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Abstract

In this paper we define real-time TTCN and apply it to sevepgliaations. In real-
time TTCN, statements are annotated with time labels thetigptheir earliest and
latest execution times. The syntactical extensions of TZ&the definition of a
table for the specification of time names and time units, amariew columns in
the dynamic behaviour description tables for the annataifcstatements with time
labels. We define an operational semantics for real-time N'Bg mapping real-
time TTCN to timed transition systems. Alternatively, weaduce a refined TTCN
snapshot semantics that takes time annotations into atcoun
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1 INTRODUCTION

Testing, or to be precissonformance testings the generally applied process in val-
idating communication software. A conformance testinghudblogy and frame-
work (1ISO9646-1 1994) have been established within thedstatization bodies of
ISO and ITU. An essential part of this methodology is a notatcalled TTCN (Tree
and Tabular Combined Notation) (1ISO9646-3 1996), for thind@n of confor-
mance test cases. TTCN has been designed for testing syfstewisich in general
timing between communicating entities has not been an .iS®ast cases are speci-
fied as sequences of test events which are input and outpiseseabstract service
primitives (ASP) or protocol data units (PDU). The relatirelering of test events is
defined in aest case behaviour description

The situation is changing now. We can identify two main nemdkiof distributed
systems: firstly, real-time systems which stem from the dssomputers for con-
trolling physical devices and processes. For these systeaistime communication
is essential for their correct behaviour. Secondly, mudtiia systems which involve
the transmission of several continuous streams (of bits}tagir timely reproduction
(e.g., synchronization of audio and video). However, astgdi out in, e.g., (Atest
al. 1996), TTCN is not an appropriate test notation for testeel-time and multi-
media systems: Firstly, test events in TTCN are for mestaged systems and not
for stream-based systems. Secondly, in TTCN real-time onlee approximated.
In this paper we define a real-time extension of TTCN as a dwrtion for solving
the second problem.

Our extension of TTCN taeal-time TTCNis on a syntactical and a semantical
level. The syntactical extension is that we allow an anmmtatf test events with
an earliest execution timeE(ET) and a latest execution tim& ET). Informally, a
test event may be executed if it has been enabled for atfe&3t units and it must
be executed if it has been enabled foE T units. For the definition of an opera-
tional semantics of real-time TTCN we use timed transitipstems (Henzingest
al. 1991).

A number of techniques for the specification of real-timestoaints have been
proposed which are besides others: time Petri Nets (Beethatial. 1991, Merlin
et al. 1976) and extensions of LOTOS (Bowmanal. 1994, Hogrefeet al. 1992,
Léonardet al. 1994, Quemadat al. 1987), SDL (Hogrefet al. 1992, Leue 1995)
and ESTELLE (Fischer 1996). As in the cited literature, qapraach allows the tim-
ing of actions relative to the occurrence of previous agtidre difference between
the cited approaches and ours is that real-time TTCN is aithybethod used for
the specification opropertiesof test systems anequirement®n implementations
under test (IUT).

Section 2 gives a brief introduction to TTCN. Section 3 ekpdaeal-time TTCN.
The applicability of our approach is shown in Section 4. Becb concludes the
paper with an assessment of our work and the discussion ofiepees.



2 TTCN-TREE AND TABULAR COMBINED NOTATION

TTCN is a notation for the description of test cases to be irsednformance testing.
For the purpose of this paper we restrict our attention to N'li@ncepts related to
the description of the dynamic test case behaviour. Fudbtils on TTCN can be
found in: (Baumgarten and Giessler 1994, Baumgarten anii&p1 996, 1ISO9646-
31996, Kristoffersert al. 1996, Linn 1989, Probest al. 1992, Sarikaya 1989).

2.1 Abdract testing methodsand TTCN

A test case specifies which outputs from an IUT can be obseamddvhich inputs

to an IUT can be controlled. Inputs and outputs are eidliEstract service primi-
tives(ASPs) omprotocol data unit§PDUS). In general, several concurrently running
distributedtest componentd C) participate in the execution of a test case. TCs are
interconnected bgoordination point§ CPs) through which they asynchronously ex-
changecoordination messagg£Ms). TCs and IUT logically communicate by ex-
changing PDUs which are embedded in ASPs exchangediats of control and
observation(PCOs), which are interfaces above and below the IUT. Singadst
cases the lower boundary of an IUT does not provide adeq@eifterfaces, TCs
and IUT communicate by using services of an underlying sergrovider.

2.2 Test case dynamic behaviour descriptions

The behaviour description of a TC consistsstdtementsndverdict assignments
A verdict assignment is a statement of either PASS, FAIL o€OWCLUSIVE,
concerning the conformance of an IUT with respect to the sege of events which
has been performed. TTCN statements tast event¢SEND, IMPLICIT SEND,
RECEIVE, OTHERWISE, TIMEOUT and DONEgpnstruct{CREATE, ATTACH,
ACTIVATE, RETURN, GOTO and REPEAT) andseudo event§ualifiers, timer
operations and assignments).

Statements can be grouped istatement sequencasdsets of alternativedn the
graphical form of TTCN, sequences of statements are repiesene after the other
on separate lines and beiimglentedfrom left to right. The statements on lines 1 -
6 in Figure 1 are a statement sequence. Statements on thdesaainaf indentation
and with the same predecessor are alternatives. In Figure atements on lines 4
and 6 are a set of alternatives: they are on the same levaelehtation and have the
statement on line 3 as their common predecessor.



Test Case Dynamic Behaviour
Nr | Label | Behaviour Description CRef V | Comments
1 CP?CM connected RECEIVE
2 (NumOfSends := 0) Assignment
3 REPEAT SendData Construct
UNTIL [NumOfSends> MAX]
4 START Timer Timer Operation
5 ?TIMEOUT timer TIMEOUT
6 L ! N-DATA request data SEND

Figurel TTCN Behaviour Description - Sequence of Statements.

Test Case Dynamic Behaviour
Nr | Label | Behaviour Description CRef | V | Comments
1 [TRUE] Qualifier
2 L1 (NumOfSends := NumOfSends + 1)
3 +SendData ATTACH
4 [NOT NumOfSends> MAX] Alternative 1
5 -> L1 GOTO
6 [NumOfSends> MAX] Alternative 2

Figure2 TTCN Behaviour Description - Set of Alternatives.

2.3 Test component execution

A TC starts execution of a behaviour description with thet fegel of indentation
(line 1 in Figure 1), and proceeds towards the last level déimation (line 6 in
Figure 1). Only one alternative out of a set of alternativetha current level of
indentation is executed, and test case execution proceiddshe next level of in-
dentation relative to the executed alternative. For exanplFigure 2 the statements
on line 4 and line 6 are alternatives. If the statement ordiiseexecuted, processing
continues with the statement on line 5. Execution of a behandescription stops if
the last level of indentation has been visited, a test veldis been assigned, or a
test case error has occurred.

Before a set of alternatives is evaluatedsrapshois taken (1ISO9646-3 1996),
i.e., the state of the TC and the state of all PCOs, CPs andeekginer lists related
to the TC are updated and frozen until the set of alternatiassbeen evaluated.
This guarantees that evaluation of a set of alternatives &amicanddeterministic
action

Alternatives are evaluated in sequence, and the first aligewhich isevaluated
successfullyi.e., all conditions of that alternative are fulfilled (19646-3 1996)) is
executed. Execution then proceeds with the set of alteesbn the next level of
indentation. If no alternative can be evaluated succdgstuhew snapshot is taken
and evaluation of the set of alternatives is started again.



3 REAL-TIMETTCN

In real-time TTCN, statements are annotated with time k@l earliest and lat-
est execution times. Execution of a real-time TTCN statdfizeinstantaneous. The
syntactical extensions of TTCN (Section 3.2) are the déimibf a table for the
specification of time names and time units and the additiomvofcolumns for the
annotation of TTCN statements in the behaviour descriptidntes. We define an
operational semantics for real-time TTCN (Section 3.3). thes we define a map-
ping of real-time TTCN to timed transition systems (Henznegt al. 1991) which
are introduced in Section 3.1. Applying timed transitiosteyns has been motivated
by our experiences with the definition of an operational sginsfor TTCN (Walter
et al. 1992, Walter and Plattner 1992). To emphasize the siridarof TTCN and
real-time TTCN we also propose a refined snapshot semantiichwakes time an-
notations into account and which is compliant with the tintradsition system based
semantics. In the following section we quote the main déding of (Henzingeet
al. 1991).

3.1 Timed transition systems

A transition systenfKeller 1976) consists of a s&t of variables, a seE of states,
a subseb C X of initial states and a finite sét of transitions which also includes
the idle transitiort; . Every transitiort € 7 is a binary relation over states; i.e., it
defines for every statee ¥ a possibly empty s&{s) < X of so-called-successors.
A transitiont is said to besnabledon states if and only if t(s) # @. For the idle
transitiont; we have that; = {(s,s) | s€ X}.

An infinite sequence = s ... is acomputationof the underlying transition
system ifsy € © is an initial state, and for all > O there exists & € 7 such

thats4+1 € t(s), denoteds LN S+1, i-e., transitiont is takenat positioni of
computationo.

The extension of transition systems to timed transitionesys is that we assume
the existence of a real-valued global clock and that a sypeforms actions which
either advance time or change a state (Henziegat. 1991). Actions are executed
instantaneously, i.e., they have no duration.

A timed transition systerronsists of an underlying transition system and, for each
transitiont € 77, an earliest execution time ET; € IN and a latest execution time
LET; € N U {oc} is definedt We assume thaE ET; < LET; and, wherever they
are not explicitly defined, we presume the default valueszare forEET; andoco
for LET;. EET; andLET; define timing constraints which ensure that transitions
cannot be performed neither to early [E T;) nor too late LETy).

A timed state sequenge= (o, T) consists of an infinite sequeneeof states and

*In principle, time labels may not only be natural numbers: &o in-depth discussion of alternative
domains for time labels, the reader is referred to (Alual. 1996).



an infinite sequence of timesT; € R andT satisfies the following two conditions:

® Monotonicity:Vi > O eitherTi;1 =TiorTiz1 > TiASy1=S§5.
® Progressvt € R3i > 0 such thafl; > t.

Monotonicity implies that time never decreases but pogsiltreases by any amount
between two neighbouring states which are identical. létintreases this is called a
time stepThe transition being performed in a time step is the idlegitton which is
always enabled (see above). The progress condition stetetinhe never converges,
i.e., since R has no maximal element every timed state segugas infinitely many
time steps. Summarizing, in timed state sequences statéiastare interleaved with
time activities. Throughout state activities time doesaiatnge, and throughout time
steps the state does not change.

A timed state sequenge= (o, T) is acomputatiorof a timed transition system
if and only if state sequenee is a computation of the underlying transition system
and for every transitioh € 7 the following requirements are satisfied:

o for every transitiort € 7 and positionj > 0 if t is taken atj then there exists a
positioni, i < j suchthaflj + EET < Tj andt is enabled o1%, S41, ..., Sj—1
and is not taken at any of the positions + 1, ..., ] — 1, i.e., a transition must
be continuously enabled for at ledSE T; time units before the transition can be
taken.

® for every transitiort € 7 and position > 0, if t is enabled at position, there
exists a positiorj, i < j, suchthafli + LET > T; and eithett is not enabled
at j ort is taken atj, i.e., a transition must be taken if the transition has been
continuously enabled fdr ET; time units.

A finite timed state sequence is made infinite by adding anitefsequence of idle
transitions or time activities.

3.2 Syntax of real-time TTCN

In real-time TTCN, timing information is added in the dedl#ons and the dynamic
part of a test suite.

As shown in Figure 3 the specification of time names, time esland units is
done in an Execution Time Declarations table. Apart fromHbkadings the table
looks much like the TTCN Timer Declarations table. Time namaee declared in the
Time Name column. Their values and the corresponding tinits ane specified on
the same line in the Value and Unit columns. The declaratitime values and time
units is optional.



Execution Time Declar ations
TimeName | Value | Unit [ Comments
EET 1 s EET value
LET 1 min LET value
WFN 5 ms Wait For Nothing
NoDur min No specified value

Figure3 Execution Time Declarations Table.

EET and LET are predefined time names with default values zero and wfinit
Default time values can be overwritten (Figure 3).

Besides the static declarations of time values in an Execdtime Declarations
table, changing these values within a behaviour descrigible can be done by
means of assignments (Figure 4). However, evaluation & tabels should alway
result InEET andLET values for which 0< EET < LET holds. As indicated
in Figure 4 we add a Time and a Time Options column to Test CasaiDic Be-
haviour tables (and similar for Default Dynamic Behaviond&est Step Dynamic
Behaviour tables). An entry in the Time column specifieET andLET for the
corresponding TTCN statement. Entries may be constargs (i@e 1 in Figure 4),
time names (e.g., the use of NoDur on line 3), and expresé®gs line 6).

In generalEET andLET values are interpreted relative to the enabling time of
alternatives at a level of indentation, i.e., the time whuwa level of indentation is
visited the first time. However, some applications may regjto defineEET and
LET values relative to the execution of an earlier test eventnot restricted just to
the previous one. In support of this requirement, a labdiéntabel column may not
only be used in a GOTO but can also be used in the Time colunthas& ET and
LET values are computed relative to the execution time of theradtive identified
by the label: In Figure 4 on line 6 the time labels (L1 + WFN, LILET) are referring
to the execution time of the alternative in line 1 (for whielbé&l L1 is defined).

Entries in the Time Options column are combinations of syislband N. Similar
to using labels in expressions, time option N allows to expitéme values relative
to the alternative’s own enabling time even though some TBEitements being
executed in between two successive visits of the same |éirdentation. Thus, the
amount of time needed to execute the sequence of TTCN stateinédetween two
successive visits is compensated: If time option N is defittezh execution of this
alternative is not pre-emptive with respect to the timinglbalternatives at the same
level of indentation.

In some executions of a test case, a RECEIVE or OTHERWISEtevey be
evaluated successfully before it has been enabledefé units. If it is intended
to defineEET as a mandatory lower bound when an alternative may be eedluat
successfully, then time option M has to be specified. Infdiymi&time option M is
specified and the corresponding alternative can be suctigssvaluated before it
has been enabled f& E T units, then this results in a FAIL verdict.

*We use different font types for distinguishing between aynEET and LET, and semantidSET and
LET.



Test Case Dynamic Behaviour
Nr | Label | Time Time Behaviour Description | C | V | Comments
Options
1 L1 2,4 M A ? DATA und Time label
MandatoryEET

2 (NoDur :=3) Time assignment|
3 2, NoDur A ! DATA ack
4 (LET :=50) LET update (ms)
5 A ? Data ind
6 L1+WFN, | M,N B ? Alarm MandatoryEET

L1+ LET not pre-emptive

Figure4 Adding EET and LET values to behaviour lines.

3.3 Operational semantics of real-time TTCN

The operational semantics of real-time TTCN is defined in $teps:

1. We define the semantics of a TC using timed transition Bysté\n execution
of a TC is given by a computation of the timed transition systessociated with
that TC. As time domain we use the real numbers R which ar@bstracttime
domain in contrast to theoncretetime domain of TTCN which counts time in
discrete time units. Progress of time however is, howevegrdinuous process
adequately modelled by R.

2. The semantics of a test system is determined by compdsingetmantics of in-
dividual TC (for details see (Waltet al. 1997)).

Given a TC we associate with it the following timed transitgystem: A stats <

¥ of a TC is given by a mapping ofariablesto values The set of variable¥
includes constants, parameters and variables definedddrGhin the test suite and,
additionally, a variable for each timer. Furthermore, wiedduce acontrol variable
7 which indicates the location of control in the behaviouratggion of the TC.w

is updated when a new level of indentation is visited. We @OB and CPs be pairs
of variables so that each holds a queue of ASPs, PDUs or CMsaséreceived,
respectively.

In the initial state of a TC all variables have assigned timdfiial values (if spec-
ified) or being undefined. All PCO and CP variables have assigm empty queue
and all timer variables have assigned the value stop. Theateariablesr has been
initialized to the first level of indentation. If the TC is natnning, i.e., the TC has
not been created yet, then all variables are undefined.

The set7 of transitions contains a transition for every TTCN statatrie the TC
behaviour description and the idle transitipn Furthermore, we have a transition
te which models all activities performed by the environmerd, ethe updating of
a PCO, CP or timer variables. Executiontgpfchanges the state of the TC because
shared PCO, CP or timer variables are updated.



In the following we assume that the current level of inddotahas been ex-
panded as defined in Annex B of (ISO9646-3 1996). After exjpanis general
form is Ai[eexp, lexp], ..., Anleexp, lexp], where A; denotes an alternative
andeexp, lexp are expressions for determinifge T andL E T values of alterna-
tive A;. The evaluation of expressioeexp andlexp depends on whetheexp
andlexp make use of a label Ln. If so, absolute time references areectad into
time references relative to the enabling time of the cursehbf alternatives.

Let eval be a function from time expressions to time value&f& T or LET. Let
enablingTiméA;) be a function that returns the time when alternatiyehas been
enabled. Let executionTindlen) be a function that returns the execution time of an
alternative at the level of indentation identified by labal Eunction NOW returns
the current global time. Notice that for all alternativAsin a set of alternatives,
enablingTiméA;) is the same. Since only one alternative of a set of alteresiis
executed, executionTinlen) returns the execution time of the executed alternative.
For the evaluation of time expressions the following rulegly:

1. If eexp andlexp do not involve any operator Ln thehET = evaleexp) and
LET = evallexp). Itis required that 0< EET < LET holds; otherwise test
case execution should terminate with a test case errordtidic

2. If eexp andlexp involve any operator Ln then, firstly, executionTithe) is
substituted for Ln ineexp andlexp resulting in expressionsexp or lexq,
and secondlyE ET = evaleexp) — NOW andLET = evallexy) — NOW. It
is required that 0< EET < LET holds; otherwise test case execution should
terminate with a test case error indication.

We say that alternativd is potentially enabledf A; is in the current set of alter-
natives.A; is enabledf A; is evaluated successfully (Section 2.8),is executable
if A is enabled andd; has been potentially enabled for at leB¥E T, and at most
LET; time units.

We make the evaluation of a TC explicit by defining the follogirefined snapshot
semantics (cf. Section 2.3).

1. The TC s put into its initial state.
2. Asnapshot is taken, i.e., PCO, CP and timer variablespaatad and frozen.

(a) Ifthe level of indentation is reached from a precedingrahtive (i.e., not by a
GOTO or RETURN) then all alternatives are marlgatentially enablednd
the global time is taken and stored. The stored time is aitdedsy function
enablingTimeA;).

(b) If the level of indentation is reached by executing a GGIGRETURN and
enabling-Timé&A;) has been frozen (see Step 5. below) then all alternatives are
markedpotentially enabledbut enablingTiméA) is not updated.

(c) If the level of indentation is reached by executing a GGIFGRETURN but
enablingTiméA; ) has not been frozen previously then all alternatives are mar



kedpotentially enable@nd the global time is taken and stored. The stored time
is accessible by function enablingTig#g).
(d) Otherwise, itis a new iteration of Steps 2. - 5.

EET andLET are computed as described above.
If for an A; enablingTim¢A;) + LET; < NOW then test case execution stops
(FAIL verdict).

3. All alternatives which can be evaluated successfullyraaekedenabled If no
alternative in the set of alternatives can be evaluatedesisfally then processing
continues with Step 2.

If for an enabled alternative, say, time option M is set and if enabling Tirda; )+
EET > NOW then test case execution stops with a FAIL verdict.

4. Anenabled alternativd; is markedexecutabl@rovided that enablingTingé; )+
EET < NOW < enablingTimé¢A;) + LET, and if there is another enabled
alternativeA;j with enablingTimeA;) + EET; < NOW < enablingTimeéA;) +
LET;, theni < j,i.e., thei-th alternative precedes thjeth alternative in the set
of alternatives.

If no alternative can be marked executable then processintiies with Step 2.

5. The alternative; marked executable in Step 4. is executed. If a label Ln is-spec
ified then the alternative’s execution time is stored andcivician be accessed by
function executionTim@.n). If time option N is specified for the executed alter-
native, enablingTim@)) is frozen for later use. Control variabte is assigned
the next level of indentation.

Test case execution terminates if the last level of indemtdtas been reached or
a final test verdict has been assigned; otherwise, evatuediatinues with Step 2.

Remarks: If any potentially enabled alternative cannotaduated successfully be-
fore latest execution time then a specified real-time cairgthas not been met and
test case execution stops. Conversely, if an alternativdeaevaluated successfully
before it has been potentially enabled FOE T (Step 3.) then a defined real-time con-
straints is violated, too, and test case terminates withrianm endication. In Step 4.,
the selection of alternatives for execution from the setraflded alternatives fol-
lows the same rules as in TTCN (1SO9646-3 1996). If a TC st8pep(5.) then the
finite timed state sequence is extended to an infinite seguanadding an infinite
sequence of idle transitions. Every iteration of Steps 2is 8ssumed to batomic

In terms of the definitions given in Section 3.1, a computatiba TC is a timed
state sequence = (o, T). By substitutingpotentially enabledor enabledandexe-
cutedfor taken the refined snapshot semantics can be stated formally as:

1. If alternativeA is executed at positiof of p then there exists positionsandl,
i <l < j,suchthafli+EET < T; and enablingTimeA) = T; and alternative\
is evaluated successfully on all statess 11, . . ., Sj—1 and is not executed at any
positionl, | + 1, ..., j — 1; i.e., alternativeA is potentially enabled for at least



Test Case Dynamic Behaviour
Nr | Label | Time Time Options | Behaviour Description | CRef | V | C
1 L1 2,4 M PCO1 ? N-DATA ind info
2
3 -> L1
4 0, INFINITY PCO2 ? N-ABORT ind | abort
5

Figure5 Partial Real-Time TTCN Behaviour Description.

EET time units before it is executed provided it can be evaluatextessfully
after having been potentially enabled, and

2. for positioni > 0, if enablingTimg¢A) = T; then for positionj, i < j, Tj +
LET > T; and alternativeA is not evaluated successfully on any sigte. ., s
or Ais executed aj provided no other alternativ&’ exists for which these condi-
tions hold and which preceddsin the set of alternatives; i.e., the first alternative
evaluated successfully is executed at latelsfT units after being potentially en-
abled.

Example 1 In ISDN (Integrated Digital Services Network) systems @4dll 1994,
Tanenbaum 1989), the B channels are used by applicatiodat@exchange whereas
the D channel is used for the management of connections batugers or appli-
cation processes. We consider a scenario where an ISDN ciioméetween test
system and IUT has been established and where PCO1 and PE®2 aespective
B and D channel interfaces. At the B channels we expect tavecser data ev-
ery EET) = 2to LET; = 4 time units. At any time the ISDN connection may be
aborted on the D channel.

We consider the partial real-time TTCN behaviour desasiptiiven in Figure 5.
The first alternative may be evaluated successfully and reaxbcuted only in the
interval EETy = 2 andLET; = 4 because time option M is set on line 1. Let us
assume that at’ with enablingTiméA;1) + EETy < T’ < enablingTiméA;) +
LET:, an N-DATA indication is received. The first alternative mag executed at
T” with enablingTiméA;) + EET1 < T < T” < enablingTiméA;) + LETy
(Step 4.) because no other alternative is executable (nBRHAT indication has
been received yet). A corresponding computation might be:

... —> (s, enablingTime¢A1)) LN
T) -5 ¢, 7) 5 & T) 5 . T) — ...

The reception of an N-DATA indication at tim€&’ is a state activity(s, T') e,
(s, T"), because a PCO variable is updated by the environment perfgtransition
te. Transitiond; are time activities, and transitidf is the transition that is derived
from TTCN statement line 1.

Suppose that an N-DATA indication and an N-ABORT indicati@ave been re-
ceived from the environment at sorfi¢’ : T’ < T” < T”. Then, although both



alternatives are executable, the first alternative is exelduecause of the ordering of
alternatives in the set of alternatives (Step 4.). If an NFRMdication is received at
T < enablingTiméA;) + E ET; then test case execution stops with a FAIL verdict
(Step 3.).

If no N-DATA indication and no N-ABORT indication have beeaceived be-
fore LET; time units after the alternatives have been potentiallypkath test case
execution stops with a FAIL verdict (Step 2.).

3.4 Discussion of the proposal

If we assume that no time values are defined (in this Ea8d@ andL ET are zero and
infinity, respectively), execution of a test case resultthensame sequence of state-
transitions as in TTCN. Therefore, our definition of reahéi TTCN is compatible
to TTCN (1SO9646-3 1996, Baumgarten and Gattung 1996).

Real-time TTCN combines property and requirement oriespettification styles.
Time labels for TTCN statements, in general, define rea¢ tionstraints for the test
system. A test system should be implemented so that it camplyonrith all prop-
erties defined. Time labels for RECEIVE and OTHERWISE eviemtsch imply a
communication with the IUT, define requirements on the |IUT #éme underlying
service provider. As well as the test system, the underlganyice provider is as-
sumed to be “sufficiently reliable for control and obserwvatio take place remotely”
(1ISO9646-1 1994). For real-time TTCN, the underlying ses\provider should also
be sufficiently fast with respect to the timing of activitid$erefore, if a timing con-
straint of a RECEIVE or OTHERWISE event is violated, thisalg is an indication
that the IUT is faulty and the test run should end with a FAlkdiet assignment.

In Figure 6, a test case in TTCN is given for the one in Exampl&hk timing
constraints on the reception of N-DATA indications are egsed using timers T1
and T2. The alternatives coded on lines 2 and 8 in combinati@tk that an N-
DATA indication should not be received befoEeE T (= timer T1); otherwise, test
case execution results in a FAIL verdict (line 8). The TIMED#Bvent on line 6
controls the latest execution time and if timer T2 expiresntithis gives a FAIL
verdict.

Let us assume that test case execution is at the third leusdlentation (lines 3, 5
and 6) and that TIMEOUT of timer T2 precedes reception of abAA indication.
Furthermore, let us assume that the system executing theatsssis heavily loaded
and therefore evaluation of a set of alternatives lastsdag,|so that both events
are included in the same shapshot. The late arrival of an NADIAdication gets
undetected because of the ordering of alternatives on libeaBd 6. A fast system
will take a snapshot which includes the TIMEOUT only wheraatow system will
take a snapshot which includes an N-DATA indication and a EQUT. For the
slow system, the RECEIVE succeeds over the TIMEOUT evenfottimately, the
behaviour description does not comply with the requirenstated in (ISO9646-



Test Case Dynamic Behaviour
Nr | Label | Behaviour Description CRef | V C
1 L1 START T1(EET)
2 ?TIMEOUT T1 START T2(LET-EET)
3 PCO1 ? N-DATA indication data
4 -> L1
5 PCO2 ? N-ABORT indication STOP T2 abort | INCONC
6 ?TIMEOUT T2 FAIL
7 PCO2 ? N-ABORT indication STOP T1 | abort | INCONC
8 PCO1 ? OTHERWISE STOP T1 FAIL

Figure6 TTCN Behaviour Description for Example 1.

1 1994) “that the relative speed of the systems executinge$tecase should not
have an impact on the test result” and thus is not valid.

In conclusion, real-time TTCN is more powerful than TTCN.eThdvantage of
real-time TTCN is that all requirements on the behaviourest systems and IUT
are made explicit. The timing constraints that are to be mdtthus the result of a
test case is determined by the observed behaviour only.

4 APPLICATION OF REAL-TIME TTCN

In this section we continue the discussion of real-time TTi3N\elaborating on an
example taken from high speed networking.

In ATM (Asynchronous Transfer Mode) networks (Black 1998ydRer 1995),
network traffic control is performed to protect network arsgrs to achieve prede-
fined network performance objectives. During connectidnugea traffic contract
specificatioris negotiated and agreed between users and network. A coapreci-
fication consists of the connection traffic descriptor, givepeak cell rate and cell
delay variation tolerance; the requested quality-ofiserelass, given in terms of
required cell loss ratio, cell transfer delay and cell defasation; and the definition
of a compliant connection.

A connection is termedompliantas long as the number of non-conforming cells
does not exceed a threshold value negotiated and agreesltimffic contract. If the
number of non-conforming cells exceeds the threshold themetwork may abort
the connection. The procedure that determines confornmdgan-conforming cells
is known as th@eneric cell rate algorithniGCRA(T,7)) (Figure 7). The variant we
discuss is referred to agrtual schedulingand works as follows (Prycker 1995):
The algorithm calculates the theoretically predictedvatriimes (TAT) of cells as-
suming equally spaced cells when the source is active. Taeirsp between cells
is determined by the minimum interarrival tinfebetween cells which computes to
T = 1/Rp with Rp the peak cell rate (per seconds) negotiated for the corumedti
the actual arrival time of a cel), is after TAT — 7, t the cell delay variation toler-
ance caused, for instance, by physical layer overhead ttigecell is a conforming
cell; otherwise, the cell is arriving too early and thus isnigeconsidered as a non-
conforming cell. Traffic control subsumes all functionse&gary to control, monitor
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Arrival of a Cell at time ta

Non-Conforming Cell | Y&S @
No

TAT = max(ta, TAT) + T
Conforming Cell

At the time of arrival ta of the first cell of the connection, TAT =ta

Figure7 Generic Cell Rate Algorithm - Virtual Scheduling.

and regulate traffic at the user-network-interface (UNHeTorrectly timed delivery
of ATM cells at the UNI is important for a connection to be cdrapt.

A possible test purpose derivable from the informal defnitof traffic contract
specification and GCRA may be as follows: “It is to be testeat the amount of
traffic (in terms of ATM cells) generated at the UNI is complito the traffic contract
specification”.

For the following discussion we assume a testing scenaidepisted in Figure 8.
The IUT, i.e., the user’'s end-system, is connected to an AWMtk which in this
scenario is the test system. Several ATM sources may gergi@ntinuous stream
of ATM cells which is, by the virtual shaper, transformediatcell stream compliant
with the traffic contract. Via the physical connection of esygtem and ATM switch
ATM cells are transferred. It is the test system that cheoksgiance of the received
cell stream to the traffic contract.

The definition of a test case assumes that a connection hesdgilbeen estab-
lished so that a traffic contract specification is availabl®m the traffic contract,
parameterfkp, T andr can be extracted which are assigned to test case variables.
The threshold value (for determining when a connection ketaborted) is provided
as a test suite parameter. For simplicity wetlet 0.

The definition of the dynamic test case behaviour (Figurs Based on the obser-
vation that according to the GCRA, except for the first celinast everyl (= EET)
time units an ATM cell is expected from the IUT. Since we do expect an ATM
cell to arrive beforel time units, time option M is defined. If an ATM cell arrives
beforeT time units then the test case is terminated with a FAIL verdic

This test case implies a threshold value of zero. If we allomnef number of non-
conforming cells (NCC) greater than zero then the test ca$iaition changes as
shown in Figure 10. The difference compared to the prevjodisicussed test case
is that whenever an ATM cell arrives befofetime units then counter NCC is in-
cremented and is checked against the defined threshold. djth@en N on line 2
instructs the system not to pre-empt the time constrairi@turrent set of alterna-
tives. If control returns to level L2 from line 5 the enablitige is not updated.
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Test Case Dynamic Behaviour
Nr | Labe | Time Time Behaviour CRef |V | C
Options | Description
1 0, INFINITY UNI ? ATM-Cell ? First cell to
initialize GCRA
2 L2 T, INFINITY M UNI ? ATM-Cell | ?
3 -> L2

Figure9 Real-Time TTCN Behaviour Description for GCRA - Thresheld.

We have shown the use of time labels and time options. Wittimetoptions (in a
previous paper, (Waltat al. 1997), we have used time labels only) the specification
of both test cases would have been more complex. For thedfitstase it would have
been necessary to introduce a second alternative similaet@ of Figure 10 instead
of using time option M. For the second test case without tipioo N calculations
of absolute and relative time values would have be necessarger to adjusE ET.
Nonetheless, without real-time features, testing GCRAld/bave been impossible.

Test Case Dynamic Behaviour

Nr

Time

Time
Options

Behaviour
Description

CRef | V C

N -~

~No o bhw

L2

0, INFINITY
0, T

T, INFINITY

N

UNI ? ATM-Cell (NCC := 0)
UNI ? ATM-Cell

(NCC:=NCC +1)
[NCC > Threshold]

[NCC <= Threshold]

-> L2
UNI ? ATM-Cell
-> L2

FAIL

Figure10 Real-Time TTCN Behaviour Description for GCRA - Thresheld.




5 CONCLUSIONS AND OUTLOOK

We have defined syntax and semantics of real-time TTCN. Omtastjcal level
TTCN statements can be annotated by time labels. Time labeisterpreted as ear-
liest and latest execution times of TTCN statements reddtithe enabling time of
the TTCN statement. The operational semantics of real-Tilv@N is based on timed
transition systems (Henzinget al. 1991). We have described the interpretation of
real-time TTCN in timed transition systems. The applidapbibf real-time TTCN
has been shown by an example: We have defined test cases frartbec cell rate
algorithm employed in ATM networks for traffic control (Bla& 995, Prycker 1995).

The motivation for our work has been given by the demand farsh language
that can express real-time constraints. The increasingliison of multimedia ap-
plications and real-time systems impose requirements @expressive power of a
test language that are not met by TTCN. Particularly, rigaétconstraints can not
be expressed. However, for the mentioned new applicatiomsainess of an imple-
mentation also with respect to real-time behaviour is d@&deand, thus, should also
be tested.

In our approach a TTCN statement is annotated by time labéks.advantages
of this approach are twofold: Firstly, only a few syntactichanges are necessary.
Secondly, TTCN and real-time TTCN are compatible: If we assuhat zero and
infinity are earliest and latest execution times, a compnaif a real-time TTCN
test case is the same as in TTCN. A possible extension of qupaph is to allow
the use of time labels at a more detailed level, e.g., the tatino of test events,
assignments and timer operations (an extension of (Wattat. 1992, Walter and
Plattner 1992)). Our future work will focus on these aspects
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