An Automata based Model for the Implementation
of a TTCN Simulator

Jens Grabowski

TAM-96-006

February 1996

Abstract

This technical report provides a theoretical basis for the implementation of a TTCN
test case simulator. In order to base the implementation on existing code, an automata
based model has been chosen, i.e., in the model a TTCN test case shows an automaton
like behavior. The procedure is the following: TTCN test cases are transformed into an
internal structure, which afterwards can be interpreted by using the provided enabling
conditions and execution rules. The model covers control and data flow aspects of normal
and concurrent TTCN.

Acknowledgements
This work was supported by the KWF-Project No. 2555.1 "Graphical Methods in the Test

Process’.

CR Categories and Subject Descriptors:
C.2.2 [Computer-Communication Networks|: Network Protocols; D.2.5 [Software
Engineering:] Testing and Debugging; D.3.0 [Programming Languages]: General

General Terms:
TTCN, Validation, Simulation, Test Case Specification

1 Introduction

The aim of this technical report is to provide a theoretical basis for the implementation of
a simulator for TTCN! test cases. This means a model which allows to interpret TTCN
test cases has to be provided. In order to base our implementation on existing code and
existing tools, in particular the SAMSTAG tool [2, 3, 4, 18], we choose an automata
model. The model provides an interleaving semantics. Concurrency is described by
indeterminism, i.e., the execution of a TTCN test case is described by all interleaved
traces of concurrently executed events.

The notations which are used for the definition of the entire model are influenced by
[1], [15] (i-e., Petri net theory), [18] (i.e., the SAMSTAG approach), [8], and [17].

However, the procedure is the following. At first the control flow aspects and then the
data aspects of a TTCN test case are modeled. Finally, control flow and data aspects are
combined in order to treat all aspects of a TTCN test case.

The control flow aspects are treated by transforming the dynamic part of a test case
description into a directed graph with several sorts of edges. The nodes represent test
events and the edges describe the influence on the control flow by the different sorts of
test events. The graph is called test case control structure. Based on the test case control
structure control states for TTCN test cases are defined. In such a control state several
test events may be executable. They can be determined by using a control enabling
condition and executed by applying an execution rule. The execution rule describes the
transformation of the actual control state into a new control state when a control enabled
test event is executed. A repeated use of enabling condition and execution rule allows the
simulation of the control flow of a TTCN test case.

A similar approach is used for modeling the the influence of data on the behavior
of a TTCN test case. We define a test case data data structure which relates each test
event to a predicate and a set of expressions. Furthermore, it includes a set of typed state
variables. The predicates are used to specify enabling conditions which depend on data
values. The expressions define the transformation of state variables when a test event is
executed. Subsequently, a tuple which includes a value for each state variables forms a
data state of a TTCN test case. Based on the knowledge of data structure and data state
we define a data enabling condition and an execution rule for data enabled test events.

The models for control flow and data aspects are the basis for the treatment of complete
TTCN test cases. Enabling conditions and execution rules of both models are combined
and form enabling condition and execution rule for complete TTCN test cases.

The proposed model is able to handle most TTCN constructs including parallel TTCN.
Only recursive tree attachments can not be treated. For practical reasons we didn’t
model the influence of the language constructs TIMER START, TIMEOUT, CANCEL,
and TERMINATE on the control flow, but it is shown how these constructs can be
introduced.

This chapter is organized in the following way. Section 2 introduces some basic defini-
tions. The control flow of a TTCN test case is modeled in Section 3. Section 4 describes
the influence of data on the behavior of TTCN test cases. Control flow and data aspects

!The details concerning TTCN can be found in the language definition [11, 12, 13]. Tutorials on
TTCN can be found in [2] and [16].

are combined in Section 5. In Section 6 we provide two examples which describe how
the entire model works. A remark concerning complexity (Section 7), a comparison with
other approaches (Section 8) and a summary (Section 9) conclude this chapter.

2 Basic definitions

Generally, we use the standard notations which need no special explanation. We only
introduce some definitions for graphs, sequences, queues, and data handling which may
facilitate the reading of the following sections.

2.1 Directed graphs
Definition 2.1 (Directed Graph) A directed graph is defined by a pair (N, E), where:
(a) N #£ 0 is a finite set of nodes; and

(b) EC N x N is a finite set of edges.

Within a graph there may exist several different relations between its nodes, or the edges
may be labeled with additional information. The definition of such graphs only is more
extensive, but not much more complicated. As an example we present the definition of a
directed graph with labeled edges.

Definition 2.2 (Directed graph labeled edges) A directed graph with labeled edges
is defined by a tuple LG = (N, L,§), where:

(a) N #£ 0 is a finite set of nodes;
(b) L #0 is a finite set of labels; and
(¢) 6 CN x L x N is the set of labeled edges of LG.

The relation of two nodes within a directed graph can be described comfortably by using
the terms successor and predecessor. We define them formally.

Definition 2.3 (Successor and predecessor) Let G = (N, F) be a directed graph and
a,be N.

1. The set a® is defined by a®* = {b | (a,b) € E}. An element of a® is called a successor
of a.

2. The set *a is defined by *a = {b | (b,a) € E}. An element of *a is called a predecessor
of a.

For graphs with more than one relation the sets a®, and *a have to be related to the
corresponding relation. We distinguish the different sets by annotating them with the
relation name, e.g. aj;, and *ap where E denotes a relation.

2.2

Sequences

In the following we are often working with sequences. For example, a trace is a sequence
of events or the contents of a message queue is a sequence of messages.

Definition 2.4 (Sets of sequences) Let A be an arbitrary set, then we define the fol-
lowing four sets:

1. A* are the finite sequences over A,
2. A¥ are the infinite sequences over A, and
3. A® = A*U A% are the finite and infinite sequences.
Definition 2.5 (Operations on sequences) Let S C A, and t,u,v € A*, and

a,b,e,d,ag,...,a, € A.

b

10.

11.

12.

. L is the empty sequence.

t-u denotes the concatenation of t and w. In cases where the meaning is unambiguous
this notation may abbreviated by omitting the dot, e.g., t-u may be abbreviated by
tu.

(ag,...,an) is the finite sequence consisting of the elements aq, ..., ay.

. 1 denotes the k-th element of the sequence t.

t*) denotes the sequence consisting of the first k elements of t.

tCu "t is a strict prefiv of w” holds, iff Jv £ L :t-v =u.

tCu 7t is aprefic of u” holds, iff dv : t-v = u.

#1 denotes the length of t (Note, if t is infinite then #1 = o).

first(t) denotes the first element of t.

rest(t) denotes the rest of t.

last(t) denotes the last element of t.

a©t denotes the filtered trace of t, i.e., the trace which contains only the element

a, e.g., a©{a,b,a,c) = (a,a). As a generalization of this filter operation, the first
operand may also be a set.

2.3 Queues

The test components in parallel TTCN communicate via infinite FIFO queues. We intro-
duce some basic notations to handle queues.

Definition 2.6 (Queue and the state of a queue) Let X be a set.

1. A queue q is a container for a sequence w € X*. The sequence can only be altered
and accessed only by applying the operations enqueue, dequeue, and next (cf. Defi-
nition 2.7).

2. The actual state s of the queue q denotes the actual stored sequence in the queue.

To handle the state of a queue we define the function gstate. Let Qx be a set of queues
over the alphabet X .

3. gstate: Qx — X* is a function which returns the actual state of a queue.

Definition 2.7 (enqueue, dequeue, and next) Let g be a queue which may store se-
quences over the set X, let x € X and w € X*\ L.

1. ‘enqueue’ is an operation which alters the state of a queue by appending an element
x € X. For example, let w be gstate(q) then enqueue(q,) alters the state of q to
w-x.

2. ‘dequeue’ is an operation which alters the state of a queue by removing the first
element. For example, let x-w be gstate(q) then dequeue(q) alters the state of ¢ to
w. dequeue(q) does not do anything if it is applied to an empty queue.

3. ‘next’is an operation which returns the first element of the actual queue state. The
state is not altered. For example, let x-w be gstate(q) then next(q) returns the
element x. next returns L if it is applied to an empty queue.

2.4 Data handling

The following definitions do not claim to define the entire meaning of TTCN data types
or ASN.1. They are general in order to describe the influence of data values on the control
flow of TTCN test cases. We assume some intuitive knowledge concerning data types,
typed variables, expressions, functions, and predicates.

Definition 2.8 (Data type, variable, assignment, function, predicate)

1. A data type defines a (possibly infinite) set of data values, e.g., the data type DAY S
may characterize the elements of the set {Mon, Tue, Wed, Thu, Fri, Sat, Sun}.

2. A typed variable is a container for a value of a specific type. A typed variable has
a name, i.e., the identifier of the container, and a value, i.e., the actual contents
of the container. The value is referred to by using the variable name, e.g., let the
variable y have the value 3 then the expression v + 2 denotes the integer value 5.

4

3. A function is an injective relation from one set of values, called domain of f or
dom(f), into another set of values, called range of f or ran(f). Often this is
stated by the statement: f : dom(f) — ran(f), e.g., the integer addition + is
characterized by: 4+ : integer — integer.

4. A predicate P is a function with the range Boolean, i.e., the values true and false.
P is characterized by: P : dom(P) — {true, false}. We say that a predicate is
valid if it evaluates to true.

We intend to simulate TTCN test cases without knowledge about a corresponding TUT.
Sometimes the value of control variables of a test case may depend on parameter values
of signals received from the IUT. In such a case we are not able to determine a variable
value precisely. In order to indicate that a variable value is not known we introduce the
special value unknown ().

Definition 2.9 (The special value ’'unknown’ and its handling)

1. The special value unknown o< denotes that a value value can not be determined
exactly or is not known. We assume that the value o< can be used for all possible
types of values.

2. If the evaluation of a function [depends on an unknown value, f evaluates to o.
For example, 34+ =, but, 0% oc +1 = 1.

3. If the evaluation of a predicate P depends on an unknown value, P evaluates to
true. For example, false V o« = true, but false N < = false

The special handling of unknown values in predicates may need some explanation. Within
the simulation process of TTCN test cases we will use predicates to express enabling
conditions for test events which depend on the values of test case control variables?.
The incomplete knowledge about the corresponding IUT should not lead to the exclusion
of simulation paths. Subsequently, all predicate values which depend on variables with
unknown values should evaluate to true.

3 Modeling the control flow of TTCN test cases

In this section we present a model for the handling of the control flow aspects of a TTCN
test case. We start with the definition of a test case control structure, followed by the
definitions of a test case control state, a control enabling condition and an execution rule
for control enabled events. Based on these definitions traces, reachability sets and global
state graphs for the control flow of a TTCN test case are introduced. The section ends
with some remarks concerning character and restrictions of the presented model.

2For example, a control variable may be the counter in a counter loop.

3.1 The control structure of a TTCN test case

In this section we introduce a directed graph, called test case control structure, with four
sorts of edges. This graph is able to describe the control flow aspects of a TTCN test case.
The transformation of a TTCN test case description into the graph is given informally by
providing some examples which describe the meaning of nodes and edges of the graph.

Definition 3.1 (Test case control structure) A test case control structure of a test
case T'C is defined by a directed graph with four sorts of edges. Formally it is given by
the tuple TCCS = (TFE,t0,nte, attach, create, em), where:

(a) TE #0 is a finite set of test events.
(b) t0 € TE is the start node of the test case.
(¢c) nte CTE X TE is the next-test-event relation.

(d) attach CTE x TFE is the attach relation. The attach relation is used to model the
attachment of TTCN behavior trees.

(e) create CTE x TFE is the create relation. It is used to model the creation of parallel
test components by a main test component.

(f) em CTE x TFE is the coordination-message relation. The em relation is used to
model the exchange of coordination messages between parallel test components.

In the following we present some examples which may be helpful to describe the meaning
of the test case control structure. We show some behavior descriptions of TTCN test
cases and their representation in our graph structure. The formal mapping of a TTCN
test case into a test case control structure will be defined later.

Example 3.1 (The meaning of test events and start node) Test events are the
actions which have to be executed by the test devices in order to run the test case. In
TTCN test events are specified within the Behaviour Description column of the dynamic
behavior tables, e.g. Figures 1 (a), 2 (a), or 3 (a). Generally, each test event in a TTCN
test case description is related to one test event in the corresponding test case control
structure. There are only a few exceptions of this rule. The tree attachment, i.e., the
Attach construct, is modeled by two nodes and the UNTIL statement within the Repeat
construct is modeled by three nodes. The details will be explained later.

For technical purposes we introduce top nodes which are annotated with the name of
the test case or test step description. The top nodes have no corresponding test event in
the TTCN behavior description. These nodes can be considered to be the anchor nodes
of TTCN trees. Later on they are used to enable the first event of attached trees and
parallel test components.

The start node is one of these extra nodes. It is the anchor of the whole test case.
It is used to identify the first test event of the test case. For example, the top node of
the graph in Figure 1 (b) is given by the node T'C'l and in Figure 3 (b) the start node is
called TC3.

¢ TC1

Test Case Dynamic Behaviour %
|
Test Case Name: TC1 AlConReq
Nr | Label | Behaviour Description ° e B?ConInd
1 AlConReq A?DisInd
2 B?Conlnd e B!ConResp
3 B!ConResp
4 A7ConConf °
5 A7DisInd
A?ConConf
(a) TTCN behavior tree (b) Test case control structure of (a)

Figure 1: Simple TTCN test case and the corresponding test case control structure

@ TC2

Test Case Dynamic Behaviour

LA A!ConReq

Test Case Name: TC2 /

o eB?Conind

Nr | Label | Behaviour Description A?DisInd
1 | LA Al!ConReq e B!ConResp
2 B?Conlnd
3 B!ConResp e A?ConConf
4 A?ConConf
5 GOTO LA
6 A7DisInd
GOTO LA
(a) TTCN behavior tree (b) Test case control structure of (a)

Figure 2: TTCN test case with loops and the corresponding test case control structure

Example 3.2 (The meaning of the nte relation) Figure 1 shows the behavior tree
of a simple TTCN test case (a) and the corresponding test case control structure (b).
The graph in (b) is a simple tree. The tree structure is determined by the TTCN test
events and the possible sequences of test events. These sequences are described by the nte
relation. The graph in (b) includes no attach, create and em edges because the TTCN
description includes no parallel test components and no tree attachments.

The use of GOTO and REPEAT statements within a TTCN test case may lead to

loops within the corresponding test case control structure. Figure 2 provides an example.

Example 3.3 (The meaning of the attach relation) The TTCN test case descrip-
tion in Figure 3 (a) consists of two behavior trees. The main tree TC3 and the local tree
TStepl. TStepl is attached to T'C3 by means of the attach statement +TStepl.

For technical purposes in the corresponding test case control structure an attach state-
ment is represented by two nodes which are related by the attach relation, i.e. +TStepl

Test Case Dynamic Behaviour

Test Step Dynamic Behaviour

Test Case Name: TC3 Test Step Name: TStepl

Nr | Label Beh.awour Description Nr | Label | Behaviour Description
1 AlSigl .
. 1 AlSigh
2 B7Sig?2 .
9 B7Sig6
3 +TStepl .
: 3 B7Sig7
4 AlSig4 4 A?Sie8
5 A?Sig3 18
(a) Two TTCN behavior trees
¢ TC3
QA!Sigl
° e B?Sig2
iy
A?Sig3 e TStepl
+TStepl(1) °\//\L
: o AlSig5
‘ A?Sig8 eB?Si

\ g6
B?Sig7
+TStep1(2)i N‘

y —— nte relation
A?Sig4
g > attach relation

(b) Test case control structure of (a)

Figure 3: Using the attach relation for modeling the TTCN tree attachment

in (a) is represented by +7TStepl(1) and +TStep1(2) in (b). The nte edges describe the
transfer of the control flow from the main tree to the test step and back to the main tree.

A test step may be called from different places of the main tree. As a consequence
each final test event of the attached test step has nte edges to different statements of
the main tree. Only from the nte relation it is not clear to which point of the main tree
the control should return. Within our state definition we will use the attach relation to
remember the correct point of return. It is obvious that such a mechanism is not able to
handle recursive tree attachments.

Example 3.4 (The meaning of create and ¢m relation) The TTCN test case in
Figure 4 (a) comprises a main test component TC/ which creates the parallel test com-
ponent PTC by using the test step definition T'Step2. The test components synchronize
themselves by exchanging the coordination messages Coord! and Coord?2.

Test Case Dynamic Behaviour

Test Case Name: TC4
Comment: This is the MTC

Nr | Label | Behaviour Description

1 AlSigl

2 B7Sig2

3 CREATE(PTC,TStep2)
4 CP!Coord1

5 CP7Coord?2

6 A7Sig3

Test Step Dynamic Behaviour

Test Step Name: TStep2
Comment: This is the PTC

Nr | Label | Behaviour Description

ClSig4
CP7Coord1l
C7Sigh
CP!Coord2

N

(a) Main test component MTC and a parallel test component PTC

¢ TC4
yA!Sigl
./ e B?Sig2
A?Sig3 CREATE(PTC,TStep2)
®e— -
CP!Coordl k&\\\\\\
CP?Coord2 *~ _
——= nte relation
—--> create relation
——> cm relation

CP!Coord2

(b) Test case control structure of (a)

Figure 4: Modeling the creation and synchronization of parallel test components

As shown in Figure 4 (b) the create and ¢m relation are used to describe the ordering
of test events in different test components. For example, the first test event of TStep2
can only be performed after the execution of the corresponding CREATE event by T'CY.
Analogously, the coordination message Coord?2 can only be received by TCY after its

sending by TStep2.

A test case may consist of several test components. The test events within the corre-
sponding test control structure are related to these test components. For simplification we
assume that test steps are local to test components, i.e. within a test case a test step only
can be attached by one test component. Furthermore, we assume that different create
events refer to different test step definitions, i.e. Vie € TFE @ #(*tesreare U te?

create

and that a test step which can be instantiated as test component is not used for tree
attachment, i.e. Vie € T'E : te? Nted,. = 0.

create

3.2 The control state of a TTCN test case

It is our aim to simulate the control structure of a TTCN test case. This is done by
defining the control state of a TTCN test case and by defining the transition from one
state to another when a test event is executed. Before we can define a control state we
need some definitions to handle the queues at the coordination points of parallel test
components.

Parallel test components synchronize themselves and communicate by exchanging co-
ordination messages at coordination points. A coordination point can be seen as a gate
between two test components. Coordination points have to be declared in the declarations
part of the TTCN test suite. According to the TTCN semantics a coordination point is
modeled by two infinite FIFO queues, i.e. one FIFO queue for each direction.

During the simulation of a TTCN test case the execution order of test events is in-
fluenced by these FIFO queues. In order to preserve the correct order of test events we
also have to model a queue mechanism for test events. Although our queues are used
to buffer test events and not to buffer coordination messages we also relate them to the
coordination points of a test case.

Definition 3.2 (Test components, coordination points, and queues) Let TC
be a TTCN test case. Then there exist the sets CP, TECO, and QU, where:

1. TECO 1is the set of test components of TC'.

2. C'P denotes the set of all coordination points of TC.

3. QU denotes the set of all queues which correspond to the coordination points of TC.
4. QSou ={qs, | Yq € QU : qs, = gstate(q)} is the set of all queue states of QU.

Each queue is determined by the coordination point, the sending test component, and
the receiving test component. To identify queues and their states uniquely we annotate
them with the corresponding names. For example g(p.s,r) € QU, S(cp,s,r) = qstate(Q(cpﬁ’,,))
where ¢cp € QU and s,r € TECO.

A test event may manipulate a queue of QU by sending and receiving coordination
messages. Based on the kind of an event and the involved coordination point the used
queue can be determined statically. Therefore we define the tequeue function.

Definition 3.3 (tequeue function) Let TCCS = (TFE,t0,nte, attach, create,em) be the
test case control structure of the TTCN test case T'C', and QU the set of all queues which
correspond to the coordination points of TC. Then

tequeue: {te | te € TE N *tey, Utet #0} — QU

is a function which returns the queue which is manipulated by a specific test event.

Now we are able to define the control state of a TTCN test case.

10

Definition 3.4 (Test case control state) Let TC be a TTCN test case, TCCS =
(TE,t0,nte, attach, create, cm) the corresponding test case control structure and QU the
set of FIFO queues of TC. A control state of the test case TC is defined by a tuple
CS = (Snt67 Sattach7 Screat67 Scm); where:

(a) Spe CTE is a set of test events.
(b) Sattach € TFE is a set of test events.
(¢) Sereate CTE is a set of test events.

(d) Sem, = QSqu describe the actual state of all queues ¢ € QU.

Explanation of Definition 3.4. A test case control state comprises the four sets S,
Sattachs Sereate, and Sep. Spie 18 used to remember the last executed test event of each test
component. In the case of tree attachment a test step or local tree might be attached
at different places of the behavior tree. Syucn 1s used to remember the correct point
return after the attached behavior tree has been executed. S, c.e 1s used to initialize the
execution of a test component after its creation. S.,, is used to preserve the order of send
and receive events of coordination messages in different test components.

Later on we will generate traces and global state graphs by simulating the test case
control structure. For checking the finiteness of the explored traces and state graphs it is
necessary to be able to compare states. Therefore we define equality and < for test case
control states.

Definition 3.5 (Equality and order relation for control states) Let TC be a
TTCN test case, TCCS = (TFE,10,nte, attach,create,cm) the corresponding test case
control structure, QU the set of all queues which correspond to the coordination points of

TC, and let S = (Snte, Sattachs Sereates Sem) and S" = ()0, St 1iachs Streates Som) b€ control
states of TC'. Let qsq € Sein and qsy € S, be queue states of ¢ € QU.

1. 5=95 Zﬁ Snte - 57/1755 A Sattach - S(/lttach A Screate =95/

create

A Sem = S,

2. 5 < S iff the following four conditions hold:

(@) Snte = Sy
(b) Sattach = S(/lttach
(C) Screate = Séreate

(d) Vg€ QU : qs,C gs,

3.3 Control enabling of test events

Several test events may be executable in a control state. They can be determined by
using the following enabling condition.

11

Definition 3.6 (Control enabling of a test event) Let T'C be a TTCN test case,
TCCS = (TFE,10,nte, attach, create,cm) the corresponding test case control structure,
C'S = (Sntes Sattach, Sereates Sem) @ control state of TC, and QU the set of FIFO queues of
TC. A test event te € TE is control enabled in CS, written CS —=s., if the following
four conditions hold:

(CL) .tente = @ V #(.tente N Snte) = 1
(b) .teattach = @ V #(.teattach N Sattach) =1
(C) .tecreate = @ V #(.tecreate N Screate) =1

(d) *teec, = OV next(gstate(tequeue(te))) € *tee, (gstate(tequeue(te)) € Sep)

The index ¢ in €S <, should indicate that the enabling condition is based on the
information in a test control structure. Later on we will define an enabling condition
which is based on data information. We will use the same notation, but change the index
to d.

Explanation of Definition 3.6. A test event is control enabled, if it can be executed.
We explain this by means of the test case control structure shown in Figure 5. The corre-
sponding test case comprises two test components MTC and PTC. We assume there exist
one coordination point c¢p with the corresponding queues g, v, prcy and qep, pro,mT0)-
In the following queue states different from L are annotated in order to relate them to
the corresponding queues, e.g. h-i(, Mo, PTC) Means that qstate(Q(Cp7MTc7pTc)) = h-.

e In the state S' = ({MTC},0,0,{L, L}) only the test event a is control enabled,
because *aue = {MTCY}, *agttach = 0, *aereate = 0, and a & dom(tequeue). Event
a is the first test event of T'C'. The example shows how «a is control enabled by
using the start node MTC. It should be noted that it is only possible to enable
test events, the start node is not in the set of test events (cf. Definition 3.1 (b)) and
therefore can never be control enabled.

e In the state S* = ({c}, {b},0,{L, L}) the events d and e are control enabled. They
require that ¢ € S?,_ has been executed before. *dysach, *Cattach, *dereate, aNd *Ecreate

are for both the empty set and {d, e} € dom(tequeue).

e In the state S° = ({g},0,{g},{L, L}) the two test events h and PT'C are control
enabled. The event h requires only the execution of g. Test event PT'C is the top
node of the parallel test component. Its control enabling requires the execution of
the create event g. The creation of PT'C' by g is indicated by S2._.,,. = {9}

o In the state S* = ({i,m},0,0,{hi(cpmrc,Prcy, L}) the test events n and p are
control enabled. Event n requires the execution of m, i.e. m € S _| and that the
next element to be dequened of g mre,prey (= next(tequeue(n))) is element of
*Nem. This is valid because next(h-i(pmro,pre)) = h.

12

i \\““*“
> attach relation

— > create relation

—— nte relati <
nie relation . /\

——> cm relation

Figure 5: A test case control structure

This example also shows the necessity of using a set of queues of test events instead
of a set of test events for modeling S.,,. From a set notation like {#, i}(c%MTC’pTc)
we cannot distinguish whether A or ¢ has been performed first. For simulation
purposes the order of send and receive events of coordination messages may very
well be relevant.

The control enabling of p requires the execution of m. The state components 52, ..,

4 4
Se eates and ST are not relevant.

3.4 The execution of control enabled test events

After defining the control state of a test case and the control enabling of test events we
define the execution of control enabled test events. According to certain rules which are
defined afterwards during execution the current control state is altered.

Definition 3.7 (Execution of a control enabled test event) Let TC be a TTCN
test case, TCCS = (TE,t0,nte,attach,create,em) the corresponding test case control
structure, QU the set of FIFO queues of TC, CS = (Sute, Sattachy Sereates Sem) @ control
state of TC, and te € TE be control enabled in C'S. Furthermore, if te € dom(tequeue)
then let g € QU be the queue which is manipulated by te (i.e. g = tequeue(te)).

The execution of te changes the control state C'S into the new control state C'S’. We
denote this fact by C'S =S, CS'. The new control state C'S" = (8,5 ;10,5 008")
is defined by:

13

. @ : te;te - @
(@) Sise = Sute\"tente U{ {te} : ted, #0

. @ : tea ach — @
(b) Sattach Sattach\ teattach U { {te} © e Z Z 7£ @
. @ : create @
(C) Screate - Screate\ tecreate U { {te} . tecreate 7£ @
S, : te & dom(tequeue)
(d) S per form dequeue(qi.) in Sep, : te € dom(tequeue) A *teqy, # 0
per form enqueue(ge, te) in Sy, o te € dom(tequeue) Ated, # 0

Explanation of Definition 3.7. We explain the meaning of the execution of a control
enabled test event by means of the example in Figure 5 and by using the states S!, 52,
53 and S* which we already examined in the explanation of Definition 3.6 (cf. Page 12).

e In state S* = ({MTC},0,0,{L, L}) test event a is control enabled. When a is
executed S' changes to S™ = ({a},0,0,{L, L}). S'! is calculated by

SU ={MTCW\{MTC}U{a} = {a} because *a,e = {MTC} and a*,. = {l,b}.
St =00 Ud =0 because al,,,., = 0.
Sereate = @\@ U0 =0 because af, .. = 0.

S =681 ={1, 1} because a ¢ dom(tequeue).
In the new state S the test event a is not control enabled anymore, but the events
b and [are control enabled newly.

e In the state S? = ({c},{b},{L, L}) the two events d and e are control enabled.

Event d executes to S?! and event e executes to S*2. S?' = ({d},{b},0,{L, L}) is
computed by

St = {c\ e} U{d} = {d},
attach - {b}\® U @ {b}
Sc27’leate = ®\® U @ = ®7 and
S =62 ={1,1} (d & dom(tequeue)).
S22 = ({e},{b},0,0,{L, L}) is computed analogously. It should be noted that after

the execution of d or e the other event is not control enabled anymore, i.e., the
events are control enabled alternatively and not independently.

e In the state S° = ({g},0,{g},{L, L}) the two test events h and PT'C are control
enabled. Event A executes to S®' = ({h},0,{g}, {h(pmrc,prey, L}) and PTC ex-
ecutes to 5% = ({g, PTC},0,0,{L, L}). The computation of S*' shows how the
queues are manipulated. S is calculated by

14

Snte = 19\ {9} U {h} = {h}.

S e, = 0\OUD = 0.

Sreate = {gN\OU D = {g}.

S8l — {h(cP’MquTc), 1} because we perform an enqueue(h, tequeue(h)) operation

on an empty queue in S2 .

S3% is computed by

Sur. ={g\OU{PTC} = {g, PTC},
SS?tach = ®\® U @ = ®7
S?r?eate = {g}\{g} U @ = ®7 and
S92 =63 ={1,1} (| ¢&dom(tequeue)).
The calculation of S22 shows how the create relation is used to enable the test event

PTC of the created test component. It should be noted that 2 and PT'C are enabled
independently. After the execution of h event PT'C' is still control enabled and vice

) PTC h
versa, i.e. S ——_ and S§3% .

e In the state S* = ({i,m},0,0,{hi(cp,urc,PTC), L}) the events n and p are control
enabled. Event n executes to S* = ({k,n},0,0, {i(cpvrc Py, L}) and event p

executes to S*? = ({i,p},@,@,{h'i(cp,MquTc),{p(cp7pTc7MTc)}). S s calculated
by

Ste = {1, mP\{m} U {n}

S;ltltach = ®\® U @ = @

Sfrleate = ®\® U @ = @

Sar = {iep,mre.prey, L} because we perform a dequeue(tequeue(h)) operation on
a queue with the actual state h-i(, vre Pre).

S4% is computed analogously.

3.5 Control flow based definitions of traces, reachability sets,
and global state graphs

Based on the definitions of test case control structure, control state, control enabling of
test events, and execution of control enabled test events it is possible to define traces,
reachability sets, and global state graphs for the control flow of TTCN test cases.

Definition 3.8 (Initial control state of a TTCN test case) Let TC be a TTCN
test case, TCCS = (TE,t0,nte,attach,create,em) the corresponding test case control
structure, and QU be the set of all queues which correspond to the coordination points of
TC. A control state S° = (52,., 5% 0ehs Sereares S5) is called the initial control state of
TC if the following holds:

15

(CL) Sgte = {to}}
(b) Sgttach = ®;

(c) S° =0, and

create
(d) S° ={qs, | Vg€ QU : qs, = qstate(q) N qs, =L}

Definition 3.9 (Traces and reachability set) Let TC be a TTCON test case,
TCCS = (TFE,10,nte, attach, create,cm) the corresponding test case control structure,
w € TE* a finite word over TE, Mgs be the set of all control state of TC, S° the initial
control state of TC, and S, S, S1, Ss, ... , S, control states of TC'.

1. The notation S . S" is defined by
(a) S 5.5 ifw=1
() S 5. 8" if w=tytyt, (t; € TE) and § 25, 5y 25, ... 5, 5, = &

2. R(IC)=1{S | Jw e TE*: S° 5. SAS € Mcs} is the reachability set of TC,
i.e. the set of control states which can be reached from the initial state S° when TC

s execuled.

3. TR(TC)={w |35 € Mcs : S° =5, S ANw € TE*} is the set of traces of TC.

Definition 3.10 (Global state graph) Let TC be a TTCON test case,
TCCS = (TE,10,nte, attach, create,cm) the corresponding test case control structure, S°
the initial control state, and R(TC') be the reachability set of TC. The global state graph
of TC is defined by Er(TC) = (N, E,S?), where

(a) N = R(N) is the set of nodes,
(b) E=A{(51,5)]5,5€RN)NS 5. 7Y is the set of labeled edges, and

(c) S° is the start node of the graph.

According to the TTCN semantics a test run ends in a final state in which a test verdict
is assigned. We define the final states of a TTCN test case formally.

Definition 3.11 (Final control states of a TTCN test case) Let TC be a TTCN
test case, TCCS = (TFE,10,nte,attach,create,cm) the corresponding test case control
structure, and R(TC') be the reachability set of TC. The final states of TC are defined by

the set FS(TC)={S|Ftee TE: S5 *5.}.

Example 3.5 (Reachability set, global state graph, final control states)
Some examples may clarify the meaning of the definitions.

16

| Nr. | Value || Nr. | Value |

SO | {MTC} 0,0, {L, L}) S18 | ({h}, 0,0, {h(cp mrc prey; Plep.prCMTC)})
S1 ({a}, @,@,{J_ 11 S19 | ({h,n},0,0,{L, L}

S2 (0 0 0 {J_ J_}) S20 ({z,m ,0,0,{]1 i(cp MTC,PTC) J_})

53 ({6}, {6},0,{L L}) S21 | ({i}, 0,0, {h-i(cp mrc.PrC), Plep,PTC,MTC)})
S4 ({TStep}, {b},0,{L, L}) S22 | ({h,0},0,0,{L, L})

SH ({C} {b} @ {J_ J_}) S23 ({i,n},@,@,{l(cp MTC,PTC); J_})

S6 ({d} {b} @ {J_ J_}) S24 (0,0,0 { Z(cp MTC PTC) J_})

S7 ({e}, {b},0,{L, L} S25 | ({h,m},0,0,{L, J_})

S8 ({f} 0’0 {J- J-}) 526 ({i,O},@, a{l cp,MTC,PTC),J—})

S9 | ({9}.0.{g },{L 1}) 527 | ({A} 0,0, {L, p(ep.pTc,mTc)})

SlO ({PTC } @ {J_ J_}) 828 ({i,m},@,@ {l cp MTC, PTC ,J_})

S11 | ({h},0,{g ,{ (cp,MTC,PTC), L}) S29 | ({#},0,0, {i(cp mrc PO, P(cp,PTC,MTc)})
812 ({PTCh} 0 0 {h cp MTC, PTC J_}) 830 ({i,n},@,@,{J_, J_})

S13 | ({7}, 0, {9}, {hi(ep mrc proy J—}) S31 | (0,0,0,{: (cp Mre.prey, L})

S14 | ({g,m},0,0,{L L} S32 [({i,0,0,0,{L, L}

S15 | ({9},0,0,{L, p(cp,prc,mrc)}) S33 | ({e,m},0,0,{L1, 1})

S16 ({PTCaZ}awawa{h'i(cp,MTC,PTC)a J_}) S34 ({Z},@,@, {J—ap(cp,PTC,MTC)})

S17 | ({h,m}, 0,0, {h(cp,mrc.prey, L})

(a)

Table 1: The reachability set of Example 3.5 (a)

Figure 5 shows a test case control structure. We assume there is only one coordi-
nation point c¢p with the queues g, yrro,prey and e, pro,mreo). The initial state is
given by 5% = ({MTC},0,0,{L, L}). By executing the control enabled test events
continuously, we gain the reachability set which is shown in Table 1. The complete
global state graph is shown in Figure 6. The initial state S0 and final states 52,
S24, and S31 are emphazised.

A global state graph may include loops. An example is presented in Figure 7. In
(a) a test case control structure with a loop is given. The graph consists only of nte
edges. Therefore within a test case control state S* = (S,., S 1,0ons S cates Sop) Ny
the nte part S!,_ is relevant. The other parts are always the empty set. By using
the initial control state S = ({MTC},0,0,0) as start node we gain the global state
graph shown in (b). The initial state is given by ({MTC}, {},{},{},{}). The final

state is defined by ({}, {}, {}, {}.{})-

A reachability set and a global state graph may be infinite. This is due to the
infinite queues which are used to model the exchange of coordination messages
between parallel test components. An example is shown in Figure 8. (a) presents a
a part of a test case control structure which causes an infinite global state graph. We
assume the existens of a master test component MT'C' and a parallel test component
PTC. The master test component MTC is able send arbitrary often coordination
messages to PT'C. This causes an infinite global state graph. The structure of the
infinite part is shown in Figure 8 (b).

17

PTC x

Figure 6: Global state graph

3.6 Some characteristics of the developed control flow model

Example 3.5 has shown some characteristics of the developed model which should be
mentioned here.

Pending coordination messages. The test case of Example 3.5 (a) may end in the
final states S24 = (@, @, @, {h'll(c%MTC’pTc), J_}) and S31 = (@, @, @, {i(cp,MTC,PTC)7 J_}) In
both states the queue q(cp mro,prey of the coordination point cp is not empty, i.e. there
exist pending coordination messages. For the definitions this is no problem, but we define
a semantical model for TTCN. Often it is desired to concatenate test cases in order to
facilitate the test campaign. In such cases pending coordination messages may have to

18

(AMTCH{ I 1D

a

({/a},{ W },{K

b c

AR {eh{L{ 1D
a d

({dh{3{0D)

(a) Test case control structure (b) Global state graph of (a)

Figure 7: Global state graph with a loop

be destroyed. However, the TTCN language definition also does not care about pending
coordination messages after test case termination.

Finite and infinite global state graphs. We already have seen that there exist finite
and infinite global state graphs, resp. reachability sets. This is due to the existence of
infinite queues which are used for communication and synchronization purposes between
parallel test components. For normal TTCN, i.e. without parallel test components, reach-
ability sets and global state graphs are finite. In this case an upper bound for the number
of states can be calculated. For a control state S := (Spte, Sattach, Sereates Sem) the maximal
number of values for Spte, Sattach, and Seeqre 18 equal to #(T'F), i.e., the number of test
events of the test case control structure. Since no parallel test components exist the only
value of S, is (). Therefore an upper bound for the number of control states is given by

(#(TE)).

Finite and infinite firing sequences. A global state graph may be finite, infinite,
and may contain loops. A test case has only finite firing sequences if the corresponding
global state graph is finite and does not include loops. Loops and an infinite state space
may lead to infinite firing sequences.

Checking for finiteness. By comparing each new state with already reached states
it is possible to detect loops or an infinite state space. The comparison can be done by
using Definition 3.5.

3.7 On the mapping of test cases on our control flow model

The introduced model allows to describe the control flow of TTCN test cases. The whole
model is based on a directed graph with four sorts of edges which we called test case
control structure. The mapping of a TTCN test case description onto a test case control
structure has been described only informally. For providing a complete model of the
semantics of the test case control flow it is necessary to define a bijection which maps

19

QMTC ePTC

ae<—eoC Q\d

— > nte relation $\bk/\ - ;’<ﬁ\. ,

——> cm relation X ®

(a) Part of a test case control structure

(b) Infinite part of a global state graph

Figure 8: Infinite global state graph

20

a TTCN test case onto a test case control structure. The definition of this function is
complicated because for the sake of simplicity we mapped some TTCN events onto more
than one node of the test case control structure and introduce some some extra nodes
into the test case control structure which do not correspond to behavior lines within the
represented TTCN behavior description.

However, it is not our aim to define a complete TTCN semantics. Therefore we leave
the mapping informal but explain the exceptional cases, i.e., the additional nodes, and
a special case, 1.e., the handling of default behavior descriptions. Before doing this we
describe the principles followed during the development of the model.

Principles

The provided model follows some principles which should be mentioned here. The knowl-
edge of these principles may also help to motivate the model.

The first principle was not to define the control enabling condition and execution
rule for each type of TTCN event, i.e. the events CREATE, SEND, or RECEIVE are
treated with the same control enabling condition and execution rule. The drawback of
this modeling is that the influence on the control flow of the different event types is
described by relations.

The second principle was to keep the definitions as simple as possible in order to allow
an efficient implementation. We think that the result, i.e., the Definitions 3.4, 3.6, and
3.7, is relative simple. Simple set operations are used mainly. Only the treatment of the
queues at the coordination points need some special treatment.

The third principle was to keep the mapping of the TTCN behavior description onto
the test case control structure simple. We tried to follow this principle by mapping each
TTCN event, i.e., each behavior line, onto one node of the test case control structure.
This is only possible by violating the first and/or the second principle, i.e., we either
define control enabling conditions and execution rules for the different types of TTCN
events, or we provide very complicated definitions. We decided not to violate the first
and second principle, but to map some TTCN events onto more than one node of the test
case control structure and to introduce some some extra nodes which do not correspond
to a behavior line within the represented TTCN behavior description.

Additional nodes in the test case control structure

We already have seen some additional nodes in the previous examples. Top nodes have
been introduced and the ATTACH statement is modeled by two nodes. There is a third
exception, UNTIL statements of REPEAT-UNTIL loops also is modeled by two nodes.

Top nodes. The top nodes are necessary to model the creation of test components
correctly. Problems occur if the first specified TTCN event of a created component is
part of a loop. In this case our control enabling condition in Definition 3.6 would not
work without the top nodes. An example is shown in Figure 9. The graph in (a) shows
our modeling of test component creation. An alternative modeling is shown in (b). The

create arrow relates the create event CREATE(PTC) directly the test event BIS2 (LA

21

QO MTC
MTC

|
AlS1 e //70PTC e AlS1 PTC

e e _

CREATE(PTC) / LA BIS2 CREATE(PTC) \~4/> LA BIS2
./ B'7S3. / °
. . B?S3
AIS5 \. AIS5 \.

GOTO LA GOTO LA
——= nte relation B?S4 B?S4

—--> create relation

(a) (b)

Figure 9: The necessity of top nodes

denotes the label which is used in the GOTO statement). But B/S2 is part of a loop
and therefore *B/S2,,. # (). According to our control enabling definition the execution
of the create event CREATE(PTC) is not sufficient to enable B/S2. As shown in (a) an

additional top node PT'C' is necessary to model the test component creation correctly.

Modeling of the ATTACH construct. The reason to model an attach statement
by two nodes is the possibility that the statement following the attachment is part of
a loop. Figure 10 presents our representation (a) and an alternative modeling (b). In
(b) the attach arrow relates the attachment directly with the following TTCN statement
AlS1. According to our enabling condition A!S1 is only control enabled if an element
of *AlST, 440 and an element of *AlS1.,.cqe is part of the actual state. According to
Definition 3.7 A!S1 can only be control enabled once. Since B7S52 is the predecessor of
A!S1 within the loop and since B?752%,,,., = 0 it is not possible to control enable A!lS1
during a second execution of the loop. To avoid such situations we model an attach
statement by means of two nodes.

Modeling the Repeat construct. The BNF syntax of the Repeat construct is:
Repeat ::= REPEAT TreeRe ference[Actual Par List) UNTIL Quali fier

The Repeat construct is modeled by three nodes within a test case control structure.
One node represents the beginning of the loop, i.e., the keyword REPEAT. The UNTIL
statement is modeled by two nodes. The REPEAT node is related to the UNTIL nodes
by means of attach relations (cf. Figure 11 (b)).

The reason for the attach relations is the fact that a Repeat may use a normal test step
as body of the loop. The test step may also be referred to by normal attach statements.
In this case we need to remember the point from which the test step is called. Analogous
to tree attachments therefore we use attach relations.

The reason to model the UNTIL statement by two nodes is the following. Depending

22

© MTC
[]
TStep/, +TStep(1) \L
[]

BIS4 Q V;+TStep
/ \ B!S4 Q/

B?S6 ‘xﬁ +TStep(2)
B?S5 B')S6 V LA A181
N B?S5
LA AIS1

0 N\. 8752
®

.
N\ B?S2 goeg CGOTOLA

. ®

—— nte relation o GOTO LA
B?S3

> attach relation

(a) (b)

Figure 10: The necessity to model attach statements by two nodes

on the evaluation of the qualifier the UNTIL statement may lead to different actions. If
the qualifier evaluates to true the Repeat construct is completed, i.e., the loop is left.
If not, the tree TreeReference is executed again, followed by another evaluation of the
qualifier. This process is repeated until the qualifier evaluates to true. We decided to
model the two actions of the UNTIL by two nodes. Later on we will introduce control
data then the expressions Quali fier and ~Quali fier will be used as enabling conditions
for the different actions. Figure 11 shows an example of how the Repeat construct is
modeled. The example is taken from [10]. It also shows the representation of TTCN
Pseudo events, i.e., assignments, qualifiers, and timer operations without any associated
test event (cf. line 1 in Figure 11 (a)). It should be noted that assignments, qualifiers
and timer operations with associated test events are not evaluated in a test case control
structure.

The handling of default behavior descriptions

TTCN introduces default behavior descriptions as a special sort of tree attachment which
is done implicitly. In normal TTCN the test case terminates in the default behavior tree.
The TTCN extensions also allow the return of the control from the default back to the
main tree by means of RETURN statements, and the enabling and disabling of different
default behaviors during the test run by means of ACTIVATE and DEACTIVATE state-
ments. By treating default behavior descriptions as normal tree attachments our model
is able to deal with defaults. ACTIVATE and DEACTIVATE statements describe which
defaults where have to be attached.

23

Test Case Dynamic Behaviour
Test Case Name: RepeatExample
Nr | Label | Behaviour Description
1 (FLAG:=FALSE)
2 1A
3 REPEAT STEP1(FLAG) UNTIL[FLAG]
4 'D
STEP1(F:BOOLEAN)
5 ?B(F:=TRUE)
6 ?C(F:=FALSE)

(a) TTCN behavior tree

3 RepeatExample

(FLAG:=FLASE)

TA

REPEAT '\ Step1(FLAG)

?B(F:=TRUE) 2C(F:=FALSE)

UNTILIFLAGI(L) | UNTIL[FLAG](2)

——= nte relation

> attach relation

(b) Test case control structure of (a)

Figure 11: Modeling the Repeat construct

3.8 Restrictions

The provided semantical model is able to handle most of the TTCN language constructs.
But, there are three exceptions. These are recursive tree attachments, handling of timer
and termination of parallel test components.

Recursive tree attachments

For the sake of simplicity the effect of recursive tree attachments has not been modeled.
However, one way to model recursive tree attachments is to introduce queues (for each

24

test component one) for the treatment of attach relations within test case control states
(cf. Definition 3.4). Queues are necessary to identify the correct origin of an attach-
ment, i.e., the point to which the control returns when the attached tree is completed.
The introduction of such queues leads to a more complicated control enabling condition
(cf. Definition 3.6) and execution rule (cf. Definition 3.7).

The introduction of additional queues is feasible, but the influence of recursive tree
attachments on data is very complicated. Data states, i.e., variable values, have to be
duplicated and stored (in a queue) when the control is given to an attached tree and
restored when the tree is completed. To avoid the definition of such a complex procedure
we restrict ourselves to test cases without recursive tree attachments.

Timer handling

The timer handling in TTCN is modeled by the language constructs READTIMER,
START, CANCEL, and TIMEOUT. A READTIMER operation has no direct influence
on the control flow of a TTCN test case. It can be used to read the amount of time that
has passed for a currently running timer.

The constructs START, TIMEOUT, and CANCEL have direct influence on the control
flow of a test case. A timeout operation can only be executed if a corresponding timer was
started, and a cancel operation may be used prevent the execution of timeout operations.

The modeling of the timer handling in our semantical model needs the introduction
of two new relations into the test case control structure. A timer relation which is neces-
sary to model the dependency between timer start and timeout operations, and a cancel
relation which defines the relation between start and cancel operations. The two relations
are necessary because the effect of cancel and timeout operations on the control flow of
the test case are different. A cancel operation can always be executed, whereas a timeout
always needs a corresponding timer start operation. Figure 12 shows schematically the
modeling of the timer handling within test case control structures.

Subsequently, the definitions of test case control states (cf. Definition 3.4), control

enabling of test events (cf. Definition 3.6), and execution of control enabled test events
(cf. Definition 3.7) have to be extended.

Definition 3.4a (Test case control state with timer handling) A test case control
state is defined by a tuple C'S = (Spie, Sattachs Sereates Sems Stimer), Where preconditions, (a),
(b), (¢), and (d) are the same as in Definition 3.4 and for Siime, the following holds:

(€) Stimer CTE is a set of test events.

Definition 3.6a (Control enabling of a test event with timer handling) Let
CS = (Snte, Sattachy Sereates Semy Stimer) b€ a test case control state according to Definition

3. 4a. A test event te € T'E is control enabled in CS, written C'S ib if the preconditions,
(a), (b), (¢), and (d) of Definition 3.6 and the following condition holds:

(6) .tetimer = @ V .tetimer N Stimer % @

25

O MTC

AlS1

START T1

o .

TIMEOUT T1 ~,° TIMEOUT T2 A?S2 ' ‘I /

. CANCEL 7
~ -~

e~ e — -

/,
CANCELT2 CANCEL T1

—— nte relation
——> timer relation
— >

cancel relation

Figure 12: Modeling the timer handling within test case control structures

Definition 3.7a (Execution of a control enabled test event with timer handling)
Let te € TE be enabled in CS = (Sute, Sattach, Sereates Sems Stimer). The execution of te
changes the control C'S into the new control state CS’'. The new control state C'S" =
(St Srtasts Sreater Stons Stimr) i defined by (a), (b), (c), and (d) of Definition 3.7 and
the following equation:

@ : .tetimer — @

Let Terement = { {t | t € Stimer 15 one arbitrary element of *teimer} : *t€iimer 7 0

@ : te;imer = @

! — . ¢
(6) Stimer - Snmer\{Telement U tecancel} . { {te} : te;imer 7£ @

The previous definitions should give an idea of how the timer handling can be implemented
in our semantical model. The proposed modeling seems to be easy, but it should be
noted that it includes at least one problematic point. The condition (e) of Definition
3.7 introduces indeterminism on the execution level. Several start timer operations may
enable the same timeout event. In such a case an arbitrary start event is chosen when the
timeout is executed. This means, depending on the chosen start operation the execution
of the timeout event may lead to different control states.

However, it is our aim to generate traces from TTCN test case descriptions. The
modeling of the TTCN timer constructs will prevent only the generation of traces which
include timeout operations without a corresponding running timer. We believe that it
is easier and faster to exclude such traces after their generation than to implement the
entire timer mechanism within our TTCN simulator.

26

AIS1 ®

CREATE(PTC) * — — .
/ %&PTC

A2S5
R /..%Aslsz
TERMINATE(PTC) ¢&c%. B?S3 .2

X T \

V °

_ LA
—— nte relation AIS6 GOTO
B2S4

—--=> create relation
----> terminate relation

Figure 13: Modeling the terminate construct within test case control structures

Termination of parallel test components

The second problematic point of our semantical model for the control flow of TTCN test
cases is the explicit termination of parallel test components. In TTCN this is done by
means of the TERMINATE construct.

The modeling of the terminate operation needs the introduction of a new terminate
relation into the test case control structure. All test events of parallel test component
which may be terminated are related with the possible terminate test events of the main
test component. Figure 13 describes this schematically. For simulation purposes only
Definition 3.7 has to be extended.

Definition 3.7b (Execution of a control enabled test event (including TERMI-
NATE event)) Let the preconditions be the same as in Definition 3.7. The execution of
the test event te changes the control C'S into the new control state C'S’. The new control

state CS" = (5] . tachs O S is defined by (b), (¢), and (d) of Definition 3.7 and

nte? create?
the following new equation (a):

O : tet., =10
S/ = Sn e *t nte U *t erminate U ?te
(CL) nte t \{ Cnt €t i } { {te} : tente 7£ @

It is not very complicated to model the effect of the terminate construct within our seman-
tical model. The problem is that complex test cases with several terminate operations
may lead to very complicate test case control structures with an enormous number of
terminate relations. In order to avoid the handling of complex graphs we do not model
the terminate construct in our simulator. It should be noted that the modeling of the
terminate construct will prevent the generation of traces which include events of already

27

terminated test components. Such traces can also be excluded easily after their genera-
tion.

4 Modeling data in TTCN test cases

In the previous section we defined the influence of the control structure on the dynamic
behavior of a TTCN test case. In this section we define the influence of data on the
behavior. The procedure corresponds to the procedure used in the previous section. We
define a ‘data structure of a TTCN test case’ (Section 4.1), a ’data state of a TTCN
test case’ (Section 4.2), a ‘data enabling condition for test events’ (Section 4.3), and the
‘execution rules’ for data enabled test events (Section 4.4).

4.1 The data structure of a TTCN test case

Definition 4.1 (Data structure of a TTCN test case) The data structure of a
test case T'C is defined by the tuple TCDS = (TE; SV, IV; G, VT; ¢,1), where:

(a) TE #0 is a finite set of test events.
(b) SV and IV are finite sets of typed variables.

o The elements in SV = {vy:Dy, ... ,v,:D,} are called “state variables’. Fach
state variable v;:D; has a name v; and a type D;. We assume that all variable
names in SV are distinct.

o The elements in IV = {iv;:D¥, ... ivpD{*} are called “intermediate vari-
ables’. Each intermediate variable iv;: DY has a name 1v; and a type DY, We
assume that all variable names in I'V are distinct.

(¢c) G and VT are finite sets of expressions.

o The elements in G are called "quards’. A guard g € G may contain elements of
SV ={v:Dy, ... ,v.:D,} and IV = {iv;:D¥, ... [ivpD%} as free variables.
We assume that the lambda expression A(vy, ... ,v,,101, ... ,iv1).g defines a
mapping from Dyx ... xD, x Di"x ... xD¥ into {true, false}.

o The elements in VT are called variable transitions. A variable transition

vt € VT may contain elements of SV = {vi:Dq, ... ,u.:D,} and IV =
{tv1: DV, ... Jivp D'} as free variables. We assume that the lambda expres-
sion Moy, ... U5, 101, ... i)t defines a mapping from Dyx ... xD, X

D ... x D into {ran(v) | v € SV}.
(d) ¢ and + are functions which relate test events and expressions in G and VT.

o ¢ :TFE — (G is a function which relates each test event to a guard.

28

o : TE — VT#5Y) js g function which relates a tuple (viy, ... vtasvy) of
expressions in V'T' to each test event. For each test event te a tuple element vt;
corresponds to a variable v;:D; € SV in such a way that the lambda expression
A1, «oo L OpsvY), 01, oo ivgvy)deap; (0D € IV) defines a mapping
from Dyx ... xDysyy x D x ... XD;,?Z(IV) into ran(v;). Within the lambda
expression each state and intermediate variable is referred to exactly once

Explanation of Definition 4.1. The data structure of a TTCN test case is a tuple
(TE; SV, IV;G, VT, ¢,¢) which contains several sets and functions. The meaning and

use of these sets and functions may need some explanation.

o Test events. The set T'[lY describes the test events of the TTCN test case. This set
is identical to the set of test events in the test case control structure (cf. Definition

3.1).

e State variables. State variables are the elements in the set SV. They describe all
variables and constants (a constant is meant to be a variable which does not change
its value during the test run) which are declared for the whole test suite or just for
the test case. This also includes variables declared implicitly, e.g., the variable R
which during the test run holds preliminary test verdicts, and parameters.

e Intermediate variables. Intermediate variables are the elements in the set V.
Their meaning is related to test events describing the reception of PDUs, ASPs,
and coordination messages. State variables may depend on parameters of PDUs,
ASPs, or coordination messages. In order to describe this influence in an adequate
manner, we use intermediate variables, i.e., within expressions intermediate variables
represent message parameters.

e Guards. TTCN test events can be guarded by qualifiers. A qualifier is a boolean
expression. During a test run a test event can only be executed if its qualifier
evaluates to true. The guards in our definition, i.e., elements of (&, are used for the
same purpose. They represent TTCN qualifiers. Since the value of a qualifier may
depend on message parameters our definition considers intermediate variables.

e Variable transitions. The elements of the set V1" are called variable transition.
They are used to describe the change of state variables during the test run. A
variable transition is an expression. If it is evaluated during the test run the resulting
value is assigned to a state variable. Since message parameter values may have
an influence on the value of state variables our definition considers intermediate
variables.

In a TTCN test case variable transitions are provided within assignment operations,
i.e., in the form x; = vt; where x; denotes the variable which is changed and vt;
the expression which defines how the new value of x; will be calculated. In order to
treat guards and variable transitions in the same way, in our definition we do not
refer to the complete assignment operations, but to their components. For example,
let te be a test event which is annotated with the assignment operation z; = vt;. In

29

Test Case Dynamic Behaviour
Test Case Name: DataExample
Nr | Label | Behaviour Description Constraints Ref | Verdict
1 7CONind
2 ICONresp (Count:=1)
3 REPEAT LOCAL UNTIL [Count=3]
4 ?DISind [DISind.err="Wrong ACK”]
5 IDISresp PASS
6 7DISind
7 IDISresp FAIL
LOCAL
8 ?DAT (S:=DAT.SeNr, Count:=Count+1) (PASS)
9 'AK (AK.SeNr:=S-1)

Figure 14: Behaviour description of a TTCN test case

this case vt; defines the variable transition and z; refers to the place of vt; within
the tuple ¥ (te).

It is obvious that guards and variable transitions will not always use all state and in-
termediate variables, although we bind all variables to all expressions. This is only for
facilitating the definitions of an data enabling condition (Definition 4.3) and the execution
of data enabled test events (Definition 4.4). During the evaluation of an expression the
values of unused variables have to be ignored. It should also be noted, that the expressions
in VT will only be used for the assignment of values to state variables. For the moment,
we do not care about how the values of I M will be determined.

e The function ¢. The function ¢ assigns a guard to each test event. However,
within a TTCN test case not all test events are guarded by qualifiers. In such a
case we assign the guard true, i.e., the execution of test event does not depend on
the data state of the test case.

e The function . The function psi assigns a tuple of expressions to each test event.
Each expression describes how one state variable changes its value if the test event
is executed. If a variable does not change its value the expression for this variable
is the identity function.

Example 4.1 (Example of a test case data structure) We explain the meaning of
Definition 4.1 by using a simple TTCN test case. The behavior description of the example
is shown in Figure 14. The test case has no parallel test components, no tree attachments,
but includes one local tree which is used within a REPEAT-UNTIL loop.

The test case data structure is given by the tuple TCDS = (T'E; SV, IV; G, VT; ¢,).
The set T'E includes all test events. These are given by the TTCN statements in the

30

behavior lines and some additional nodes which we introduced when we modeled the
control flow of a TTCN test case (cf. Section 3). In our case the set TE is:

TE= {?CONindyn,1,'\CONrespy,2, TDISindy,.4,?7DISTespn, s, REPEATN, 3,
UNTIL() N3, UNTIL(2)Ny3, 7 DISindy, 6, T DISTespy, 7, LOC ALy,
?DATNT’.87 !AI(NTB}

The indices Nr.c describe the line number of the corresponding statements in the
TTCN behavior description (cf. Figure 14). The additional nodes in T'FE are the top
node LOC ALy, and the two nodes UNTIL(1)y,5 and UNTIL(2)y,5 describing the
two alternative behaviors of the UNTIL statement within the REPEAT-UNTIL loop. It
should be noted that the top node of the test case which is introduced in the test case
control structure (cf. Definition 3.1) is not an element of T'E. The state variables SV are
given by:

SV = {Count:Integer, S:Integer, R:Verdicts}

State variables have to be defined explicitly or are defined implicitly by the TTCN
semantics. The definition of the variables C'ount and S is shown in Figure 18. The
variable R is defined implicitly. During the execution of a test case R holds the actual
test verdict. Possible values are none, PASS, (PASS), INCONC,(INCONC), FAIL,
and (FAIL)®. Intermediate variables [V are:

IV = {DISind.err:CharString, DAT.SeNr:Integer}

As indicated by the names they are used to store parameter values of the messages
DISind and DAT. Guards are given by the qualifiers within the test case description.
Additionally, we add the expression true. It will be used for test events which are not
qualified. G is given by:

G = {true,Count#3,Count=3, DISind.err="Wrong AK”}

According to the explanation of Definition 4.1 variable transitions are expressions
which have to be extracted from the assignment operations in the behavior lines of the
test case. These operations are Count:=1, S:=DAT.SeNr, and Count:=Count+1. The
variable transitions within these assignments are 1, DAT.SeNr,and Count+1. Although
it may look a little bit strange, the constant 1 is a valid expression. Furthermore, the test
case description includes some implicit assignments to R. R is set to none when the test
case starts, to PASS in behavior line Nr 5 (cf. Figure 14), to FFAIL in line Nr 7, and to
(PASS) in line Nr 8. In order to cope with unknown values (cf. Definition 2.9) and to
facilitate the handling of variables which are not treated by the assignment operations in
a behavior line, we add the value unknown o and identity functions for all state variables.

The set VT is given by:
VT = {1,DAT.SeNr,Count+1,none, PASS, FAIL,(PASS), x,id(Count),id(5),
wd(f)}

The functions ¢ and @ for our example are defined in the table in Figure 15. The
table shows that for ¢ a lot of true predicates and for ¢ a lot of identity functions have

STTCN allows the abbreviation of PASS, (PASS), INCONC, (INCONC'), FAIL, and (FAIL) by
P, (P), I, (), (F), and F.

31

test event (te) é(te) P(te)
tuples are meant to be assignments for:

(Count, S, R) € Integer x Integer x Verdicts
TCONindy, 1 true (id(Count), id(S),id(R))
'CONrespnr.2 true (1,id(S) id(R))
REPFEATN, 3 true (id(Count), id(S),id(R))
UNTIL(1)nrs Count#3 (id(Count), id(S), id(R))
UNTIL(2)nv3 Count=3 (id(Count), id(S),id(R))
TDISindy, 4 DIiSind.err="Wrong AK” (id(Count), id(S), id(R))
?DISrespnrs true (id(Count), zd(S) ASS)
TDISindy, s true (id(Count), id(S), id(R))
?DISrespnr.7 true (id(Count),id(S), FAIL)
LOCAL;,p true (id(Count), id(S), id(R))
TDAT N, s true (Count+1, DAT.SeNr, (PASS))
'AK N, o true (id(Count), id(S), id(R))

Figure 15: The function ¢ and % of Example 4.1

to be assigned.

The functions ¢ and % also assign expressions to the top node LOCAL,,,. The guard
is true and the variable transitions are identity functions. The variable transitions need
not to be identity functions. Variable transitions associated with top nodes are also
used to assign values to parameters, e.g., in the case of parameterized test steps or test
components.

By comparing the table with the TTCN description (cf. Figure 14) we see that the
assignment in behavior line Nr 9 (AK.SeNr := S — 1) is not considered by . This is
due to the fact that this is an assignment to the intermediate variable AK.SeNr. In our
definition of 1) we only take care of state variables.

4.2 The data state of a TTCN test case

The data state of a TTCN test case is a tuple of values. Each element of the tuple
corresponds to the value of a state variable when the test case is in this data state.

Definition 4.2 (Data state of a TTCN test case) Let T'C be a TTCN test case and
TCDS = (TE;SV,IV;G VT, ¢,¢) be the corresponding data structure where SV =
{vi:Dy, ... ,v,:D,} denotes the set of state variables. A data state of TC test case is a
tuple DS = (x1, ... ,x,) € Dix...xD,. Fach element of DS holds the actual value of

a state variable when the test case s in the data state DS.

Example 4.2 (Data states for Example 4.1) Some examples of data states for Ex-
ample 4.1 may help to understand the meaning of the definition. The state variables of
the example are SV = {Count:Integer,S:Integer, R:Verdicts}. Therefore data states
have to be elements of Integer x Integer x Verdicts. Some examples:

o DS) = (x,x,) denotes that the values of all state variables are unknown.

32

e DSy = (1,x,none) states that the value of Count is 1, the value of S is unkown,
and the value of R is none.

e DS5=1(3,5,(PASS)) denotes that Count =3, S =5, and R = (PASS).

4.3 The data enabling of test events

The data enabling of a test event is defined via the predicates which are associated with
the test events. The guard is evaluated by using the variable values of the actual state
and a tuple containing the values of intermediate variables. If the guard evaluates to true
the test event is data enabled.

Definition 4.3 (Data enabling of a test event) Let TC be a TTCN test case,

e TCDS = (TE; SV, IV;G,VT; ¢,v) be the corresponding data structure, where

— SV =Av:Dy, ... ,v,:D,} denotes the set of state variables,
— IV = {ivi:D¥, ... ,ivpDi} denotes the set of intermediate variables;
o DS =(x1, ... ,x,) € Dix...xD, be a data state of TC;
o [S= (2%, ... 2l%) € D¥x...xD}¥ be a tuple which includes values for all inter-

mediate variables;

o DSIS = (21, ... y2,,20, ... &) € Dyx ... xDyxD¥x ... xD{ be a tuple which
is gained by the concatenation of DS and IS;

o te € T'E be a test event;
o g = o(te) € G be the guard related to te; and let

o fg:Dix...xD,xD¥x ... xDi¥ — {true, false} be the function which is defined
by the lambda expression A(vy, ... 04,101, ... ,i07).9.

The test event te is data enabled in DS, written DS ﬂp, if fp(DSIS) = true.

The index D in DS ﬂp indicates that the enabling condition is based on the information
in the data structure of a test case. For the enabling condition based on the control
structure we used a similar notation, but used the index ¢ (cf. Definition 3.6). The IS
above the arrow refers to the tuple of values for intermediate variables. 1.5 describes the
influence of PDU, ASP, and coordination message parameter values on the enabling of
test events. Later on we will determine the values within IS from receive events within
test logs and send events of coordination messages.

Example 4.3 (Data enabling) In Example 4.2 we defined some data states for data

structure in Example 4.1. Here we describe which test events are data enabled if the test

case is in the data state DSy, DS;, and DS5.

33

test event (te) DS; te’—>ISD (IS = (x,x))
DS = (x,x,x) | DSy = (1,x,none) | DSs = (3,5,(PASS))

TCONindy, 1 enabled enabled enabled
ICONrespnr.o enabled enabled enabled
REPEATN, 3 enabled enabled enabled
UNTIL(1)nvs enabled enabled not enabled
UNTIL(2)nr3 enabled not enabled enabled
TDISIindn, .4 enabled enabled enabled
TDISrespn,s enabled enabled enabled
TDISIindy, ¢ enabled enabled enabled
TDISrespny.7 enabled enabled enabled
LOCALgp enabled enabled enabled
TDAT N, 8 enabled enabled enabled
'AK Ny o enabled enabled enabled

Figure 16: Data enabled events for the states DSy, DSy, and DSy

For checking the enabling condition a tuple IS = (2%, ... ,zi¥) € DV¥x...x D
which includes values for all intermediate variables is needed. In our case the intermedi-
ate variables DISind.err:CharString and DAT.SeNr:Integer are used to describe the
influence of the parameter values of the messages DISind and DAT on the execution
of the test case. We assume that we do not know anything about the parameter values
DISind.err and DAT.SeNr. This means [.S = (,) for the states DSy, DS, and DSs.

Which test events are data enabled in which states is shown in the table in Figure
16. It is obvious that test events with the guard true, i.e., 7CONindy,.1, \CONrespy,.2,
REPEATN,3, TDISrespn,s, TDI1Sindy,s, TDISrespy, 7, LOCAL,,, TDATN, s, and
'AKp,9, are always enabled. Furthermore ?DISindy, 4 is also data enabled in DSy,
DSy, and DSs, because its enabling depends on the value of an intermediate variable
which is not known. According to Definition 2.9 predicates which depend on unkown
values always evaluate to true.

In our example only the test events UNTIL(1)n,3 and UNTIL(2)n,3 need special
attention. Their data enabling depends on the actual value of the state variable C'ount.
Subsequently, UNTIL(1)n,3 is not data enabled in DS5 and UNTIL(2)n,3 is not data
enabled in DS,.

4.4 The execution of data enabled test events

Based on the knowledge of test case data structures, data states for TTCN test cases,
and an data enabling condition for test events we are able to define an execution rule for
data enabled test events. The execution rule defines how the data state changes when a
test event is executed. Our execution rule makes use of the variable transitions, i.e., the
set VT, which are assigned to the test events by means of the function . The variable
transitions are evaluated by using the values of the actual data state and the values of
intermediate variables. The results of these calculations form the new data state.

34

Definition 4.4 (Execution of data enabled test events) Let TC be a TTCN test

case,

e TCDS = (TE; SV, IV;G,VT; ¢,v) be the corresponding data structure, where

— SV =Av:Dy, ... ,v,:D,} denotes the set of state variables,
— IV = {iv;:D¥, ... Jiv:Di"} denotes the set of intermediate variables;
o DS =(x1, ... ,x,) € Dix...xD, be a data state of TC;
o [S= (2%, ... 2l%) € D¥x...xD}¥ be a tuple which includes values for all inter-

mediate variables;

o DSIS = (21, ... y2,,20, ... &) € Dyx ... xDyxD¥x ... xD¥ be a tuple which
is gained by the concatenation of DS and IS;

o te € T'E be a test event which is data enabled in DS, i.e., DS ﬂp;

o (te) be the tuple (vty, ... ,vt,);
o vt, ¢ VI' (1 <i < n) be the i.th expression in (te); and let

o fut; i Dix...xD,xDVx...xDW — |J ran(v) be the function which is defined

veSV
by the lambda expression Mvy, ... ,v,,101, ... ,iv7).08;.
The execution of te changes the data state DS = (x1, ... ,x,) into the new data state
DS = (f, ... ,2l) € Dix...xD,. We denote this fact by DS ﬂp DS’. The values

z! of the elements of new data state DS’ are calculated by: z' = ft'{(DSIS).

Example 4.4 (Execution of data enabled test events) The idea of Definition
4.4 should be clear intuitively. The actual data state is transformed into the new data state
by evaluating the variable transitions which are associated to each test event. Information
concerning ASPs, PDU, or coordination message parameter values can be considered by
using intermediate variables.

For our example Figure 16 shows which test events are enabled in the data states
DSy = (x,x,x), DSy = (1, x,none), and DS; = (3,5,(PASS)). The table in Figure 17
shows the new states when the data enabled test events in Figure 16 are executed.

Test events which only perform identity function to the tuple elements of the actual
state, i.e., 7CONindy,;1, REPEATN, 5, UNTIL(1)ny3, UNTIL(2)n,3, TDISindy, 4,
!DISindy,e, LOCALt,,, and |AKy, 9 (cf. Figure 15), need no further explanation.

During the execution of {CONrespy,2 Count is set to 1. Performing ?DISrespn, s
or TDISrespy,r leads to new values of the verdict variable R.

The calculation of the new states when 7D AT, 5 is executed is a little bit more tricky.
Starting with the actual state DS leads to unknown values for all state variables. For
the variable C'ount this is due to the rules for the evaluation of functions with unknown
values. Independent from the starting data state the execution of 7D ATy, s leads to an
unknown value for S and the value (PASS) for R. For S this is because of the unknown
the actual value of the intermediate variable DAT.SeNr. For R a simple assignment of

(PASS) is performed.

35

for all cases 1S = (x, x))
test event (te) DS te’—>ISD DS DS, te’—>ISD DS, DS3 te’—>ISD DS,
?CONindynr1 DS} = DS DS, = DS, DSL = DSs
ICONrespnra || DS) = (1, x, %) DS = (1, x, none) DSL = (1,5,(PASS))
REPEATy,5 | DS, = DS, DS, = DS, DS, = DS;
UNTIL(D)nrs | DS, = DS, DS, = DS, =
UNTIL(2)n,s | DS, = DS, = DS, = DS
?DISindyn, 4 DS} = DS DS, = DS, DSL = DSs
TDISrespnys DS = (x,x, PASS) DS, = (1,x, PASS) DSL = (3,5, PASS)
?DISindy, g DS} = DS DS, = DS, DSL = DSs
TDISrespnrs | DS, = (o, o0, FAIL) | DS, = (Lo, FAIL) | DS, = (3,5, FAIL)
LOC ALy DS} = DS DS, = DS, DSL = DSs
TDATN 8 DS} = (ox, o, (PASS)) | DSL = (2,0, (PASS)) | DSE = (4, x, (PASS))

Figure 17: Executing the data enabled test events in Figure 16

4.5

Intermediate variables

Until now we did not have taken care about the calculation of values for intermediate
variables. We have taken out their calculation from the test case data structure, because
we want to be able to incorporate external information during the simulation of TTCN
test cases. External information might come from test logs or from formal specifications.
Beside this, we will also use intermediate variables to tackle the problem of exchanging

information between parallel test components via coordination messages. To do this in a

formal way we define the notion of an intermediate data structure.

Definition 4.5 (Intermediate data structure) An intermediate data structure is a

tuple IDS = (E; EV, IV 1A, 0), where:

(a) E #£10 is a finite set of events.

(b) IV and EV are finite sets of typed variables.

o The elements in EV = {evi:D{", ...

Fach external variable ev;: DY has a name ev; and a type D5Y.

all variable names in E'V are distinct.

o The elements in IV = {iv;:D¥, ...

,ev,: DY are called ‘external variables’.
We assume that

Jiv DV} oare called Cintermediate vari-

ables’. Each intermediate variable iv;: DY has a name 1v; and a type D¥. We

assume that all variable names in IV are distinct.

¢) IA is a finite set of expressions. The elements in [A are called “intermediate as-
p

stgnments’. An intermediate assignment 1a € A may contain elements of EV =

,ev,: DY} as free variables. We assume that the lambda expression

{evi: DSV, ...

,ev,).0a defines a function a(ia) from D{Vx...xDS’ into

Aevy,

U D.

w:DeIV

Within the lambda expression each intermediate variable is referred to exactly once.

36

(d) 0: E — IA#IY) s q function which relates a tuple (iay, . .. Jiag(rvy) of expressions
of [A to each event in . For each event a tuple element 1a; corresponds to a variable
w;: DY € IV in such a way that ran(a(ia;)) = ran(iv).

The definition of the intermediate data structure is independent from data structure
of a TTCN test case. This allows us to relate an intermediate data structure to test logs
and other system descriptions. We only need to identify the events which provide the
values of intermediate variables. For doing this the intermediate variables in Definition
4.1 have to correspond to the intermediate variables in Definition 4.5.

However, we also want to use the intermediate data structure to tackle a problem which
we did not have covered yet. It is the problem of exchanging information between parallel
test components via coordination messages. Storing parameter values of coordination
messages in intermediate variables only is not sufficient, because the information exchange
is meant to be asynchronous.

The value of the message parameter has to be stored in an intermediate variable when
the send event takes place. A problem occurs if a second message of the same type is
sent before the receive event of the first send event has been performed. In this case the
variable would be overwritten. One possibility to avoid this is to declare intermediate
variables for all possible instances of a coordination message type. This may lead to
infinite sets of variables.

We use another approach. We bind the events in Definition 4.5 to the send events of
coordination messages. These events will be stored within the control state of a TTCN
test case (cf. Definition 3.4) and will be available when the receive event of a coordination
message is performed (cf. Definition 3.7). We only have to assume that we can determine
the correct parameter value from the send event only. For this it might be necessary to
evaluate the intermediate assignments before the send event is stored in the control state.

In order to facilitate the handling of intermediate data structures we define an eval;ys
function. The eval;ys function calculates for a given event e and a given tuple of values
for external variables a tuple of values for intermediate variables.

Definition 4.6 (The eval;4; function)

o Let the tuple IDS = (FE; EV,IV;IA,0) be an intermediate data structure, where
EV ={evi:D, ... Jev,:DZ} and IV = {iv1:DY, ... v DV},

o Let e € E be an event, O(e) = (expy,. .., exp,) € IAFUY) be the tuple of expressions
assigned to e by 0, and let ozf(e) DX Lox D — U D be the function which

w:DelV
for each exp; € 0(e) is defined by the lambda expression A(evy, ... ,ev,).exp;.

o [urthermore, let DS = (xy1,...,2,) € D{"x ... XD be a tuple of values.
The function evalig, : B x (D7 x ... x D) — DWx ... xD¥ is defined by:
evalig(e, DS) = (af)(DS),...al) (DS))

Example 4.5 (The handling of intermediate data structures) A simple example
may help to understand the meaning and handling of intermediate data structures. We

37

only consider the TTCN statement "'Signal(Signal . Nr:=2+ x,Signal.In fo:=R)" which
should be bound to an intermediate data structure IDS = (E; EV, IV;1A;0). There is

only one event in K, i.e.,
E = {!Signal}

We assume there are two external and two internal variables only, i.e., EV and [V are
given by:

EV = {a:Integer, R:Verdicts}

IV = {Signal.Nr:Integer, Signal. Info:Verdicts}
The intermediate assignments [A and 6(!Signal) are:

TA={2+ 2 R}

6(!Signal) = (24, R)

For applying the function evalyys to 1Signal we need tuples DS; € Integer x Verdicts.
Example of such tuples are DSy = (3,(PASS)), DSy = (x, FAIL), or DS5; = (5,).
Applying eval;ys with these tuples leads to:

evaligs(!Signal, DSy) (5,(PASY))
evaligs(1Signal, DSy) = (o, FAIL)
evaligs(1Signal, DS3) (7,x)

4.6 A remark on the developed model for data handling

The goal for developing a model for the data handling in TTCN test cases was to provide
a simple basis for the implementation of data aspects within a TTCN simulator. The
developed model should reach this goal. It is very simple and compact. But, it does not
provide a complete formal semanctics for TTCN data types, TTCN matching mechanisms,
parameterization, or the use of ASN.1 within TTCN.

5 The simulation of TTCN test cases

Within the previous sections we covered control flow and data aspects of a TTCN test case.
The aim of this section is to combine both aspects in order to provide a comprehensive and
formal basis for the implementation of a TTCN simulator. Similarly, to the definitions
for control flow and data aspects we start with a state definition which is followed by
the definitions of an enabling condition and an execution rule. Furthermore we provide
definitions for traces, reachability sets, and global state graphs. We only provide the
definitions with some short explanations. The way how the definitions work will be
described by two examples which will be presented in Section 6.

5.1 The state of a TTCN test case

This section provides definitions for the state of a TTCN test case and a < relation for
test case states. The < relation is necessary of the definition of traces, reachability sets,

38

and global state graphs.

Definition 5.1 (State of a TTCN test case) Let TC be a TTCN test case. A tuple
ST = (CS,DS) is a state of TC if C'S is a valid test case control state of TC (cf. Defi-
nition 3.4) and DS is a valid data state of TC (cf. Definition 4.2).

Definition 5.2 (Equality and order relation for TTCN test case states) Let
TC be a TTCN test case, and ST = (CS,DS), ST' = (CS', DS") be two states of TC'.

1. ST =8ST"ifCS=CS"NDS = D5
2. ST < ST if CS < CS"ANDS = DS’ (the < relation for control states is defined in
Definition 3.5)

5.2 Enabling of test events

The enabling of a test event is defined by combining control enabling and data enabling.

Definition 5.3 (Enabling condition for a test event)

o Let T'C' be a TTCN test case, where

— TCCS = (TE,t0,nte, attach, create, em) is the corresponding test case control
structure (cf. Definition 3.1), and

— TCDS = (TE; SV, IV;G,VT;¢,) be the corresponding test case data struc-
ture (cf. Definition 4.1).

o [f TC includes parallel test components, let IDS = (dom(cm); SV, IV; 1A, 0) be an
intermediate data structure, (cf. Definition 4.5). The set dom(ecm) C TE denotes
send events of coordination messages. We assume that the function evalyy, : F X

(D% ...xD,) = D¥x...xD} is defined for IDS.
o Lette € T'E be a test event.
o Let ST =(CS,DS) be a state of TC, where

— CS = (Snte, Sattachs Sereates Sem) 15 a control of TC state and
— DS = (a1, ... ,x,) denotes a data state of TC.

o Let IS € DV ... xDW be a tuple of values for intermediate variables.

The test event te is enabled in ST, written ST i%,d, if the following three conditions
hold:

1. CS 5. (cf. Definition 3.6),

te, IS

2. DS ==, (cf. Definition 4.3), and

39

(xX1y...,0¢1) : te&ran(em)

s [S:{ evaligs(next(gstate(tequeue(te))), DS) : else

Condition 3. includes a rule for the calculation of 1.5. Therefore, in contrast to the short
notation for the data enabling condition, i.e., ﬂd, the short notation for the enabling
condition above .i.e., i%,d, includes no reference to 5.

However, as already mentioned, the enabling condition for a test event is defined by
combining control enabling and data enabling. This is denoted in the conditions . and
2. of the definition above. Only condition 3. needs some further explanation.

In the case of parallel TTCN information may be exchanged by using parameters
of coordination messages. This information has to be considered during the simulation
of the test case. We do this by treating message parameters as intermediate variables
and by deriving their values from the send event of a coordination message when the
enabling condition of the corresponding receive event is checked. Later on we will also use
this mechanism when normal receive events are executed. But, then we need to derive
message parameter values from external information, e.g., test logs. We need no values
for intermediate variables when we check the enabling condition of an event te & ran(cm),
i.e., te is not a send event of a coordination message. In this case .5 is set to a tuple of
unknown values, i.e., (xy,..., ;).

5.3 Execution of enabled test events

Based on the definition of an enabling condition we are able to define an execution rule
for enabled test events.

Definition 5.4 (The Execution of an enabled test event) Let TC be a TTCN
test case and let ST = (CS,DS) be a state of TC. Let te be a test event which is enabled
in ST, e, ST l>c7d. We assume that 1S € DVx ... xD is the tuple of values for
intermediate variables which is calculated according to Condition 3. in Definition 4.3
and used in Condition 2. of Definition /.3. The execution of te changes the actual state
ST = (CS,DS) into the new state ST = (CS', DS"), where

1. CS" is determined by C'S <5, C'S' (cf. Definition 3.7), and

2. DS is caleulated by DS ﬂd DS’

We denote the execution of te by ST i%,d ST,

The definition should be clear intuitively. The new state reached by the execution of a
test event is calculated by the rules for the execution of control enabled and data enabled
test events. It should be noted that for the calculation of IS the execution rule above
refers to Definition 4.3. If we want to calculate 1.5 in another way, we only need to modify
the enabling condition.

40

Test Case Variable Declarations
Variable Name Type Value Comments
Count Integer 1 Counter of a
counter loop

S Integer

Figure 18: Declaration of TTCN test case variables

5.4 Traces, reachability sets, and global state graphs

In Section 3.5 we defined the notion of traces, reachability sets, and global state graphs
already. All definitions were based on the control flow of a TTCN test case. We can
modify these definitions slightly in order to make them applicable for complete TTCN
test cases.

Definition 5.5 (Initial state of a TTCN test case) Let TC be a TTCN test case
and ST® = (CS,DS) be a state of TC'. ST is called the initial state of TC, if

1. C8S is the initial control state of TC (¢f. Definition 3.8), and

2. DS s a tuple which holds the initial values of all state variables.

The tuple DS in the definition above is defined informally. The initial values for the state
variables have to be extracted from the declarations part of the test suite. For example,
the declaration of the state variables for the test case in Figure 14 may look like the table
in Figure 18. This leads to the initial data state DS = (1, o, none), i.e., Count is set to
1, S has no initial value, and the initial value of R is according to the TTCN definition
none.

Definition 5.6 (Traces and reachability set of a TTCN test case) Let TC be a
TTCN test case, T'E be the set of test events of TC, w € TE* a finite word over T'F,
Mrc be the set of all possible states of TC, ST the initial state of TC, and ST, ST,
STy, STy, ..., ST, states of TC'.

1. The notation ST —5.4 ST' is defined by
(a) ST —.4 5 if w=1
(b) ST —.4 ST if
o w="tty...:t, (L, €ETFE) and
o ST 5,4 STy 5oy4 ST, = ST’

2. R(TC)={ST | 3w e TE*: ST° 5., ST AN ST € Myc} is the reachability set of
TC, i.e. the set of states which can be reached from the initial state ST when T'C
is executed.

3. TR(TC)={w | 3ST € R(TC): ST® 5.4 ST Aw € TE*} is the set of traces of
TC.

41

Definition 5.7 (Global state graph of a TTCN test case) Let TC be a TTCN
test case, ST the initial state of TC, and R(TC) be the reachability set of TC. The
global state graph of TC' is defined by Er(TC) = (N, E,ST), where

(a) N = R(N) is the set of nodes,
(b) E={(ST,t,ST") | ST,ST" € R(N) A ST .4 ST'} is the sel of edges, and
(c) ST is the start node of the graph.

According to the TTCN semantics a test run ends in a final state. Such a final state is a
state in which a final test verdict is assigned, i.e., PASS, FAIL, or INCONCLUSIVE.
This can be done explicitly within the verdict column of a TTCN behavior description,
or implicitly, i.e., if no test event can be executed anymore the actual preliminary test
verdict will become the final test verdict. We define the notion of final control states
formally.

Definition 5.8 (Final states of a TTCN test case) Let TC be a TTCN test case,
TE be the set of test events, R the state variable which holds preliminary and final test
verdicts during a test run, and R(TC') be the reachability set of TC. The final states of
TC are defined by the set:

FS(TC)={ST | ST € R(TC)A Fte € TE : ST =%, 4V R holds a final test verdict}.

Based on the definition of the final states of a TTCN test case, we are able to define the
notion of complete test runs of a TTCN test case.

Definition 5.9 (Complete test runs of a TTCN test case) Let TC be a TTCN
test case, TE be the set of test events, R(TC') be the reachability set of TC, and ST the
inttial state of TC'. The complete test runs of TC are defined by the set:

T Reomp(TC) = {w | 3ST € FS(TC): ST® 5.4 ST Aw € TE*}.

6 Two complete TTCN examples

In this section we introduce two small, but complete TTCN test case examples. Both
examples should explain, how the provided model for the TTCN semantics works. We
provide control structure, data structure, reachability set, and global state graph for both
examples.

6.1 The TTCN test case DataExample

The first example is the TTCN test case Data Fxample which we already used for explain-
ing the data structure of a TTCN test case (cf. Section 4.1). The information relevant
for our purposes is described within the TTCN tables in Figure 19, 20, and 21.%

4Figure 19 and Figure 20 are identical to Figure 14 and Figure 18. For the sake of completeness and
readability they are presented here again.

42

Test Case Dynamic Behaviour
Test Case Name: DataExample
Nr | Label | Behaviour Description Constraints Ref | Verdict
1 7CONind
2 ICONresp (Count:=1)
3 REPEAT LOCAL UNTIL [Count=3]
4 ?DISind [DISind.err="Wrong ACK”]
5 IDISresp PASS
6 7DISind
7 IDISresp FAIL
LOCAL
8 ?DAT (S:=DAT.SeNr, Count:=Count+1) (PASS)
9 IAK (AK.SeNr:=S-1)

Figure 19: Behavior description of the TTCN test case DataExample

Test Case Variable Declarations
Variable Name Type Value Comments
Count Integer 1 Counter of a
counter loop

S Integer

Figure 20: Declaration of state variables for the TTCN test case DataFExample

The test case control structure of DataExample. The control structure for our
example is described by a tuple TCCS = (TE,10,nte, attach,create,cm). The compo-
nents of the tuple have the following meaning.

TE= {?CONindyn,1,'\CONrespy,2, TDISindy,.4,?7DISTespn, s, REPEATN, 3,
UNTIL() N3, UNTIL(2)Ny3, 7 DISindy, 6, T DISTespy, 7, LOC ALy,
?DATNT’.87 !AI(NTB}

denotes the set of test events. TF includes some additional test events. These are
the top node LOC AL, of the local tree LOCAL and the events UNTIL(1)n,3 and
UNTIL(2)n,3 which are necessary to model the control flow of the REPEAT loop cor-

rectly.
10 = DataExampley,,

is top node of the test case. The top node is no test event, i.e., Data Example;,, ¢ TE.

43

ASP Type Definition

ASP Name: DISind (Disconnection Indication)

PCO Type:
Comments:
Parameter Name Parameter Type Comments
err (Error Message) CharString Describes the kind of an error

ASP Type Definition
ASP Name: DAT (Data)
PCO Type:
Comments:
Parameter Name Parameter Type Comments
S (Sequence Number) Integer Sequence Number of data item
Ttem (Data Ttem) InfoType Transported data

Figure 21: TTCN ASP definitions referred to within Data Fxample

nte CTFE x TFE is the next-test-event relation,
attach CTE x TFE is the attach relation,
create C TE x TFE is the create relation, and

cm CTE x TFE is the coordination-message relation.

In Figure 22 the nte relation and the attach relation are presented in a graphical form.
The test case DataFxample includes no parallel test components. Therefore there exist
no create and coordination-message relations, i.e., create = () and em = (.

Simulating the control flow of DataExample. Based on the control structure of
DataExample, we are able to simulate the control flow of the test case. The initial control
state S0 is

S0 = ({DataExample,,},0,0,0)

Applying the Definitions 3.6 and 3.7 repeatedly leads to the reachability set shown in
Figure 23. The rightmost column of the table presents the test events which are enabled
in a given control state. From the reachability set we can construct the global state graph
shown in Figure 24.

The data structure of DataExample. The data structure of DataFrample has
been explained thoroughly in Example 4.1 on Page 30. For the sake of completeness we
summarize this explanation. The data structure of DataFExzample is given by a tuple

TCDS = (TE; SV, IV G, VT;$,1).

44

? DataExampletop

?CONiInd nr.1

ICONrespnr.2
REPEAT N3

LOCALtop

UNTIL(L) N3
?DAT s

UNﬂLQ:Z;A<§% <;\\\\\\\\\\\\$EAKNW
?DISind nr.6 ?DISindnr4

IDISrespnr.7 \'L \'L IDISrespnr.s — nte relation

> attach relation

Figure 22: Control structure of the TTCN test case DataExample

State | Value enabled events

SO ({7DataExampleop },0,0,0) 7CONindy,1

S1 ({?CONindy,1},9,0,0) ICONrespnr.o

S2 ({!{CONrespn,r=},0,0,0) REPEATN, 3

S3 ({REPEATN, 3}, {REPEATN, 3}, 0,0) || ZLOC AL,

S4 ({7LOCAL.op },{REPEATN,3},0,0) "DATN, 8

S5 ({?DATN,s}, {REPEATN,3},0,0) TAKNro

S6 ({!AKny o}, {REPEATN, 3}, 0,0) UNTIL(1)ny3, UNTIL(2)Nr3
S7 ({UNTIL(1)nr3},0,0,0) REPEATN, 3

S8 ({UNTIL(2)nr35},0,0,0) TDISindyny.4, TDISindy, g
S9 ({?DI1Sindy,a},0,0,0) 'DISrespyy, s

S10 (6,0,0,0) none

S11 ({?DI1Sindy,s},0,0,0) 'DISrespny.7

Figure 23: Control flow based reachability set of Data Example

TE= {?CONindyn,1,'\CONrespy,2, TDISindy,.4,?7DISTespn, s, REPEATN, 3,
UNTIL() N3, UNTIL(2)Ny3, 7 DISindy, 6, T DISTespy, 7, LOC ALy,
?DATNT’.87 !AI(NTB}

is the set of test events. It is the same set as the set of test events in the test case control
structure explained in the previous paragraphs.

SV = {Count:Integer, S:Integer, R:Verdicts}

is the set of state variables. The set denotes all control variables declared in the declara-
tions part of the test suite and variables declared implicitly, like in our case the variable R

45

(=

?CONind nr1

S1
ICONresp nr.2

S2

REPEAT nr3

S3 LOCAL top
REPEAT nr3
S4

S7

UNTIL(L) wrs M

J/UNTIL(Z) NI.3
8
\?DISind Nr.6

S9 S11

%‘Sresp Nr7

Figure 24: Control flow based global state graph of DataExzample

DAT Nr.8

N

?DISind Nr4

o e

IDISresp nrs

which during a test run holds the actual test verdict. The state variables C'ount:Integer
and S:Integer are extracted from the TTCN table in Figure 20.

IV = {DISind.err:CharString, DAT.SeNr:Integer}

denotes the set of intermediate variables. These variables are used to describe the influence
of ASP, PDU, and coordination message parameters on the values of state variables during
the test run. We extracted the names and types of intermediate variables from the TTCN
tables in Figure 21.

G = {true,Count#£3,Count=3, DISind.err="Wrong AK”}

is the set of guards. Guards represent TTCN qualifiers. TTCN qualifiers are used to
specify a data dependent enabling of test events. We extracted the guards above from
the behavior description of DataFExample (cf. Figure 19).

VT = {1,DAT.SeNr,Count+1,none, PASS, FAIL,(PASS), x,id(Count),id(5),
id()}

denotes the set of variable transitions. The expressions in VT' describe how the state
variables change their values during a test run. Variable transitions are gained from

46

test event (te) é(te) P(te)
tuples are meant to be assignments for:

(Count, S, R) € Integer x Integer x Verdicts
TCONindy, 1 true (id(Count), id(S),id(R))
'CONrespnr.2 true (1,4d(S),1d(R))
REPFEATN, 3 true (id(Count), id(S),id(R))
UNTIL(1)nrs Count#£3 (id(Count), id(S), id(R))
UNTIL(2)nv3 Count=3 (id(Count), id(S),id(R))
TDISindy, 4 DIiSind.err="Wrong AK” (id(Count), id(S), id(R))
?DISrespnrs true (id(Count), id(S), PASS)
TDISindy, s true (id(Count), id(S), id(R))
?DISrespnr.7 true (id(Count),id(S), FAIL)
LOCAL;,p true (id(Count), id(S), id(R))
TDAT N, s true (Count+1, DAT.SeNr, (PASS))
'AK N, o true (id(Count), id(S), id(R))

Figure 25: The functions ¢ and v of the data structure of Data Exzample

assignment operations within the behavior description of the test case.
The functions ¢ and ¥ relate guards and variable transitions to test events. We define
them in the table in Figure 25.

The simulation of DataExample. Based on the control structure and the data struc-
ture of DataFxample we are able to simulate the whole test case. Note, we need no
additional intermediate data structure, because DataFExample includes no parallel test
components. The simulation is done by applying enabling condition, i.e., Definition 4.3,
and execution rule, i.e., Definition 4.4, repeatedly. For the start of the simulation proce-
dure, we need an initial state ST'0 (cf. Definition 5.5). This state is given by

ST0O= (({?DataExamples,},D,0,0), (1, o<, none))

Within the initial state, the initial value 1 of the state variable C'ounter is extracted from
its declaration in Figure 20. The initial value of the state variable S is undefined and the
initial value of R is by default none.

By starting the simulation in S7T'0 the exploration of all states leads to the reachability
set shown in Figure 26. The rightmost column shows which test events are enabled in a
given state of the reachability set. Based on Figure 26 we can construct the global state
graph shown in Figure 27.

By comparing the graphs in Figure 24 and Figure 27 we make some observations.

The global state graph which only is based on the control flow (Figure 24) includes a
loop and consists of 13 nodes only. The loop may lead to infinite test runs. In contrast to
this, the global state graph in Figure 27 has more nodes, i.e., 17, and includes no loops,
i.e., only two traces are possible. The additional loop is due to the possible values of the
state variable C'ounter. Counter is the counter variable of the REPEAT loop. Therefore
the loop in Figure 24 can be seen as an abstraction from the values of C'ounter.

Both graphs include nodes which represent final states, i.e., no test event is enabled

47

State | (Control-State, Data-State) enabled events
STO (({?DataExample;op }, 0,0, 0), (1, x, none)) ?CONindynr1
ST1 ({7CONindn,1},0,0,0), (1, x, none)) 'CONrespny.2
ST2 (({!CONrespnr2t,0,0,0), (1, x, none)) REPEATN, 3
ST3 | ({REPEATw,3), \REPEATN, 5}, 0,0), (L, o, none)) TLOC ALty
ST4 ({7LOCALop} ,{REPEATN,3},0,0), (1, x, none)) T"DATN, s

ST5 | ({?DATN,s}, {REPEATN, 3}, 0,0), (2,0, (PASS))) || TAK Ny o

ST6 | ({TAKNro}, {REPEATN,3},0,0), (2,0, (PASS))) || UNTIL(1)ny3
ST7 | ({UNTIL(1)n,3},0,0,0), (2,0, (PASS))) || REPEATN, 5
STS | ({REPEATw,3), \REPEATN, 51, 0,0), (2,0, (PASS))) || 7LOCALL,
ST9 | ({?LOCALyop} {REPEATN,3},0,0), (2, (PASS))) || 7DATN, 3

ST10 | ({I7DATnys), [REPEATN, 3}, 0,0), 3, (PAS9)) || AKnrs

STIL | ({IAKNro}, {(REPEATN, 3}, 0,0), 3,0, (PASS))) || UNTIL2)nrs
ST12 | ({UNTIL(2)nrs),0,0,0), (3, , (PASS))) || 7DISindnr.a, TDISindxrs
ST13 (({7D152nd1\rr4} 0,0,0), (3,x, (PASS))) || 'DISrespnrs
ST14 | ((9,0,0,0), (3,x, PASS)) none

ST15 | (({7? DISmdNT6},@,@,@), (3,x, (PASS))) || '\DISrespnr 7
ST16 | ((0,0,0,0), (3,0¢, FAIL)) none

Figure 26: Reachability set of the TTCN test case Data Example

in a final state. But, the graph in Figure 24 has one final state only, i.e., 510, whereas
the graph in Figure 27 includes two final states. The reason for this is that the global
state graph which is based on the control flow only does not consider the possible test
verdicts, i.e., the values of the state variable RE. Our test case may end with the final
verdicts PASS and FFAIL. These possible verdicts are reflected by the two final states
ST14 and ST16 in Figure 27.

6.2 A parallel TTCN test case based on Inres

The second example includes parallel test components. The system for which the test
case is defined, is called Inres. Details about Inres can be found in [6, 7]. We intend to
analyze a test case for testing the Initiator part of Inres.

A test architecture in which our test case is applicable is shown in Figure 28. The
system under test (SUT) consists of the implementation under test (IUT), i.e., the Ini-
tiator process, and a Medium service which is used by the Initiator process in order to
provide the Initiator part of the Inres service to its user. The tester processes are the
lower tester LT and the upper tester UT. The main test component is the upper tester.
LT and UT communicate via the coordination point C'P1. For the communication with
the SUT the tester processes use the PCOs [SAP and MSAP. The exchange of ASPs and
PDUs which should be observed in order to obtain the test verdict PASS is shown in the
MSC in Figure 29.

The intention of the test case is the following. After connection establishment we
send two data request messages DATreq. The second message is sent after the DT of
the first DATreq is received, but before it is acknowledged. The acknowledgement AK

48

?CONindnn ICONrespnr.2 REPEATN3

STO ST1 ST2 ST3
LOCALtop
g7 DATNE o gpg MAKNR o gpg UNTILws. gpg
REPEATN3 ‘
. gTg LOCALwr - gpg TPATN® o gpig MAKN o grqg
UNTIL(2) ne3
- 5T12 ?DISindnr.4 ST13 IDISrespnrs @
?DISind nr.6 ST15 DISrespnr7 @

Figure 27: Global state graph of the TTCN test case DataExample

CP1
Y
uT N LT
ISAP
IUT MSAP
Initiator

Medium Service

Figure 28: Test architecture

49

msc InresRun
uT SUT LT
]] 1
CONreq CR
CONconf cc
DATreq(1) . — DT(1)
DATreq(2) DT(1)
DT(1)
DT(1)
L Ak
DT(2)
AK(2)
DISind DR
I [I

Figure 29: Message flow between LT, UT and SUT

is performed after the third retransmission of DT'. After the acknowledgement we wait
for the DT of the second DATreq and check if it is transmitted correctly. The correct
DT is acknowledged and a normal disconnection is performed. The relationship between
DATreq, AK, and DT messages is indicated by the numbers I and 2 in the message
parameters. They can be interpreted as sequence numbers of the DAT'req messages.

However, the MSC in Figure 29 does not describe the whole message flow which is
performed during the test run. The UT as main test component has to create the LT
and for synchronization purposes LT and UT have to exchange the coordination messages
RecDAT, SendDAT, and Corr DAT.

Figure 30 describe the whole message flow including the creation of LT and the ex-
change of coordination messages. The coordination message RecDat is sent by the LT
after the reception of the first DATreq. The reception of RecDat by the UT leads to
the transmission of the second DATreq which in return is indicated by the Send DAT
message to the LT. The coordination message Cor DAT acknowledges the reception of
the correct DT for the second D AT'req message.

For defining a TTCN test case which includes parallel test components we need to
specify a configuration. The TTCN table including the configuration for our test case

50

msc InresTestRun
uT SUT
L] L]
LT
ffffffffffffffff O O
CONreq
CR
CcC
CONconf
DATreqg(1 —
aid) DT(1)
RecDAT RecDAT
’O O‘
DT(1
DATreq(2) @)
DT(1)
DT(1)
SendDAT o OSendDAT
AK(1)
DT(2)
CorDAT o CorDAT
AK(2)
. DR
DISind
| |]

51

Figure 30: Message flow among LT and UT, and between LT, UT and SUT

example is shown in Figure 31. It describes the used test components (TCs), points of
control and observation (PCOs), and coordination points (CPs). The coordination point
declaration in Figure 32 defines the role of a coordination point. In our case C'P1 is
used for the communication between the main test component UT and the parallel test
component LT.

The complete TTCN behavior description of the test case is presented in Figure 33
and Figure 34. The behavior lines 1 - 9 in Figure 33 and 1 - 12 in Figure 34 describe
the behavior of UT and LT as shown in Figure 30. The other lines describe the handling
of unexpected situations, i.e., if the SUT behaves not according to the test specifica-
tion. All these cases will lead to FAIL verdicts. Both behavior descriptions include no

Test Component Configuration Declarations

Config Name: ConfigOne

Comments:
TCs Used PCOs Used CPs Used Comments
uT ISAP CP1
LT MSAP CP1

Figure 31: Configuration for the Inres test case example

CP Declarations
CP Name CP Role Comments

CP1 UT <-> LT

Figure 32: Coordination point declaration for the Inres test case example

REPEAT loops. The behavior description of the parallel test component include seven
tree attachments. All attachments refer to the local tree LOCAL.

The test case control structure of the Inres test case example. The test case
control structure of the example is given by T'C'C Sy,,es = (T E, 10, nte, attach, create, em).
The components of the tuple have the following meaning.

TFE is the set of test events.

For our example there exist 46 test events. They are listed in the Fvent Description
columns of the tables in the Figures 35 and 36. In order to facilitate the following
descriptions we introduce abbreviations for the different test events. These abbreviations
can be found in the Short Id columns within the Figures 35 and 36.

t0= MTC
is top node of the test case. The top node is no test event, i.e., MTC ¢ TE.

nte CTFE x TFE is the next-test-event relation,

attach CTE x TFE is the attach relation,

create CTE x TE is the create relation, and

cm CTE x TFE is the coordination-message relation.
In Figure 22 the next-test-event, the attach, the create, and the coordination-message
relation are presented in a graphical form. Although the TTCN test case descriptions
looks quite simple the graphical form of the test case control structure is a complex graph
with 4 sorts of edges. It should be noted that the graph includes no loops. Since we

disallow recursive tree attachment the simulation of the test case will lead to final global
state graphs without loops, i.e., all traces are finite.

52

Test Case Dynamic Behaviour
Test Case Name: InresTestCaseExample
Configuration: ConfigOne
Comments: This is the main test component
Nr | Label | Behaviour Description Constraints Ref | Verdict
1 CREATE(LowerTester, PTCDescription)
2 ISAP!CONreq
3 ISAP?CONconf
4 ISAP!DATreq (DATreq.S := 1) DATreqdef
5 CP17RecDAT
6 ISAP!DATreq (DATreq.S := 2) DATreqdef
7 CP1!SendDAT (SendDAT.S := 2) SendDATdef
8 CP17CorDAT (P)
9 ISAP?DISind
10 CP17FailDAT (F)
11 ISAP?DISind
12 ISAP?DISind F
13 CP17FailDAT (F)
14 ISAP?DISind
15 ISAP?DISind F

Figure 33: TTCN behavior description of the main test component

Simulating the control flow of the Inres test case example. Based on the test case
control structure the control flow aspects of the Inres test case example can be simulated.
Like in the previous example (cf. Page 44) this is done by applying the definitions 3.6 and
3.7 repeatedly. The initial control state is

S0= ({MTC},0,0,{L, L}).

The set { L, L} describes the empty queues through which the main test component and
the parallel test component will exchange coordination messages. In the following we
assume that the first element of the coordination message queue parts of all following
control states describe the queue in which the main test component sends coordination
messages, i.e., through which the parallel test component receives coordination messages.
The second element of the set describes the queue for the other direction.

By simulating the control structure we gain a reachability set which consists of 374
control states. The global state graph will have 374 nodes and 713 state transitions.
There are 5 end states and there are 488272 different traces leading from the initial state
to an end state.

The global state graph cannot be presented here graphically. But, for the sake of
completeness the reachability set and all possible state transitions are listed at the end of

this report (cf. Figures 40-47 and 48-51).

The data structure of the Inres test case example. The data structure of our
example test case is given by a tuple TC'DSpppes = (TE; SV, IV, G, VT ¢,1). The com-

ponents have the following meaning.

33

Test Step Dynamic Behaviour

Test Step Name: PTCDescription

Nr | Label | Behaviour Description Constraints Ref | Verdict
1 MSAP?CR
2 MSAPICC
3 MSAP?DT (S := DT.S) DTdef
4 CP1!RecDAT
5 MSAP?DT [DT.S = S] DTdef
6 MSAP?DT [DT.S = S] DTdef
7 MSAP?DT [DT.S = S] DTdef
8 CP17SendDAT (SuccS := SendDAT.S) SendDATdef
9 MSAPIAK (AK.Nr :=S) AKdef
10 MSAP?DT [DT.S = SuccS] DTdef
11 CP1!CorDAT
12 MSAP!DR
13 +LOCAL
14 +LOCAL
15 +LOCAL
16 +LOCAL
17 +LOCAL
18 +LOCAL
19 +LOCAL

LOCAL
20 MSAP?OTHERWISE
21 CP1!FailDAT
22 MSAP!DR

Figure 34: TTCN behavior description of the parallel test component

Short | Line Nr. | Event Description || Short | Line Nr. | Event Description
Id in TTCN Id in TTCN

M1 1 CREATE M9 9 ISAP?DISind

M2 2 ISAP!CONreq M10 10 CP17FailDAT

M3 3 ISAP7CONconf M11 11 ISAP?DISind

M4 4 ISAP!DATreq M12 12 ISAP?DISind

M5 5 CP17RecDAT M13 13 CP17FailDAT

M6 6 ISAP!DATreq M14 14 ISAP?DISind

M7 7 CP1!SendDAT M15 15 ISAP?DISind

M8 8 CP17CorDAT

Figure 35: Test events related to the main test component

54

Node | Line Nr. | Event Description || Node | Line Nr. | Event Description
Id in TTCN Id in TTCN

PTC Top node of PTC P14(2) | 14 +LOCAL

P1 1 MSAP?CR P15(1) | 15 +LOCAL

P2 2 MSAPICC P15(2) | 15 +LOCAL

P3 3 MSAP?DT P16(1) | 16 +LOCAL

P4 4 CP1!RecDAT P16(2) | 16 +LOCAL

P5 5 MSAP?DT P17(1) | 17 +LOCAL

P6 6 MSAP?DT P17(2) | 17 +LOCAL

p7 7 MSAP?DT P18(1) | 18 +LOCAL

P8 8 CP17SendDAT P18(2) | 18 +LOCAL

P9 9 MSAPIAK P19(1) | 19 +LOCAL

P10 10 MSAP?DT P19(2) | 19 +LOCAL

P11 11 CP1!CorDAT TopL LOCAL

P12 12 MSAP!DR P20 20 MSAP?TOTHERWISE
P13(1) | 13 +LOCAL P21 21 CP1!FallDAT
P13(2) | 13 +LOCAL P22 22 MSAP!DR

P14(1) | 14 +LOCAL

Figure 36: Test events related to the parallel test component

TFE is the set of test events.

It is the same set as used for the test case control structure, i.e., for our example they can

be found in the Figures 35 and 36.
SV = {S:Integer, SuceS:Integer, R:Verdicts}

is the set of state variables. We have only three state variables. The variables S and
SuceS are used in the parallel test component only. In Figure 38 they are declared as test
component variables. The variable R is defined implicitly as the variable which holds the
actual test verdict during a test run.

IV = {SendDAT.S:Integer, DT.S:Integer}

is the set of intermediate variables. They are declared as parameters of ASPs, PDUs, or
coordinations messages in the same manner as described in the previous example. The
concrete TTCN definitions for the Inres test case example are not presented here.

G = A{true, DT.S=S}

is the set of guards. It should be noted that during simulation the expression DT.5=5
always evaluates to true. This is due to the fact, that DT.S is an intermediate variable.
It represents a parameter value of the ASP DT which is received from the IUT during
the test run. We assume that we have no knowledge about the IUT. Therefore the value
of DT.S is unknown.

VT = {DT.S,SendDat.S, fin(R),id(S),id(SuccS),id(R)}

denotes the set of variable transitions. The expressions in VT describe how the state
variables change their values during a test run. Variable transitions are gained from

35

O MTC
|v|1¢ rrrrrrrrrrrrrrr =
M2
L M3
M15
M4
M13
N
AN
M14
M5J/<~////

M10
M12 @V\
e
M11 \
M8 é***i****
e M9 \

~ nte relation
—--> createrelation
— —> cmrelation

> attachrelation

Figure 37: Test case control structure of the Inres test case example

Test Component Variable Declarations
Variable Name Type Value Comments
S Integer
SuccS Integer

Figure 38: Variable declarations for the Inres test case example

56

event é(te) P(te) event é(te) P(te)
te (S, SuceS, R) te (S, SuceS, R)
M1 true (id(S), id(SuccS), id(R)) M9 true | (id(95),id(SuceS), fin(R))
M2 true (id(S), id(SuccS),id(R)) M10 true (id(S), id(SuccS), (F))
M3 true (id(S), id(SuccS), id(R)) M11 true | (id(95),id(SuceS), fin(R))
M4 true (id(S), id(SuccS),id(R)) M12 true (¢d(S), id(SuceS), F)
Mb true (id(S), id(SuccS), id(R)) M13 true (id(S), id(SuccS), (F))
M6 true (id(S), id(SuccS),id(R)) M14 true | (id(9),id(SuceS), fin(R))
M7 true (id(S), id(SuccS), id(R)) M15 true (id(S), id(SuceS), F)
M8 true (id(S), id(SuccS), (P))
PTC true (id(S), id(SuccS),id(R)) P14(2) | true | (¢d(S),id(SuceS),id(R))
P1 true (id(S), id(SuccS), id(R)) P15(1) | true | (¢d(S),id(SuceS),id(R))
P2 true (id(S), id(SuccS), id(R)) P15(2) | true | (¢d(S),id(SuceS), id(R))
P3 true (DT.S,id(SuceS), id(R)) P16(1) | true | (¢d(S),id(SuceS),id(R))
P4 true (id(S), id(SuccS), id(R)) P16(2) | true | (¢d(S),id(SuceS), id(R))
P5 DT.5=S (id(S), id(SuccS), id(R)) P17(1) | true | (¢d(S),id(SuceS),id(R))
(always true)
P6 DT.5=S (id(S), id(SuccS), id(R)) P17(2) | true | (¢d(S),id(SuceS),id(R))
(always true)
P7 DT.5=S (id(S), id(SuccS), id(R)) P18(1) | true | (¢d(S),id(SuceS),id(R))
(always true)
P8 true (id(S), Send DAT.S,id(R)) || P18(2) | true | (id(S),id(SuccS),id(R))
P9 true (id(S), id(SuccS),id(R)) P19(1) | true | (¢d(S),id(SuceS),id(R))
P10 DT.S=SueeS (id(S), id(SuccS), id(R)) P19(2) | true | (¢d(S),id(SuceS),id(R))
(always true)
P11 true (id(S), id(SuccS),id(R)) Topl true | (id(S),id(SuecS),id(R))
P12 true (id(S), id(SuccS), id(R)) P20 true | (id(S),id(SuecS),id(R))
P13(1) true (id(S), id(SuccS),id(R)) P21 true | (id(S),id(SuecS),id(R))
P13(2) true (id(S), id(SuccS), id(R)) P22 true | (id(S),id(SuecS),id(R))
P14(1) true (id(S), id(SuccS),id(R))

Figure 39: The functions ¢ and v for the data structure of the Inres test case example

assignment operations within the behavior description of the test case. Only the variable
transition fin(R) may need an additional explanation. The TTCN standard states that
the actual value of R will be final test verdict if the test case ends without an explicit
assignment of a final test verdict. In our case the main test component may end in
several situations where a preliminary PASS or FFAIL is assigned. The variable transition
fin(R) states explicitly that based on the actual value of R a final test verdict should be
calculated. Later on we will describe the simulation of the Inres test case example. The
simulation will always be terminated when a final test verdict is assigned. This criterion
is independent from the actual state of the parallel test component.

The functions ¢ and ¥ relate guards and variable transitions to test events. We define
them in the table in Figure 39.

57

An intermediate data structure for the Inres test case example. Our test case
example includes parallel test components which communicate by exchanging coordination
messages at coordination points. The information which is contained in message param-
eters may influence the simulation run. Therefore it has to be considered. We do this by
treating message parameters as intermediate variables and by deriving their values from
the send event of a coordination message when the enabling condition of the correspond-
ing receive event is checked and executed. However, we have to provide an intermediate
data structure for this purpose. It is given by a tuple 1D Sy,,..s = (F; EV,IV;TA,0). The
tuple components have the following meaning.

E = {CP1SendDAT,CP1!RecDAT, CP1'Cor DAT,C P11 Fail DAT'}

is the set of events. [is a subset of the test events of the test case control structure
and test case data structure. The elements of I¥ denote the send events of coordination
messages. In the following we use the short identifiers of these events mainly (cf. Figures

35 and 36), i.e., £ = {M7, P4, P11, P21}.
EV = {S:Integer, SuccS:Integer, R:Verdicts} is the set of external variables. In our
case it is identical to the set of state variables of the Inres test case example.

IV = {SendDAT.S:Integer, DT.S:Integer}

is the set of intermediate variables. IV is identical to the set of intermediate variables
which is used in the data structure of the test case.

A= {l,x}
is the set of intermediate assignments. The expressions in IV describe how values are
assigned to intermediate variables.

0: E— [A*UIY)

relates a tuple (iay, ..., 7a4(5v)) of expressions of 1A to each event of . For our example
theta is defined by:

O(MT7):= (2,x)

(P4):= (x,x)

O(P11):= (x,x)

O(P21):= (x,x)
In cases where an intermediate variable is unused, e.g., SendDAT.S and DT.S for P4,
P11, and P21, we assign the expression unknown, i.e., o, to the corresponding tuple
element.

For our example, the function eval;y (cf. Definition 4.6) is identical to 8 for all events
in £. This is due to the fact that external variables are not used in the expressions of 1 A.

The simulation of the Inres test case example. Based on the test case control
structure T'C'C Sy,es, the test case data structure T'C'DSy,,e5, and the intermediate data
structure I DSy, 1t is possible to simulate the complete test case. The simulation should
start in the initial state

38

STO= (({MTC},0,0,{L, L}),(x,cx,none)).

By applying the definitions 4.3 and 4.4 repeatedly we obtain a reachabilty set with 310
states. 33 states are final states. Compared with the results of the control flow simulation
we obtain 28 more final states. This due to the fact that we terminate the simulation
always when a final test verdict is calculated, independently from the actual (control)
state of the parallel test component. The additional final states reflect the different states
in which the parallel test component may end.

The construction of the global state graph will lead to a graph with 310 nodes and
608 arrows, i.e., state transitions. This graph cannot be presented graphically. But, for
the sake of completeness the reachabililty set and the state transitions are listed at the

end of this section (cf. Figures 52-58 and 59-63).

The graph is finite and includes no loops. We can distinguish 478406 traces leading
from the initial state to a final state. 4767 traces end with a PASS verdict and 473639
traces with a FFAIL verdict.

We did not provide a complete example for the execution of an enabled test event
(cf. Section 5.3). Especially, the way of how the intermediate data structure works.
Therefore we look at one state transition in more detail. In state

ST204 = ({M7,P7}0,0,{M7,L}), (e, x,none))

the events M 12, P8, and P14(1) are enabled (cf. Figure 56). The execution of P8 changes
ST204 to

ST227T = ({M7,P8},0,0,{L, L}),(x,2,none)).

The calculation of C'Ssraar = ({M7, P8},0,0,{L, L}) follows the explanation in Section
3.4. The calculation starts from the control state C'Ssr204 = ({M7, PT},0,0,{ M7, L}).

S5T27 — (M7, PTY\PTU P8 = {M7, P8}

nte
SoAEl = \0uUD=0
Soreate = \DUD=0
SOT22T — Ldequeue(tequeue(P8)), L} = {1, L}

For the calculation of the data state DSgra2r = (¢, 2, none)) the intermediate data struc-
ture [DSy, ., and the function eval;;s are relevant. The calculation of D Sgyq97 starts

from DSsraoa = (o, o, none)). The tuple [.S which is needed for the execution of P7,

i.e., DSsr204 PS—’I>Sd DSsr997, is calculated by

1S = eval;qs(next(gstate(tequeue(P8))), DSsraoa)=evaligs(M7, (ox, o, none)) = (2, x)

The details concerning the function eval;ys for our example have been explained in the
previous paragraph. According to Definition 4.4 we need 3 functions fpg, fasc®®, and fE
for the calculation of DSsraer = (di,da,ds) = (x,2,none)). The functions include the
variable transitions within the test case data structure T'C DSy,,.s which are related to

P8. They are defined by

59

I2e(S, SuceS, R, Send DAT.S, DT.S) = id(S)
2ueeS(S SueeS, R, SendDAT.S, DT.S) = SendDAT.S
TE(S, SuceS, R, Send DAT.S, DT.S) = id(R)
Applying these functions leads to
0y = F3(DSsra00, I) = fa((oc, 6, mone), (2, x)) =x
di = EgCCS(DSSTQM, 15) = fgg((oc, x,none), (2,x)) =2
ds = fﬁS(DSSTQM, 15) = fgg((oc, o, none), (2,x)) = none

7 Simulation and Complexity

Within the previous sections we only provided the definitions on which the implementation
of an TTCN simulator can be based. We discussed some problems, but did not prove any
property of the developed model.

However, the last example (cf. Section 6.2) presents the effect of one property in an
intuitive manner, it is the complexity. In general, the behavior tree® of a TTCN test case
with parallel test components grows exponentially.®

Dealing with behavior descriptions which grow exponentially is also problem for test
case generation based on formal descriptions, i.e., system which are described by using
for example LOTOS[9] or SDL [14]. At the University of Berne we tackled the problem
for SDL by using heuristics, partial order simulation methods, and optimization strategies.
Our discussions on this topic are summarized in [21] and [5]. In principle the techniques
presented in both papers can be adapted to our needs, i.e., be used for dealing with the
complexity of TTCN descriptions.

8 Comparison with other approaches

There are some other approaches which provide a formal semantics for TTCN or at least
the possibility for simulating TTCN test cases. We would like to describe 3 approaches
briefly.

o Direct generation of executable code from TTCN descriptions.
e Translation of TTCN into SDL.

e Common semantical representation for SDI. and TTCN.

>A behavior tree can be seen as a mapping of the global state graph onto a, possibly infinite, tree
structure.

5We provide no formal proof of this fact. But, the formal proof can be done by relating our approach
to Petri nets. The generation of the behavior tree for TTCN can be related to the reachability problem
for Petr1 nets which is NP-complete.

60

8.1 Direct generation of executable code from TTCN

Some modern TTCN tools like ITEX 3.0 [20] provide the possibility to generate executable
C code directly from TTCN descriptions. It is also possible to generate some sort of TTCN
simulator.

However, we received the new ITEX 3.0 version when we already had finished the
presented work and the implementation of our TTCN simulator. Therefore, we could not
check if the features of, for example, ITEX 3.0 may also be suitable for solving some of
our problems. But, for the sake of completeness we would like to mention that there exist
commercial tools which provide simulation facilities. It should also be mentioned that
these commercial tools provide no complete formal model on which their simulation is
based. The tool developers interpreted the informal TTCN standard and implemented
their understanding of the standard.

8.2 The translation of TTCN into SDL

In [22] concurrent TTCN test cases are transformed into SDL [14]. The aim of this proce-
dure is to validate TTCN test cases by using validation techniques for SDL specifications.

The problem of such an approach is the mapping of TTCN constructs onto SDL
constructs. TTCN and SDL have been developed for different purposes and therefore
an adequate modeling of TTCN concepts by using SDL constructs is not always possible
or trivial. For example, in TTCN a parallel test component may be connected with
several queues each of which represent a coordination point (CP) or a point of control
and observation (PCO). Contrary to this, in SDL each process is connected to one queue
only. Subsequently, it is not trivial to model a parallel test component by means of an
SDL process. At least the possible interleaving of ASPs, PDUs, and coordination messages
waiting in different CPs and PCOs have to be considered. To avoid such problems, we
decided to base our simulation directly on TTCN.

8.3 A common semantical representation for SDL and TTCN

Over recent years, the European Telecommunications Standards Institute has recognized
that an integrated methodology has to be established covering all aspects of protocol
engineering. As part of this broader context is has been considered reasonable to define
a semantical relationship between SDI and TTCN.

The term common semantical representation refers to a representation, able to repre-
sent the (formal) semantics of objects from different domains in a common model. Such
a common model enables the investigation of semantical relations between objects of the
different domains. Hence, a common semantical representation for SDL and TTCN en-
ables the definition of formal semantical relations between SDL and TTCN specifications.
Such relations may act as a basis when developing a theory and tools for test generation,
test validation, etc.

In [23, 24] a common semantical representation is described that is an operational
model consistent with the semantics defined in [TU Recommendation Z.100 for SDL and in
ISO 9646 Part 3 for TTCN. In [25] an extension to the common semantical representation
is described so that concurrent TTCN is also covered.

61

The main characteristic of the common semantical representation is that it is a compo-
sitional hierarchical model, which enables reasoning about the dynamic behavior of SDL
and concurrent TTCN specifications at different levels of observability. The common se-
mantical representation structures an SDL or concurrent TTCN specification into a set of
hierarchically ordered components. The dynamic semantics of each component is defined
in terms of the dynamic semantics of the components at the next lower level (if the next
lower level exists) or directly for all basic components that do not have lower levels. The
semantics of a components is defined by a labeled transition system as described in [19].
The approach has been proven convenient for the definition of compositional structures
and allows for formal reasoning about temporal properties.

From a more general point of view our automata based model and the basis of the
common semantical representation are identical. The problem which we had with the
on the common semantical representation is that the semantics cannot be implemented
directly and efficiently, i.e., it is not convenient for simulation purposes. Therefore, we
preferred to develop a model which can be implemented directly, i.e., the test case control
structure is implemented as a graph and the data structure is realized in form of a set of
functions which are associated with the nodes of the graph.

9 Summary

We presented a model for the semantics of TTCN. It should serve as the base for the
implementation of a TTCN simulator and, therefore, the definitions are close to imple-
mentation. The model is able to deal with most TTCN constructs, including parallel
TTCN. We implemented the model and started to experiment with the TTCN simula-
tor. The first trials showed that the simulator is suitable for our purposes, i.e., test case
visualization and test result analysis. In a further step we intend to include mechanisms
for dealing with the complexity of TTCN descriptions, i.e., heuristics and partial order
simulation methods.

62

| State | Value || enabled events
S0 ({MTC},0,0,{L,L}) M1
S1 ({M1}p,0M1,{L,L}) M2,PTC
S2 ({M2},0,M1,{L,L}) M3 ,M15,PTC
S3 ({M1,PTC},0,0,{L,L}) M2,P1,P19(1)
S4 ({M3},0M1,{L,L}) M4,PTC
SH B,0,M1,{L,L}) PTC
S6 ({M2,PTC},0,0,{L,L}) M3 ,M15,P1,P19(1)
S7 ({M1,P1},0,0,{L,L}) M2,P2
S8 ({M1,P19(1)},P19(1),0,{L,L}) || M2, TopL
S9 ({M4} o M1,{L L} PTC
S10 ({M3,PTC},0,0,{L,L}) M4,P1,P19(1)
S11 ({0,PTC},0.0,{L,L}) P1,P19(1)
S12 ({M2,P1},0,0,{L,L}) M3,M15,P2
S13 ({M2,P19(1)},P19(1),0,{L,L}) || M3,M15,TopL
S14 ({M1,P2},0,0,{L,L}) M2,P3,P18(1)
S15 ({M1,TopL},P19(1),0,{L,L}) M2,P20
S16 ({M4,PTC},0,0,{L,L}) P1,P19(1)
S17 ({M3,P1},0,0,{L,L}) M4,P2
S18 ({M3,P19(1)},P19(1),0,{L,L}) || M4, TopL
S19 ({0,P1},0,0,{L,L}) P2
S20 ({0,P19(1)},P19(1),0,{ L,L}) TopL
S21 ({M2,P2},0,0,{L,L}) M3,M15,P3,P18(1)
S22 ({M2,TopL},P19(1),0,{L,L}) M3,M15,P20
S23 ({M1,P3},0,0,{L,L}) M2,P4
S24 ({M1,P18(1)},P18(1),0,{L,L}) || M2, TopL
S25 ({M1,P20},P19(1),0,{L,L}) M2,P21
S26 ({M4,P1},0,0,{L,L}) P2
S27 ({M4,P19(1)},P19(1),0,{L,L}) || TopL
528 ({M3,P2},0,0,{L,L}) M4,P3,P18(1)
S29 ({M3,TopL},P19(1),0,{L,L}) M4,P20
S30 ({0,P2},0,0,{L,L}) P3,P18(1)
S31 ({0, TopL},P19(1),0,{L,L}) P20
S32 ({M2,P3},0,0,{L,L}) M3,M15,P4
S33 ({M2,P18(1)},P18(1),0,{L,L}) || M3,M15,TopL
S34 ({M2,P20},P19(1),0,{L,L}) M3,M15,P21
S35 ({M1,P4},0,0,{L,P4}) M2,P5,P17(1)
S36 ({M1,TopL},P18(1),0,{L,L}) M2,P20
S37 ({M1,P21},P19(1),0,{ L,P21}) M2,P22
S38 ({M4,P2},0,0,{L,L}) P3,P18(1)
S39 ({M4,TopL},P19(1),0,{L,L}) P20
S40 ({M3,P3},0,0,{L,L}) M4,P4
S41 ({M3,P18(1)},P18(1),0,{L,L}) || M4, TopL
S42 ({M3,P20},P19(1),0,{L,L}) M4,P21
S43 ({0,P3},0,0,{L,L}) P4
S44 ({0,P18(1)},P18(1),0,{L,L}) TopL
S45 ({0,P20},P19(1),0,{L,1L}) P21
S46 ({M2,P4},0,0,{ L ,P4}) M3,M15,P5,P17(1)

Figure 40: Part I of control states for the Inres test case example

63

| State | Value || enabled events
S47 ({M2,TopL},P18(1),0,{L,L}) M3,M15,P20
S48 ({M2,P21},P19(1),0,{L,P21}) M3,M15,P22
S49 ({M1,P5},0,0,{L,P4}) M2,P6,P16(1)
S50 ({M1,P17(1)},P17(1),0,{L,P4}) || M2, TopL
SH1 ({M1,P20},P18(1),#,{L,L}) M2,P21
S52 ({M1,P22},P19(1),0,{L,P21}) M2,P19(2)
S53 ({M4,P3},0,0,{L,L}) P4
Sh4 ({M4,P18(1)},P18(1),0,{L,L}) TopL
Shh ({M4,P20},P19(1),0,{L,L}) P21
S56 ({M3,P4},0,0,{ L P4}) M4,P5,P17(1)
SH7 ({M3,TopL},P18(1),0,{L,L}) M4,P20
SH8 ({M3,P21},P19(1),0,{L,P21}) M4,P22
S59 ({0,P4},0,0,{L,P4}) P5,P17(1)
S60 ({0, TopL},P18(1),0,{L,L}) P20
S61 ({0,P21},P19(1),0,{L,P21}) P22
S62 ({M2,P5},0,0,{ L P4}) M3,M15,P6,P16(1)
S63 ({M2,P17(1)},P17(1),0,{L,P4}) || M3, M15, TopL
S64 ({M2,P20},P18(1),0,{L,1L}) M3,M15,P21
S65 ({M2,P22},P19(1),0,{L,P21}) M3,M15,P19(2)
S66 ({M1,P6},0,0,{L,P4}) M2,P7,P15(2)
S67 ({M1,P16(1)},P16(1),0,{L,P4}) || M2, TopL
S68 ({M1,TopL},P17(1),0,{ L, P4}) M2,P20
S69 ({M1,P21},P18(1),0,{L,P21}) M2,P22
S70 ({M1},0,0,{L,P21}) M2
S71 ({M4,P4},0,0,{ L P4}) M5,P5,P17(1)
S72 ({M4,TopL},P18(1),0,{L,L}) P20
S73 ({M4,P21},P19(1),0,{L,P21}) M13,P22
S74 ({M3,P5},0,0,{L,P4}) M4,P6,P16(1)
S75 ({M3,P17(1)},P17(1),0,{L,P4}) || M4, TopL
S76 ({M3,P20},P18(1),#,{L,L}) M4,P21
ST ({M3,P22},P19(1),0,{L,P21}) M4,P19(2)
S78 ({0,P5},0,0,{L,P4}) P6,P16(1)
S79 ({0,P17(1)},P17(1),0,{L,P4}) TopL
S80 ({0,P20},P18(1),0,{L,L}) P21
S81 ({0,P22},P19(1),0,{L,P21}) P19(2)
S82 ({M2,P6},0,0,{L,P4}) M3,M15,P7,P15(2)
S83 ({M2,P16(1)},P16(1),0,{L,P4}) || M3, M15, TopL
S84 ({M2,TopL},P17(1),0,{ L, P4}) M3,M15,P20
S85 ({M2,P21},P18(1),0,{L,P21}) M3,M15,P22
S86 ({M2},0,0,{L,P21}) M3 ,M15
S87 ({M1,P7},0,0,{L,P4}) M2,P14(2)
S88 ({M1,P15(2)},P15(2),0,{L,P4}) || M2, TopL
S89 ({M1,TopL},P16(1),0,{ L, P4}) M2,P20
S90 ({M1,P20},P17(1),0,{L,P4}) M2,P21
S91 ({M1,P22},P18(1),0,{L,P21}) M2,P18(2)
S92 ({Mb5,P4} 0,0 {L,1L}) M6,P5,P17(1)
S93 ({M4,P5},0,0,{ L ,P4}) M5,P6,P16(1)

Figure 41: Part II of control states for the Inres test case example

64

| State | Value || enabled events
S94 ({M4,P17(1)},P17(1),0,{ L,P4}) || M5, TopL
S95 ({M4,P20},P18(1),0,{L,L}) P21
S96 ({M13,P21},P19(1),0,{L,1L}) M14,P22
S97 ({M4,P22},P19(1),0,{ L, P21}) M13,P19(2)
S98 ({M3,P6},0,0,{L,P4}) M4,P7,P15(2)
S99 ({M3,P16(1)},P16(1),0,{L,P4}) || M4, TopL
S100 ({M3,TopL},P17(1),0,{L,P4}) M4,P20
S101 ({M3,P21},P18(1),0,{L,P21}) M4,P22
S102 ({M3},0,0,{L,P21}) M4
S103 ({0,P6},0,0,{L,P4}) P7,P15(2)
S104 ({0,P16(1)},P16(1),0,{ L,P4}) TopL
S105 ({0, TopL},P17(1),0,{ L, P4}) P20
S106 ({0,P21},P18(1),0,{ L,P21}) P22
S107 (0,0,0,{L,P21})
S108 ({M2,P7},0,0,{L,P4}) M3 ,M15,P14(2)
S109 ({M2,P15(2)},P15(2),0,{ L,P4}) || M3,M15, TopL
S110 ({M2,TopL},P16(1),0,{L,P4}) M3,M15,P20
S111 ({M2,P20},P17(1),0,{L,P4}) M3,M15,P21
S112 ({M2,P22},P18(1),0,{L,P21}) M3 ,M15,P18(2)
S113 ({M1,P14(2)},P14(2),0,{ L,P4}) || M2, TopL
S114 ({M1,TopL},P15(2),0,{ L,P4}) M2,P20
S115 ({M1,P20},P16(1),0,{ L,P4}) M2,P21
S116 ({M1,P21},P17(1),0,{L,P21}) M2,P22
S117 ({M6,P4},0,0,{L,L}) M7,P5,P17(1)
S118 ({M5,P5},0,0,{L,L}) M6,P6,P16(1)
S119 ({Mb5,P17(1)},P17(1),0,{L,L}) M6, TopL
S120 ({M4,P6},0,0,{L P4} M5,P7,P15(2)
S121 ({M4,P16(1)},P16(1),0,{ L,P4}) || M5, TopL
S122 ({M4,TopL},P17(1),0,{ L,P4}) M5,P20
S123 ({M4,P21},P18(1),0,{L,P21}) M13,P22
S124 ({0,P21},P19(1),0,{L,L}) P22
S125 ({M13,P22},P19(1),0,{L,1L}) M14,P19(2)
S126 ({M4},0,0,{L,P21}) M13
S127 ({M3,P7},0,0,{L,P4}) M4,P14(2)
S128 ({M3,P15(2)},P15(2),0,{ L,P4}) || M4, TopL
S129 ({M3,TopL},P16(1),0,{ L,P4}) M4,P20
S130 ({M3,P20},P17(1),0,{L,P4}) M4,P21
S131 ({M3,P22},P18(1),0,{L,P21}) M4,P18(2)
S132 ({0,P7},0,0,{L,P4}) P14(2)
S133 ({0,P15(2)},P15(2),0,{ L, P4}) TopL
S134 ({0, TopL},P16(1),0,{ L, P4}) P20
S135 ({0,P20},P17(1),0,{L,P4}) P21
S136 ({0,P22},P18(1),0,{ L,P21}) P18(2)
S137 ({M2,P14(2)},P14(2),0,{ L,P4}) || M3,M15, TopL
S138 ({M2,TopL},P15(2),0,{ L,P4}) M3,M15,P20
S139 ({M2,P20},P16(1),0,{ L ,P4}) M3,M15,P21
S140 ({M2,P21},P17(1),0,{L,P21}) M3,M15,P22

Figure 42: Part III of control states for the Inres test case example

65

enabled events

State | Value |

S141 | ({M1,TopL},P14(2),0,{L P4}) | M2,P20

S142 | ({M1,P20},P15(2),0,{L,P4}) M2,P21

S143 | ({M1,P21},P16(1),0,{L,P21}) M2,P22

S144 | ({M1,P22}P17(1),0,{L,P21}) M2, P17(2)
S145 | ({M7,p4},0,0.{M7,1}) M12,P5,P17(1)
S146 | ({M6,P5},0.0{L L} M7,P6,P16(1)

S147 | ({M6,P17(1)},P17(1),0,{L,L}) || M7, TopL
S148 | ({M5,P6},0.0.{L L} M6,P7,P15(2)
S149 | ({M5,P16(1)},P16(1),,{L,L}) || M6,TopL
S150 | ({M5,TopL},P17(1),0.{L,1}) M6,P20
S151 | ({M4,P7},0,0,{L P4} M5, P14(2)
S152 | ({M4,P15(2)},P15(2),§,{L,P4}) || M5, TopL
S153 | ({M4,TopL},P16(1),0,{L,P4}) || M5,P20
S154 | ({M4,P20},P17(1),0,{L,P4}) M5, P21
S155 | ({M13,P21},P18(1),0,{L,1}) M14,P22
S156 | ({M4,P22},P18(1),0,{L,P21}) M13,P13(2)
S157 | ({0,P22},P19(1),0,{L,L}) P19(2)

S158 | ({M13},0,6,{L,L}) M14

S159 | ({M3,P14(2)},P14(2),§,{L,P4}) || M4, TopL
S160 | ({M3,TopL},P15(2),0,{L,P4}) | M4,P20
S161 | ({M3,P20},P16(1),0,{L,P4}) M4,P21
S162 | ({M3,P21},P17(1),0,{L,P21}) M4,P22
S163 | ({0,P14(2)},P14(2),0,{L,P4}) TopL

S165 | ({0,P20},P16(1),0,{L,P4}) P21

S166 | ({0,P21},P17(1),0,{L,P21}) P22

S167 | ({M2,TopL},P14(2),0,{L,P4}) || M3,M15,P20

{

)
S168 | ({M2,P20},P15(2),0,{L,P4}) M3,M15,P21
S169 | ({M2,P21},P16(1),0,{L,P21}) M3,M15,D22
S170 | ({M2,P22},P17(1),0,{L,P21}) M3,M15,P17(2)
S171 | ({MI,P20},P14(2),0,{L,P4}) M2,P21
S172 | ({M1,P21},P15(2),0,{L,P21}) M2,P22
S173 | ({M1,P22},P16(1),0,{L,P21}) M2,P16(2)
S174 | ({0,P4},0,0,{M7,1}) P5,P17(1)
S175 | ({M7,P5},0,0.{M7,L}) M12,P6,P16(1)
S176 | ({M7,P17(1)},P17(1),0,{M7,L}) || M12,TopL
S177 | ({M6,P6},0.0.{L L} M7,P7,P15(2)

5178
5179

{M6,P16(1)},P16(1
{M6, TopL},P17(1),

)0 {L,1}) M7, TopL
{M5,P7}.0,6,{L,L}
)

RENRY M7,P20
)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
E
S164 | ({0,TopL},P15(2),0,{L,P4}) P20
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

S180 M6,P14(2)
S181 | ({M5,P15(2)},P15(2),0,{L,L}) || M6,TopL
S182 | ({M5b,TopL},P16(1),0,{L,1}) M6,P20
S183 | ({M5,P20},P17(1),0.{L,1}) M6,P21
S184 | ({M4,P14(2)},P14(2),§,{L,P4}) || M5, TopL
S185 | ({M4,TopL},P15(2),0,{L,P4}) || M5,P20
S186 | ({M4,P20},P16(1),0,{L,P4}) M5, P21
S187 | ({M4,P21},P17(1),0,{L,P21}) M13,P22

Figure 43: Part IV of control states for the Inres test case example

66

State | Value || enabled events |

S188 | ({0,P21},P18(1),0,{L,L}) P22

S189 | ({M13,P22},P18(1),0.{L,L}) M14,P13(2)
S190 | (0,0.0,{L,1})

S191 | ({M3,TopL},P14(2),0,{L,P4}) | M4,P20
S192 | ({M3,P20},P15(2),0,{L,P4}) M4,P21
S193 | ({M3,P21},P16(1),0,{L,P21}) M4,P22
S194 | ({M3,P22},P17(1),0,{L,P21}) M4,P17(2)
S195 | ({0,TopL},P14(2),6,{L,P4}) P20

S196 | ({0,P20},P15(2),0,{L,P4}) P21

S197 | ({0,P21},P16(1),§,{L,P21}) P22

S198 | ({0,P22},P17(1),§,{L,P21}) P17(2)

S199 | ({M2,P20},P14(2),0,{L,P4}) M3,M15,P21
S200 | ({M2,P21},P15(2),0,{L,P21}) M3,M 15,22
S201 | ({M2,P22},P16(1),0,{L,P21}) M3,M15,P16(2)
S202 | ({M1,P21},P14(2),0,{L,P21}) M2,P22
S203 | ({M1,P22},P15(2),0,{L,P21}) M2,P152
5204 | ({0,P5},0,0,{M7,1}) P6,P16(1)
S205 | ({0,P17(1)},P17(1),6,{M7,1}) | TopL

5206 | ({M7,P6},0,0,{M7,L}) M12,P7,P15(2)
S207 | ({M7,P16(1)},P16(1),0,{M7,L}) || M12,TopL
S208 | ({M7,TopL},P17(1),0,{M7,L}) | M12,P20
5209 | ({M6,P7},0.0.{L L} M7,P14(2)

)
{M6,P20},P17(1),0

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
()
(0
()

S210 | ({M6,P15(2)},P15(2),0,{L,L}) | M7,TopL

S211 | ({M6,TopL},P16(1),0,{L,1}) M7,P20
(
()9
(0
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

5212 {J_ 1} M7,P21
S213 | ({M5H,P14(2)},P14(2),0.{L,L}) | M6, TopL
S214 | ({M5,TopL},P15(2),0.{L,1}) M6,P20
S215 | ({M5,P20},P16(1),0.{L,L}) M6, P21
S216 | ({M5,P21},P17(1),0.{L,P21}) || M6,P22
S217 | ({M4,TopL},P14(2),0,{L,P4}) | M5,P20
S218 | ({M4,P20},P15(2),0,{L P4}) M5, P21
S219 | ({M4,P21},P16(1),0,{L,P21}) | MI13,P22
S220 | ({M13,P21},P17(1),6,{L L}) M14,P22
S221 | ({M4,P22},P17(1),0,{L,P21}) | MI13,P17(2)
S222 | ({0,P22},P18(1),0,{L,L}) P13(2)
S223 | ({M3,P20},P14(2),0,{L,P4}) M4,P21
S224 | ({M3,P21},P15(2),0,{L,P21}) | M4,p22
S225 | ({M3,P22},P16(1),0,{1,P21}) | M4,P16(2)
S226 | ({0,P20},P14(2),0,{L,P4}) P21

S227 | ({0,P21},P15(2),§,{L,P21}) P22

S228 | ({0,P22},P16(1),§,{L,P21}) P16(2)
S229 | ({M2,P21},P14(2),6,{L,P21}) | M3,MI1p,P22
S230 | ({M2,P22},P15(2),0,{L,P21}) || M3,MI5,P152
S231 | ({M1,P22},P14(2),5,{L,P21}) | M2Pl142
S232 | ({0,P6},0,0,{M7,1}) P7,P15(2)
5233 | ({0,P16(1)},P16(1),0.{M7,1}) || TopL

S234 | ({0,TopL},P17(1),0,{M7,L1}) P20

Figure 44: Part V of control states for the Inres test case example

67

| State | Value || enabled events |
5235 ({M7,P7},0,0,{M7,L}) M12,P8,P14(2)
5236 ({M7,P15(2)},P15(2),0,{M7,L}) || M12,TopL
S237 ({M7,TopL},P16(1),0,{M7,L}) M12,P20
5238 ({M7,P20},P17(1),0,{M7,L}) M12,P21
5239 ({M6,P14(2)},P14(2),0,{ L, L}) M7, TopL
5240 ({M6,TopL },P15(2),0,{L,L}) M7,P20
S241 ({M6,P20},P16(1),0,{L,L}) M7,P21
S242 ({M6,P21},P17(1),0,{L,P21}) M7,P22
5243 ({Mb, TopL},P14(2),0,{L,L}) M6,P20
S244 ({M5,P20},P15(2),0,{L,L}) M6,P21
S245 ({Mb,P21},P16(1),0,{ L,P21}) M6,P22
5246 ({Mb5,P22} ,P17(1),0,{L,P21}) M6,P17(2)
S247 ({M4,P20},P14(2),0,{L,P4}) M5,P21
S248 ({M4,P21},P15(2),0, {J_ P21}) M13,P22
S249 ({M13,P21},P16(1),0,{L,L}) M14,P22
S250 ({M4,P22},P16(1),0,{ L, P21}) M13,P16(2)
S251 ({0,P21},P17(1),0,{L,L}) P22
5252 ({M13,P22},P17(1),0,{L,L}) M14,P17(2)
5253 ({M3,P21},P14(2),0,{ L,P21}) M4,P22
S254 ({M3,P22},P15(2),0,{ L,P21}) M4,P152
S255 ({0,P21},P14(2),0,{ L,P21}) P22
5256 ({0,P22},P15(2),0,{ L,P21}) P152
S257 ({M2,P22},P14(2),0,{ L, P21}) M3,M15,P142
S258 ({0,P7},0,0,{M7,L}) P8,P14(2)
5259 ({0,P15(2)},P15(2),0,{M7,L}) TopL
S260 ({0, TopL},P16(1),0,{M7,L}) P20
S261 ({0,P20},P17(1),0,{M7,L}) P21
S262 ({M7,P8},0,0,{L,L}) M12,P9
S263 ({M7,P14(2)},P14(2),0,{M7,L}) || M12, TopL
S264 ({M7,TopL},P15(2),0,{M7,L}) M12,P20
S265 ({M7,P20},P16(1),0,{M7,L}) M12,P21
S266 ({M7,P21},P17(1),0,{M7,P21}) M10,M12,P22
S267 ({M6,TopL },P14(2),0,{L,L}) M7,P20
S268 ({M6,P20},P15(2),0,{L,L}) M7,P21
S269 ({M6,P21},P16(1),0,{L,P21}) M7,P22
S270 ({M6,P22},P17(1),0,{L,P21}) M7,P17(2)
S271 ({Mb5,P20},P14(2),0,{L,L}) M6,P21
S272 ({Mb,P21},P15(2),0,{L,P21}) M6,P22
S273 ({Mb,P22},P16(1),0,{ L,P21}) M6,P16(2)
S274 ({M5},0,0,{L,P21}) M6
S275 ({M4,P21},P14(2),0,{ L,P21}) M13,P22
S276 ({M13,P21},P15(2),0,{L,L}) M14,P22
S277 ({M4,P22},P15(2),0,{ L,P21}) M13,P152
S278 ({0,P21},P16(1),0,{L,L}) P22
S279 ({M13,P22},P16(1),0,{L,L}) M14,P16(2)
5280 ({0,P22},P17(1),0,{L,L}) P17(2)
5281 ({M3,P22},P14(2),0,{ L,P21}) M4,P142

Figure 45: Part VI of control states for the Inres test case example

68

| State | Value | enabled events
5282 ({0,P22},P14(2),0,{ L,P21}) P142
5283 ({0,P8},0,0,{L,L}) P9
5284 ({0,P14(2)},P14(2),0,{M7,L}) TopL
S285 ({0, TopL},P15(2),0,{M7,L}) P20
5286 ({0,P20},P16(1),0,{M7,L}) P21
S287 ({0,P21},P17(1),0,{M7,P21}) P22
S288 ({M7,P9},0,0,{L,L}) M12,P10,P13(2)
5289 ({M7,TopL},P14(2),0,{M7,L}) M12,P20
5290 ({M7,P20},P15(2),0,{M7,L}) M12,P21
5291 ({M7,P21},P16(1),0,{M7,P21}) || M10,M12,P22
5292 ({M10,P21},P17(1),0,{M7,L}) M11,P22
5293 ({M7,P22},P17(1),0 {M7,P21}) || M10,M12,P17(2)
S294 ({M6,P20},P14(2),0,{L,1L}) M7,P21
5295 ({M6,P21},P15(2),0,{L,P21}) M7,P22
5296 ({M6,P22},P16(1),0,{ L,P21}) M7,P16(2)
5297 ({M6},0,0,{L,P21}) M7
5298 ({Mb,P21},P14(2),0,{ L,P21}) M6,P22
5299 ({Mb,P22},P15(2),0,{ L,P21}) M6,P152
S300 ({M13,P21},P14(2),0,{L,L}) M14,P22
S301 ({M4,P22},P14(2),0,{ L,P21}) M13,P142
S302 ({0,P21},P15(2),0,{L,1}) P22
S303 ({M13,P22},P15(2),0,{L,1}) M14,P152
S304 ({0,P22},P16(1),0,{L,1L}) P16(2)
S305 ({0,P9},0,0,{L,L}) P10,P13(2)
S306 ({0, TopL},P14(2),0,{M7,L}) P20
S307 ({0,P20},P15(2),0,{M7,L}) P21
S308 ({0,P21},P16(1),0,{M7,P21}) P22
S309 ({0,P22},P17(1),0,{M7,P21}) P17(2)
S310 ({M7,P10},0,0,{L,1}) M12,P11
S311 ({M7,P13(2)},P13(2),0,{L,L}) M12,TopL
S312 ({M7,P20},P14(2),0,{M7,L}) M12,P21
S313 ({M7,P21},P15(2),0,{M7,P21}) || M10,M12,P22
S314 ({M10,P21},P16(1),0,{M7,L}) M11,P22
S315 ({M7,P22},P16(1),0,{M7,P21}) || M10,M12,P16(2)
S316 ({0,P21},P17(1),0,{M7,L}) P22
S317 ({M10,P22},P17(1),0,{M7,L}) M11,P17(2)
S318 ({M7},0,0,{M7,P21}) M10,M12
S319 ({M6,P21},P14(2),0,{ L,P21}) M7,P22
S320 ({M6,P22},P15(2),0,{ L,P21}) M7,P152
S321 ({Mb,P22},P14(2),0,{ L, P21}) M6,P142
S322 ({0,P21},P14(2),0,{L,1L}) P22
S323 ({M13,P22} P14(2),0,{L,1}) M14,P142
S324 ({0,P22},P15(2),0,{L,1}) P152
S325 ({0,P10},0,0,{L,1}) P11
5326 ({0,P13(2)},P13(2),0,{L,L}) TopL
S327 ({0,P20},P14(2),0,{M7,L}) P21
S328 ({0,P21},P15(2),0,{M7,P21}) P22

Figure 46: Part VII of control states for the Inres test case example

69

| State | Value | enabled events
S329 ({0,P22},P16(1),0,{M7,P21}) P16(2)
S330 (0,0,0,{M7,P21})
S331 ({M7,P11},0,0,{ L ,P11}) M8 ,M12,P12
S332 ({M7,TopL},P13(2),0,{L,L}) M12,P20
S333 ({M7,P21},P14(2),0 {M7,P21}) || M10,M12,P22
S334 ({M10,P21},P15(2),0,{M7,L}) M11,P22
S335 ({M7,P22},P15(2),0,{M7,P21}) || M10,M12,P152
S336 ({0,P21},P16(1),0,{M7,L}) P22
S337 ({M10,P22},P16(1),0,{M7,L}) M11,P16(2)
S338 ({0,P22},P17(1),0,{M7,L}) P17(2)
S339 ({M10},0,0,{M7,L}) MI11
5340 ({M6,P22},P14(2),0,{ L,P21}) M7,P142
S341 ({0,P22},P14(2),0,{L,L}) P142
5342 ({0,P11},0,0,{ L, P11}) P12
5343 ({0, TopL},P13(2),0,{L,L}) P20
S344 ({0,P21},P14(2),0,{M7,P21}) P22
S345 ({0,P22},P15(2),0,{M7,P21}) P152
5346 ({M&,P11},0,0,{L,L}) M9,P12
S347 ({M7},0,0,{L,P11}) M8 ,M12
5348 ({M7,P20},P13(2),0,{L,L}) M12,P21
5349 ({M10,P21},P14(2),0,{M7,L}) M11,P22
S350 ({M7,P22},P14(2),0,{M7,P21}) || M10,M12,P142
S351 ({0,P21},P15(2),0,{M7,L}) P22
S352 ({M10,P22},P15(2),0,{M7,L}) M11,P152
S353 ({0,P22},P16(1),0,{M7,L}) P16(2)
S354 (0,0,0,{M7,L})
S355 (0,0,0,{L,P11})
S356 ({0,P20},P13(2),0,{L,L}) P21
S357 ({0,P22},P14(2),0,{M7,P21}) P142
S358 ({0,P11},0,0,{L,1}) P12
S359 ({M8},0,0,{L,L}) M9
S360 ({M7,P21},P13(2),0,{L,P21}) M10,M12,P22
S361 ({0,P21},P14(2),0,{M7,L}) P22
S362 ({M10,P22},P14(2),0,{M7,L}) M11,P142
S363 ({0,P22},P15(2),0,{M7,L}) P152
S364 ({0,P21},P13(2),0,{ L,P21}) P22
S365 ({M10,P21},P13(2),0,{L,L}) M11,P22
S366 ({M7,P22},P13(2),0,{L,P21}) M10,M12,P132
S367 ({0,P22},P14(2),0,{M7,L}) P142
S368 ({0,P22},P13(2),0,{ L,P21}) P132
S369 ({0,P21},P13(2),0,{L,L}) P22
S370 ({M10,P22},P13(2),0,{L,1L}) M11,P132
S371 ({M7},0,0,{L,P21}) M10,M12
S372 ({0,P22},P13(2),0,{L,L}) P132
S373 ({M10},0,0,{L,L}) MI11

Figure 47: Part VIII of control states for the Inres test case example

70

50 M. 51 5123, 52 s1755. 53 | 52 M3, 54 52 %35, 85

52 25 56 53 M5, s6 53 2L 97 53", 58 54 2% 59
S48 510 |5 S s |56 s10 | 56 M s11 56 T 512
5672 513 | T M3 o512 | ST PR 514 | 58 M3, s13 S8 T2 S15
598 516 | s10M 516 | s105h, 517 | s10 Y, s18 | s L, s19
511 2 g0 | 51228 517 | 128,519 | s12 53 501 | s13 23, s18
S13M% 520 | 513" 592 | s1u M3 o591 | 514 7% 593 | 514 T sm
s15 83 522 | 51528, 595 | s16 5, 526 | 516 =%, sa71 | s17 M4, 996
17 2%, 998 | 5184, 597 [18T, 529 [519 P35 530 | 520 ™, 531
S21 M3 528 | 521 M 530 | 521 % 539 | 521 T 533 | 522 M3 en
S22 M50, 531 | 922 7%, 534 | 923 M3, 532 | 523 15, S35 | 524 215, 533
524 ™% 936 | 525 M3, 534 | 525 7, 937 | 526 3. 938 | 527 T, 539
528 M4, 538 | 528 Fh a0 | 528 TP sur | 59 M4 g9 | 529 P2 g4
530 3. 543 | 930 729 saa | 931 P8, 545 | 932 M3 540 | 532 M 543
532 2% a6 | 53328 sa1 | 933 M8 saa | 533 sar | 934 2 sa2
s34 M8 sa5 | 3422 sus | 3523, a6 | S35 2. sa9 | 835 Y, S0
536 23, 547 | 936 228, 951 | 93723, s48 | 537 22, 52 | 538 25, 553
538 0 54 | 53922 555 | 540 M4, 553 | s40 B, 556 | s41 M8, S54
S41 7% 557 | 542 M3 555 | 542 PB 558 | 543 A S50 | s44 “BF. S60
545 %, 561 | 546 M3, 556 | 54625, 559 | 546 L%, 562 | 5465, 563
S4T 23, S57 | 547 M2 560 | 547 23, 564 | 548 58 | 548 2 561
s48 P8, 565 | 549 23, 562 | 549 £%, 566 | s49 2D s67 | S50 3. s63
S50 “2¥, 568 | S51 M3, 564 | S51 22, s69 | s52 M3, S65 552 1% 570
553 Tho 571 | 554 T 572 | 555 P2 573 | s56 M. 571 | 856 £ 574
556) 575 | 57 M4 572 | 957 BB, 76 | 958 M4, 573 | s58 P, 77
559 2%, 578 | 959 Y 979 | s60 28, 580 | s61 25, 81 | 562 23, 574
562 M2 578 | 562 2% o820 | 562) ss3 | s63 M3, 575 | s63 M 579
563 T, 584 | s64 M2 576 | 564 M 580 | 64 P2 585 | 565 M3, 577
S65 3, 581 | S65 7%, 586 | S66 23, 582 | 566 15, 587 | 566 5 . 588
567 M3 583 | 567 2. 589 | 568 25, 584 | 568 T8 590 | 569 M3, 585
$69 23, 591 | s10 M3, 586 | s71 M3, 892 | 511 E5 503 | 511, S04
s12 28, 595 | 9738 506 | 51388, 597 | 574 M50 593 | 574 25, 598
574 "D 599 | 575 M4, 594 | 57572, 100 | 576 24, 595 | 876 22, s101
571 M4 597 | 77 R 5102 | 978 £S5, s108 | 578 Y, s104 | 579 B, S105
580 225, 5106 | 981 2, 5107 | 982 M3, 998 | 582 M 5103 | 582 L5, 5108
582 ") 109 | 983 M3 s99 | 983 M5 s104 | 583 T2 s110 | S84 M3, 5100
S84 M5, 5105 | S84 75, S111 | S85 45, S101 | S85 *5, 5106 | S85 25, S112

Figure 48: Part I of control state transitions for the Inres test case example

71

M15

P14(2)

586 M3 5102 586 X 5107 587 M3 5108 587 2% 5113 | ss8 23, s109
TopL M2 P20 M2 P21
588 "L 5114 | 589 M2 S110 589 28 5115 590 M3 5111 590 £, s116
S91 M3 s112 | S91 22 s70 $92 M8 s117 | S92 B3, 5118 | 892 PEY) s119
593 M5 s118 | S93 2%, 5120 | 593 2 121 | s94 M3, s119 | 594 TP S192
595 225, 5123 | 596 M. 5124 | 996 25, s125 | 597 MEL 5195 | 997 B, 5126
598 M4 s120 | s98 25, 5127 | 598 T 198 | S99 M4 s121 | 599 TP s129
M4 P20 M4 P22 M4
5100 24, 51922 | 5100 228, 5130 | s101 M3, 5123 | s101 £, 5131 | S102 24, 5126
$103 25, 5132 | 5103 72 5133 | s104 Z2E. s134 | s105 22, s135 | S106 223, 5136
$108 M3 s127 | s108 M5, s132 | $108 T2 5137 | s100 M3, s128 | $109 M. 5133
M15 P20

5109 72 | 5138

5110 M3 5129

S110 —, S134

S110 —, S139

S111 M3 5130

S111 M58 5135

S111 22 5140

5112 M3 5131

5112 M8 5136

S112 228 586

5113 M3 s137

5113 2% 5141

s114 M2 5138

s114 228 5149

5115 X3 5139

S115 225 5143

5116 M2, 5140

5116 25, 5144

5117 M5 5145

s117 25, 5146

st 7Y s1a7 | s118 M8, 5146 | S118 £, 5148 | 5118 Y 5149 | s119 M8, 5147
s119 12 5150 | 5120 23, 5148 | s120 5. s151 | 5120 29 5152 | s121 M3, 5149
5121 2% s153 | S122 2B, 5150 | S122 B2, s154 | s123 M, s155 | 123 £, S156
s124 223 s157 | s125 MM, s157 | S125 EX¥ s158 | S126 M s158 | S127 24, S151

$127 P22 s159 | s128 M4, s152 | s128 T2F s160 | S120 M4, s153 | 5129 228, s161

S130 M4, 5154 | s130 25, s162 | s131 M8, 5156 | s131 2%, s102 | s132 T2 163
TopL P20 P21 P182 M3

5133 22 s164 | 5134 228, 5165 | 5135 Z5, 5166 | S136 B2 s107 | 5137 23, 5159
M15 TopL M3 M15 P20

5137 M8 5163 | 5137 22, 5167 | 5138 M3, 5160 | S138 M8 s164 | 5138 £28. 5168

5139 M3 5161

5139 218 s165

5139 224 S169

5140 M2 5162

5140 ¥ 5166

5140 23, s170

Ss141 M3 5167

S141 228 5171

5142 M3 5168

5142 224 5179

P22

P172

M12

5143 M2 5169 | S143 22, s173 | S144 M3, 5170 | S144 ZEE, 570 5145 M 9174
s145 L5 s175 | s145 PEY . s176 | 146 M5, 5175 | S146 2. s177 | s146 T2 s178
M7 TopL M6 P7 P15(2)

5147 M5 5176 | S147 “2F. 5179 | s148 M8, 5177 | s148 Z5, s180 | s148 T 2N, s181

5149 M8 5178

5149 7P 5189

5150 28 5179

5150 228, 5183

5151 X3 5180

P14(2)

P20

5151 228 184 | 5152 M3, s181 | 5152 Z2Y, 5185 | S153 M3, 5182 | 5153 £28. 5186
S154 M35 5183 | S154 228, 5187 | S155 MH 5188 | S155 £H. 5189 | S156 Y. 5189
P182 P192 M14 TopL

S156 — . S126

S157 — . S190

5158 —, S190

5159 X4 5184

5159 —, S191

5160 X4, 5185

5160 223, 5192

5161 M4, 5186

5161 22 5193

5162 X4 5187

S162 223, 5194

5163 “2¥ . 5195

5164 228, 5196

5165 228 5197

5166 223, 5198

5167 X3 5191

5167 X1 5195

5167 228, 5199

5168 X3 5192

5168 X8 5196

S168 225 5200

5169 M3 5193

5169 M5 5197

5169 23, 5201

S170 M3 5194

5170 M 5198

S170 217 586

Ss171 M3 5199

5171 228 5202

Ss172 M3 5200

5172 23 5203

5173 M3 5901

5173 22 570

5174 25 5204

S174 P17(2)

5175 M1 5904

5175 28, 5206

s175 7159 g907

5176 218 5905

1) 9905
5176 “2¥ . 5208

Figure 49: Part II of control state transitions for the Inres test case example

72

S177 M5 5206 | 5177 £h. 5200 | s177 TEY), 5910 | 5178 M3, 5207 | s178 T, 211
S179 M5 5208 | 5179 £, 5212 | S180 M8, 5200 | 5180 Y. 5213 | s181 M8, 5210
5181 2% 5214 | s182 M8, 5211 | S182 B2, 5215 | s183 M8, 5212 | s183 PH, 5216
5184 M8 5013 | s184 "2, 5217 | 5185 M2, 5214 | S185 £, 5018 | S186 X3, 5215

5186 £24 5219

5187 X8 5990

s187 222 5991

5188 £, 5299

5189 MY 5999

5189 215 5158

5191 M4 5917

s191 228, 5293

5192 M4 5218

5192 25 5994

5193 M4 5919

5193 22 5995

5194 M4 5991

5194 2272 5102

5195 228 5996

5196 £5, 5997

5197 £33, 5298

5198 2172 s107

5199 M3 5993

5199 M 5996

P21

M15

P22

5199 255999 | 5200 X3, 5224 | $200 M5, 5297 | 5200 £E. 5230 | 5201 MR, 5995
M15 P162 M2 P22 M2

5201 M8 5998 | 5201 2%, 586 5202 M3 5999 | 5202 £33, 59231 | 5203 M3, 5230

5203 2152 570 5204 2%, 5232 | 5204 T2 9933 | s205 T2F, s234 | S206 M3, 5232

5206 L5, 5235 | S206 T2, 9236 | 5207 M3, 5233 | s207 TF, 5237 | S208 M2, 5234

5208 223 5238 | 5200 M5, 5235 | 5209 T2 9239 | s210 M5, s236 | s210 L. 9240

5211 M5 5237 | 5211 228, 5241 | $212 M5, 5938 | 5212 BB 5242 | 5213 M8, 5239

5213 724 5943

5214 M8 5240

5214 228 5944

5215 M8 5941

5215 2 5245

5216 M5, 5249

5216 £, 5246

5217 M8 5243

5217 28 5247

5218 M5 5944

5218 25 5248

5219 M8 5949

5219 22 5950

5220 X 5951

5220 23 59259

5221 Y18 5959

5221 2% 5196

5222 2182 5190

5223 M4 5947

5923 24 5953

5224 M4 5948

5224 223 5954

59225 M4 5950

5225 215 5109

5926 L2 5955

5297 £33 5956

59228 P52 5107

5929 M8 5953

5929 M8 5955

5929 23 5957

5230 M3 5954 | $230 M 5956 | S230 223, 586 5231 M3 so57 | 5231 B, s70
5232 £T, g958 | s232 T g959 | 5233 TE s260 | s234 28, s261 | 5235 M2 258
5235 L% 9262 | S235 "X 9963 | 5236 M3, 5259 | S236 “F, 5264 | s237 M2 260

5237 228 5965

5238 M8 5961

5238 £24 5966

5239 M5 5963

5239 ZPY 5967

5240 M5 5264

5240 228 5268

5241 M5 5965

5241 25 5269

5242 M 5966

5242 223 5970

5243 M8 5967

5243 228 so71

5244 M8 5968

5244 P24 5979

5245 M8 5969

5245 £ 5973

5246 M8 5970

5246 2172 5974

5247 M3 5971

5247 BB so75 | 5248 M 5976 | $248 £2, 5977 | 5249 M2, 5978 | 5249 £B, 5979
M13 P162 P22 M14 P172

5250 —. 5279

5250 — . S126

5251 —, 5280

5252 —, S280

5252 —, S158

5253 M4 5975

5253 £2 5981

5254 M4 5977

5254 2552 5102

5255 23 5989

P152

M15

P142

5256 252 5107 | s257 M3, 5981 | 5257 M8, 5980 | s257 BX. ss6 5258 L8 5983

5258 T2 gosa | 5250 T2 985 | $260 228, 5286 | S261 B3, s287 | s262 M2, S983

5262 L%, 5988 | 5263 M2 5984 | 5263 "L, 5289 | 5264 M2, 5985 | s264 £2%. 5290
M12 P21 M10 M12 P22

5265 —. 5286

5265 —, 5291

5266 —, 5292

5266 —, S287

5266 —. 5293

5267 X% 5989

5267 228 5294

5268 X5 5290

5268 £24 59295

5269 ML 5291

5269 £33 5296

5270 M5 5293

5270 P17 $297

5271 M8 5294

5271 £2% . 5208

5972 M8 5295

5272 £ 5299

5273 M8 5296

5973 P19 9974

5974 M8 5997

5275 M1 5300

5275 P23 5301

5276 M1 5302

5276 £33, 5303

5277 M3 5303

Figure 50: Part III of control state transitions for the Inres test case example

73

5277 P52 5196

5278 23 5304

5979 M4 5304

5279 P52 5158

5280 2272 S190

5281 M4 5301

5281 1% 5102

5982 P12 5107

5283 22, 5305

5284 7L 5306

P20

P21

P22

M12

P10

5285 P28 9307 | 5286 £, 5308 | 5287 £33, 5309 | 5288 M 5305 | 5288 LY. S310
5288 T2 9311 | 9289 M2, 9306 | 5289 £23, 5312 | $290 M3, 5307 | S200 £2. 313
5291 MY 9314 | 5291 M 5308 | 5291 £B, 5315 | 5202 MY s316 | 5292 £E. 5317

5293 M9 g317

5293 M 5309

5293 2172 5318

5294 M% 5319

5294 P25 5319

5295 ML 5313

5295 £23 5390

5296 M5 5315

5296 £152 §297

5297 ML 5318

5208 M8 5319

5208 23 9391

5299 M8 5390

5299 2132 o714

5300 X1 5392

5300 £2. 5323

5301 X8 5393

5301 2% 5196

5302 223 5324

5303 Y12 5394

5303 252 5158

5304 2152 5190

5305 218 5395

5305 P13(2)

5306 228, 5397

5307 £24 . 5398

5308 £33 5329

5309 2% 5330

— 7 5326
5310 —, 5325

5310 £ 5331

M12

TopL

M12

M12
P21

M10

5311 M5 5396 | 9311 2%, 9332 | 5312 M, 5397 | 5312 ZA, 5333 | 5313 ML 5334
M12 P22 M11 P22 M10

5313 M 9398 | 5313 23, 5335 | 5314 M1, 5336 | 9314 £5, 5337 | 5315 ML 5337

5315 M1 5329 | $315 22, 5318 | 5316 £33, 5338 | 5317 ML 9338 | $317 X, 5339

5318 M0 5339

5318 M 5330

5319 M5 5333

5319 £, 5340

5320 M5 5335

5320 252 5297

5321 M8 5340

5321 2% 5974

5322 223 5341

5323 MY 9341

5323 P12 5158

5324 P52 5190

5325 P45 5349

5326 T4 5343

5327 B3 5344

5328 223 9345 | 9320 225, 9330 | 5331 M8, 5346 | 5331 M, 5342 | $331 13, 5347
M12 P20 M10 M12 P22
5332 M 6343 | 9332 238, 5348 | 9333 M0 5349 | 9333 M2 g344 | 5333 £23. 5350

5334 M1 5351

5334 23 53592

5335 M0 9359

5335 M1 9345

5335 2% 5318

5336 22 5353

5337 ML 9353

5337 21% 5339

5338 217 5354

5339 M1 5354

5340 M5 5350

5340 P14 5997

5341 2242 5190

5342 213 5355

5343 228 5356

5344 P25 5357

5345 152 9330

5346 M2 5358

5346 213 5359

5347 M8 5359

5347 M2 5355

5348 M 5356

5348 P35 5360

5349 M1 9361

5349 £ 5362

5350 X0 5362

5350 X1 5357

5350 2% 5318

5351 22 5363

5352 ML 9363

5352 2132 5339

5353 2152 5354

5356 224 5364

5357 2% 5330

5358 213 5190

5359 M3 5190

5360 X9 5365

5360 25 5364

5360 22 5366

5361 223, 5367

5362 M1 5367

5362 2% 5339

5363 2132 5354

5364 22 5368

5365 XL 5369

5365 238, 5370 | 5366 ML 5370 | S366 MLF. S368 | S366 213, s371 | S367 T, 5354
5368 21325107 | 5369 £33, 5372 | S370 M. 5372 | S370 BE3. s373 | S371 MY 5373

s371 MY s107

s372 2132 5190

s373 M 5190

Figure 51: Part IV of control state transitions for the Inres test case example

74

State Value enabled events
control state data state

STO ({MTC},0,0,{L, L}, (o, o<, none)) || M1

ST1 ({M1},0, M1, {L L}, (x, o, none)) || M2, PTC

ST?2 (({M2},0, M1, {L L}, (x, o, none)) || M3, M15, PTC

ST3 | (LML, PTCT, 0,0, (L 1), (x, o, none)) || M2, P1, P19(2)

ST4 ({M3},0,M1,{L L}, (x, o, none)) || M4, PTC

STH [(0,0, M1,1L, LD, (o, o, 7))

ST6 ({M2,PTC}0,0,{L, L}, (x, o, none)) || M3, M15, P1, P19(2)

ST7 ({M1,P1},0,0,{L, L}, (x, o, none)) || M2, P2

ST8 ({M1,P19(2)}, P19(2),0,{L, L}), (o<, 0, none)) || M2, ToplL

ST9 ({M4},0, M1 {L L}, (x, o, none)) || PTC

ST10 | (({M3, PTCT, 0,0, (L, 1], (x, &, none)) || M4, P1, P19(2)

ST11 | ((0,0,0,{L,L}), (oc,oc,F))

ST12 | ({M2,P1},0,0,{L, L}, (x, ¢, none)) || M3, M15, P2

ST13 | ({M2,P19(2)}, P19(2),0,{L, L}), (x,ox,none)) || M3, M15, TopL

ST14 | ({M1,P2},0,0,{L, L}, (x, ¢, none)) || M2, P3, P18(2)

ST15 | ({M1,TopL}, P19(2),0,{L, L}), (x, o, none)) || M2, P20

ST16 | (({M4, PTCY,0,0,{L, 1}), (=, &, none)) || PL, P19(2)

ST17 | ({M3,P1},0,0,{L, L}, (x, o, none)) || M4, P2

ST18 | ({M3,P19(2)}, P19(2),0,{L, L}), (x,ox,none)) || M4, TopL

ST19 | ({M2,P2},0,0,{L, L}, (x, o, none)) || M3, M15, P3, P18(2)

ST20 | (B, P19(2),0,{L, 1)), (o, o, 7))

ST21 | ({M2,TopL}, P19(2),0,1L, 1), (o, o, none)) || M3, M15, P20

ST22 | ({M1,P3},0,0,{L, L}, (x, o, none)) || M2, P4

ST23 | ({M1,P18(2)}, P18(2),0,{L, L}), (x,ox,none)) || M2, TopL

ST24 | ({M1, P20}, P19(2),0,{L, L}), (x, o, none)) || M2, P21

ST25 | ({M4,P1},0,0,{L, L}, (o, o, none)) || P2

ST26 | ({M4,P19(2)}, P19(2),0,{L, L}), (x,x,none)) || TopL

ST27 | ({M3,P2},0,0,{L, L}, (x, o, none)) || M4, P3, P18(2)

ST28 | ({M3,TopL}, P19(2),0,{L, L}), (x, o, none)) || M4, P20

ST29 | ({M2,P3},0,0,{L, L}, (x, o, none)) || M3, M15, P4

ST30 | ({M2,P18(2)}, P18(2),0,{L, L}), (x,ox,none)) || M3, M15, TopL

ST31 | (({M2, P20}, P19(2),0,{L, 1)), (x, &, none)) || M3, M15, P21

ST32 | ({M1,P4},0,0,{L, P4}), (x, ¢, none)) || M2, P5, P17(2)

ST33 | ({M1,TopL}, P18(2),0,{L, L}), (x, o, none)) || M2, P20

ST34 | (({M1, P21}, P19(2),0,{ L, P21}), (o, ox, none)) || M2, P22

ST35 | ({M4,P2},0,0,{L, L}, (x, o, none)) || P3, P18(2)

ST36 | ({M4,TopL}, P19(2),0,{L, L}), (x, o, none)) || P20

ST37 | ({M3,P3},0,0,{L, L}, (x, o, none)) || M4, P4

ST38 | ({M3,P18(2)}, P18(2),0,{L, L}), (x,ox,none)) || M4, TopL

ST39 | ({M3, P20}, P19(2),0,{L, L}), (x, o, none)) || M4, P21

STA0 | ({M2, P4},0,0, (L, P4}), (x, o, none)) || M3, M15, P5, P17(2)

ST41 | (0, P18(2),0,{L, L}), (o<,o<,F))

ST42 | ({M2,TopL}, P18(2),0,1L, 1), (o, o, none)) || M3, M15, P20

ST43 | ({M2, P211, P19(2),0, [L, P21}), (o, o, none)) || M3, M15, P22

ST44 | ({M1,P5},0,0,{L, P4}), (x, ¢, none)) || M2, P6, P16(2)

ST45 | ({M1,P17(2)}, P17(2),0,{L, P4}), (x,o,none)) || M2, TopL

Figure 52: Part I of states for the Inres test case example

75

State Value enabled events
control state data state

ST46 | (({M1, P20}, P18(2),0,{L, L}), (x, ¢, none)) || M2, P21

ST47 | (({M1, P22}, P19(2),0,1L, P21}), (o, o, none)) || M2, P192

ST48 | ({M4,P3},0,0,{L, L}, (o, o<, none)) || P4

ST49 | (({M4, P18(2)}, P18(2),0,{L, L}), (x,x,none)) || TopL

ST50 | (({M4, P20}, P19(2),0,{L, L}), (x, o, none)) || P21

STH1 | ({M3,P4},0,0,{L, P4}), (x, o, none)) || M4, P5, P17(2)

ST52 | ({M3,TopL}, P18(2),0,{L,L}), (x, o, none)) || M4, P20

ST53 | (({M3, P21}, P19(2),0,{L, P21}), (o, o, none)) || M4, P22

ST54 | ((0,0,0,{L, P4}), (o, o, F))

STH5 | ({M2,P5},0,0,{L, P4}), (x, o, none)) || M3, M15, P6, P16(2)

STH6 | ({M2,P17(2)}, P17(2),0,{L, P4}), (x,oc,none)) || M3, M15, TopL

ST57 | ({M2, P20}, P18(2),0,{L, L}), (x, o, none)) || M3, M15, P21

ST58 | (8, P19(2), 0, {L, P21}), (<, o, F))

ST59 | (({M2, P22}, P19(2),0,{L, P21)), (x,ox, none)) || M3, M15, P192

ST60 | ({M1,P6},0,0,{L, P4}), (x, ¢, none)) || M2, P7, P15(2)

ST61 | ({M1,P16(2)}, P16(2),0,{L, P4}), (x,o,none)) || M2, TopL

ST62 | ({M1,TopL}, P17(2),0,{L, P4}), (x, o, none)) || M2, P20

ST63 | (({M1, P21}, P18(2),0,{L, P21}), (o, ox, none)) || M2, P22

ST64 | ({M1},0,0,{L, P21}), (o, oc, none)) || M2

ST65 | (({M4, P4},0,0,{L, P4}), (x, ¢, none)) || M5, P5, P17(2)

ST66 | ({M4,TopL}, P18(2),0,{L,L}), (x, o, none)) || P20

ST67 | (({M4, P21}, P19(2),0,{L, P21}), (o, o, none)) || M13, P22

ST68 | ({M3,P5},0,0,{L, P4}), (x, o, none)) || M4, P6, P16(2)

ST69 | ({M3,P17(2)}, P17(2),0,{L, P4}), (x,o,none)) || M4, TopL

ST70 | (({M3, P20}, P18(2),0,{L, L}), (x, o, none)) || M4, P21

STT1 | (({M3, P22}, P19(2),0,1L, P21}), (o, o, none)) || M4, P192

ST72 | ({M2,P6},0,0,{L, P4}), (x, o, none)) || M3, M15, P7, P15(2)

ST73 | ({M2,P16(2)}, P16(2),0,{L, P4}), (x,oc,none)) || M3, M15, TopL

ST74 | (0, P17(2),0, { L, P4)}), (<, o, F))

ST | ({M2,TopL}, P17(2),0,{L, P4}), (x, o, none)) || M3, M15, P20

STT6 | ({M2, P21}, P18(2),0,{L P21}), (x,ox, none)) || M3, M15, P22

STTT | ({M2},0,0,{L, P21}, (x, ¢, none)) || M3, M15

STT8 | ({M1,P7},0,0,{L, P4}), (x, o, none)) || M2, P14(2)

ST79 | ({M1,P15(2)}, P15(2),0,{L, P4}), (x,o,none)) || M2, TopL

ST80 | ({M1,TopL}, P16(2),0,{L, P4}), (x, o, none)) || M2, P20

ST81 | (({M1, P20}, P17(2),0,{L PA}), (. ox, none)) || M2, P21

ST82 | (({M1, P22}, P18(2),0,1L, P21}), (o, ox, none)) || M2, P182

ST83 | ({Mb,P4},0,0,{L, L}, (x, ¢, none)) || M6, P5, P17(2)

ST84 | ({M4, P5},0,0,{L, P4}), (x, ¢, none)) || M5, P6, P16(2)

ST85 | ({M4, P17(2)}, P17(2),0,{L, P4}), (x,o,none)) || Mb, TopL

ST86 | (({M4, P20}, P18(2),0,{L, L}), (x, o, none)) || P21

STST | (({M13, P21}, P19(2),0, (L L)), (.o, (F))) | M14, P22

STSS | (({M4, P22}, P19(2),0,{L, P21}), (o, ox, none)) || M13, P192

ST89 | ({M3,P6},0,0,{L, P4}), (x, o, none)) || M4, P7, P15(2)

STI0 | ({M3,P16(2)}, P16(2),0,{L, P4}), (x,ox,none)) || M4, TopL

STI1 | ({M3,TopL}, P17(2),0,{L, P4}), (x, o, none)) || M4, P20

Figure 53: Part II of states for the Inres test case example

76

State Value enabled events
control state data state
ST92 | ({M3, P21}, P18(2),0, (L, P21}), (o, o, none)) || M4, P22
STI3 | ({M3},0,0,{L, P21}, (o<, oc, none)) || M4
ST | ({M2,P7},0,0,{L, P4}), (x,x,none)) || M3, M15, P14(2)
ST95 | ({M2, P15(2)}, P15(2),0,{L, P4}), (o, ox,none)) || M3, M15, TopL
ST96 | (0, P16(2),0, (L, P4}, (o, 00, 7))
STIT | ({M2,TopL}, P16(2),0,{L, P4}), (x,x,none)) || M3, M15, P20
ST9S | (({M2, P20, P17(2),9,{L PA}), (o, ox, none)) || M3, M15, P21
ST99 | ((0, P18(2), 0, L, P21}), (x, o, F))
ST100 | ({M2, P22}, P18(2),0,{L, P21}), (o, none)) || M3, M15, P182
ST101 | ((0,0,0,{L, P21}), (o, o, F))
ST102 | ({M1, P14(2)}, P14(2),0,{L, P4}), (ox,ox,none)) || M2, TopL
ST103 | ({M1,TopL}, P15(2),0,{L, P4}), (x, x,none)) || M2, P20
ST104 | (({MT1, P20}, P16(2),0,{L, P4}), (=, o, none)) || M2, P21
ST105 | ({M1, P21}, P17(2),0,{L, P21}), (x, o, none)) || M2, P22
ST106 | ({M6,P4},0,0,{L, L}), (x,x,none)) || M7, P5, P17(2)
ST107 | ({Mb, P5},0,0,{L, L}), (x,x,none)) || M6, P6, P16(2)
ST108 | ({Mb, P17(2)}, P17(2),0,{L, L}), (ox,ox, none)) || M6, TopL
ST109 | (({M4, P6},0,0,{L, P4}), (x,x,none)) || Mb, P7, P15(2)
STI10 | (({M4, P16(2)}, P16(2),0,{L, PA}), (x, o, none)) || M5, TopL
ST111 | ({M4,TopL}, P17(2),0,{L, P4}), (x,x,none)) || M5, P20
ST112 | (({MA4, P217, P18(2),0,{L, P21}), _ (x, o, none)) || M13, P22
STI13 | ({M13, P22}, P19(2),0,{L, 1}), (0,00, (F))) || M14, P192
ST114 | ({M4},0,0,{L, P21}, (x,x,none)) || M13
ST115 | ({M3,P7},0,0,{L, P4}), (x,x,none)) || M4, P14(2)
ST116 | ({M3, P15(2)}, P15(2),0,{L, P4}), (ox,ox,none)) || M4, TopL
STI17 | ({M3,TopL}, P16(2),0,{L, P4}), (x,x,none)) || M4, P20
ST118 | ({M3, P20}, P17(2),0,{L, P4}), (x,x,none)) || M4, P21
STI19 | (({M3, P22}, P18(2),0,{L, P21}), _ (x, o, none)) || M4, P182
ST120 | ({M2, P14(2)}, P14(2),0,{L, PA}), (o, o, none)) || M3, M15, TopL
ST121 | (0, P15(2), 0, { L, P1)), (=, o, F))
ST122 | ({M2,TopL}, P15(2),0, (L, P4}), (c, o, none)) || M3, M 15, P20
ST123 | ({M2, P20}, P16(2),0,{L, PA}), (.o, none)) || M3, M15, P21
ST124 | ({M2, P21}, P17(2),0,1L, P21}), (o, ox, none)) || M3, M15, P22
ST125 | ({M1,TopL}, P14(2),0,{L, P4}), (x, x,none)) || M2, P20
ST126 | ({MT1, P20}, P15(2),0,1L, P4}), (o, none)) || M2, P21
ST127 | ({MT1, P21}, P16(2),0,{L, P21}), _ (x, o, none)) || M2, P22
ST128 | ({MT1, P22}, P17(2),0,{L, P21}), (x, o, none)) || M2, P172
ST129 | ({M7,P4},0,0,{M7,1}), (x, x,none)) || M12, P5, P17(2)
ST130 | ({M6, P5},0,0,{L, L}), (x,x,none)) || M7, P6, P16(2)
ST131 | ({Me6, P17(2)}, P17(2),0,{L, L}), (ox,ox, none)) || M7, TopL
ST132 | ({Mb, P6},0,0,{L, L}), (x,x,none)) || M6, P7, P15(2)
ST133 | ({Mb, P16(2)}, P16(2),0,{L, L}), (o, o, none)) || M6, TopL
ST134 | ({Mb,TopL}, P17(2),0,{L, L}), (x,x,none)) || M6, P20
ST135 | ({M4,P7},0,0,{L, P4}), (x,x,none)) || Mb, P14(2)
ST136 | ({M4, P15(2)}, P15(2),0,{L, P4}), (o, o, none)) || Mb, TopL
ST137 | ({M4,TopL}, P16(2),0,{L, P4}), (x, x,none)) || M5, P20

Figure 54: Part III of states for the Inres test case example

77

State Value enabled events
control state data state
ST138 | (1M4, P20}, P17(2),0, (L, P4)), (x, o, none)) || M5, P21
ST139 | ({M13, P21}, P18(2),0, (L, 1)), (<, o, (F))) || M14, P22
ST140 | (({M4, P22}, P18(2),0, {L, P21}), (c, o, none)) || M13, P182
STTAL | ({M13),9,0,{L, L}), (o, o, (7)) || M4
ST142 | ({M3, P14(2)}, P14(2),0,{L, P4}), (, o, none)) || M4, TopL
ST143 | ({M3,TopL}, P15(2),0,{L, P4}), (x, o, none)) || M4, P20
ST144 | (({M3, P20, P16(2),0, | L, PA}), (x, o, none)) || 34, P21
ST145 | (({M3, P21}, P17(2),0,1L P21)), (o, none)) || M4, P22
ST146 | (0, P14(2), 0, {L, P4}), (<, o, F))
ST147 | ({M2,TopL}, P14(2),0, (L, P4}), (o, o, none)) || M3, M15, P20
ST148 | ({M2, P20}, P15(2),0, {L, P4}), (x, o, none)) || M3, M15, P21
ST149 | ({M2, P21}, P16(2),0, (L, P21)), (o, ox, none)) || M3, M15, P22
ST150 | (0, P17(2), 0, {L, P21}), (o, o, 7))
STI151 | ({M2, P22}, P17(2),0,{L, P21}), (o, o, none)) || M3, M15, P172
ST152 | ({M1, P20}, P14(2),0, | L, P4}), (x, o, none)) || M2, P21
ST153 | (({M1, P21}, P15(2),0,1L P21)), (o, o, none)) || M2, P22
ST154 | ({M1, P22}, P16(2),0,{L, P21}), (o, o, none)) || M2, P162
ST155 | ((0,0,0, (M7, 1)), (=, >, F))
ST156 | ({M7,P5},0,0,{M7,L1}), (x, ¢, none)) || M12, P6, P16(2)
STI57 | ({MT7,P17(2)}, P17(2),0,{M7T,L1}), (x,ox,none)) || M12, TopL
ST158 | ({Me6,P6},0,0,{L, L}, (x, o, none)) || M7, P7,P15(2)
ST159 | ({M6, P16(2)}, P16(2),0,{L, L}), (x, ¢, none)) || M7, TopL
ST160 | ({M6,TopL}, P17(2),0,{L, L}), (x, o, none)) || M7, P20
ST161 | ({M5,P7},0,0,{L, L}), (x, o, none)) || M6, P14(2)
ST162 | ({Mb, P15(2)}, P15(2),0,{L, L}), (x, ¢, none)) || M6, ToplL
ST163 | ({Mb,TopL}, P16(2),0,{L, L}), (x, o, none)) || M6, P20
ST164 | ({Mb, P20}, P17(2),0,{L, L}), (x, o, none)) || M6, P21
ST165 | ({M4, P14(2)}, P14(2),0,{L, P4}), (x, o, none)) || Mb, TopL
ST166 | ({M4,TopL}, P15(2),0,{L, P4}), (x, o, none)) || M5, P20
ST167 | (({M4, P20}, P16(2),0, | L, P4}), (=, &, none)) || M5, P21
ST168 | (({M4, P21}, P17(2),0,1L P21)), (o, , none)) || M13, P22
ST169 | ({M13, P22}, P18(2),0, (L, 1)), (<, o, (F))) || M14, P182
ST170 | ({M3,TopL}, P14(2),0,{L, P4}), (x, o, none)) || M4, P20
ST171 | ({M3, P20}, P15(2),0,{L, P4}), (x, o, none)) || M4, P21
ST172 | ({M3, P21}, P16(2),0,1L P21)), (o, , none)) || M4, P22
ST173 | ({M3, P22}, P17(2),0,{L, P21}), (o, o, none)) || M4, P172
ST174 | (({M2, P20}, P14(2),0, (L, PA}), (x, &, none)) || M3, M15, P21
ST175 | ({M2, P21}, P15(2),0,{L P21}), (o, o, none)) || M3, M15, P22
ST176 | (0, P16(2), 0, {L, P21}), (=, >, F))
STITT | (M2, P22}, P16(2),0, L, P21}), (o, o, none)) || M3, M15, P162
ST178 | (({M1, P21}, P14(2),0,{L, P21}), (o, none)) || M2, P22
ST179 | ({M1, P22}, P15(2),0,1L P21}), (o, none)) || M2, P152
ST180 | ({M7,P6},0,0,{M7,1}), (x, o, none)) || M12, P7, P15(2)
ST181 | ({M7,P16(2)}, P16(2),0,{MT,L1}), (x,ox,none)) || M12, TopL
ST182 | (0, P17(2),0, (M7, 1)), (<, o, F))
ST183 | ({MT7,TopL}, P17(2),0,{M7,L1}), (x, o, none)) || M12, P20

Figure 55: Part IV of states for the Inres test case example

78

State Value enabled events
control state data state
ST184 | ({Me6,P7},0,0,{L, L}, (x,x,none)) || M7, P14(2)
ST185 | ({M6, P15(2)}, P15(2),0,{L, L}), (x,x,none)) || M7,TopL
ST186 | ({M6,TopL}, P16(2),0,{L, L}), (x,x,none)) || M7, P20
ST187 | ({M6, P20}, P17(2),0,{L, L}), (x,x,none)) || M7, P21
ST188 | ({Mb, P14(2)}, P14(2),0,{L, L}), (x,x,none)) || M6,TopL
ST189 | ({Mb,TopL}, P15(2),0,{L, L}), (x, x,none)) || M6, P20
ST190 | ({Mb, P20}, P16(2),0,{L, L}), (x,x,none)) || M6, P21
STI91 | (({M5, P21}, P17(2),0,{L, P21}), (x,c,none)) || M6, P22
ST192 | ({M4,TopL}, P14(2),0,{L, P4}), (x, x,none)) || M5, P20
ST193 | (({M4, P20, P15(2), 0, (L, P4}), (x, o, none)) || M5, P21
ST194 | (({M4, P21}, P16(2),0, {L, P21}), (o, o, none)) || M13, P22
ST195 | ({M13, P21}, P17(2),0,{L, 1)), (<, o, (F))) || M14, P22
ST196 | (({M4, P23}, P17(2),0, {L, P21}), (=, o, none)) || M13, P172
ST197 | ({M3, P20}, P14(2),0,{L, P4}), (x,x,none)) || M4, P21
ST198 | (({M3, P21}, P15(2),0,{L, P21}), (x, o, none)) || M4, P22
ST199 | (({M3, P22}, P16(2),0, { L, P21}), (c, o, none)) || M4, P162
ST200 | ({M2, P21}, P14(2),0,{L, P21}), (e, o, none)) || M3, M15, P22
ST201 | (B, P15(2), 0, {L, P21}), (=, <, F))
ST202 | ({MZ, P22}, P15(2),0, {L, P21}), (o, ox, nonc)) || M3, M15, P152
ST203 | ({MT1, P22}, P14(2),0, { L, P21}), (e, o, none)) || M2, P12
ST204 | ({M7,P7},0,0,{M7,1}), (x, x,none)) || M12, P8, P14(2)
ST205 | ({M7,P15(2)}, P15(2),0,{M7T,L}), (cx,ox,none)) || M12, TopL
ST206 | ((0, P16(2), B, {M7, 1)), (=, <, 7))
ST207 | ({M7,TopL}, P16(2),0,{M7,L1}), (x,x,none)) || M12, P20
ST208 | ({M7, P20}, P17(2),0,{M7,1}), (x, x,none)) || M12, P21
ST209 | ({M6, P14(2)}, P14(2),0,{L, L}), (x,x,none)) || M7,TopL
ST210 | ({M6,TopL}, P15(2),0,{L, L}), (x, x,none)) || M7, P20
ST211 | ({M6, P20}, P16(2),0,{L, L}), (x,x,none)) || M7, P21
ST212 | ({M6, P21}, P17(2),0,{L, P21}), (e, o, none)) || M7, P22
ST213 | ({Mb,TopL}, P14(2),0,{L, L}), (x, x,none)) || M6, P20
ST214 | ({Mb, P20}, P15(2),0,{L, L}), (x,x,none)) || M6, P21
ST215 | (({M5, P21}, P16(2),0,{L, P21}), (e, o, none)) || M6, P22
ST216 | (({M5, P22}, P17(2),0, {L, P21}), (e, o, none)) || M6, P172
ST217 | (({M4, P20}, P14(2),0, { L, P4}), (, o, none)) || M5, P21
ST218 | ({M4, P21}, P15(2),0, {L, P21)), (x, o, none)) || M13, P22
ST219 | ({M13, P21}, P16(2),0,{L, 1)), (<, >, (F))) || 314, P22
ST220 | (({M4, P22}, P16(2),0, {L, P21}), (e, o, none)) || M13, P162
ST221 | (0, P17(2),0,{L, L}), (o<, o, F))
ST222 | ({M13, P22}, P17(2),0,{L, 1)), (<, o0, (1)) || 314, P172
ST223 | ({M3, P21}, P14(2),0, { L, P21}), (e, o, none)) || M4, P22
ST224 | (({M3, P22}, P15(2),0, { L, P21}), (c, o, none)) || M4, P152
ST225 | (0, P14(2), 0, L, P21}), (x, o, F))
ST226 | (1 M2, P22}, P14(2),0, (L, P21}), (o, o, none)) || M3, M 15, P142
ST227 | ({M7,P8},0,0,{L L}, (x,2,none)) || M12, P9
ST298 | ({M7, P14(2)}, P14(2),0, {M7, 1}), (e, o, none)) || M12, TopL
ST229 | (B, P15(2), 0, (M7, 1)), (x, o, F))

79

Figure 56: Part V of states for the Inres test case example

State Value enabled events
control state data state
ST230 | ({M7,TopL}, P15(2),0,{M7,L1}), (x,o,none)) || M12, P20
ST231 | ({M7, P20}, P16(2),0, {M7,1}), (x, ¢, none)) || M12, P21
ST232 | ({M7, P21}, P17(2),0, {MT, P21}), (x, o, none)) || M10, M12, P22
ST233 | ({M6,TopL}, P14(2),0,{L, L}), (x, o, none)) || M7, P20
ST234 | ({M6, P20}, P15(2),0,{L, L}), (x, ¢, none)) || M7, P21
ST235 | (({M6, P21}, P16(2),0, 1L, P21)), (x,, none)) || M7, P22
ST236 | (({M6, P22}, P17(2),0, 1L, P21}), (o, o, none)) || M7, P172
ST237 | ({Mb, P20}, P14(2),0,{L, L}), (x, o, none)) || M6, P21
ST238 | (({M5, P21}, P15(2),0,{L, P21}), (o, , none)) || M6, P22
ST239 | ({M5, P22}, P16(2),0, L, P21}), (o, o, none)) || M6, P162
ST240 | ({M5},0,0,{L, P21}), (x, ¢, none)) || M6
ST241 | (({M4, P21}, P14(2),0, {L, P21)), (o, none)) || M13, P22
ST212 | ({M13, P21}, P15(2),0,1L, 1)), (o, (F))) || 314, P22
ST243 | ({M4, P22}, P15(2),0, {L, P21)), (o, none)) || M13, P152
ST244 | (0, P16(2),0,{L, L}), (o, o, F))
ST215 | ({M13, P22}, P16(2),0,1L 1)), (>, o, (F))) || 314, P162
ST246 | (({M3, P22}, P14(2),0,{L, P21}), (o, o, none)) || M4, P142
ST247 | ((0,0,0,{L, 1), (<, 2, 7))
ST248 | ({M7, P9}.0.0,{L 1)), (=, 2, none)) || M12, P10, P13(2)
ST249 | (0, P14(2), 0, {MT, 1)), (<, o, F))
ST250 | ({M7,TopL}, P14(2),0,{M7,L1}), (x, o, none)) || M12, P20
ST951 | ({M7, P20}, P15(2),0, (M7, 1}), (o, o, none)) || M12, P21
ST952 | (({M7, P21}, P16(2), 0, {MT, P21)), (x, o, none)) || M10, M12, P22
ST953 | ({M10, P21}, P17(2),0, (M7, 1)), (o, , (F))) || M1L, P22
ST254 | (0, P17(2),9, {MT, P21)), (, o, F))
ST255 | ([M7, P22}, P17(2),0, {M7, P21}), (=, o, none)) || M10, M12, P172
ST256 | ({M6, P20}, P14(2),0,{L, L}), (x, o, none)) || M7, P21
ST957 | (({M6, P21}, P15(2),0,{L, P21}), (o, , none)) || M7, P22
ST258 | (({M6, P22}, P16(2),0, 1L, P21}), (o, none)) || M7, P162
ST259 | ({M6},0,0,{L, P21}, (x, o, none)) || M7
ST260 | (({M5, P21}, P14(2),0, L, P21)), (x,, none)) || M6, P22
ST261 | (({M5, P22}, P15(2),0,{L, P21}), (o, o, none)) || M6, P152
ST262 | ({M13, P21}, P14(2),0,1L, 1)), (.o, (F))) || M14, P22
ST263 | (({M4, P22}, P14(2),0,{L, P21}), (o, o, none)) || M13, P142
ST264 | (0, P15(2),0,{L, L}), (o, o, F))
ST265 | ({M13, P22}, P15(2),0,1L 1)), (.o, (F))) || 314, P152
ST266 | ({M7,P10},0,0,{L, L}), (e, 2 none)) M12, P11
ST267 | ({M7,P13(2)}, P13(2),0,{L, 1}), (x,2,none)) || M12 TopL
ST268 | ({MT7, P20}, P14(2),0, {M7, 1}), (x, o, none)) || M12, P21
ST269 | ({M7, P21}, P15(2),0, {M7T, P21}), (x, o, none)) || M10, M12, P22
ST270 | ({M10, P211, P16(2),0, (M7, 1)), (o, (F))) || M1L, P22
ST271 | ((0, P16(2), 9, {M7T, P21)), (, o, F))
ST272 | (({M7, P22}, P16(2), 0, {MT, P21}), (x, o, none)) || M10, M12, P162
ST273 | ({M10, P22}, P17(2),0, (M7, 1)), (o, , (F))) || M1L, P12
ST274 | ({M7},0,0,{M7, P21}), (x, o, none)) || M10, M12
ST275 | (({M6, P21}, P14(2),0, L, P21)), (x,x, none)) || M7, P22

80

Figure 57: Part VI of states for the Inres test case example

State Value enabled events
control state data state

ST276 | ({M6, P22}, P15(2),0, {L, P21}), (x, ¢, none)) || M7, P152

ST277 | ({Mb, P22}, P14(2),0, {L, P21}), (x, ¢, none)) || M6, P142

ST278 | (0, P14(2),0,{L, L}), (x, o, F))

ST279 | ({M13, P22}, P14(2),0,{L, L}), (x, o, (F))) M14, P142

ST280 | ({M7,P11},0,0,{L, P11}), (e, 2 ,none)) || M8 M12, P12

ST281 | (0, P13(2),0,{L, L}), (x,2,)

ST282 | ({M7,TopL}, P13(2),0,{L, L}), (x, 2, none)) M12, P20

ST283 | ({M7, P21}, P14(2),0,{M7, P21}), (x, o, none)) || M10,M12, P22

ST284 | ({M10, P21}, P15(2),0, {M7,1}), (x, o, (F))) M11, P22

ST285 | (0, P15(2),0,{ M7, P21}), (x, o, F))

ST286 | ({M7, P22}, P15(2),0,{M7,P21}), (x,oc,none)) || M10, M12, P152

ST287 | ({M10, P22}, P16(2),0, {M7,L}), (x, o, (F))) M11, P162

ST288 | ({M10},0,0,{M7,1}), (x, o, (F))) M11

ST289 | ((0,0,0,{M7,P21}), (x, o, F))

ST290 | ({M6, P22}, P14(2),0, {L, P21}), (o<,o< none)) || M7, P142

ST291 | ({M8, P11},0,0,{L, 1}), (x,2,(P))) M9, P12

ST292 | ((0,0,0,{L, P11}), (x,2, F))

ST293 | ({M7},0,0,{L P11}), (x,2,none)) || M8 M12

ST294 | ({M7, P20}, P13(2),0,{L, L}), (x, 2, none)) M12, P21

ST295 | ({M10, P21}, P14(2),0, {M7,L}), (x, o, (F))) M11, P22

ST296 | (0, P14(2),0,{ M7, P21}), (x, o, F))

ST297 | ({M7, P22}, P14(2),0, {M7, P21}), (o<,o< none)) || M10, M12, P142

ST298 | ({M10, P22}, P15(2),0, {M7,L}), (x, o, (F))) M11, P152

ST299 | ((0,0,0,{L, L}), (x,2, P))

ST300 | ({M8},0,0,{L, L}, (x,2,(P))) M9

ST301 | ({M7, P21}, P13(2),0,{L, P21}), (x, 2, none)) M10,M12, P22

ST302 | ({M10, P22}, P14(2),0, {M7,L}), (x, o, (F))) M11, P142

ST303 | ({M10, P21}, P13(2),0,{L, L}), (x,2,(F))) M11, P22

ST304 | (0, P13(2),0,{L, P21}), (x,2,)

ST305 | ({M7, P22}, P13(2),0,{L, P21}), (x, 2, none)) M10,M12, P132

ST306 | ({M10, P22}, P13(2),0,{L, L}), (x,2,(F))) M11, P132

ST307 | ({M7},0,0,{L, P21}, (x,2,none)) || M10, M12

ST308 | ({M10},0,0,{L, L}, (x,2,(F))) M11

ST309 | ((0,0,0,{L, P21}), (x,2, F))

Figure 58: Part VII of states for the Inres test case example

81

sT0 X5, 4 571

S11 M5, 4 ST2

ST1 S, 5T3

s12 M3 4 ST4

sT2 M8, ST5 sT2 25, | ST6 sT3 M5, | ST6 ST3 L5, 4 STT

sT3 7Y sTs | sTa ME_, sT9 sTa TS, sT10 | 576 M3, 4 ST10
M15 P1 P19(2) M2

sT6 X5, sm1i1 | sTe £h. sT12 | sT6 T2, st | s M5, sT12

sT7 5. sm14 | sT8 M3, 5113 | ST8 L, ST15 | sT9 IS, 4 ST16

sT10 M4 5116 | sT10 Bh g 517 | sT10 7Y sT1s | sT12 M3, sT17

sTi2 28 st | sTi2 BB, 5119 | sT13 M3, 5118 | sT13 M, 4 sT20

sT13 2%, 5191 | sT14 M3, 5119 | sT1a B 5122 | sT1a Y 5193

sT15 M3 5121 | 5715 P8, 5124 | sT16 P 5125 | sT16 TS ST796

st XS, 5125 | sT1T 2, sT21 | SsT18 28, s126 | ST18 T2k, ST98

sT19 M3 5Tt | sT19 M8, st | sTi9 P 5120 | sT19 7Y sT30

st21 M8, 518 | sT21 MY 5120 | sT21 P8, 97131 | S22 M5, 9729
M2 TopL

s122 4, 5T32

ST23 %5 4 ST33

sT24 M3, 5731

S124 2, T34

S126 "%, 4 ST36

sT21 M4, , ST35

sT21 23, 4 ST37

sT28 M4, ST36

ST28 228, , ST39

s129 M2, ST37

S129 24, 4 ST40

ST30 M3, , ST38

ST30 M8, sT41 | ST30 “25, 4 sT42 | sT31 MR, 5139 | sT31 X, 4 ST20
P21 M2 P17(2)

ST31 223, 4 ST43

ST32 %, 4 ST44

ST32 %', 4 ST45

s133 M3, 5742

sT34 M3, 5743

ST34 223, , STAT

5135 P g s1a8 | 5735 729 5149 | sT36 P, 4 5750 | ST37 M4, ST48
ST37 L4, s151 | ST38 M, sT49 | ST38 2, 5152 | ST39 XA, 4 ST50
s139 224, 5153 | 5740 22, 8751 | sTa0 X, sTh4 | ST40 2., STHS
sT40 7Y 556 | sTa2 M, sTh2 | sTa2 M, sT41 | sTa2 BB, STHT
sTa3 M3, 5153 | sT4a3 M. 158 | ST43 BB, 5759 | sT44 X3, ST
sTa4 2% 5160 | 5744 7Y sT61 | sTa5 MA. 4 5756 | ST45 TTE 4 ST62

sT46 M3, , ST57

sT47 M3, 4 ST59

ST47 2., 5T64

ST48 L2, 4 ST65

sT49 "2 ST66

ST50 225, ; sT67

sT51 M8, ST65

P17(2)

P20

sT51 25, 5168 | sTH1 =, 5769 | ST52 X4, SsT66 | STH2 23, , 5T70
sT53 M4, sT67 | ST53 23, 9171 | ST55 M3, 5768 | STHH M, 4 ST54
5155 2% 45172 | 5155 7Y 5173 | sT56 M3, sT69 | 5756 218, 4 5774
ST56 25, 4 ST75 | 157 X3, 5170 | ST57 M, ST41 | STH7 B2 4 ST76
sT59 M2, 5171 | sTh9 X, sT58 | sT59 B, s | sT60 23, , STT2
5160 2. 45178 | 5160 T2 5179 | sTe1 M3, 5173 | sT61 " 4 TS0

sTe2 X3, , ST75

sT62 228, 4 ST81

sT63 X3, , STT76

ST63 223, 4 ST82

sT64 M3, , STTT

ST65 5. 4 ST83

ST65 L, 4 ST84

sTe5 T 585

ST66 228, 4 STS6

sTe7 X1, , ST87

ST67 223, 4 STS8

ST68 24, 4 ST84

ST68 L2, 4 ST89

sTes T 5190

ST69 M4, ; ST85

ST69 24, 4 STI1

Figure 59: Part I of state transitions for the Inres test case example

82

sT70 24, 4 ST86

ST70 228, , ST92

ST71 M4, , ST88

ST71 2, 5193

M15

P15(2)

sT72 M3, ST89 sT72 M8, ST54 sT72 25, 4 ST94 ST72 =57, 4 ST95
S173 M8, | ST90 s173 M8, | ST96 ST73 2L STIT s175 M8, | ST91
M15 P20 M15

ST75 25, 4 ST74

ST75 228, 4 ST98

ST76 M3, 4 ST92

ST76 253, 4 ST99

ST76 223, 4 ST100

ST771 M2, ST93

strr 28, sT101

sT78 M3, ST94

sT78 T2 57102

sT79 X3, , 5T95

ST79 "2, ST103

ST80 M3, , ST97

—
ST80 228, , ST104
P182

ST81 M3, , ST98

ST81 224, , ST105

sT82 M3, ST100

s182 2%, | 5T64

5783 X8, , ST106

ST83 L3, 4 ST107

sTs3 T sT108

sT84 M3, ST107

ST84 25, 4 ST109

sTsa 708 sT110

s785 M3, , ST108

ST85 “5, 4 sTi1l | 5786 22, stz | sTst XY, S120 ST87 223, , ST113
ST88 M, , 57113 | 5788 2¥. , 57114 | s7T89 2B, 5T109 | ST89 L, 4 ST115
5789 729 sTi16 | sT90 24, sT110 | sm90 P sTiir | sT91 24, sTin

ST91 228, , ST118

sT92 M4, , ST112

ST92 223, , ST119

s193 M4, , ST114

sT94 M2, ST115

sT94 X, ST54

sToa Y 51120

sT95 M2, ST116

s195 X2, sT121

ST95 25, 4 ST122

sT97 M3, , ST117

sT97 X8, , 5196

ST97 228, 4 ST123

ST98 M2, , ST118

sT98 X8, , 5174

ST98 224, , ST124

sT100 23, , ST119

sT100 218, , S799

ST100 2%, , ST77

s1102 25, 4 $T120

ST102 27, ST125

51103 23, 57122

ST103 2238, , 57126

s1104 M3, 4 57123

—>c,d
ST104 — 4 ST127

S7105 23, , ST124

ST105 £33, ; ST128

ST106 25, 4 5T129

P21
ST106 25, 4 ST130

sT106 "% 57131

ST107 28, 4 ST130

sT107 25, 4 ST132

sT107 72, 57133

sT108 28, , ST131

ST108 2%, , ST134

s7109 23, , §T132

ST109 25, 4 ST135

sT109 728 L sT136

sT110 23, , 57133

ST110 “2%, 4 ST137

P20

M13

P22

sT111 M5, 57134 | st 228, 57138 | sT112 M5, 57139 | ST112 228, 4 ST140
sTi3 ™Y, ys120 | sT113 2, 51141 | sT114 M8, sm41 | sT115 28,4 57135
sT115 7Y sT142 | sT116 M4, sT136 | sT116 2, sT143 | sT117 M4, 4 sT137

ST117 228, 4 ST144

ST118 M4, | 57138

ST118 224, ST145

s1119 M4, 4 57140

ST119 2%, 5793 | sT120 M3, 57142 | sT120 M., sT146 | ST120 “EF, 4 ST147
sT122 M5, 91143 | sT122 M8, sT191 | sT122 B8, 57148 | ST123 MR, ST144

sT123 X2, S196

s7123 2, | 97149

sT124 23, ST145

sT124 M., ST150

sT124 223, ST151

s1125 M5, ST147

sT125 228, ST152

57126 25, ; ST148

ST126 224, 4 ST153

sT127 25, , ST149

sT127 5, , 5T154

sT128 M5, 4 ST151

sT128 1%, , 5T64

sT129 X1 | ST155

sT129 25, 4 ST156

57120 Y 57157

ST130 5. ; ST156

ST130 £, 4 ST158

sT130 722, 57159

sT131 M5, , 51157

ST131 25, 4 ST160

sT132 28, ST158

—
s7132 5, , ST161

s132 728, 51162

sT133 28, , ST159

ST133 "2 ST163

ST134 M8, , ST160

s7T134 228, ST164

sT135 23, , ST161

sT135 7Y sT165

ST136 23, ; ST162

ST136 25, 4 ST166

sT137 23, , ST163

sT137 228, , ST167

ST138 M3, , ST164

ST138 224, 4 ST168

Figure 60: Part II of state transitions for the Inres test case example

83

sT139 M. sTa1 | sT139 223, 57169 | sT140 MK, 5T169 | ST140 ¥, 5T114
M14 TopL

ST141 —. g ST11

sT142 25, , ST165

ST142 %, 4 ST170

sT143 24, ST166

S7143 228, 4 ST171

ST144 M4, ST167

ST144 224, 4 ST172

ST145 M4, ST168

ST145 25, ; ST173

sT147 X3, , 5T170

s1147 21, ST146

ST147 228, 4 ST174

s1148 M3, ST171

s7148 M43, 4 571121

ST148 255, ; ST175

s1149 M3, 4 57172

sT149 X5, ST176

ST149 23, , sT177

ST151 M3, 5T173

ST151 2, ST150

sT151 2%, , ST77

sT152 23, , ST174

ST152 224, ST178

sT153 X3, ST175

ST153 223, 4 ST179

ST154 M3, , ST177

ST154 2%, | 5T64

sT156 X2, , ST155

M12

ST156 2%, , ST180 | ST156 %, . sT181 | ST157 213, , 57182 | ST157 “2F, 4 ST183
57158 25, 4 51180 | sT158 T5. 451184 | s7158 2%, s1185 | ST159 M5, 4 ST181
ST159 2%, 57186 | sT160 25, , 57183 | ST160 228, 4 7187 | ST161 M8, , ST184

PIA(Z)

ST162 M8, , ST185

ST162 25, 4 ST189

sT163 28, , ST186

ST161 ea ST188
ST163 228, 4 ST190

ST164 M8, 4 ST187

ST164 225, ST191

ST165 23, ; ST188

ST165 2%, 4 ST192

ST166 23, 4 ST189

ST166 2233, 4 ST193

ST167 25, 4 ST190

ST167 225, ; 57194

ST168 X, , 7195

ST168 223, 4 ST196

ST169 2, , sT41

ST169 2%, 4 5T141

ST170 28, , 57192

ST170 228, ; 57197

ST171 M4, 57193

ST171 23, , 5T198

ST172 M4, 4 7194

ST172 223, 4 5T199

ST173 M4, 5T196

sT173 2%, | 5793

sT174 M2, , ST197

sT174 M5, | ST146

sT174 228, 4 ST200

sTits X3, 51198 | sTirs X, 51201 | sTivs 23, sT202 | sTivr 2B, 97199

sttt X8, sTire | sTirr ¥, s | sTis M3, sT200 | ST178 23, 4 ST203

sT179 M3, ;51202 | 5T179 2%, s1m64 | ST180 XX, , 5T155 | ST180 L. 4 ST204

57180 "8 51205 | sT181 M, , 51206 | ST181 %, ST207 | ST183 MY, 4 ST182

sT183 P8, 4 51208 | sT184 M5, 51204 | sT1sa T 51209 | s1185 M5, 4 517205

ST185 “2%, 51210 | ST186 25, 4 51207 | ST186 B, 51211 | ST18T M5, 4 ST208
P21 TopL

ST187 223, 4 ST212

ST188 M8, 4 ST209

ST188 25, 4 ST213

sT189 28, , §7210

sT189 228, ST214

s1190 X8, , 1211

ST190 228, , ST215

51191 X5, 4 51212

s1191 225, 51216

sT192 23, , 51213

s1192 228, 1217

51193 5., ST214

ST193 223, , ST218

s7194 X5, , 51219

ST194 223, 4 ST220

s7195 X, , 57221

ST195 223, 4 ST222

s1196 X4, , 57222

57196 2%, 4 ST114

ST197 M5, , 5T217

ST197 223, ; 57223

ST198 28, , 57218

ST198 223, 4 ST224

ST199 M4, 57220

ST199 2% , 5793

$7200 23, ; 57223

$7200 X5, , 57225

ST200 £33, ; 57226

51202 M2, §T224

s1202 X, ; 57201

s1202 2%, ST77

s1203 23, , 7226

$T203 2245, , ST64

$7204 25, ST155

57204 25, 4 ST227

sT204 "2, 51928

S1205 M5, , 51229 | ST205 "5, , ST230 | ST207 X8, , ST206 | ST207 £, 4 ST231
M12 P21

57208 213, ST182

51208 224, ST232

57209 5., 5T228

S1209 "L, ST233

s1210 25, , 7230

s1210 228, , 57234

sT211 M5, §T231

sT211 22, 971235

51212 M5, 51232

s1212 25, | 51236

s1213 M8, 57233

sT213 228, ST237

Figure 61: Part III of state transitions for the Inres test case example

84

s1214 M5, 97234

ST214 224, ST238

sT215 M8, 5T235

ST215 £33, ; 7239

ST216 X5, ; 5T236

S1216 2%, 4 57240

sT217 M3, , 5T237

S1217 224, ST241

s7218 M, ; 57242

s1218 5., 57243

57219 M, | 57244

s1219 225, 51245

S7220 X5, ; ST245

S7220 1%, , ST114

s1222 M, | 57221

s1222 2155, , ST141

s1223 M4, 1241

s1223 25, | 51246

s1224 M5 | 91243

ST224 21, | 5T93

S7226 M3, 51246 | 57226 X2, 4 57225 | ST226 2%, 4 ST77 | ST227 M, 4 ST247
ST227 £, ST248 | ST228 M3, , S1249 | ST228 28, , ST250 | ST230 X, 4 ST229

ST230 223, , 57251

sT231 X, | ST206

57231 224, 4 ST252

s7232 M, ST253

51232 M. 91254

ST232 23, ST255

57233 M5, 5T250

ST233 £33, , ST256

s1234 M5 ST251

ST234 224 ST257

s1235 25, ST252

ST235 223, , ST258

S7236 25, ST255

S7236 25, ; ST259

s1237 M8, ST256

ST237 224, , ST260

s1238 M8, , ST257

ST238 223, 4 ST261

s7239 M8, ST258

S7239 2%, | 57240

M13

P22

M14

57240 M5, 571259 | sT241 M. 91262 | ST241 2, 5T263 | ST242 M, 57264
S1242 223, 51265 | 51243 M3, 51265 | 57243 ©% ., 5T114 | ST245 XX 971244
ST245 2%, sT141 | 5T246 28, 1263 | ST246 21X, 4 5T93 | ST248 M, 4 ST247
57248 P18 4 57266 | 7248 T2 4 51267 | ST250 M2, 4 5T249 | ST250 P2, 4 ST268

51251 X4, | 57229

ST251 225, S7T269

sT252 M8, ST270

s1252 Y. 4 ST271

ST252 223, ST272

57253 X4, 4 ST182

ST253 £33, ; 5T273

ST255 M9, ST273

S1255 X1, 4 ST254

51255 2%, 4 ST274

ST256 5. ; ST268

ST256 225, ; ST275

s1257 25 7269

ST257 223, , ST276

s1258 25, ST272

ST258 2%, | 5T259

S1259 25, 4 ST274

ST260 25, 4 ST275

ST260 223, 4 ST277

ST261 M8, , ST276

P152

M14

P22

M13

ST261 %, , 57240 | ST262 M., 512718 | ST262 233, 4 ST279 | S5T263 Y, 4 5T279
S7263 2%, sT114 | ST265 M., ST264 | ST265 . 4 ST141 | ST266 15, 4 ST247
ST266 218, 57280 | ST267 X5, , ST281 | ST267 ., ST282 | ST268 X5, , ST249
ST268 225, , 57283 | 57269 X3, , 57284 | ST269 L., 5T285 | 7269 £33, 4 ST286

s7270 2, 7206

ST270 £33, , 1287

sT272 MY, ST287

sT272 M8, S1211

s1272 2%, | 5T274

s1273 X4, 4 ST182

$7273 255, , ST288

ST274 M, ST288

sT274 X1, ST289

ST275 25, 4 ST283

ST275 223, 4 ST290

ST276 25, 4 ST286

ST276 2%, | 5T259

sT277 M8, 4 ST290

sT217 2 | 5T240

sT279 X8, s1278

sT279 2%, ST141

ST280 M8, , ST291

51280 M3, ; 51292

ST280 213, 4 ST293

s1282 M., 51281

57282 228, 1294

s7283 X1, §7295

S7283 M, ST296

51283 223, 4 51297 | 51284 M. 57229 | S5T284 223, , 51298 | S5T286 Y., 51298
ST286 25, , ST285 | 57286 2%, , 57274 | ST287 Y4, , 57206 | ST287 X%, , ST°288
M11 P142

ST288 —. q ST155

$7290 25, S1297

ST?290 —. 4 ST259

s7291 X8, §7299

S7291 213, ST300

S7293 M5, , ST300

51293 M. | 51292

S7294 M5, | 57281

ST294 224, 571301 | sT295 XY, , 57249 | S5T295 223, , ST302 | ST207 XX, , ST302

s1297 X, , S1296 | ST297 21X, , 57274 | ST298 YN, , ST229 | ST298 L1, , 5T288

$7300 25, , 57299 | 57301 X, , 57303 | 7301 L., 57304 | ST301 £, , ST305
M1l P142 M1l P22

51302 X4, ; 57249

ST302 —%.,q ST288

51303 X4, , 51281

ST303 —. 4 ST506

Figure 62: Part IV of state transitions for the Inres test case example

85

s1305 X1, , 51306 | s7305 XX, , 57304 | ST305 2, , 57307 | ST306 LY, , ST281
P132 M10 M12 M1l

ST306 —. 4 ST308

ST307 —. g ST308

ST307 —. 4 ST509

ST308 25, 4 ST247

Figure 63: Part V of state transitions for the Inres test case example

86

References

1]

[10]

[11]

[12]

H. J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and G. Rozen-
berg, editors, Petri Nets: Central Models and their Properties, Advances in Petri
Nets, Part I, volume 254 of Lecture Notes in Computer Science. Springer-Verlag,
1986.

J. Grabowski. Test Case Generation and Test Case Specification with Message Se-
quence Charts. PhD thesis, University of Berne, Institute for Informatics and Applied
Mathematics, February 1994.

J. Grabowski, D. Hogrefe, and R. Nahm. Test Case Generation with Test Purpose
Specification by MSCs. In O. Faergemand and A. Sarma, editors, SDL’93 - Using
Objects. North-Holland, October 1993.

J. Grabowski, R. Nahm, A. Spichiger, and D. Hogrefe. Die SAMSTAG Methode und
ihre Rolle im Konformitatstesten. Prazis der Informationsverarbeitung und Kommu-
nikation, 4/94:214 — 224, December 1994.

J. Grabowski, R. Scheurer, D. Toggweiler, and D. Hogrefe. Dealing with the Com-
plexity of State Space Exploration Algorithms. In Proceedings of the 6th. GI/ITG
technical meeting on "Formal Description Techniques for Distributed Systems’, Uni-
versity of Erlangen, June 1996.

D. Hogrefe. FEstelle, LOTOS und SDL - Standard Spezifikationssprachen fur verteilte
Systeme. Springer Verlag, 1989.

D. Hogrefe. OSI Formal Specification Case Study: The Inres Protocol and Service
(revised). Technical Report IAM-91-012, Universitat Bern, Institut fiir Informatik,
May 1991, Update May 1992.

J. E. Hopcroft and J. D. Ullmann. [Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, 1979.

[SO, E. Brinksma (ed.). Information Processing Systems - Open Systems Intercon-
nection - LOTOS - A Formal Description Technique Based on the Temporal Ordering
of Observable Behaviour. International Standard 8807, ISO, Geneva, 1988.

[SO/IEC JTC 1/SC 21 N. Information Technology - Open Systems Interconnec-
tion - Conformance Testing Methodology and Framework. International Multipart

Standard 9646, [SO/IEC, 1992.

[SO/IEC JTC 1/SC21. Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework - Proposed Draft Amendment 1
to ISO/IEC 9646 Part 3: TTCN Extensions. Proposed Draft Amendment 1 9646-3,
[SO/IEC, May 1991.

[SO/IEC JTC 1/SC21. Amendment to ISO/IEC 9646-3: TTCN - Further Exten-
sions. Working Draft, I[SO/IEC, May 1992.

87

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

23]

[24]

[25]

[SO/IEC JTC 1/SC21. Information Technology - Open Systems Interconnection -
Conformance Testing Methodology and Framework - Part 3: The Tree and Tabular
Combined Notation. International Standard 9646-3, ISO/IEC, 1992.

ITU Telecommunication Standards Sector SG 10. ITU-T Recommendation Z.100:
Specification and Description Language (SDL) (formerly CCITT Recommendation
7.100). ITU, Geneva, June 1992.

K. Jensen. Coloured Petri Nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and their Properties, Advances in Petri Nets,
Part I, volume 254 of Lecture Notes in Computer Science. Springer-Verlag, 1986.

J. Kroon and A. Wiles. A Tutorial on TTCN. In Proceedings of the 11th International
IFIP WG 6.1 Symposium on Protocol, Specification, Testing and Verification, 1991.

J. v. Leeuwen, editor. Formal Models and Semantics, volume B of Handbook of
Theoretical Computer Science. Elsevier Science Publishers B.V., 1990.

R. Nahm. Conformance Testing Based on Formal Description Techniques and Mes-
sage Sequence Charts. PhD thesis, University of Berne, Institute for Informatics and
Applied Mathematics, February 1994.

G. Plotkin. A Structural Approach to Operational Semantics. Technical report,
Aarhus University, Computer Science Department, 1981.

Telelogic AB, Box 4128, 5-203 12 Malmo, Sweden. ITEX 3.0 User’s Guide, 1994.

D. Toggweiler, J. Grabowski, and D. Hogrefe. Partial Order Simulation of SDL
Specifications. In O. Braek and A. Sarma, editors, SDL’95 with MSC in CASE.
North-Holland, September 1995.

M. Toro and K. Tarnay. Principles for Validation of Abstract Test Suites specified in
Concurrent TTCN. In [FIP WG 6.1 Fifteenth International Symposium on "Protocol
Specification, Testing and Verification” (PSTV’95), June 1995.

T. Walter, J. Ellsberger, F. Kristoffersen, and P. v. d. Merkhof. A Common Semantics
Representation for SDL and TTCN. In PSTV XII. North-Holland, 1992.

T. Walter, J. Ellsberger, F. Kristoffersen, and P. v. d. Merkhof. Methods for Testing
and Specification (MTS) — Semantical Relationship between SDL and TTCN — A
Common Semantics Representation. Technical Report ETR 071, European Telecom-
munications Standards Institute, 1993.

T. Walter and B. Plattner. An Operational Semantics for Concurrent TTCN. In
PTS V. North-Holland, 1992.

88

