-oriented framework for distrib-
uted computing and mechanisms that support the transparent interaction of
objects in a distributed environment. The basis of the architecture is an object
request broker (ORB) which provides mechanisms by which objects transpar-
ently invoke operations and receive results.

e The Telecommunication Information Networking Architecture (TINA) (TINA-
C, 1998) aims at providing a framework for future telecommunication networks.
The kernel of the architecture is a distributed processing environment (DPE) that
adopts the concepts of the RM-ODP computational and engineering model. The
basis for the TINA DPE is a CORBA ORB.

* The Open Group’s Distributed Computing Environment (DCE) (Digital Equip-
ment Corporation, 1992), (Open Software Foundation, 1992), (Lockhart, 1994),
(Schill, 1996) provides a communication network and middleware platform
independent platform for distributed processing systems. It is based on a client-
server architecture and does not support object-oriented technologies.

The main concept which should ensure compatibility, interoperability and portability
of the various components in a distributed processing system is conformance. Con-
formance testing is the main tool to check if components of a distributed processing
system are able to interwork. ODP, CORBA, TINA and DCE have different defini-
tions of conformance:

In ODP conformance is a relationship between specifications and implementa-
tions. The relationship holds when specific requirements in the specification are met
by the implementation. ODP does not define conformance for specific requirements
but rather identifies conformance points at which an implementation should be test-
ed. Conformance testing in ODP means to test all requirements that are given by the
viewpoint models of a distributed system.

Conformance in CORBA is defined in terms of compliance points, which refer
to the interfaces of the CORBA architecture. Emphasis is given to compliance points
from the ORB Interoperability Architecture (with GIOP, IIOP and ESIOP) in order
to improve the interoperability between ORBs.

Currently, in the TINA framework there are no explicit definitions for conform-
ance. However, work is in progress to use reference points, e.g., the retailer reference
point, as the basis for defining conformance.

The DCE approach towards conformance is based on system specifications and
associated conformance test suites. An implementation will only be claimed DCE
conforming if it passes the conformance tests.

As a summary it can be said that the problem of conformance testing for ODP,
CORBA, TINA and DCE based applications is not resolved. Research, industry and
standardization bodies are working on solutions for providing unique and compara-
ble test specifications.

However, the most successful conformance testing standard is the Conformance
Testing Methodology and Framework (CTMF) (ISO International Standard 9646-1,
1995), (Linn, 1989), (Sarikaya, 1989), (Baumgarten et al, 1994) defined by ISO/IEC
for the test of communication protocols and services that are in accordance with the
OSI (Open Systems Interconnection) basic reference model (ISO International
Standard 7498, 1984). Beside others, CTMF defines several test architectures, called
abstract test methods, and the Tree and Tabular Combined Notation (TTCN) (ISO
International Standard 9646, 1996), (Probert et al, 1992) for the specification of test
cases. In this paper, the terms test architectures and abstract test methods are used as
synonyms.

The CTMF test architectures and TTCN have been used successfully also outside
the OSI conformance testing area, e.g., for testing ATM protocols. But, it has been
recognized that the CTMF definitions, in general, cannot cope with other types of
testing, e.g., real-time and performance testing, and with applications based on new
architectures and frameworks (ODP, CORBA, TINA and DCE). For opening the
scope of TTCN for real-time and performance testing several language extensions
have been proposed (Schieferdecker et al, 1997), (Walter et al, 1997).

This paper intends to open the discussion on test architectures. A definition of a
generic test architecture is proposed which can be adapted to different types of test-
ing and to testing of applications based on new architectures and frameworks.

The paper is organized as follows: Section 2 presents the state of the art in test
architectures. In Section 3 the requirements on test architectures from advanced dis-
tributed systems are identified. A new generic test architecture for distributed sys-
tems is proposed in Section 4. The application of the new architecture model is
shown in Section 5. The paper concludes with a summary.

2 STATE OF THE ART IN TEST ARCHITECTURES

For a couple of years, the international standard 9646 (Conformance Testing Meth-
odology and Framework, CTMF) (ISO International Standard 9646-1, 1995), (ISO
International Standard 9646-2, 1995) has been the reference for test architectures. In
its first and second part, it defines a number of abstract test methods. Abstract test
methods describe how an implementation under test (IUT) is to be tested, i.e., what
outputs from the IUT are observed and what inputs to the IUT can be controlled.

2.1 Abstract test methods

Taking the possible variety of real open systems configuration into account, a
number of abstract test methods have been defined. Abstract test methods resemble

anumber of concepts that have been introduced in the Open Systems Interconnection
Basic Reference Model (OSI BRM) (ISO International Standard 7498, 1984). In par-
ticular, a system under test (SUT) is generally a system that uses standardized OSI
protocols in all layers, from the physical to the application layer. However, CTMF is
also applicable to partial open systems, i.e., systems that use OSI protocols only in
some layers to provide an OSI service, and CTMF is applicable to relay systems at
network and application level. Within the SUT the IUT is subject to conformance
testing and may comprise several adjacent protocol layers. The IUT is assumed to
rest on an underlying service provider connecting SUT and test system.

Given the situation of an IUT which is a single layer protocol implementation.
The interfaces between IUT and its adjacent layers within the SUT are referred to as
points of control and observation (PCO). As the name suggests, at these points the
behaviour of the IUT in performing communication tasks can be controlled and ob-
served. As stated above control and observation are in terms of ASPs (which map to
OSI service primitives) and PDUs embedded in ASPs. Similar to the PCOs located
in the SUT, corresponding PCOs can be identified in the test system and the under-
lying service provider, i.e., PCOs may be allocated somewhere below and above the
IUT. Even if the PCO through which the IUT is accessed is on the remote test system,
it is said that control and observation of the IUT takes place from below.

Although PCOs can be located somewhere in the SUT below and above the IUT,
not all conceivable arrangement of PCOs must be supported by the SUT. A few spe-
cific abstract test methods have been defined which clearly identify the requirements
on the SUT and IUT concerning access to interfaces and location.

These abstract test methods use one or two PCOs. In case of two PCOs, one is
below and one is above the IUT, otherwise only the PCO below the IUT is used for
controlling and observing the IUT. Even if the PCO above the IUT is available, this
does not imply the control and observation of this interface to the IUT is done from
within the SUT. In the local test method (Figure 1) the upper PCO is managed from
within the test system. In the distributed test method (Figure 1) this is done from
within the SUT.

The active components in a test system which perform control and observation
of the IUT are named lower and upper tester (LT & UT). Coordination of these com-
ponents is defined in a test coordination procedure (TCP), which similar to a protocol
specification, defines the rules for the cooperation of LT and UT. In addition, the un-
derlying service provider is regarded as an active component which is assumed to be
sufficiently reliable so that control and observation of an IUT can be done remotely.

The coordinated test method (Figure 2) explicitly uses a test management proto-
col (TMP) as TCP. Although an UT is sitting on top of the IUT, no PCO is used in
this test methods. The UT is assumed to implement parts of the functionality of the
test management protocol.

The remote test methods puts the least requirements on IUT, SUT and availabil-
ity of PCOs (Figure 2). Only the PCO below the LT is available. No UT is used in
the remote test method. However, for the purpose of test case specification, some UT
functions which may be present, can be used if necessary. No assumptions are made

System Under System Under

Test System Test Test System Test
uT PCO _ _T_C_P_ _ T _U_T_ :
ASPs AR
OA &
%4 2
TCP LT
LT | RUshl 1uT <« PUsy | Ut
o] ¥-% o] W
Q =9
= g

Service-Provider Service-Provider

Figure 1 Local and distributed abstract test methods.

on the feasibility or implementability of these function in a real system.

In (Zeng et al, 1989) the Ferry Clip approach is presented. It provides implemen-
tation support for abstract test methods. Its purpose is to provide access to the lower
and upper boundaries of an IUT in the SUT. The test system is remote from the SUT,
but a specific component, called passive ferry clip, is installed on the SUT. It controls
and observes the respective IUT interfaces. The passive ferry clip communication
with its counterpart in the test system, called active ferry clip, uses a ferry control
protocol and ferry transfer service. UT and LT run on the test system and communi-
cate with the active ferry clip. The test case logic is still in the test components, but
the ferry clips perform as mediators between test system and SUT and IUT, respec-
tively. This approach makes the implementation of abstract test methods rather sim-
ple because the complexity of implementing a passive ferry clip is lower than
implementing a complete UT.

2.2 Multi-party testing context

A generalization of the above discussed abstract test methods, also known as single-
party testing context, is given by the multi-party testing context (Figure 3). In this
setting, an IUT is supposed to communicate simultaneously with several real open
systems; a networt of application relays, for instance, maintains communication
links with several peers at the same time. In the multi-party testing context more than

System Under System Under
Test

Test System Test Test System

_____ P

| |

TMP | UT ,

|

S .

LT LT
<« PUsp TUT <« 'PYS% | IUT

S
g

Service-Provider Service-Provider

Figure 2 Coordinated and remote test methods.

one LT and zero, one or more UTs are active and control and observe the IUT. The
coordination of LTs is performed by an entity referred to as lower tester control func-
tion (LTCF). In particular, the LTCF is the entity that determines the final test verdict
after test execution. All LTs are required to return a preliminary test result to the
LTCEF after they have stopped test case execution. The LTCF is also responsible for
starting all LTs. Coordination of LTCF, LTs and UTs is defined in a TCP. Commu-
nication between LTCF, LTs and UTs is supported by coordination points (CP)
which, like PCOs, are modelled as two FIFO queues for inputs and outputs.

LTs communicate with the IUT and possibly with an UT as in the single-party
context, the same rules for identifying points of control and observation apply.

2.3 Test Architecture beyond Conformance

In (ISO International Standard 9646-1, 1995), the following statement can be found:
“The primary purpose of conformance testing is to increase the probability that dif-
ferent implementations are able to interwork.... Even if two implementations con-
form to the same protocol specification, they may fail to interwork fully. Trial
interworking is therefore recommended.” According to (ISO International Standard
9646-1, 1995) and (Gadre et al, 1990), conforming implementations may fail to in-
terwork for the following reasons:

e protocol specifications contain options and implementations may differ in the

options being supported

Lower Tester
Control Function

Service-Provider

Figure 3 Multi-party testing contex.

» factors outside the scope of conformance testing and OSI, e.g., performance
requirements, may impact the behaviour of real systems which is not foreseen
by the specification.

In the following subsections, approaches to testing interoperability, performance and
quality-of-service are discussed. Only since the evolution of multimedia applications
has started some years ago, the latter type of testing has become an issue.

2.3.1 Interoperability Testing

Interoperability testing evaluates the degree of interoperability of implementations
with one another. It involves testing both, the capabilities and the behaviour of an im-
plementation in an interconnected environment and checking whether an implemen-
tation can communicate with another implementation of the same or of a different
type. Interoperability testing is not standardized. However, a couple of interoperabil-
ity testing proposals and guidelines exist (Buehler, 1994), (Myungchul et al, 1996),
(EWOS ETG 028, 1993), (Hopkinson, 1996), (Gadre et al, 1990) (Hogrefe, 1990).

The two main approaches to interoperability testing in the context of OSI are pas-
sive and active testing (Gadre et al, 1990) (Hogrefe, 1990). The difference is that ac-
tive testing allows controlled error generation and a more detailed observation of the
communication, whereas passive testing on the other side involves testing valid be-
haviour only. OSI interoperability testing should be done by using a reference imple-
mentation (RI) of the protocol entity to be tested. Within the SUT RI and IUT are
combined and the tester functions play the role of service users. The behaviour of the
RI is correct by definition. In case that IUT and RI do not interwork this is due to an
error in the IUT.

Figure 4 shows a generic passive interoperability test system architecture where
two implementations are interconnected and control and observation are performed
by two UTs.

System Under
Test System Test
UT TCP uT
RI IUT

Service-Provider

Figure 4 Passive Interoperability Testing Architecture.

Practice has shown that in most cases no RI is available. As a consequence, two
IUTs are used and the communication between the IUTs is monitored or emulated.
A test configuration following this approach and proposed by the ATM Forum in
(Buehler, 1994) is shown in Figure 5.

However, the test configuration most often used for interoperability testing is
simply the interconnection of the network components which have to interoperate.
The message exchange between the network components is stimulated at the edges
by a test components or by any suitable application. This complies with Figure 5
without monitor point C. The observed reactions on the edges were used to assign a
verdict about the interaction between the SUTs. This form of testing has been termed
pure interoperability testing (Myungchul et al, 1996). Set-up of such an pure inter-
operability test session is possible with limited hardware and software requirements,

and thus it is very popular within the test labs. The main disadvantage of this test con-
figuration is the missing monitor point C between the SUTs. It does not allow a state-
ment about the protocol between the two systems and makes locating errors very
difficult in the case of failure.

Tester A - SUTB
- | : SUT A <_|_'_ |
(I Lo (I
[I [
[[[
Monitor point A Monitor point C Monitor point B
(possibly control) (possibly control) (possibly control)

Tester B

Figure 5 ATM Forum interoperability test architecture

Other approaches to interoperability testing use the test configuration shown in
Figure 5, but differ in the definition of conformance requirements. Interoperability
testing with strong conformance requirements on all monitor points realizes con-
formance testing according to CTMF with the ancillary condition of two IUTs. This
includes static and dynamic conformance testing. It provides a high level of confi-
dence that the implementations are able to interoperate, but causes problems if im-
plementations to not meet the standard specifications but still interoperate.

In order to have a direct control on the tested systems, a specific test component
is used for emulating the transmission service in between. The emulator component
makes the monitor point C an active testing point, where possibly impairments are
generated in accordance with the properties of the transmission service, i.e., errors
such as loss, corruption, disordering, or insertion are generated. Please note, that in
the case of a reliable transmission service without errors the emulator test component
is not needed. An extended interoperability architecture is shown in Figure 11.

2.3.2 Performance Testing

The main objective of performance testing (Schieferdecker et al, 1997) is to test the
performance of a network component under normal and overload situations. Per-
formance testing identifies performance levels of the network component for differ-
ent ranges of parameter settings and assesses the measured performance of the
component. A performance test suite describes precisely the performance character-
istics that have to be measured and procedures how to execute the measurements. In
addition, the performance test configuration including the configuration of the net-
work component, the configuration of the underlying networt, and the network load
characteristics are described.

Depending on the characteristics of the network component under test, different
types of performance test configurations are defined: end-user telecommunication

application, end-to-end telecommunication service and communication protocol
(Figure 6). Foreground test components (FT) implement control and observation of
the network under test. Background test components (BT) generate continuous
streams of data to load the network component under test. Monitor components are
used to monitor the real network load during the performance test. BTs do not control
or observe directly the network under test but implicitly influences the network un-
der test by putting the network into normal and overload situations.

M; My

UFT, / LFT,
/./

PE
UFT, |—e— LFT,,

D Performance Test Components @ Points of Control and Observation

D SUT Components B Measurement Points

UFT: Foreground Tester for Emulated Protocol User

LFT: Foreground Tester for Emulated Peer-to-Peer Protocol Entity
BT: Background Tester

M: Monitors of Real Network Load

PE: Tested Protocol Entity

Figure 6 Performance test configuration for a communication protocol.

2.3.3 Quality-of-Service Testing

Quality-of-service (QoS) (ITU-T Recommendation X.200, 1989), (Danthine et al,
1992), (Danthine et al, 1993) refers to a set of parameters that characterize a connec-
tion between communication entities across a network. QoS parameters are perform-
ance and reliability oriented such as throughput, delay, jitter or error rates and failure
probabilities, respectively. QoS parameters are negotiated by service users and serv-
ice provider at connection set-up and should be maintained during the life-time of
the connection. A QoS semantics defines the procedures how QoS parameters are ne-
gotiated and how negotiated QoS parameters are to be handled. In particular, a QoS
semantics defines how QoS parameter violations are to be processed. It is mainly the
service provider who is in charge of maintaining negotiated QoS parameters.

QoS testing refers to assessing the behaviour of protocol implementations per-
forming QoS maintenance. However, it is not necessary to control and to observe the
behaviour of the implementation directly. It suffices if the tester can eventually ob-
serve the specified behaviour according to the agreed QoS semantics.

Figure 7 presents a testing architecture for QoS testing (Grabowski et al, 1995).
As can be seen, the testing architecture is very similar to the passive interoperability
testing architecture (Figure 4). The obvious difference is that in QoS testing the IUT
is distributed. Furthermore, some QoS parameter tests, e.g., error rate tests and delay
tests, require the active involvement of the network. For this, the network has to be
configurable. The testing architecture, therefore, provides a communication link be-
tween testers and network for the exchange of configuration information.

Test IUT IUT IUT IUT | Service
Under Provider

I
I
i
System I
I
I

Figure 7 QoS testing architecture.

2.3.4 An Evaluation of Test Architectures

As the previous discussion of the different test architecture has shown, interoperabil-
ity, performance and QoS test architecture are straightforward extensions of the
CTMF abstract test methods. This is particularly true for the interoperability test ar-
chitecture where the lower tester functions are provided by a reference implementa-
tion, which in turn is driven by a test component on top. Similarly, the QoS test
architecture transforms the interoperability test architecture into a distributed test ar-
chitecture, where the functions of the IUT are distributed over several real systems.
Control and observation of the distributed IUT are done by UTs. Additionally, UTs
can control the behaviour of the underlying network. This, however, makes the QoS
test architecture different. Whereas in the CTMF test methods and interoperability
test architectures the underlying network is regarded as a black-box, the QoS test ar-

chitecture weakens this assumption because certain behaviour of the SUT is observ-
able only if network behaviour changes in a controlled manner. As such, the
performance test architecture does something similar. In order to force the IUT into
specific states, additional network load is generated by specifically designed test
components. Thus, the network is being controlled by the test system as well.

Distributed
Application

Middleware
Platform

Communication
Network

Figure 8 Distributed Systems Architecture.

3 REQUIREMENTS FROM ADVANCED DISTRIBUTED SYSTEMS

A simplified view of distributed system architectures is given in Figure 8. A distrib-
uted system consists of application level objects that interact through well-defined
interfaces. The middleware platform is a distributed computing environment that
supports the implementation of the distributed application by offering various distri-
bution transparencies such as access and location transparency. Example middle-
ware platforms are OMG CORBA or OSF DCE. The communication network with
various network nodes and end-systems offers transmission services to the middle-
ware platform that are used to support the communication between the components
of the distributed system.

Testing one of the three layers imposes different requirements on testing. Subse-
quently, testing the communication network, the distributed processing environ-
ment, and the distributed applications level is discussed.

3.1 Testing of Advanced Communication Networks

The IETF activities on defining communication protocols, services and mechanisms

in internetworks are the driving forces in defining advanced network technologies.

The following aspects of the current Internet (in particular of the Integrated and Dif-

ferentiated Service Architecture (IETF Differentiated Service Working Group,

1998), (IETF Integrated Services Working Group, 1998)) impose new requirements

on testing network nodes as well as end-to-end services:

e avariety of group communication scenarios such as multicast with dynamic join
and leave in multicast groups,

» stream support with different levels of QoS guarantees and soft-state resource
reservations, and

* variety of routing protocols including multilayer routing approaches.

Another direction in advanced communication technology are active networks. Ac-
tive networks use programmable network nodes or capsules, which combine com-
munication data with code fragments on how to handle the data in the network nodes
(Tennenhouse, 1997). Testing of active networks primarily requires efficient means
to test the interoperability and compatibility of network nodes in highly dynamic en-
vironments.

3.2 Testing of Advanced Middleware Platforms

Due to the need for interoperable implementations of various vendors and due to the
complex nature of middleware platforms such as CORBA, there is a need for a meth-
odology that middleware platforms can be analysed with respect to their compliance
to the respective specifications. This is done in order to increase the likelihood that
they can interoperate.

In essence, a middleware platform is used by a distributed application like a black
box with various service access points. However, in order to evaluate for example a
CORBA ORB as such (what includes testing the ORB Core, the Interoperability Ref-
erence Points, CORBA Services, and CORBA Facilities), a grey-box testing ap-
proach has to be taken, which supports the test access to ORB internal interfaces
(Rao et al, 1997).

3.3 Testing of Advanced Distributed Applications

With the development of ODP and TINA -- being an instantiation of ODP for tele-

communication systems -- and the provision of new and complex services such as

telecommunication, management and information services which may be deployed

in the context of various distributed object computing environments, the need to val-

idate and test large and heterogeneous object systems is becoming increasingly im-

portant. Testing may be used to check

» components of the applications individually,

» conformance to reference points, and

e to check individual service components working together in a multi-service
environment.

3.4 Requirements of Testing Advanced Distributed Systems

As aresult of the above analysis, the following requirements of testing advanced dis-
tributed systems can be identified:

4

development of distributed testing architectures with means for synchronizing
distributed test components;

support of dynamically configurable and scalable test architectures;

ability to express test configurations for different communication scenarios;
possibility to use grey-box testing with access to internal components and inter-
faces;

support of real-time, performance and QoS testing for distributed systems to test
time-related aspects of distributed systems;

support of interoperability testing to focus on essential interoperability aspects;
development of a test methodology coherent with object-oriented technologies
which are used for the development of distributed systems;

test architectures that make use of management, monitoring and measurement
systems;

methods that support testing in the pre-deployment, deployment and usage
phase of distributed systems;

efficient testing methods in order to deal with the complexity of distributed sys-
tems.

GENERIC TEST ARCHITECTURE FOR DISTRIBUTED SYSTEMS

The requirements of advanced distributed systems with respect to testing architec-
tures are not met by CTMF. There exists today no unified approach for a flexible and
adaptable testing architecture. Since the grade of distribution defines the complexity
of testing and determines applicable test architectures, a taxonomy of testing is given
in Table 1. In this section a definition of a generic test system architecture is present-
ed which equally well fits the different testing types in Table 1.

Table 1: Testing taxonomy (with respect to the grade of distribution)

System under Test Test System Selected Approaches
centralized centralized CTMF peer-to-peer
centralized distributed CTMF multi-party

testing context

Table 1: Testing taxonomy (with respect to the grade of distribution)

System under Test Test System Selected Approaches

distributed centralized Test execution of
telecommunications
services (Lima et al,
1997)

distributed distributed General design rules for

distributed tester

4.1 Generic Test Architecture Model

The idea for a generic test architecture is a tool box of elements, which can be com-

bined generically to a test architecture suitable for a specific application or system to

be tested. A test architecture comprises several instances of different types of com-
ponents. The types are:

e implementation under test (IUT), i.e., the implementation or a part of the distrib-
uted application to be tested;

* interface component (IC), i.e., a component which is needed for interfacing
IUTs, e.g., an underlying service or an application in which an IUT is embed-
ded;

e test component (TC), i.e., a component which contributes to the test verdict by
coordinating other TCs or controlling and observing IUTs.

e controlled component (CC), i.e., a component which does not contribute to the
test verdict but provides SUT specific data to TCs or the SUT, e.g., a load gener-
ator, an emulator or a simulator;

e communication point (CoP), i.e., a point at which communication takes place
and at which communication can be observed, controlled or monitored;

e communication link (CL), i.e., a means for describing possible communication
flows between TCs, IUTs, NCCs and CCs;

* gsystem under test (SUT), i.e., a combination of ICs and IUTs.

For describing a test architecture in an intuitive and understandable manner a graph-
ical representation might be preferable. The different types of components are ex-
plained by using the test architecture shown in Figure 9.

4.1.1 Implementation Under Test (IUT)

An IUT is meant to be a piece of software or hardware to be tested. The entire appli-
cation to be tested may comprise several IUTs. The IUTs may have different func-
tionality or be different instances of the same type, i.e., symmetrical peer entities of
a protocol. An IUT is a black box which can be observed and controlled either di-

TC (3)

\

®
CL7
V

MTC
CLL MasterTC TCcreate
————— -
CL6
CL4
CoP1 @
IUT
IUT3
CLS5
IC TC
Ulnterface ITCexample @
CL8
IUT IUT
IUT1 1I0T2

ComService

MTC: Main Test Component
TC: Test Component

CC
Trafficl

CL: Communication Link

CoP: Communication Point
IC: Interface Component
CC: Controlled Component

Traffic2

CC

CL3 *

TC
TCmonitor

‘—> Passive communication link ———®» Asynchronous unidirectional

<3+ Synchronous bidirectional

Figure 9 Generic test architecture.

- Asynchronous bidirectional

rectly via CLs, or indirectly via ICs.

The test architecture shown in Figure 9 includes three IUTs. They are represented
by means of boxes which are inscribed with the keyword IUT in the upper right cor-
ner and an IUT name, i.e., in our example IUT1, IUT2 and IUT3.

4.1.2 Interface Component (IC)

An IUT may be embedded in other applications or may be only interfaced via under-
lying services. The components are termed Interface Components (IC). An IC is not
controlled by the test equipment, it is only used to interface the IUT. For testing, it
is assumed that an IC is working correct. Within a test architecture there may exist
several ICs.

Figure 9 includes two ICs. IC ComService provides a communication service be-
tween the three IUTs and IC Ulnterface describes an interface to the IUT IUT1.

4.1.3 Test Component (TC)

A TC is a component which drives the test. This can be done by creation of further
TCs, by controlling other TCs, by contributing to evaluate a test run, and by control-
ling and observing IUTs.

There should be one Main Test Component (MTC) which starts and ends a test
run. A start is done by creation and instantiation of further TCs or by initiating the
first stimuli to the [UTs. Ending a test run does not necessarily mean to stop all com-
munication and to stop all TCs. It means that the MTC should be able to indicate
when the run is finished. When a test run is finished a final verdict is assigned or, in
case that for statistical evaluation several runs are required, it should be decided
whether the run contributes to the statistics or not.

In addition to TCs and MTC, implicit TC (ITC) is a third type of TC. An ITC cor-
responds to the UT function in the remote test method of CTMF (Section 2.1). In
CTMF the remote test method is used if no standardized interface above the IUT can
be used. This means, an ITC indicates the existence of a TC, but how an ITC com-
municates with other components of the test architecture is not specified.

Figure 9 presents four TCs, one MTC called MasterTC, one ITC (ITCexample)
used to interface [UT2 and two normal TCs called TCcreate und TCmonitor. As in-
dicated by the dashed arrow, TCcreate is created by the MTC. During the test run the
MTC may create further TCs of the same type. This is indicated by the number in
parentheses following the keyword TC. This number describes the maximal number
of instances of the same type to be created during a test run. In the example, Master-
TC is able to create three TCcreate instances. Omitting the parentheses means by de-
fault that there is only one instance and empty parentheses describes an undefined
number of instances.

Use and specification of TCs needs special support in the used test specification
language. In TTCN, for example, the handling of the UT function within the remote
test method is supported by means of implicit send signals. Other points to be han-

dled in the used test specification language are the creation of initially existing TCs
when a test run starts, the stopping of TCs when a test run finishes, the evaluation of
test runs by TCs, and the communication among TCs, e.g., addressing in case of dy-
namic TC creation.

4.1.4 Controlled Component (CC)

A CC is a component which is used to set-up the test case specific environment or is
used by TCs to control test execution. Examples of CC types are load generators for
providing background load, emulators which may be used instead of ICs, or simula-
tors which can be used for comparing the reactions of an IUT with the output of a
simulator.

From an abstract point of view a CC may be seen as a TC. Our intention for in-
troducing the CC type is to distinguish explicitly between control and environment
of a test. In performance testing (ATM Forum, 1994) a similar distinction is made by
using the terms foreground and background load.

Figure 9 includes the CCs Trafficl and Traffic2. Both generate and manage back-
ground load for the IC ComService.

4.1.5 Communication Point (CoP)

A CoP in the generic test architecture corresponds to the PCOs in CTMF. It denotes
a point in the test architecture where communication can be observed, controlled,
and, in addition to CTMF, be monitored. It is allowed to access several communica-
tion flows at the same CoP. From this point of view, a CoP bundles communication
flows. For simplicity, no special semantics are assigned to CoPs; note that in CTMF
PCOs have a FIFO queue semantics. The semantics of the communication is given
to CLs.

In Figure 9 eight CoPs, named CoP1, CoP2, ..., CoP8, are used. They are used to
describe the CoPs relevant for testing between TCs, IUTs, ICs, and CCs. Points of
communication which cannot be accessed, e.g., between IUT1 and Ulnterface, or
from which the test specification may have to abstract, e.g., between IUT2 and IT-
Cexample, are not described.

4.1.6 Communication Link (CL)

IUTs, ICs, TCs and CCs are connected with CoPs by using CLs. A CL describes a
possible communication and the kind of communication which may take place. Ac-
tive communication can be classified by the kind, i.e., either synchronous or asyn-
chronous, and the direction, i.e., either unidirectional or bidirectional. In addition, a
passive CL allows to monitor communication, i.e., to listen at a CoP.

The test architecture shown in Figure 9 includes 18 CLs (only the CLs used in the
discussion below are annotated with labels) describing several types of communica-
tion. For example, asynchronous unidirectional communication from MasterTC to

Trafficl and Traffic2 is realized by using CL1, CL2 and CL3 via CoP1. This com-
munication will only be used to start and stop the CCs (for instance, in form of broad-
cast messages). Bidirectional asynchronous communication between MasterTC and
Ulnterface is described by using CL4 and CLS5. Bidirectional synchronous commu-
nication between IUT3 and TCcreate is defined by CL6 and CL7 (via CoP5). CL8
describes a passive CL. TCmonitor monitors the communication between IUT3 and
ComService.

For the dynamic creation of TCs it is assumed that CLs are also created dynami-
cally and that the CoPs used for communication are all known before test execution,
i.e., CoPs cannot to be created dynamically. For the example in Figure 9 this means
that during a test run there may exist up to three instances of CL6.

For the different testing requirements, this basic components are combined so
that a testing architecture results which fits the specific needs of an application. It has
to be noted that for some specific cases, for instance, real-time testing, additional test
specific information has to be coded in the dynamic behaviour of a test case. Not all
information relevant for testing can be mapped to testing architecture only.

4.1.7 System Under Test (SUT)

In CTMF an IUT together with ICs is called system under test (SUT). The term SUT
is used, but in contrast to CTMF, an SUT includes several [UTs. An example of the
use of SUTs within a test architecture for interoperability testing is shown in Figure
10.

4.2 Evaluation of Requirements from Advanced Distributed Systems

In the following an assessment is given whether and how the defined requirements

of testing advanced distributed system are met by the generic test architecture:

e Development of distributed testing architectures with means for synchronizing
distributed test components: With the generic test architecture a support for dis-
tributed test architectures is given. Test system and SUT may be arbitrarily dis-
tributed over real systems. Support for synchronizing distributed test
components is given. Communication of synchronization information along
communication links is supported.

* Support of dynamically configurable and scalable test architectures: Firstly, test
components can be created on demand by the main test component. Secondly,
more than one instance of a specific test component may exist in the system.
Together, this gives a test case specifier some initial degree for a dynamic con-
figuration of test architectures.

e Ability to express test configurations for different communication scenarios
(unicast, multicast, or broadcast): Communication links support unicast commu-
nication, either one-way or two-way. By adding the concept of communication
points, multicast communication scenarios can be defined. Attaching a test com-
ponent to a communication point gives this component access to all data going

through the communication point.

* Possibility to use grey-box testing with access to internal components and inter-
faces: By introducing passive communication links a means for monitoring even
inside the SUT is given. However, an CoP has to be defined within the SUT.

* Support of real-time, performance and QoS testing for distributed systems to
test time-related aspects of distributed systems: The generic test architecture is
an essential component which is required in the mentioned types of testing. In
performance testing, for instance, background test components are used for
overloading the SUT. These test components map to controlled components.
However, the challenges in real-time, performance and QoS testing are more on
how to define test cases; which notation to be used and how test cases are to be
implemented.

» Support of interoperability testing to focus on essential interoperability aspects:
See Section 5.

* Development of a test methodology that is coherent with object-oriented tech-
nologies which are used for the development of distributed systems: In this
paper the focus is on test architectures, and not on a test methodology which is
more than just a test architecture, e.g., does also consider test case specification
and generation, test implementation, test execution, test result analysis etc.

e Test architectures that make use of management and/or monitoring and meas-
urement systems: These specific components can be integrated in a specific
instantiation of the generic test architecture. The basic support is given, for
instance in terms of passive communication links to monitor and to measure sys-
tems.

e Methods that support testing in the pre-deployment, deployment and usage
phase of distributed systems: This again is a question of methodology. Testing as
understood by CTMF is pre-deployment testing.

» Efficient testing methods in order to deal with the complexity of distributed sys-
tems: The generic test architecture has been invented with this requirement in
mind. In the following section it is shown how problem specific test architec-
tures are built from the basic components of the generic test architecture.

5 TEST ARCHITECTURES FOR DISTRIBUTED SYSTEMS

For proving the generality of our approach the different test architectures described
in Section 2 have to be mapped to the generic model. The mapping of the conform-
ance testing architectures according to CTMF is straightforward because the devel-
opment of the generic model starts with the CTMF concepts and there is a one-to-
one mapping for most of the CTMF concepts onto the generic model. Therefore, in
the following an extended interoperability testing architecture and a performance
testing architecture are described by using our generic model.

5.1 Interoperability Testing Architecture

Figure 10 maps the interoperability testing architecture proposed by the ATM Forum
(Section 2.4.1 Figure 5) to the generic model. The CoPs A, B, C specify explicitly
the points where communication is monitored. For the task of the monitoring TCs
MA, MB and MC have been introduced.

TC TC TC
MA MB MC
SUT] SUT
SUT1 9 SUT2
TC TC
Testerl Tester2

Figure 10 ATM Forum interoperability architecture.

In Section 2.4.1 an extended test architecture for interoperability testing is proposed.
Figure 11 shows a transformation of the interoperability test architecture to the ge-
neric model. In order to have control over the communication of the IUTs which
have to interoperate, the used communication service is emulated by the CC Emula-
tor. The component Emulator communicates with TC Monitor, thus reporting all
communication between the IUTs and to receive commands in case the emulator
should actively influence the communication, e.g., decrease the performance or cor-
rupt data packets.

5.2 Performance Testing Architectures

Figure 12 shows an instance of the performance testing architecture sketched in Fig-
ure 6 (Section 2.4.2) by using the generic model. Background Tester (BT1, BT2) are
meant to be load generators and therefore are mapped to CCs. The CC Monitor meas-
ures of the real network load during a test run. The Foreground Tester (UFT1, UFT2,
LFT1, LFT2) are mapped onto TCs. PCOs and measurement points are mapped onto
CLs, their physical interface is described by using CoPs. Additionally, an MTC com-
municates with the other components in order to start and stop a test run.

6 CONCLUSIONS

In this paper a generic test architecture for conformance, interoperability, perform-

MTC TC
UT1 UT2
SUT TC SUT
SUT1 Monitor SUT2
CC
Emulator

Figure 11 Interoperability Test Architecture.

MTC
MasterTC

CC CC CcC

CC
Monitor

Network

Figure 12 Performance test architecture.

ance and real-time testing has been proposed. The development of the generic test
architecture has been motivated by the observations that (1) the abstract test methods

defined in the CTMF context are too restrictive with respect to the types of systems
that can be tested; and (2) the up-coming new kind of advanced distributed (object,
real-time, safety-critical) systems require a flexible and adaptable test architecture.
The proposed generic test architecture has been designed as a toolbox whose com-
ponents can be configured as needed and, thus, provide the required flexibility to set
up any required test system configuration.

The discussion of the state-of-the-art in test architectures has been done looking
at a test system as a distributed system that consists of active components, named test
components, service provider or IUT in CTMF, and passive components PCOs or
CPs. The latter define a static communication structure over the active components.
In the generic test architecture this point of view has been developed further. Its ap-
plicability to different test scenarios has been demonstrated.

For the future a language support for the new test architecture will be investigated.

7 REFERENCES

ATM Forum (1994) Introduction to ATM Forums Test Specifications. af-
test.0022.pdf, http://www.atmforum.com/atmforum/specs/approved.html.

Baumgarten, B. and Giessler, A. (1994) OSI Conformance Testing Methodology and
TTCN, Elsevier.

Blair, G.S. and Stefani, J.-B (1998) Open distributed processing and multimedia.
Addison Wesley Longman Ltd.

Buehler W. (Ed.) (1994) Introduction to ATM Forum Test Specifications, Version
1.0. ATM Forum Technical Committee, Testing Subworking Group, af-test-
0022.000.

Danthine, A., Baguette, Y., Leduc, G., Léonard, L. (1992) The OSI 95 Connection-
Mode Transport Service - The Enhanced QoS, in High Performance Networking
(ed. A. Danthine and O. Spaniol), IFIP.

Danthine, A., Bonaventure, O. (1993) From Best Effort to Enhanced QoS. CIO De-
liverable, No. R2060/ULg/CIO/DS/P/004.

Digital Equipment Corporation (1992) Distributed Computing Environment Appli-
cation Development Reference. Maynard, Maryland, U.S.A.

European Workshop for Open Systems ETG 028 (1993) Interoperability Classifica-
tion. Brussels.

Gadre, J., Rohrer, C., Summers, C., Symington, S. (1990) A COS Study of OIS In-
teroperability. Computer Standards & Interfaces, 9, 217-237.

Grabowski, J. and Walter, T. (1995) Testing Quality-of-Service Aspects in Multime-
dia Applications, in Protocols for Multimedia Systems 2nd Workshop, Salzburg,
Austria.

Hogrefe, D. (1990) Conformance testing based on formal methods, in FORTE 90
Formal Description Techniques (ed. J. Quemada, A. Fernandez).

Hopkinson T. (Ed.) (1996) Scoping Further Activity for Interoperability Testing. Eu-
ropean Workshop for Open Systems EWOS/TA PT N034, Final Report Version
1.0 EWOS EGCT/96/130 R1, Brussels.

IETF Differentiated Services Working Group (1998) An Architecture for Differenti-
ated Services. Internet-Draft, draft-ietf-diffserv-arch-00.txt, http://www.ietf.org/
html.charters/diffserv-charter.html.

IETF Integrated Services Working Group (1998) Integrated Services http://
www.ietf.org/html.charters/intserv-charter.html.

ISO International Standard 7498 (1984) Information processing systems - Open Sys-
tems - Basic Reference Model.

ISO International Standard 9646-1 (1995) Information technology - Open Systems
Interconnection - Conformance Testing Methodology and Framework Parts 1:
General concepts.

ISO International Standard 9646-2 (1995) Information technology - Open Systems
Interconnection - Conformance Testing Methodology and Framework Parts 2:
Abstract Test Suite specification.

ISO International Standard 9646-3 (1996) Information technology - Open Systems
Interconnection - Conformance Testing Methodology and Framework Parts 3:
The Tree and Tabular Combined Notation (TTCN).

ISO International Standard 10746 (1991) Information processing systems — Open
Systems Interconnection: Reference Model for Open Distributed Processing, Part
2: Descriptive Model.

ITU-T Recommendation X.200 (1989) Data Communication Networks Open Sys-
tems Interconnection (OSI) Service Definitions Recommendations X.200 - X.219.

Lima Jr., L.P. and Cavali, A. R. (1997) Test Execution of telecommunications serv-
ices, in Proc. of IFIP FMOODS ‘97, Canterbury, UK.

Linn, R. (1989) Conformance Evaluation Methodology and Protocol Testing. IEEE
Journal on Selected Areas in Communications, 7, 1143 — 1158.

Lockhart, HW. (1994) OSF DCE — Guide to Developing Distributed Applications.
McGraw-Hill, New York, U.S.A.

Myungchul K., Gyuhyeong K., Yoon D. C. (1996). Interoperability Testing Method-
ology and Guidelines. Digital Audio-Visual Council, System Integration TC,
DAVIC/TC/SYS/96/06/006.

Object Management Group (1995) The Common Object Request Broker: Architec-
ture and Specification; Revision 2.0. Framingham, Massachusetts, U.S.A.

Open Software Foundation (1998). http://www.opengroup.org.

Probert, R. and Monkevic, O. (1992), TTCN: The International Notation for Speci-
fying Tests of Communications Systems. Computer Networks and ISDN Sys-
tems, 23, 111 — 126.

Rao, S., BeHanna, Ch., Sun, M., Forys, F. (1997) CORBA Service Test Environment.
NEC Systems Laboratory, Inc.

Sarikaya, B. (1989) Conformance Testing: Architectures and Test Sequences. Com-
puter Networks and ISDN Systems, 17.

Schieferdecker, 1., Stepien, B., Rennoch, A. (1997) PerfTTCN, a TTCN language
extension for performing testing, in Testing of Communication Systems Volume
10 (ed. Myungchul Kim, Sungwon Kang, Keesoo Hong), Chapman & Hall, 21-
36.

Schill, A. (1996) DCE - das OSF Distributed Computing Environment, Einfiihrung
und Grundlagen. Springer Verlag.

Tennenhouse, D., Smith, D., Sincoskie, D., Wetherall, D., Minden, G. (1997) A sur-
vey of active networks research. IEEE Communications Magazine, 35, 80-86.

TINA-C (1998) http://www.tinac.com.

Walter, T. and Grabowski J. (1997) Real-time TTCN for testing real-time and mul-
timedia systems, in Testing of Communication Systems Volume 10 (ed. Myung-
chul Kim, Sungwon Kang, Keesoo Hong), Chapman & Hall, 37-54.

Zeng, H.X., Chanson, S.T., Smith, B.R. (1989) On Ferry Clip Approaches in Proto-
col Testing. Computer Networks and ISDN Systems, 17, 77-88.

Schiitz, W. On the Testability of Distributed Real-Time Systems. Report of the ES-
PRIT Basic Research Project 3092 Predictably Dependable Computer Systems.

8 BIOGRAPHY

Thomas Walter received his Diploma in Informatics from University of Hamburg
and his Doctorate degree in electrical engineering from the Swiss Federal Institute
of Technology in Zurich (ETHZ) in 1987 and 1993, respectively. Since 1986 he is
with the Computer Engineering and Networks Laboratory (TIK) of ETHZ, and in
1994 he became lecturer at ETHZ. His current research interests include formal
methods for specification and validation of real-time systems. Besides this he is also
active in setting up an infrastructure for teleteaching at ETHZ.

Ina Schieferdecker studied mathematical computer science at the Humboldt
University in Berlin and received her Ph.D. from the Technical University in Berlin
in 1994. She attended the postgraduate course on open communication systems at the
Technical University in Berlin. Since 1993, she is a researcher at GMD Fokus and a
lecturer at Technical University Berlin since 1995. She is working on testing meth-
ods for network components, and carries out research on formal methods, perform-
ance-enhanced specifications and performance analysis.

Jens Grabowski studied computer science and chemistry at the University of
Hamburg, Germany, where he graduated with a diploma degree. From 1990 to Oc-
tober 1995 he was research scientist at the University of Berne, Switzerland, where
he received his Ph.D. degree in 1994. Since October 1995 Jens Grabowski is re-
searcher and lecturer at the Institute for Telematics in Liibeck, Germany.

