
Autolink - Putting SDL-based
test generation into practice

M. Schmitt †, A. Ek ∗, J. Grabowski †, D. Hogrefe †, B. Koch †

† Medical University of Lübeck, Institute for Telematics
Ratzeburger Allee 160, 23538 Lübeck, Germany
email: {schmitt, koch, grabowsk, hogrefe}@itm.mu-luebeck.de
⋆ Telelogic AB, P.O. Box 4128, S-20312 Malmö, Sweden
email: anders.ek@telelogic.com

Abstract
Autolink is a tool for automatic test generation. It allows to generate TTCN
test suites based on a given SDL specification and MSC requirements. The first
big challenge for Autolink was the creation of a test suite for the Intelligent
Network Application Protocol at ETSI. In this paper we discuss our experi-
ence in applying Autolink to a real-life protocol and the improvements of
Autolink which were developed during this project. We also present future
enhancements which will further ease the work of test suite developers.

Keywords
Autolink, SDL, MSC, TTCN, SDT, ITEX, Test generation

1 INTRODUCTION

In recent years, several formal methods have been developed for automatic
test generation. However, when putting these methods into practice, many
test generation tools fail due to implementation-specific restrictions. Only a
few promising reports are presented in literature for real-life protocols, see
e. g. [5, 6, 13, 17].

Autolink is a research and development project which aims at tackling
this problem. It has been started in 1996 by the Institute for Telematics in
Lübeck (Germany) and Telelogic AB in Malmö (Sweden). Autolink is part of
Telelogic’s Tau development environment. Tau provides tools for the design,
analysis and compilation of systems and protocols specified in SDL (Speci-
fication and Description Language) [2, 8], MSC (Message Sequence Chart)
[3] and TTCN (Tree and Tabular Combined Notation) [16]. It supports the
object-oriented features of SDL’96 and also allows the combined use of SDL
with ASN.1 (Abstract Syntax Notation One) as defined in ITU-T Recommen-
dation Z.105 [1].

c©IFIP 1996. Published by Chapman & Hall

2 Autolink — Putting SDL-based test generation into practice

An SDL specification which makes use of both the object oriented fea-
tures and ASN.1 data descriptions was developed for the Intelligent Network
Application Protocol (INAP). Based on the SDL specification and by using
Autolink, a TTCN test suite was created by a project team at the European
Telecommunications Standards Institute (ETSI). Due to its complexity, INAP
was a good example to demonstrate and verify the applicability of Autolink

to real-life systems. Feedback from the project has also directly influenced the
development of Autolink.

The rest of this paper is structured as follows: In Section 2, a short intro-
duction is given to the general concepts of Autolink and its embedding in
the Tau tool environment. Sections 3 to 5 describe some aspects of Autolink

that have been of particular relevance for the construction of the INAP test
suite. Section 3 discusses the influence of state space exploration heuristics on
test case generation. A direct translation from MSC to TTCN which does not
perform a state space search is motivated in Section 4. Section 5 introduces a
language which allows to describe constraint naming conventions and param-
eterization. INAP and some test generation results are presented in Section 6.
Finally, a summary and outlook is given in Section 7.

2 THE AUTOLINK TOOL

Autolink is a tool which supports the automatic generation of TTCN test
suites based on SDL specifications. Its basic concepts have already been doc-
umented in [7] and [18].

Autolink has been influenced by the SaMsTaG method and tool [12, 19].
SaMsTaG was an experimental system, developed at the University of Berne
together with Swisscom. It was applied successfully to large scale protocols,
e. g. [13].

2.1 Integration into the Tau tool set

Autolink is tightly integrated within the Tau tool family which comprises
the well-known SDT and ITEX tools. Autolink is a component of the SDT
Validator. The Validator is based on state space exploration techniques and
can be used to find dynamic errors and inconsistencies in SDL specifications.
Additionally, it allows to verify an SDL system against requirements described
by MSCs. Autolink makes use of the core functionalities provided by the
Validator and extends it with respect to test generation facilities. Besides
Autolink, some other Tau tools are involved in the generation of a com-
plete TTCN test suite. Figure 1 shows the relations between all tools and
information involved in the test generation process.

Based on an SDL system which is specified by the user (Task 1 in Figure 1)

THE AUTOLINK TOOL 3

Modify
constraintsDefine paths Define

configuration
Specify system

MSCs
Autolink

configurationSDL system

User

ITEX

Complete TTCN
test suite

Merge declarations,
dynamic and

constraints parts

Generate test
suite overview

Code
generator

Generate
Validator/Autolink

application

Generate TTCN
Link executable

Autolink

Generate TTCN
dynamic and

constraints part

Compute test
cases

Translate MSCs
into test cases

Test case
representations

Constraints

TTCN MP
file

TTCN Link

Generate TTCN
declarations part

TTCN
declarations

1

5

8

2 3

6 7

4

9

10

11 12

Figure 1 Autolink and its integration into the Tau tool family

the code generator produces both an Autolink/Validator and a TTCN Link
application (Task 5 and Task 8).

Using Autolink, a TTCN test suite can be generated which contains con-
straint and dynamic behavior tables (Task 9). This test suite can be completed
and refined in ITEX, a development environment for test suites specified in
TTCN. The TTCN Link application derived from the SDL specification is
able to generate all static TTCN declarations (Task 10). These declarations
can be merged with the Autolink test suite (Task 11). Finally, the test suite
overview can be generated automatically by ITEX (Task 12).

4 Autolink — Putting SDL-based test generation into practice

2.2 Developing a test suite with Autolink

The generation of a TTCN test suite with Autolink involves several steps
which are described below:

Define paths Autolink derives test cases from paths which have to be
provided by the user (Task 4 in Figure 1). A path is a sequence of SDL events
which drive the system from a start state to an end state in the state space
of the SDL system.

The SDT Validator provides several possibilities to define paths. For exam-
ple, a path may be generated automatically by using observer processes. An
observer process is a special kind of SDL process which is able to monitor the
SDL system and guide a state space exploration. Observer processes can be
used to define large sets of tests. Alternatively, the user may want to manually
navigate in the state space and select single paths.

A path is stored as a Message Sequence Chart. Typically, an MSC used by
Autolink may only show the externally observable interaction of the SDL
system with its environment. It consists of one instance axis representing the
SDL system and one instance axis for each channel linked to the environment.

TTCN test cases can be logically structured into test steps, e. g. a preamble,
a test body and a postamble. Autolink represents test steps in MSCs by
MSC references. A typical MSC for INAP is shown in Figure 2. It contains a
preamble named O OS and a postamble named ReleaseCallAB Cause 00.

Define configuration A test suite produced by Autolink depends on a
number of options and settings. For example, the user may choose between
several output formats for test steps. Test steps can be stored globally in the
test step library, as local trees attached to a test case, or inline. In order to
collect all relevant settings in one place, a test configuration file can be writ-
ten (Task 3) which may include information about the output of test steps,
search heuristics (Section 3), constraint naming and constraint parameteriza-
tion (Section 5).

Process test cases Based on the MSCs and the configuration file provided
by the user, Autolink computes an internal representation for each single
test case. The representations contain all sequences of send and receive events
that lead to a pass or an inconclusive verdict. Additionally, it keeps track of
the test case structure, i. e. the embedding of test steps.

There are two different approaches to generate test cases from MSCs. Nor-
mally, a state space exploration is started which simulates both a given MSC
and the SDL system (Task 6). In this case, alternative receive events which
violate the MSC but are valid according to the SDL specification are added
to the test case representation with a TTCN inconclusive verdict. If a state
space exploration is not applicable, MSCs have to be translated directly into
test cases (Task 7; Section 4).

Send and receive events in a test case are associated with constraints cod-

THE STATE SPACE EXPLORATION 5

ifying the signal parameters. Since constraints can be shared among several
events in different test cases, they are stored separately from the test case
representations. Autolink merges identical constraints automatically and
resolves naming conflicts. In addition, the user is allowed to define new con-
straints and to rename, merge and remove existing constraints (Task 4).

Generate TTCN test suite Based on the internal test case representa-
tions and the list of constraints, a TTCN test suite in MP format can be
generated (Task 9). The appearance of the dynamic behavior and constraint
tables can be controlled by various options defined in the configuration file.
For example, constraints can either be stored as ASN.1 PDU or as ASN.1
ASP constraints. Before writing a test suite in a file, Autolink checks the
consistency of the test cases. For example, a postamble which is represented
by an MSC and which is used for more than one test case description does
not necessarily result in identical test steps. In this case, Autolink has to
distinguish the test steps by renaming them.

With respect to the Framework of Formal Methods in Conformance Testing
[4], Autolink uses trace preorder for relating a TTCN test suite to an SDL
specification. This means that in the best case, Autolink produces all possi-
ble traces from a specification and transforms them into test cases in TTCN.
However, this is only an ideal scenario. In practice, the number of possible
traces is much too large to be seriously considered. The MSCs are used to
constrain the test cases to those which are considered relevant for testing the
most important functions and to those which exhibit most likely an error.

3 THE STATE SPACE EXPLORATION

For test case generation, Autolink performs a state space exploration based
on the well-known bit-state algorithm [15]. Therefore it also has to cope with
the state space explosion problem. In [14], Grabowski et al. list several heuris-
tics to deal with the complexity of state space exploration algorithms. Heuris-
tics make assumptions about the system. They avoid the analysis of system
traces which do not comply to these assumptions.

The SDT Validator and hence also Autolink allow to set several state
space exploration options which can be related to heuristics. However, there
are some options which definitely prevent Autolink from generating all se-
quences of test events which lead to a pass verdict. Therefore some options are
fixed, while others may be changed. Some relevant options are listed below:

• Channel queues
Channel queues drastically contribute to the state space explosion. There-
fore, deviating from the SDL standard, the SDT Validator and Autolink

allow to disable channel queues. However, queues should always be acti-

6 Autolink — Putting SDL-based test generation into practice

vated for all channels linked with the environment of the SDL system.
Otherwise, most likely possible sequences of test events get lost.

• Priorities of classes of SDL events
Autolink allows to define priorities for five classes of SDL events: Internal
events, input from the system environment, timeouts, channel outputs and
spontaneous transitions. In the context of conformance testing, we assume
that the tester is faster than the System Under Test (SUT). Therefore,
when simulating the SDL system, input from the environment has highest
priority. Since the number of inputs from the environment is limited by the
MSC, this indeed reduces the complexity. Usually, SDL timers are used for
exception handling. Therefore timeouts may be assigned a low priority at
the risk of not finding all test events leading to an inconclusive verdict.

• Process scheduling
In each system state, either all process instances in the ready queue are
allowed to execute or only the first process instance. By using the second
alternative, the state space is strongly reduced at the cost of not detecting
any signal races.

Several other parameters can be adjusted, e. g. the maximum length of
channel queues, the maximum search depth or the (in-)divisibility of SDL state
transitions. Our experience with INAP has shown that it is essential to use
the restricted process scheduling for complex SDL specifications. Additionally,
internal channel queues have to be disabled.

4 TRANSLATING MSCS INTO TTCN TEST CASES

If a test purpose covers certain aspects of a protocol specification which are
not represented in the corresponding SDL model, it is obviously not possible
to generate a test case by starting a state space exploration. However, for a
uniform test suite development process, it is desirable to formalize all test
purposes as MSCs. Those MSCs which cannot be handled by a state space
exploration should be converted directly into TTCN test cases.

Autolink provides a function which performs a direct translation from
MSC into TTCN. Figure 2 shows an MSC which has been constructed for
INAP. The resulting TTCN test case generated by Autolink is presented in
Figure 3.

Although Autolink does not need to perform a state space exploration, it
requires some information about the interface of the specification. Therefore
an SDL system has to be provided which at least defines the channels to the
system environment and the signals sent via these channels. Using this SDL
system, Autolink can find out which MSC instances represent PCOs. Addi-
tionally, it can check whether the MSC is syntactically correct with regard to
signals and signal parameters.

Direct translation of MSCs into TTCN test cases has to be applied with

TRANSLATING MSCS INTO TTCN TEST CASES 7

MSC IN2m_A_BASIC_RN_CA_01

SCF CS2_SSF SigCon_A SigCon_B

O_OS

TC_InvokeReq

1, 51, 2, RNC, short, rNCArg : { { eventTypeCharging ’AAAA’H, monitorMode interrupted } }

TC_InvokeReq

2, 51, 4, CUE, medium, cUEArg : Null

TC_ContinueReq

51, oSCF

SetupReq

{ callRef 2, calledPartyNumber ’2000’H, callingPartyNumber ’1000’H }

SetupConf

{ callRef 2 }

SetupResp

{ callRef 1 }

ChargingEventInd

{callRef 2, eventTypeCharging ’AAAA’H}

TC_ContinueInd

51

TC_InvokeInd

102, 51, ENC, TRUE, eNCArg : { eventTypeCharging ’AAAA’H, monitorMode interrupted }

ReleaseCallAB_cause_00

Figure 2 MSC IN2m A BASIC RN CA 01 is translated . . .

caution. There is no guarantee that the MSCs and hence the test cases describe
valid traces of the specification or the implementation, respectively. Instead,
Autolink relies on the developer that the test cases are valid. Furthermore,
is is not possible to compute test events which lead to an inconclusive verdict,
meaning any deviation from the behavior described in the MSC is considered
false.

On the other hand, there are good reasons to use MSCs instead of directly
writing TTCN test cases. First, test cases typically span trees with several tree
leaves because of the partial order of test events. For example, the test case
in Figure 3 contains three valid sequences of test events. In MSCs the partial
order is expressed inherently due to the semantics of MSC. While it is arduous
for a test suite developer to write down a complete TTCN test case, Autolink

automatically computes all valid permutations of test events for a given MSC.
Second, since Autolink always translates MSCs into an intermediate internal

8 Autolink — Putting SDL-based test generation into practice

Test Case Dynamic Behaviour

Test Case Name: IN2m_A_BASIC_RN_CA_01

Group :

Purpose :

Configuration :

Default : OtherwiseFail

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +O_OS

2 SCF ! TC_InvokeReq CIR_RequestNotificationCha

rging_002(1 , 51)

3 SCF ! TC_InvokeReq CIR_Continue_004(2 , 51)

4 SCF ! TC_ContinueReq C_TC_ContinueReq_001(

51)

5 SigCon_B ? SetupReq C_SetupReq({ callRef 2,

calledPartyNumber ’2000’H,

callingPartyNumber ’1000’H }

)

6 SigCon_B ! SetupConf C_SetupConf({ callRef 2 })

7 SigCon_B ! ChargingEventInd C_ChargingEventInd_002

8 SCF ? TC_ContinueInd C_TC_ContinueInd_003(51

)

9 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001(102 , 51)

10 SigCon_A ? SetupResp C_SetupResp({ callRef 1 }) (PASS)

11 +ReleaseCallAB_cause_00

12 SigCon_A ? SetupResp C_SetupResp({ callRef 1 })

13 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001(102 , 51)

(PASS)

14 +ReleaseCallAB_cause_00

15 SigCon_A ? SetupResp C_SetupResp({ callRef 1 })

16 SCF ? TC_ContinueInd C_TC_ContinueInd_003(51

)

17 SCF ? TC_InvokeInd CII_EventNotificationChargin

g_001(102 , 51)

(PASS)

18 +ReleaseCallAB_cause_00

Detailed Comments:

Figure 3 . . . into a TTCN test case.

test case representation, test cases generated by an MSC-TTCN translation
can be merged with test cases generated by state space exploration. This leads
to uniform and compact test suites with a reduced number of constraints.

5 CONSTRAINT RULES

Early tests with Autolink have shown that the readability of automatically
generated TTCN test suites is not very good. One particular problem is the
naming of constraints. Due to the lack of information about the meaning of
constraints, their names have to be created generically. For instance, a con-

CONSTRAINT RULES 9

straint may be named after its signal or the test case in which it is used. If there
are different constraints with the same name, they might be distinguished by
appending a sequence number.

In practice this naming scheme is not acceptable, even though Autolink

provides functions for the subsequent manipulation of constraints. Especially,
if a test suite has to be regenerated due to a modification of the underlying
SDL specification, a lot of manual work has to be repeated in order to assign
meaningful constraint names.

Another important aspect is the parameterization of constraints. Without
parameterization, a vast number of similar constraints is generated. This also
makes the naming problem worse, since all these constraints have to get unique
names.

For these reasons, Autolink allows the user to specify rules which tell
the tool how to map SDL signals onto TTCN constraints during the test
generation process. Both the names of constraints and their parameterization
can be controlled by these rules. The rules have to be provided in advance,
i. e. before the test generation starts, as part of the configuration file.

A typical constraint rule looks like this:

Example 1

TRANSLATE
FROM TC_ContinueReq
TO "C_TC_ContinueReq"
PARAMETERS $1="Dialog_ID"

END

Constraint rules can be considered as mapping rules: Autolink trans-
lates from signals to constraints. Example 1 instructs Autolink to map
TC ContinueReq signals onto constraints whose name is C TC ContinueReq.
If more than one constraint is built, all constraints are distinguished by an
additional sequence number. Moreover, the first parameter of each concrete
signal (referred to by $1) becomes a parameter of the resulting constraint.
The name of the formal parameter used in the constraint declaration table is
Dialog ID.

Constraint names may not only be composed of plain texts, they can also
depend on signal parameters. However, in some cases it is not desirable to take
the textual representation of a parameter value directly as part of a constraint
name. E. g., a protocol engineer might use abbreviations as signal parameter
values. But for the TTCN test suite, these abbreviations are intended to be
mapped onto extended names.

In Example 2, the fourth parameter of signal TC InvokeReq is taken as
input for function OpName. Depending on its input value, the function re-
turns a text which forms the second half of the constraint name. As a conse-
quence, TC InvokeReq signals with different fourth parameter are automat-

10 Autolink — Putting SDL-based test generation into practice

Example 2

TRANSLATE
FROM TC_InvokeReq
TO "CIR_" + OpName($4)
PARAMETERS $1="Invoke_ID", $2="Dialog_ID"

END

FUNCTION OpName
$1 == "ASF" : "ActivateServiceFiltering"

...
| $1 == "RC" : "ReleaseCall"
...
| $1 == "SL_R" : "SplitLegResult"
| TRUE : "OperatorTypeNameUndefined"

END

ASN.1 ASP Constraint Declaration

Constraint Name: CIR_ReleaseCall(Invoke_ID : InvokeIDtype; Dialog_ID : DialogIDtype)

ASP Type : TC_InvokeReq

Derivation Path:

Comments :

Constraint Value

{ invokeIDtype1 Invoke_ID, dialogIDtype2 Dialog_ID, opClassType3 4, opCodeType4 RC, timeoutValType5 short,

argType6 rCArg : initialCallSegment : ’00’H }

Detailed Comments:

Figure 4 A parameterized constraint

ically mapped onto constraints with different names. A possible constraint
declaration table for a TC InvokeReq signal is shown in Figure 4.

Besides the constructs outlined above, Autolink’s constraint description
language allows to define conditional rules. By using conditions in a TRANSLATE
statement, constraints can be customized to specific requirements. For exam-
ple, constraint parameterization can be guided by signal parameters. More-
over, it is possible to combine constraint rules for several signals by the use
of regular expressions.

One goal for the design of the constraint description language was sim-
plicity. Even an unexperienced user should be able to understand and define
constraint rules. The syntax is not very strict in the sense that, for example,
function parameters do not have to be declared. Instead, potential inconsis-
tencies are checked and resolved at run-time.

The only data type used in the constraint description language is text. Any
reference to a signal parameter returns a text. The same is true for function
calls. Conditions are also evaluated on a textual basis.

Despite its simplicity, the language has proven to be sufficiently powerful.
Nevertheless, it can be easily extended by additional built-in functions. One

THE INAP EXAMPLE 11

restriction of the current implementation is that Autolink can only refer to
top-level signal parameters, i. e. it is not possible to address nested parameters.
We plan to remove this limitation in a future release.

6 THE INAP EXAMPLE

The Intelligent Network Application Protocol [9] is the first protocol specified
by ETSI for which a machine-processable SDL model is available. The SDL
model was developed by ETSI Sub-Technical Committee SPS3 with support
of the Protocol Expert Group and the Technical Committee ’Methods for
Testing and Specification’.

The specification of INAP Capability Set 2 (CS–2) makes use of the object-
oriented features of SDL’96 by inheriting CS–1. Data types are defined in
ASN.1.

The SDL specification of ETSI’s INAP CS–2 is voluminous. It comprises
more than 450 pages in printed form. The phrase representation is about 1.6
MByte large (approximately 570 KByte without comments). When translat-
ing the specification into C with SDT’s code generator, about 350 000 lines or
13.6 MByte of source code are generated.

6.1 Test suite generation

TTCN test suites for INAP CS–2 are developed by ETSI Specialists Task
Force STF 100. A first test suite which covers the basic capability set, i. e.
the CS–1 operations with CS–2 additions, has already been published in [11].
Another test suite covering the CS–2 operations is currently under develop-
ment.

With respect to the CS–1 operations, test purposes were defined with tex-
tual descriptions and rough MSCs, first. Next, these test purposes were for-
malized as detailed MSCs using the SDT Simulator. In total, 126 test purposes
were specified [10]. For 67 test purposes the MSCs could be simulated in or-
der to produce the corresponding test cases. The remaining 59 test purposes
had to be translated directly into TTCN due to unspecified parts in the SDL
model.

The test suite resulted from a repetitive process of SDL/MSC refinements
and modifications, MSC verifications and test generation runs. Whenever a
modification of the SDL model was made, all MSCs were verified with the SDT
Validator. If errors emerged, the SDL model or the MSCs were modified again
until all MSCs passed the verification. Thereafter the test case generation
using Autolink was started.

12 Autolink — Putting SDL-based test generation into practice

Test case generation

0
120
240
360
480
600
720
840
960

1080
1200
1320
1440

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

MSCs

T
im

e
(m

in
)

3109

MSC verification

0

20

40

60

80

100

120

140

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65

MSCs

T
im

e
(m

in
)

Figure 5 Computation time for MSC verifications and test generations

6.2 Statistics

Both the MSC verification and the test generation runs were executed at
the Institute for Telematics in Lübeck. The test results discussed below were
obtained on SUN ULTRA 2 workstations with 300 MHz processors.

Figure 5 shows the computation time for both the MSC verification and
the test generation with Autolink. The time needed for the verification of
an MSC ranged from 1min 24 sec to 2 h 15min. It took between 6min 44 sec
and 51 h 49min (= 3109 min) to generate a test case.

The larger amount of time needed for test generation is not surprising:
During MSC verification, a path in the state space graph is truncated as soon
as an event in an SDL transition conflicts with the MSC. On the other hand
during test generation, the path needs to be extended until an observable
event occurs.

Interestingly, there is no general correlation between the computation time
for MSC verification and test generation. For example, MSC no. 57 in Figure 5
can be verified comparably fast, whereas its test case generation takes about
5 hours.

THE INAP EXAMPLE 13

Due to the large number of data used in the SDL system, on average only
22 states per minute could be explored by Autolink. Much time was spent
for the computation of the hash values of each state needed for the bit-state
algorithm.

6.3 Distributed test case processing

Verification of all MSCs on a single machine would have taken about a day;
generation of all test cases would have taken about a week. Therefore, the
processing of test purposes was distributed among up to fifteen workstations.

As described in Section 2, Autolink does not directly write a generated
test case into a TTCN MP file. Instead, it stores each test case in an in-
ternal representation in memory. This representation and the corresponding
constraints can be saved on disk and reloaded later. This feature was used
to compute each test case separately. After the computation finished, all test
cases were reloaded and combined into a single test suite. Identical constraints
were merged automatically during this process.

With the help of shell scripts, test generation runs were executed in batch
mode, so no manual intervention was needed to start the generation of each
single test case. This way, test cases could be generated overnight. In addi-
tion, information about previous test generation runs could be used in order
to minimize computation time by placing time-intensive test cases on fast
machines first.

6.4 Test suite post-processing

Even though Autolink (in combination with TTCN Link) produced a com-
plete, readable test suite, some manual steps were still needed to enhance the
result:

1. Preambles which were generated during direct translation from MSC into
TTCN were replaced by the ones generated with state space exploration.

2. Using parameterization on the level of test steps, the number of postambles
was reduced significantly.

3. PIXIT information was added.
4. Test group information was added.
5. The test suite was converted to concurrent TTCN.

14 Autolink — Putting SDL-based test generation into practice

7 SUMMARY AND OUTLOOK

Autolink makes it much easier to generate TTCN test suites based on an
SDL specification. In particular, constraint rules save a lot of time. Addition-
ally, the integration of MSCs for which no state space search can be performed
allows a uniform development process. Autolink is used by project STF 100
at ETSI whose goal is the development of test suites for INAP CS–2.

Due to the complexity of modern protocol specifications, it seems to be
almost impossible to create correct test suites by hand. Autolink allows to
check several properties of the test suite which would otherwise have been
overlooked. For instance, Autolink checks whether a test step can be shared
among several test cases.

The time needed for test generation depends both on the complexity of
the SDL model, the size of the MSCs describing the test purposes and the
heuristics for the state space search. While the first two factors cannot be
altered, the state space options have to be chosen carefully in order to find a
good compromise between computation time and the chance to find all events
with inconclusive verdict. More tool assistance is needed by the user to choose
appropriate options.

With regard to the whole development process, the time effort for the actual
test generation is not relevant (if some restrictions of the state space are
accepted). Most time is spent for refinements of the SDL specification and
the test purposes. ETSI estimates that about 20% of the expenses for the
development of the first INAP test suite could be saved by tool support in
comparison with a manual test suite development.

However, experience has shown that the amount of time spent for manual
post-processing of a generated test suite can be further decreased. Therefore,
improvements of Autolink will focus on the readability of the generated
TTCN code. In particular, we plan to implement the following extensions:

• Support of concurrent TTCN
In order to generate concurrent TTCN, Autolink needs further informa-
tion that cannot be automatically retrieved from the SDL specification.
E. g. information is needed about the assignment of PCOs to channels and
the relation between PTCs and PCOs. Therefore the user will have to pro-
vide this information as part of the configuration file. Several strategies for
the coordination of PTCs will be implemented, e. g. a strict synchronization
or synchronization only when indicated in the MSC.

• Parameterization of test steps
MSC references can be used in test purpose descriptions to refer to test
steps. If an MSC test step is used in several test cases, it may lead to several
test steps which only differ in a few signal parameters. Parameterization
of test steps can be handled similarly to constraint parameterization and
should include parameterization of signals, PCOs and signal parameters.

SUMMARY AND OUTLOOK 15

• Support of timer events
TTCN timers could be created automatically either once for a complete
test case or for each event separately. There should also be a possibility
to explicitly specify timers in the MSCs which are transformed to TTCN
timer events.

• Test suite structure
A test suite is typically structured into test groups, i. e. sets of test cases
which test a specific aspect of the specification. Since the test suite structure
is often reflected in the names of the test purposes, a mechanism will be
implemented that groups test cases based on their names.

• PICS/PIXIT parameterization
Since SDL does not allow the use of symbolic values, PICS/PIXIT parame-
ters have to be encoded as concrete values for test generation and replaced
by symbolic values in a post-processing step. This time-consuming task can
be automatized.

• Automatic constraint parameterization
Automatic constraint parameterization is a way to minimize the number
of constraints. However, it is not yet clear whether it will also enhance the
readability of a test suite.

REFERENCES

[1] ITU Telecommunication Standards Sector SG 10. ITU-T Recommenda-
tion Z.105: Specification and Description Language (SDL) combined
with Abstract Syntax Notation One (ASN.1). ITU, Geneva, 1995.

[2] ITU Telecommunication Standards Sector SG 10. ITU-T Recommen-
dation Z.100: Specification and Description Language (SDL). ITU,
Geneva, 1996.

[3] ITU Telecommunication Standards Sector SG 10. ITU-T Recommenda-
tion Z.120: Message Sequence Chart (MSC). ITU, Geneva, 1996.

[4] ITU Telecommunication Standards Sector SG 10. ITU-T Recommen-
dation Z.500: Framework of Formal Methods in Conformance Testing.
ITU, Geneva, 1998.

[5] R. Anido, A. Cavalli, T. Macavei, L. P. Lima, M. Clatin, and M. Phalip-
pou. Testing a real protocol with the aid of verification techniques.
In XXIII Seminario Integrado de Software e Hardware (SEMISH’96),
pages 237–248, Brazil, August 1996.

[6] A. Cavalli, B.-H. Lee, and T. Macavei. Test generation for the SSCOP-
ATM networks protocol. In SDL ’97 Time for Testing – Proceedings
of the Eighth SDL Forum, Evry, France, September 1997.

[7] A. Ek, J. Grabowski, D. Hogrefe, R. Jerome, B. Koch, and M. Schmitt.
Towards the Industrial Use of Validation Techniques and Automatic
Test Generation Methods for SDL Specifications. In SDL ’97 Time for
Testing – Proceedings of the Eighth SDL Forum, Evry, France, Septem-

16 Autolink — Putting SDL-based test generation into practice

ber 1997.
[8] J. Ellsberger, D. Hogrefe, and A. Sarma. SDL – Formal Object-oriented

Language for Communicating Systems. Prentice Hall, 1997.
[9] European Telecommunications Standards Institute. DEN 03038-1. ETSI

Core INAP CS-2; Part 1: Protocol Specification, 1997.
[10] European Telecommunications Standards Institute. DEN 03038-3. ETSI

Core INAP CS-2; Part 3: Test Suite Structure and Test Purposes spec-
ification for Service Switching Function (SSF), Specialized Resource
Function (SRF) and Service Control Function (SCF), 1998.

[11] European Telecommunications Standards Institute. DEN 03038-4. ETSI
Core INAP CS-2; Part 4: Abstract Test Suite (ATS) for Service
Switching Function (SSF), Specialized Resource Function (SFR) and
Service Control Function (SCF), 1998.

[12] J. Grabowski, D. Hogrefe, and Nahm. R. Test Case Generation with
Test Purpose Specification by MSCs. In SDL ’93 Using Objects –
Proceedings of the Sixth SDL Forum, Darmstadt, Germany, October
1993. North-Holland.

[13] J. Grabowski, D. Hogrefe, R. Scheurer, and Z. Dai. Applying SAMSTAG
to the B-ISDN Protocol SSCOP - Technical Description and TTCN
Testsuite. In Testing of Communicating Systems, volume 10, Cheju
Islands, Korea, September 1997.

[14] J. Grabowski, R. Scheurer, D. Toggweiler, and D. Hogrefe. Dealing with
the Complexity of State Space Exploration Algorithms. In Proceedings
of the Sixth GI/ITG technical meeting on ’Formal Description Tech-
niques for Distributed Systems’, University of Erlangen, June 1996.

[15] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall International, Inc., 1991.

[16] ISO/IEC JTC 1/SC21. Information Technology - Open Systems Inter-
connection - Conformance Testing Methodology and Framework - Part
3: The Tree and Tabular Combined Notation. International Standard
9646-3, ISO/IEC, 1992.

[17] E. Perez, E. Algaba, and M. Monedero. A pragmatic approach to test
generation. In Testing of Communicating Systems, volume 10, Cheju
Islands, Korea, September 1997.

[18] M. Schmitt, B. Koch, J. Grabowski, and D. Hogrefe. Autolink - A Tool
for the Automatic and Semi-Automatic Test Generation. In Proceed-
ings of the Seventh GI/ITG Technical Meeting on Formal Description
Techniques for Distributed Systems, Berlin, June 1997.

[19] D. Toggweiler, J. Grabowski, and D. Hogrefe. Partial order simulation
of SDL specifications. In SDL ’95 with MSC in CASE – Proceedings
of the Seventh SDL Forum, Oslo, Norway, September 1995. Elsevier.

Publications concerning Autolink can be downloaded from
http://www.itm.mu-luebeck.de/research/autolink/

BIOGRAPHY 17

8 BIOGRAPHY

Michael Schmitt studied computer science with focus on computational lin-
guistics at the University of Koblenz, Germany, where he graduated with a
diploma degree in September 1996. Since October 1996 Michael Schmitt is a
research assistant at the Institute for Telematics at the Medical University of
Lübeck, Germany.

Anders Ek studied computer science and engineering at Lund Institute of
Technology in Sweden. After his graduation 1986 he started working at Telia,
the national Swedish telecom operator. At Telia he did research on formal
methods and associated development methodology. Since 1992 he has been
working with development of tools and methods at Telelogic, a commercial
CASE tool vendor providing tools based on formal description techniques.

Jens Grabowski studied computer science and chemistry at the University
of Hamburg, Germany, where he graduated with a diploma degree. From 1990
to October 1995 he was a research scientist at the University of Berne, Switzer-
land, where he received his Ph.D. degree in 1994. Since October 1995 Jens
Grabowski is a researcher and lecturer at the Institute for Telematics.

Dieter Hogrefe studied computer science and mathematics at the University
of Hannover, Germany, where he graduated with a diploma degree and later
received his PhD. From 1983 to 1995 he worked at various positions in the
industry and at universities. Since 1996 he is director of the Institute for
Telematics and full professor at the Medical University of Lübeck.

Beat Koch studied computer science at the University of Bern, Switzerland.
After his graduation in 1994, he worked in the industry for two years. Since
1996, he is a research assistant at the Institute for Telematics.

